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ABSTRACT

Fine-tuning is a widespread technique that allows practitioners to transfer pre-
trained capabilities, as recently showcased by the successful applications of foun-
dation models. However, fine-tuning pre-trained reinforcement learning (RL)
agents remains a challenge. This work conceptualizes one specific cause of poor
transfers in the RL setting: forgetting of pre-trained capabilities. Namely, due to
the distribution shift between the pre-training and fine-tuning data, the pre-trained
model can significantly deteriorate before the agent reaches parts of the state space
known by the pre-trained policy. In many cases, re-learning the lost capabilities
takes as much time as learning them from scratch. We identify conditions when
this problem occurs, perform a thorough analysis, and identify potential solutions.
Namely, we propose to counteract deterioration by applying techniques that mit-
igate forgetting. We experimentally confirm this to be an efficient solution; for
example, it allows us to significantly improve the fine-tuning process on Mon-
tezuma’s Revenge as well as on the challenging NetHack domain.

1 INTRODUCTION

Fine-tuning pre-trained neural networks is a widespread technique in deep learning (Yosinski et al.,
2014; Girshick et al., 2014). Its power has recently been showcased by spectacular successes in
the deployment of foundation models in downstream tasks, including natural language processing
(Chung et al., 2022), computer vision (Sandler et al., 2022), automatic speech recognition (Zhang
et al., 2022), and cheminformatics (Chithrananda et al., 2020), among others. These successes can
mainly be observed in the domains of self-supervised and supervised learning, and the results of a
similar caliber have yet to find their way to reinforcement learning (RL).

This work investigates the reasons for the difficulty in fine-tuning RL models. In RL, the agent
explores the state space, acquiring data sequentially and learning along the way. This means the
policy is ever-changing, and the experience data stream is inherently non-stationary, unlike in self-
supervised and supervised learning scenarios. Fine-tuning adds another layer of a distribution shift
in the form of acting in an altered environment, performing a new task, or executing a perturbed
expert policy. Our analysis reveals that these cause interference in the learning dynamics of neural
networks, leading to the deterioration of pre-trained model capabilities. We dub this phenomenon
forgetting of pre-trained capabilities (FPC).

We study two specific instances of FPC: state coverage gap and imperfect cloning gap. The first one
occurs when the pre-trained agent performs well only on a part of the state space, see Figure 1. The
second instance might happen when compounding approximation errors induce significant perfor-
mance degradation of a pre-trained imitation agent. We start by demonstrating that the phenomena
can arise already in a simple two-state MDP. Further, we construct a sequential setup consisting of
robotic tasks from Yu et al. (2020); Wołczyk et al. (2021), which let us perform a thorough analysis
when using RL algorithms with deep neural networks. Importantly, we show that the forgetting
problem can be severe. The pre-trained model often deteriorates completely and we do not any
transfer of its capabilities to the new task.

We propose to mitigate the forgetting of pre-trained capabilities problem by applying knowledge
retention techniques (Kirkpatrick et al., 2017; Rebuffi et al., 2017; Wołczyk et al., 2021). These
approaches preserve previously obtained skills in neural networks while training on new data by
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Figure 1: Example of FPC (state coverage gap). We assume that pre-trained model is able to pick and place
objects (e.g. the cylinder), however, it does not know how to open drawers. When fine-tuning on a new task, in
which the goal is to pick up an object placed inside a closed drawer, we observe an instance of the forgetting of
pre-trained capabilities problem. Namely, the model rapidly forgets how to manipulate objects before learning
to open the drawer and struggles to reacquire this skill (dashed blue line). Forgetting mitigation techniques
alleviate this issue (dashed orange line). At the same time, in both cases, the model learns how to open the
drawer (solid lines).

constraining the optimization process. Such methods can significantly improve the fine-tuning per-
formance and outperform models trained from scratch. We demonstrate this by providing results in
a sequential robotic environment and in realistic RL domains: NetHack and Montezuma’s Revenge.

Our findings go against common practices in supervised transfer learning, which state that the best
approach to maximize knowledge transfer to the downstream task is to fine-tune the model without
constraints on optimization (Radford et al., 2018; Devlin et al., 2019; Dosovitskiy et al., 2020).
Through a set of comprehensive experiments, we show that fine-tuning in RL is different and one
should be careful to preserve prior knowledge, even if the only metric of interest is the downstream
task performance. Highlighting such potential pitfalls is an important step in the development of
strong foundation models in RL.

Our contributions are as follows:

• We pinpoint forgetting of pre-trained capabilities as a critical problem in fine-tuning online
RL models and provide a compelling conceptualization of this phenomenon, and its two
instances: state coverage gap and imperfect cloning gap.

• We showcase a successful use of knowledge retention techniques which in turn allows us
to efficiently leverage the pre-trained model.

• We thoroughly examine the forgetting phenomenon in a simple MDP and robotic sequential
environment, and validate finding in realistic RL domains.

2 FORGETTING AND INTERFERENCE IN REINFORCEMENT LEARNING

Forgetting of pre-trained capabilities is a consequence of the learning dynamics of neural networks.
In particular, due to reusing the same parameters to evaluate different states, learning can lead to
interference, where improving the estimation of the value function on one state deteriorates the
estimation on a different state, see e.g. Schaul et al. (2019). To illustrate these phenomena, let us
split the state space into two sets: CLOSE and FAR. The states in CLOSE are close to the starting
state, which the agent frequently sees. The states in FAR are reachable only by going through
CLOSE; hence, they are further away from the starting state and can only be reached once some
learning on CLOSE happens. In this paper, we consider the following two scenarios.

First, the state coverage gap, in which a policy is pre-trained on a different environment and ends
up performing well mostly on FAR. The agent using this policy does not know how to behave on
CLOSE but must go through it to reach FAR. Consequently, it must learn how to act on CLOSE, and
due to the aforementioned interference, its behavior on FAR will deteriorate considerably and will
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Figure 2: (a) A toy two-state MDP. Each arrow depicts a transition between states, and the anno-
tation encodes the reward and the probability of transition from the policy. (b,c) A policy with its
corresponding value function v0(θ), for two variants of parameterization and reward functions.

have to be re-acquired. This case is illustrated in Figure 1, with open drawer (pick & place
resp.) being CLOSE (FAR reps.), and is representative of common transfer RL scenarios where the
state spaces of upstream and downstream task are similar but not identical (Parisotto et al., 2015;
Rusu et al., 2016; 2022)

Second, the imperfect cloning gap, in which the pre-trained parameters correspond to a perturbed
version of a good policy on the current environment. Such a case frequently arises due to approxima-
tion errors when imitating an expert policy or slight changes in the environment between pretraining
and fine-tuning. This discrepancy, even if small, can lead to an imbalance where the agent visits
states in CLOSE more often than FAR. While trying to correct the slightly suboptimal policy on
CLOSE, the policy on FAR can get worse due to interference. We can imagine this issue accumulat-
ing over a series of subsets of states progressively more distant from the starting state, leading to a
snowball-like effect similar to the initial scenario. This problem represents transfer RL setups, where
the model is pre-trained offline on a static dataset and fine-tuned online on the enviornment (Nair
et al., 2020; Baker et al., 2022; Zheng et al., 2023).

Example in 2-state MDP We now show that the above two scenarios of forgetting of pre-trained
capabilities can happen even in a very simple 2-state MDP. This observation fits well into the RL
tradition of showing counterexamples on small MDPs (Sutton & Barto, 2018). The MDP, shown in
Figure 2(a), consists of two states, labeled as s0 and s1, and an action space which is a singleton.
The transition between states is stochastic and is indicated by an arrow annotated by a reward and
transition probability. For example, a transition from s1 to s0 happens with probability 1 − fθ and
grants a reward r1. For simplicity, we treat fine-tuning as gradient ascent on the value function until
an extreme point is reached. The remaining details can be found in Appendix A.

In Figure 2(b), we present a state coverage gap scenario, where we fine-tune a policy that was pre-
trained on a subset of downstream states and we show that it can lead to divergence. Here, we have
an MDP where the initial policy θ = 0 was trained only on state s1. Since f0 = 1, such a policy
stays in s1 once it starts from s1. If we now try to fine-tune this policy where the starting state is s0,
the agent will forget the behavior in s1 due to the interference caused by the parametrization of the
policy. This in turn will lead the system to converge to a suboptimal policy θ = 0.11 with a value of
2.22. In this case, the environment has changed by introducing new states that need to be traversed
to reach states on which we know how to behave. Learning on these new states that are visited early
on will lead to forgetting of the pre-trained behavior.

Subsequently, in Figure 2(c), we provide an example of imperfect cloning gap. In this scenario,
θ = 1 (with f1 = 1) represents the optimal behavior of staying in s1 and achieving maximum total
discounted returns equal to 10. However, for a given parametrization of fθ, this maximum can be
unstable, and adding a small noise ϵ to θ before fine-tuning will lead to divergence towards a local
maximum at θ = 0.08 with the corresponding value 9.93. Perturbing θ by ϵ will make the system
visit s0 more often, and learning on s0 with further push θ away from 1, forgetting the skill of
moving to and staying in s1.
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Reinforcement learning (RL) is formalized using Markov Decision Processes (MDPs) (Sutton &
Barto, 2018). An MDP is a tuple M = (S,A, p, R, γ), where S is a state space, A is an action
space, p : S ×A → P (S) is a transition kernel, R : S ×A → R is a reward function, and γ ∈ [0, 1]
is a discount factor. The agent interacts with the environment using a policy π : S → P (A) with the
goal of maximizing the expected sum of discounted rewards: Eπ[

∑∞
t=0 γ

trt], where rt is the reward
at timestep t.

Knowledge retention Since we identified forgetting as our main object of study, we consider the
following popular methods for knowledge retention from continual learning literature: L2, Elas-
tic Weight Consolidation (EWC), behavioral cloning (BC), and episodic memory (EM). These ap-
proaches were tested previously in the continual RL setting (Wołczyk et al., 2021; Kirkpatrick et al.,
2017), but were not investigated in the fine-tuning scenario we examine here. The first two are
regularization-based approaches, which apply a penalty on parameter changes by introducing an
auxiliary loss: Laux(θ) =

∑
i F

i(θipre − θi)2, where θ (resp θpre) are the weights of the current
(resp. pre-trained) model, and F i are weighting coefficients. For EWC (Kirkpatrick et al., 2017),
F is the diagonal of the Fisher matrix, while L2 uses F i = 1 for each i. We also use behavioral
cloning (BC), an efficient replay-based approach (Rebuffi et al., 2017; Wolczyk et al., 2022). We im-
plement BC in the following way. Before the training, we gather a subset of states SBC on which the
pre-trained model πpre was trained, and we construct a buffer BBC := {(s, πpre(s)) : s ∈ SBC}.
For the fine-tuning phase, we initialize the policy with θpre and we apply an auxiliary loss of the
form Laux(θ) = Es∼B[DKL(π

∗(s) ∥ π(s))] alongside the RL objective. As for episodic memory
for off-policy methods, we simply keep the examples from the pre-trained task in the buffer when
training on the new task. For more details about knowledge retention methods, see Appendix C.

3 FORGETTING DUE TO STATE COVERAGE GAP

In this section, we empirically test that forgetting impacts the transfer learning in setups with state
coverage gap, i.e. previously unseen states appear at the start of a downstream task, and show
that forgetting mitigation techniques may alleviate this issue. We use Meta-World Yu et al. (2020)
and Montezuma’s Revenge as our testbed. The codebase for all experiments is available in the
supplementary materials.

3.1 A SEQUENCE OF ROBOTIC TASKS

To study the forgetting of pre-trained capabilities phenomenon in a more realistic setting, we develop
sequential robotic scenarios based on the Meta-World benchmark (Yu et al., 2020). We evaluate
performance and measure forgetting of fine-tuning a pre-trained model (hereafter referred to as
Fine-tuning) and compare against a baseline of training from a random initialization (hereafter
referred to as From Scratch).

RoboticSequence The agent has to perform the following tasks in sequence during a single
episode: use a hammer to hammer in a nail (hammer), push an object from one specific place
to another (push), remove a bolt from a wall (peg-unplug-side), push an object around a
wall (push-wall). The next task only begins when the previous one is solved. The first two
tasks were chosen to be significantly easier and we assume that the pre-trained agent is perfectly
capable of solving the last two (peg-unplug-side and push-wall). RoboticSequence
maps to the state coverage gap scenario in Section 2, with (hammer, push) being CLOSE, and
(peg-unplug-side and push-wall) being FAR. The environments share the state and action
spaces but differ in terms of state dynamics and reward functions. For more details (including the
training paradigm), see Appendix B.1.

Performance of fine-tuning Figure 3 shows the performance throughout training on the whole
RoboticSequence and on each constituent task. The pre-trained model predictably fails when
run on the whole sequence as it cannot solve the two first tasks: (hammer and push). The fine-
tuning does not learn faster than a model trained from scratch, even though at the start of the training
it is capable of solving two tasks peg-unplug-side and push-wall. Inspecting the per-task
success rate, we see that although the performance on these two tasks is indeed high at the beginning
of training, it drops rapidly after a few initial steps. Moreover, this deterioration is severe, i.e., when
the training finally reaches these tasks, the performance grows very slowly, in a similar manner to
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Figure 3: The performance of fine-tuning on a sequential robotic task compared to training from
scratch. (Left) The average success of the agent throughout the training, i.e. how many tasks it can
solve on average in a single episode. (Right) The success rate of each task evaluated separately. The
fine-tuned model rapidly forgets how to solve peg-unplug-side and push-wall, the tasks it
was pre-trained on, and then takes almost as long to relearn them as a model trained from scratch.
On the other hand, applying CL methods to limit forgetting unlocks the potential of fine-tuning. BC,
EM and EWC are able to maintain or very quickly regain performance on these tasks.

Figure 4: Log-likelihood of the actions of the pre-trained expert policy on push-wall as fine-
tuning progresses. We gather states from the trajectories of the optimal model, project them to a two-
dimensional space using PCA, and color each point using the log-likelihood of the corresponding
optimal action under the current policy. As fine-tuning progresses the model forgets the initial
solution and is unable to recover it correctly.

a model trained from scratch. As such, the pre-trained model does not exhibit any signs of positive
transfer of the knowledge of the last two tasks.

Application of knowledge retention methods Results presented in Figure 3 show that the appli-
cation of the knowledge retention methods can significantly reduce the forgetting of pre-trained
capabilities described in the previous paragraph. While behavioral cloning achieves the best results,
EWC and episodic memory are still competitive and leverage the pre-trained knowledge better than
pure fine-tuning. For these methods, the performance on the pre-trained tasks initially dips, but
quickly recovers, which suggests that the relevant knowledge was not lost. The more rudimentary
L2 method is able to partly mitigate forgetting, however at the cost of limited plasticity, and it cannot
regain the performance on the pre-trained tasks.

Analysis of forgetting in fine-tuning In this paragraph we aim to analyze forgetting in a more
granular manner. For this purpose, we collect state-action pairs (s, a∗), a∗ ∼ π∗(s) from trajectories
sampled with the pre-trained policy π∗. Throughout the fine-tuning, we measure the log-likelihoods
of these actions under the current policy πθ, i.e., log πθ(a

∗|s) as a measure of forgetting.
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(a) Success rate evaluated on Room 7 during fine-
tuning when initialized in that room.

(b) Average return throughout the training. PPO-
FT, PPO-EWC and PPO-BC are fine-tuned, while
PPO is learned from scratch.

Figure 5: State coverage gap in Montezuma’s Revenge. The pre-trained model that only saw rooms from 7th
upwards performs significantly better when fine-tuned with knowledge retention.

In Figure 4, we study how the policy deteriorates in certain parts of the state space (projected to 2D
using PCA) in the push-wall environment. After 100K steps, the model still recalls the correct
actions on a part of the state space, but the success rate has already collapsed to 0, showing that even
partial forgetting may significantly impact the performance. After 500K steps the likelihood values
decline on the whole state space. They increase when the agent relearns the task, but do not reach
the original values, showing that the fine-tuned agent learned a different policy.

In Appendix D we provide a more detailed analysis of the forgetting dynamics. In particular, we
examine how networks re-learn the forgotten tasks by inspecting changes in the hidden layer rep-
resentations. We observe that after fine-tuning, the representations in the early layers of the policy
network are similar to the pre-trained representations, but the later layers in the policy network and
all layers in the critic network retrieve completely different representations. This again suggests that
the optimization scheme does not retrieve the pre-trained solution but rather learns a different one
from scratch. Additionally, we show that the forgetting problem deepens as we increase the num-
ber of unknown tasks, we investigate the role of architecture size, we present results for different
sequences of tasks, we attempt to disentangle the impact of policy and representation transfer, and
we measure the influence of memory size.

3.2 MONTEZUMA’S REVENGE

In this section, we study state coverage gap in Montezuma’s Revenge. The main takeaway is that the
agent forgets its pre-trained capabilities as the fine-tuning progresses unless a knowledge retention
mechanism is applied (PPO-BC), which also happens to improve the agent’s overall performance;
see Figure 5. More precisely, we assume that during pre-training, we have access to a restricted
version of the game that includes only rooms from a certain room onwards (we pick Room 7, de-
noted on the game map in Figure 10). During fine-tuning, the agent has to solve the whole game,
starting from the first room. As such, Room 7 and subsequent ones represent the FAR states, and the
preceding rooms represent CLOSE states discussed in Section 2.

We conduct experiments using PPO with Random Network Distillation Burda et al. (2018) to boost
exploration (which is essential in this sparse reward environment). We compare three approaches to
fine-tuning: vanilla PPO (PPO-FT), PPO with a behavioral cloning loss (PPO-BC) as a knowledge
retention method, which uses a dataset of trajectories from the pre-trained policy, and Elastic Weight
Consolidation (PPO-EWC). We skip episodic memory, as it requires a replay buffer. Additionally,
we test a model trained from scratch as a baseline. In order to monitor forgetting throughout the
training, we check their performance in the pre-training scenario, i.e. by spawning them in Room 7.
In Figure 5(a) we measure the success rate on this room, defined as the agent successfully leaving the
room1, and we show that indeed as training progresses, performance of PPO-FT falls considerably

1We use this metrics as the reward signal in Montezuma’s revenge is too sparse to provide reliable measure-
ments.
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(a) Level visitation in trajectories from the
expert and the pre-trained model.

(b) Average return when fine-tuning on NetHack.

Figure 6: Imperfect cloning gap on NetHack. (a) Trajectories gathered online by the pre-trained
model differ significantly from those gathered from the rule-based expert since its performance is
hard to clone perfectly. (b) As such, the improvements offered by fine-tuning (APPO-FT) over train-
ing from scratch (APPO) are diminished, but the performance can be boosted by using a forgetting
mitigation technique (APPO-BC).

and only improves after 2M steps, which is when the agent revisits Room 7. At the same time, PPO-
BC and PPO-EWC maintain good performance in Room 7 throughout the training. Importantly, this
difference is reflected in the average return in the game, see Figure 5(b), where PPO-BC manages to
learn significantly faster than PPO-FT. PPO-EWC also outperforms training from scratch (PPO) and
converges faster than PPO-FT, although it saturates on the lower average return. For more details on
Montezuma’s Revenge experiments, see Appendix B.3 and for extended analysis see Appendix D.

4 FORGETTING DUE TO IMPERFECT CLONING GAP

In this section, we illustrate a common scenario where forgetting of pre-trained capabilities can
appear due to the imperfect cloning gap see Section 2. To this end, we use a realistic case of the
challenging game of NetHack (Küttler et al., 2020). In particular, we consider the situation when the
agent trained on the offline dataset does not perfectly replicate the expert policy used for gathering
the dataset. This problem is often present in practice, especially in stochastic environments (like
NetHack). This leads to a distribution shift, and consequently, the agent may forget its pre-trained
behaviors during fine-tuning. Since this is a common transfer learning scenario, we advocate that
fine-tuning methods in RL should carefully consider the impact of forgetting.

NetHack Learning Environment (Küttler et al., 2020) is a rogue-like game consisting of procedu-
rally generated multi-level dungeons. The optimal policy has to encode a variety of behaviors, such
as maze navigation, searching for food, fighting, and casting spells, making this a very complex en-
vironment without clearly separable subtasks. Since the layout of the dungeon changes in each run,
the agent has to learn a general strategy and cannot overfit to a specific map. We use a setup based
on Hambro et al. (2022b) who introduce a dataset of labeled trajectories generated from AutoAs-
cend, a rule-based system that achieves state-of-the-art results in NetHack (Hambro et al., 2022a).
We use behavioral cloning (BC) policy as our pre-trained model, which is the best-performing offline
method tested by Hambro et al. (2022b).

First, we illustrate the distribution shift occurring due to the imperfect cloning gap. In Figure 6(a),
we compare the number of NetHack levels visited by the expert and the pre-trained agent. The
rule-based expert (AutoAscend) exhibits complex behaviors that rely on a long-term strategy, and
as such, the behavioral cloning agent struggles to capture them. In turn, we observe a substantial
performance degradation in terms of the number of levels visited. Although the pre-trained agent
has significant knowledge of the states beyond the second level, the agent rarely sees this part of
the state space at the beginning of fine-tuning. As such, this is a case of imperfect cloning gap,
and we hypothesize it can again lead to forgetting of pre-trained capabilities, where the first level
corresponds to CLOSE and the subsequent levels correspond to FAR.
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Figure 7: Average return of each of each NetHack method throughout the training, evaluated when started on
a specific dungeon level. The top row shows the initial phase of the training (up to 100M steps), and the bottom
row shows the full training (up to 2B steps, note the x-axis scale change). For more details about how models
are evaluated on specific dungeon levels see Appendix B.2

We test this conjecture by comparing vanilla fine-tuning (APPO-FT) to fine-tuning with an Elas-
tic Weight Consolidation (APPO-EWC) and with a behavioral cloning loss (APPO-BC), which we
apply using the states from the AutoAscend pre-training dataset. In all cases, we base on APPO (Pe-
trenko et al., 2020) (following the setup from (Hambro et al., 2022b)) and we also run APPO trained
from scratch as a baseline (APPO). Figure 6(b) shows that although at the beginning of training,
vanilla fine-tuning outperforms training from scratch, after 2B steps, their performance converges
to a similar level. On the other hand, knowledge retention methods (APPO-BC and APPO-EWC)
manage to outperform the other baselines, especially in the long run. We hypothesize that only in
the later part of the training the agent begins to visit later levels more often, and then keeping good
performance on that part of the state space really starts to matter.

To investigate this claim, we look at forgetting in a more fine-grained way. To this end, we gather
trajectories from the expert agent, and we extract states Sℓ when it enters level ℓ ∈ {2, 4, 9}; |Sℓ| =
200. Additionally, we gather states from a special NetHack level, which resembles the game of
Sokoban Ss

2. We evaluate the performance from the saved states, the rationale being that the agent
will not see these states at the start of fine-tuning, and thus we can probe the magnitude of forgetting.

In Figure 7, we look at forgetting at the beginning of the training (top row) as well as over the whole
training (bottom row). For the standard dungeon starting states, we observe mild forgetting, as the
performance dips at the beginning but quickly recovers. We speculate that this is due to the fact that
levels share a lot of similar features and challenges (e.g. killing monsters) and thus there is a positive
transfer between earlier levels and subsequent ones. At the same time, we see that the performance
of APPO-FT stagnates over time while APPO-BC is still able to increase the score. Additionally, we
observe severe forgetting for APPO-FT on Ss, without signs of recovery. This is consistent with our
hypothesis since Sokoban requires a completely different strategy, and experiences from standard
maze exploration will not transfer there. On the other hand, APPO-BC manages to maintain the
Sokoban-solving skills by the end of the training. In Appendix F we run additional experiments
on applying different types of distillation in this problem, we provide a further analysis of Sokoban
results, and we show the plots for all levels along with additional metrics.

5 RELATED WORK

Transfer in RL Due to high sample complexity and computation costs, training reinforcement learn-
ing algorithms from scratch is expensive (Ceron & Castro, 2021; Vinyals et al., 2019; Machado et al.,

2Sokoban is an NP-hard puzzle where the goal is to push boxes on target locations. This is a popular testing
ground for RL algorithms, e.g., Czechowski et al. (2021), see more details in Appendix B.2.
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2018a). As such, transfer learning and reusing prior knowledge as much as possible (Agarwal et al.,
2022) are becoming more attractive. However, the fine-tuning strategy massively popular in super-
vised learning (Bommasani et al., 2021; Yosinski et al., 2014; Girshick et al., 2014) is relatively
less common in reinforcement learning. Approaches that are often used instead include kickstart-
ing (Schmitt et al., 2018; Lee et al., 2022a), and reusing offline data (Lee et al., 2022b; Kostrikov
et al., 2021), skills (Pertsch et al., 2021) or the feature representations (Schwarzer et al., 2021;
Stooke et al., 2021). Fine-tuning in RL is often accompanied by knowledge retention mechanisms,
even though they are sometimes not described as such. In particular, Baker et al. (2022) includes
a regularization term to limit forgetting, Kumar et al. (2022) mixes new data with the old data, and
Seo et al. (2022) introduces modularity to the model. Here, we focus on the characterization and the
experimental analysis of this issue in fine-tuning RL models, and pinpointing some specific settings
when forgetting might occur, such as imperfect cloning gap.

Continual reinforcement learning Continual RL deals with learning over a changing stream of
tasks represented as MDPs. (Khetarpal et al., 2022; Wołczyk et al., 2021; Nekoei et al., 2021;
Powers et al., 2022; Huang et al., 2021; Kessler et al., 2022a). Several works propose methods for
continual reinforcement learning based on replay and distillation (Rolnick et al., 2019; Traoré et al.,
2019), or modularity (Mendez et al., 2022; Gaya et al., 2022). Although relevant to our study, these
works usually investigate changes in the dynamics of non-stationary environments. In this paper,
we switch the perspective and focus on the data shifts occurring during fine-tuning in a stationary
environment. In fact, some of the standard techniques in RL, such as using the replay buffer, can
be seen as a way to tame the non-stationarity inherent to RL (Lin, 1992; Mnih et al., 2013). We
highlight an important difference between a standard CL setup and ours. In CL one trains the agent
on N environments in sequence: first on task 1, then on task 2, and so on. In our case, we fine-
tune the agent on a single environment, where each trajectory can comprise all N tasks. Using
Montezuma’s Revenge as an example, CL would train the agent for a set number of steps on the first
room and then the same number of steps on the next rooms. In our setup, we train the agent to solve
the entire game which requires solving (almost) all of the rooms

6 CONCLUSIONS

This study investigates the forgetting of pre-trained capabilities in fine-tuning RL models. We show
that fine-tuning a pre-trained model on a task where the relevant data is not available at the begin-
ning of the training might lead to a rapid deterioration of the prior knowledge. We highlight two
specific cases: state coverage gap and imperfect cloning gap We investigate these phenomena in
simple toy settings (two-task MDPs) as well as more realistic simulations (continuous control on a
compositional robotic environment), standard RL benchmarks (Montezuma’s Revenge) challenging
environments that remain unsolved (NetHack).

Limitations and Societal Impact Although we aim to comprehensively describe forgetting of pre-
trained capabilities, our study is limited in several ways. First of all, we only confirmed that imper-
fect cloning gap appears with behavioral cloning as the offline pre-training. Although we believe
that similar phenomena will appear for other offline RL methods, we did not verify this empirically.
Additionally, in our experiments we used fairly simple knowledge retention methods to illustrate the
forgetting problem. We believe that CL offers numerous more sophisticated methods that should
perform great on this problem (Mallya & Lazebnik, 2018; Ben-Iwhiwhu et al., 2022; Mendez et al.,
2022; Khetarpal et al., 2022). We deem this important future work.

Knowledge retention methods can be harmful if the pre-trained policy is suboptimal since they will
stop the fine-tuned policy from improving. In our experiments, we do not observe this problem, as
we try to only retain knowledge on the parts of the state space where the agent is already proficient,
and we try to find the right regularization strength through hyperparameter search. However, in other
environments, it might not be easy to identify the part of the state space where the policy should be
preserved. We see this as important future work. Finally, knowledge retention methods require
additional computation resources and bigger memory in order to apply distillation or regularization.
In the standard CL setting complexity of behavioral cloning is linear in memory and quadratic in
computation, it remains to be seen how these constraints will transfer to the fine-tuning setting, as
the pre-training tasks get more and more complex.
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REPRODUCIBLITY

In order to make our work more reproducible, we carefully describe the experimental setup and the
hyperparameters for each domain in Appendix A and B. We carefully discuss the studied methods
in Appendix C. Additionally, we include the source code for all experiments in the supplementary
materials.
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Figure 8: Forgetting of pre-trained capabilities in APPLERETRIEVAL. (Left) Forgetting becomes more prob-
lematic as M (the distance from the house to the apple) increases and (center) hinders the overall performance.
(Right, note x-scale change) This happens since the probability of reaching Phase 2 in early training decreases.

A TOY EXAMPLES – MDP AND APPLERETRIEVAL

Consider the 2-state MDP from Figure 2(a). The value of state s0, visualized as a blue line in Figure
2(b) and 2(c), equals

v0(θ) =
1

1− γ

θ + r0(1− θ)(1− γfθ) + γθr1(1− fθ)

1− γfθ + γθ
.

The policy in Figure 2(c) is defined by fθ =
(

−ϵ
1−ϵ/2θ + 1

)
1θ≤1−ϵ/2 + (2θ − 1)1θ>1−ϵ/2, while

the policy in Figure 2(b) is given as fθ = 2|θ−0.5|. In each case, we treat fine-tuning as the process
of adjusting θ towards the gradient direction of v0(θ) until a local extremum is encountered.

A.1 SYNTHETIC EXAMPLE: APPLERETRIEVAL

APPLERETRIEVAL environment.

Additionally, we introduce a synthetic example of an
environment exhibiting state coverage gap, dubbed
APPLERETRIEVAL. We will show that even a vanilla
RL algorithm with linear function approximators shows
forgetting of pre-trained capabilities.

APPLERETRIEVAL is a 1D gridworld, consisting of two
phases. In Phase 1, starting at home: x = 0, the agent
has to go to x = M and retrieve an apple, M ∈ N. In
Phase 2, the agent has to go back to x = 0. In each
phase, the reward is 1 for going in the correct direction
and −1 otherwise. The observation is o = [−c] in Phase
1 and o = [c] in Phase 2, for some c ∈ R; i.e. it encodes
the information about the current phase. Given this observation, it is now trivial to encode the
optimal policy: go right in Phase 1 and go left in Phase 2. Episodes are terminated if the solution
is reached or after 100 timesteps. Since we can only get to Phase 2 by completing Phase 1, this
corresponds to dividing the states to sets A and B, as described in Section 2.

We run experiments in APPLERETRIEVAL using the REINFORCE algorithm (Williams, 1992) and
assume a simple model in which the probability to move right is given by: πw,b(o) = σ(w · o +
b), w, b ∈ R. Importantly, we initialize w, b with the weights trained in Phase 2.

REINFORCE We use REINFORCE Williams (1992) algorithm for all experiments on AP-
PLERETRIEVAL. We pre-train the single model consisting of two parameters (weight, bias) on
the second phase of the environment for 500 episodes and then finetune it on the full environment
for 2000 episodes. To reduce noise we update our policy every 10 episodes. During experiments,
we used lr = 0.001, γ = 0.99, and time_limit = 100. The algorithm representing REINFORCE
construction is presented in Algorithm 1.
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Figure 9: Impact of c on the results for set M = 30. For smaller c forgetting (left) is greater and
the overall success rate is smaller (center) since it encourages the pre-trained model to find solutions
with a high |b|

|w| ratio, as confirmed by looking at weight difference early in fine-tuning (right).

Algorithm 1: REINFORCE
i = 0
while i < n_episodes do

state = env.reset()
log_probs, rewards = [], []
j = 0
while j < update_every do

action, log_prob = model.act(state)
state, reward, done = env.step(action)
log_probs.append(log_prob)
rewards.append(reward)
if done then

state = env.reset()
i = i+ 1
j = j + 1

end if
end while
returns = cumsum(rewards, gamma)
policy_loss = −sum(returns, log_probs)
optim.zero_grad()
policy_loss.backward()
optim.step()

end while

We show experimentally, see Figure 8, that
for high enough distance M , the forgetting of
pre-trained capabilities problem appears. In-
tuitively, the probability of concluding Phase
1 becomes small enough that the pre-trained
Phase 2 policy is forgotten, leading to overall
poor performance. In this simple case, we can
mechanically analyze this process of forgetting.

Since the linear model in APPLERETRIEVAL
has only two parameters (weight w, bias b)
we can analyze and understand what parameter
sets lead to forgetting. If the pre-trained policy
mostly relies on weight (i.e. |w| ≫ |b|) then
the interference will be limited. However, if
the model relies on bias (i.e. |b| ≫ |w|) then
interference will occur as bias will impact the
output in the same way in both phases. We can
guide the model towards focusing on one or the
other by setting the c parameter since the linear
model trained with gradient descent will tend
towards a solution with a low weight norm. The
results presented in Figure 9 confirm our hy-
pothesis, as lower values of c encourage mod-
els to rely more on b which leads to forgetting.
Such a low-level analysis is infeasible for deep
neural networks, but experimental results con-
firm that interference occurs in practice (Kirkpatrick et al., 2017; Kemker et al., 2018; Ramasesh
et al., 2022).

B TECHNICAL DETAILS

B.1 META WORLD

In this section, we describe the RoboticSequence setting used in Section 3.1, and we pro-
vide more details about the construction of RoboticSequence. The algorithm representing
RoboticSequence construction is presented in Algorithm 2.

We use multi-layer perceptrons (4 hidden layers, 256 neurons each) as function approximators for
the policy and Q-value function. For all experiments in this section, we use the Soft Actor-Critic
(SAC) algorithm (Haarnoja et al., 2018a). The observation space consists of information about the
current robot configuration, see (Yu et al., 2020) for details, and the task ID encoded as a one-hot
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vector. In our experiments, we use a pre-trained model that we trained with SAC on the last two
tasks (peg-unplug-side and push-wall) until convergence (i.e. 100% success rate). All
experiments on Meta-World are run with at least 20 seeds and we present the results with 90%
confidence intervals. We defer further technical details (see Appendix B) and the codebase to the
supplementary materials.

Algorithm 2: STITCHEDENV

Input: list of N environments Ek, policy π,
time limit T .
Returns: number of solved environments.
i = 1; t = 1 {Initialize env idx, timestep
counter}
while i ≤ N and t ≤ T do

Take a step in Ei using π
if Ei is solved then

i = i+ 1; t = 1 {Move to the next env,
reset timestep counter }

end if
end while
return i− 1

In order to make the problem more challenging,
we randomly sample the start and goal condi-
tions, similarly as in Wołczyk et al. (2021). Ad-
ditionally, we change the behavior of the ter-
minal states. In the original paper and code-
base, the environments are defined to run indef-
initely, but during the training, finite trajectories
are sampled (i.e. 200 steps). On the 200th step
even though the trajectory ends, SAC receives
information that the environment is still going.
Effectively, it means that we still bootstrap our
Q-value target as if this state was not terminal.
This is a common approach for environments
with infinite trajectories Pardo et al. (2017).

However, this approach is unintuitive from
the perspective of RoboticSequence. We
would like to go from a given task to the next
one at the moment when the success signal appears, without waiting for an arbitrary number of steps.
As such, we introduce a change to the environments and terminate the episode in two cases: when
the agent succeeds or when the time limit is reached. In both cases, SAC receives a signal that the
state was terminal, which means we do not apply bootstrapping in the target Q-value. In order for
the MDP to be fully observable, we append the normalized timestep (i.e. the timestep divided by the
maximal number of steps in the environment, T = 200 in our case) to the state vector. Additionally,
when the episode ends with success, we provide the agent with the "remaining" reward it would get
until the end of the episode. That is, if the last reward was originally rt, the augmented reward is
given by r′t = βrt(T − t). β = 1.5 is a coefficient to encourage the agent to succeed. Without
the augmented reward there is a risk that the policy would avoid succeeding and terminating the
episode, in order to get rewards for a longer period of time.

SAC We use the Soft Actor-Critic (Haarnoja et al., 2018a) algorithm for all the experiments on
Meta-World and by default use the same architecture as in the Continual World (Wołczyk et al.,
2021) paper, which is a 4-layer MLP with 256 neurons each and Leaky-ReLU activations. We apply
layer normalization after the first layer. The entropy coefficient is tuned automatically (Haarnoja
et al., 2018b). We create a separate output head for each task in the neural networks and then we use
the task ID information to choose the correct head. We found that this approach works better than
adding the task ID to the observation vector.

For the base SAC, we started with the hyperparameters listed in Wołczyk et al. (2021) and then per-
formed additional hyperparameter tuning. After a quick hyperparameter search, we set the learning
rate to 10−3 and use the Adam Kingma & Ba (2014) optimizer. The batch size is 128 in all exper-
iments. We use L2, EWC, and BC as described in Wołczyk et al. (2021); Wolczyk et al. (2022).
For episodic memory, we sample 10k state-action-reward tuples from the pre-trained tasks using the
pre-trained policy and we keep them in SAC’s replay buffer throughout the training on the down-
stream task. Since replay buffer is of size 100k, 10% of the buffer is filled with samples from the
prior tasks. For each method, we perform a hyperparameter search on method-specific coefficients.
Following Wołczyk et al. (2021); Wolczyk et al. (2022) we do not regularize the critic. The final
hyperparameters are listed in Table 1.

CKA We use Central Kernel Alignment Kornblith et al. (2019) to study similarity of represen-
tations. CKA is computed between a pair of matrices, X ∈ Rn×p1 , Y ∈ Rn×p2 , which record,
respectively, activations for p1 and p2 neurons for the same n examples. The formula is then given
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Table 1: Hyperparameters of knowledge retention methods in Meta-World experiments.

Method actor reg. coef. critic reg. coef. memory

L2 2 0 -
EWC 100 0 -
BC 1 0 10000
EM - - 10000

as follows:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, (1)

where HSIC is the Hilbert-Schmidt Independence Criterion Gretton et al. (2005), Kij = k(xi,xj)
and Lij = l(yi,yj), and k and l are two kernels. In our experiments, we simply use a linear kernel
in both cases.

Compute For the experiments based on Meta-World, we use CPU acceleration, as the observations
and the networks are relatively small and the gains from GPUs are marginal Wołczyk et al. (2021).
For each experiment, we use 8 CPU cores and 30GB RAM. The average length of an experiment is
48 hours. During our research for this paper, we ran over 20,000 experiments on Contiual World.

B.2 NETHACK

Environment NetHack Kenneth Lorber (2023) is a classic and highly complex terminal roguelike
game that immerses players in a procedurally generated dungeon crawling experience, navigating
through a labyrinth in a world filled with monsters, treasures, and challenges. The NetHack Learn-
ing Environment (NLE) introduced in Küttler et al. (2020) is a scalable, procedurally generated,
stochastic, rich, and challenging environment aimed to drive long-term research on problems such
as exploration, planning, skill acquisition, and language-conditioned RL.

The NLE is characterized by a state space that includes a 2D grid representing the game map and
additional information like the player’s inventory, health, and other statistics. Thus, the NLE is
multimodal and consists of an image, the main map screen, and text. The action space in NLE
consists of a set of 120 discrete actions. At the same time, the NLE presents a challenge for RL
agents due to its action-chaining behavior. For instance, the player must press three distinct keys in
a specific sequence to throw an item, which creates additional complexity to the RL problem. The
environmental reward in score task, used in this paper, is based on the increase in the in-game
score between two-time steps. A complex calculation determines the in-game score. However,
during the game’s early stages, the score is primarily influenced by factors such as killing monsters
and the number of dungeon levels the agent explores. The in-game score is a sensible proxy for
incremental progress on NLE. Still, training agents to maximize it is likely not perfectly aligned
with solving the game, as expert human players can solve NetHack while keeping the score low.

It is important to note that during training, the agent may not follow levels in a linear sequence due
to NetHack’s allowance for backtracking or branching to different dungeon parts (as described in
https://nethackwiki.com/wiki/Branch). Consequently, we can’t expect the agent to
remember solutions to specific levels, but rather, we aim for it to recall general behavioral patterns
for different levels. This highlights the issue of forgetting, even in the absence of strictly defined
tasks, contrary to the continual learning literature.

Dataset This paper uses a subset of the NetHack Learning Dataset (NLD) collected by Hambro
et al. (2022b) called NLD-AA. It contains over 3 billion state-action-score trajectories and meta-
data from 100,000 games collected from the winning bot of the NetHack Challenge Hambro et al.
(2022a). In particular, we use about 8000 games of Human Monk. This character was chosen be-
cause it was extensively evaluated in the previous work Hambro et al. (2022b) and because the game
setup for the Human Monk is relatively straightforward, as it does not require the agent to manage
the inventory. The bot is based on the ’AutoAscend’ team solution, a symbolic agent that leverages
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human knowledge and hand-crafted heuristics to progress in the game. Its decision-making module
is based on a behavior tree model.

Architecture We use the solution proposed by the ’Chaotic Dwarven GPT-5’ team, which is based
on Sample Factory Petrenko et al. (2020) that was also used in Hambro et al. (2022b). This model
utilizes an LSTM architecture that incorporates representations from three encoders, which take ob-
servations as inputs. The LSTM network’s output is then fed into two separate heads: a policy head
and a baseline head. The model architecture used both in online and offline settings consists of a
joint backbone for both actor and critic. It takes as an input three components: RGB image of the
main game screen, blstats, and message. Where blstats refers to the player’s status infor-
mation, such as health and hunger, and message refers to the textual information displayed to the
player, such as notifications and warnings. These inputs are processed separately using the Nature
DQN CNN Mnih et al. (2015) for the image input and fully connected layers for the blstats and
message inputs and are merged before passing to LSTM. This baseline allows for fast training but
struggles with learning complex behaviours required for certain roles in the game. Thus, we choose
only high-performing Human Monk character. More details about the architecture can be found
in Petrenko et al. (2020). The model hyperparameters are shown in Table 2 – analogical to Table 6
from Petrenko et al. (2020).

Pre-training During the offline pre-training phase, we employed Behavioral Cloning (BC) Bain
& Sammut (1995); Ross & Bagnell (2010), an imitation learning approach that utilizes a supervised
learning objective to train the policy to mimic the actions present in the dataset. To be more spe-
cific, it utilizes cross entropy loss function between the policy action distribution and the actions
from the NLD-AA dataset. The offline procedure was conducted with the hyperparameters from Ta-
ble 2, except: actor_batch_size=256, batch_size=128, ttyrec_batch_size=512
and adam_learning_rate=0.001 for two billions steps. For more details on hyperparameters,
please refer to the original article Petrenko et al. (2020).

Fine-tuning In the online training phase, we employed a highly parallelizable architecture called
Asynchronous Proximal Policy Optimization (APPO) Schulman et al. (2017); Petrenko et al. (2020).
In this setup, we can run over 2 billion environment steps under 48 hours of training on A100 Nvidia
GPU.

Within the main manuscript, we examined vanilla fine-tuning (APPO-FT) and fine-tuning with a
behavioral cloning loss (APPO-BC), the latter is explained in more detail in Appendix C. We used a
model pre-trained through offline Behavioral Cloning (BC) training for both fine-tuning approaches.
It should be noted that BC does not include a critic, resulting in the baseline head being initialized
randomly.

The APPO-BC framework computes the auxiliary loss by utilizing the trajectories generated from
the expert (i.e. the AutoAscend algorithm). We scaled the auxiliary losses by a factor of 0.5
(kickstarting_loss=0.5).

Evaluation During the evaluation phase, we provide in-game scores and, respectfully, the number
of filled pits for Sokoban levels at specific checkpoints during training. Models were evaluated
every 100 million environment steps for Figure 6(b) and Figure 7’s second row, and every 10 million
environment steps for Figure 7’s first row. For the per-level evaluation in Figure 7, we employ the
AutoAscend expert, used for behavioral cloning in pre-training. We use AutoAscend to play the
game and save the state when it reaches the desired level. We generate 200 game saves for each
level and evaluate our agents on each save by loading the game, running our agent where the expert
finished, and reporting the score our agent achieved on top of the expert’s score.

B.3 MONTEZUMA’S REVENGE

Environment In this section, we provide further details on our experiments with Montezuma’s
Revenge from Atari Learning Environment (ALE) Machado et al. (2018b). In particular, we inves-
tigate forgetting in the scenario in which the agent was pre-trained on deeper rooms of the first level
pyramid and then fine-tuned on the whole environment as in the classic gameplay (Figure 10). As

20



Under review as a conference paper at ICLR 2024

Table 2: Hyperparameters of the model used in NLE. For the most part, we use hyperparameters
values from Hambro et al. (2022b).

Hyperparameter Name Value
activation_function relu

adam_beta1 0.9
adam_beta2 0.999
adam_eps 0.0000001

adam_learning_rate 0.0001
weight_decay 0.0001

appo_clip_policy 0.1
appo_clip_baseline 1.0

baseline_cost 1
discounting 0.999
entropy_cost 0.001

grad_norm_clipping 4
hidden_dim 512
batch_size 128

actor_batch_size 256
ttyrec_batch_size 256

penalty_step 0.0
penalty_time 0.0
reward_clip 10
reward_scale 1
unroll_length 32
initialisation ’orthogonal’

kickstarting_loss 0.5

well as in the Meta-World setup, after fine-tuning the agent from the regular point of start (room
1), we observe the rapid decline of agent performance in deeper rooms that were mastered during
pre-training.

Montezuma’s Revenge, released in 1984, presents a challenging platformer scenario where players
control the adventurer Panama Joe as he navigates a labyrinthine Aztec temple, solving puzzles and
avoiding a variety of deadly obstacles and enemies. What makes Montezuma’s Revenge particu-
larly interesting for research purposes is its extreme sparsity of rewards, where meaningful positive
feedback is rare and often delayed, posing a significant challenge.

We enumerate rooms according to the progression shown in Figure 10, starting from room 1, where
the player begins gameplay. As a successful completion of the room in Figure 5(a), we consider
achieving at least one of the following options: either earn a coin as a reward, acquire a new item,
or exit the room through a different passage than the one we entered through.

Architecture In the experiments, we use a PPO agent with a Random Network Distillation (RND)
mechanism Burda et al. (2018) for exploration boost. It achieves this by employing two neural
networks: a randomly initialized target network and a prediction network. Both networks receive
observation as an input and return a vector with size 512. The prediction network is trained to predict
the random outputs generated by the target network. During interaction with the environment, the
prediction network assesses the novelty of states, prioritizing exploration in less predictable regions.
States for which the prediction network’s predictions deviate significantly from the random targets
are considered novel and are prioritized for exploration. Detailed hyperparameter values can be
found in Table 3.

Dataset For behavioural cloning purposes, we collected more than 500 trajectories sampled from
a pre-trained PPO agent with RND that achieved an episode cumulative reward of around 7000.
In Figure 11 we show the impact of different values of the Kullback–Leibler weight coefficient on
agent performance.
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Table 3: Hyperparameters of the model used in Montezuma’s Revenge. For the most part, we use
hyperparameter values from Burda et al. (2018). We used PyTorch implementation by jcwleo from
https://github.com/jcwleo/random-network-distillation-pytorch

Hyperparameter Name Value
MaxStepPerEpisode 4500

ExtCoef 2.0
LearningRate 1e-4

NumEnv 128
NumStep 128
Gamma 0.999

IntGamma 0.99
Lambda 0.95

StableEps 1e-8
StateStackSize 4
PreProcHeight 84
ProProcWidth 84

UseGAE True
UseGPU True
UseNorm False

UseNoisyNet False
ClipGradNorm 0.5

Entropy 0.001
Epoch 4

MiniBatch 4
PPOEps 0.1
IntCoef 1.0

StickyAction True
ActionProb 0.25

UpdateProportion 0.25
LifeDone False

ObsNormStep 50
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Figure 10: The order in which rooms are visited to complete the first level of Montezuma’s Re-
venge is presented with the red line. We highlight Room 7 using a yellow border. Source:
https://pitfallharry.tripod.com/MapRoom/MontezumasRevengeLvl1.html

Figure 11: Average return in Montezuma’s Revenge for PPO, fine-tuned PPO and two different
coefficients for behavioural cloning PPO.

C KNOWLEDGE RETENTION METHODS

In this section, we provide more details about the knowledge retention methods used in the experi-
ments, and we briefly describe different types of possible approaches.
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In this paper, we mostly focus on forgetting the pre-trained knowledge when fine-tuning only on
a single stationary task. However, in continual learning literature that often focuses on the prob-
lem of mitigating forgetting, the goal is to usually deal with a sequence of tasks (up to several
hundred Lesort et al. (2022)) and efficiently accumulate knowledge over the whole sequence. As
such, although here we will describe CL methods with two tasks (corresponding to pre-training and
fine-tuning), in practice dealing with a longer sequence of tasks might require more careful consid-
erations.

C.1 REGULARIZATION-BASED METHODS

Regularization-based methods in CL aim to limit forgetting by penalizing changes in parameters
that are relevant to the current task. In particular, a few regularization methods Kirkpatrick et al.
(2017); Aljundi et al. (2018) add an auxiliary loss of the following form:

Laux(θ) =
∑
i

F i(θipre − θi)2, (2)

where θ are the weights of the current model, θpre are the weights of a prior model, and F i are weight-
ing coefficients. For L2 (Kirkpatrick et al., 2017), where we simply want to minimize the L2 norm
between the current and the previous solution. In Elastic Weight Consolidation (EWC) (Kirk-
patrick et al., 2017), F is the diagonal of the Fisher Information Matrix, see (Wołczyk et al., 2021)
for details about its implementation in Soft Actor-Critic.

C.2 DISTILLATION-BASED METHODS

In this work, we use the behavioral cloning approach used previously in continual reinforce-
ment learning setup Wolczyk et al. (2022); Rolnick et al. (2019) This approach is based on
minimizing the Kullback-Leibler of action distributions under particular states Ds

KL(p ∥ q) =

Ea∼p(·|s)

[
log(p(a|s)q(a|s) )

]
. Assume that πθ is the current policy parameterized by θ (student) and π∗ is

the pre-trained policy (teacher).

In behavioral cloning, we apply the following loss:

LBC(θ) = Es∼B[D
s
KL(πθ ∥ π∗)], (3)

where B is a buffer of data containing states from pre-training. Since we would like to remember
how to behave on the entirety of the state space, including the states that are possibly hard to reach
(i.e. FAR as described in Section 2), we should make sure these states are included in the loss.
This amounts to using states that were used in pre-training, either the offline dataset in the imperfect
cloning gap scenario or from the pre-training task in the state coverage gap scenario.

Additionally, the paper introducing the offline dataset for NetHack Learning Environment Hambro
et al. (2022b) also introduces a method called "Behavioral Cloning from Observations" (BCO). The
version tested in this work differs slightly from their implementation and we describe the differences
here. First of all, since we only use the labeled AutoAscend dataset, there is no need to train and use
an inverse dynamics model. Second, BCO introduced in Hambro et al. (2022b) uses the auxiliary
loss of the following form:

LBCO(θ) = Es∼DAA
[Ds

KL(πθ ∥ πAA)], (4)

where DAA denotes the NLD-AA dataset gathered by the AutoAscend bot and πAA is the AutoAs-
cend’s policy. As such, the teacher here is not the pre-trained model but in fact, the AutoAscend bot.
Although the pre-training scheme aims to mimic the AutoAscend bot as closely as possible, the two
will in practice, differ, which means that behavioral cloning in this paper might work slightly dif-
ferently than behavioral cloning from Hambro et al. (2022b). For example, the AutoAscend dataset
only contains single actions (i.e. in the action distribution, the whole probability mass lies on a
single action), while the pre-trained agent will have a smoother action distribution.

C.3 NOTE ON CRITIC REGULARIZATION

In actor-critic architectures popular in reinforcement learning, one can decide whether to apply
knowledge retention methods only to the actor and only to the critic. If all we care about is the
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policy being able to correctly execute the policies for the previous tasks, then it is enough to force
the actor to not forget. Since the critic is only used for training, forgetting in the critic will not
directly impact the performance. On the other hand, in principle preserving knowledge in the critic
might allow us to efficiently re-train on any of the prior tasks. In this paper, following Wolczyk
et al. (2022) we focus on regularizing only the actor, i.e. we do not apply any distillation loss on
the critic in distillation-based methods and we do not minimize the distance on the L2 norm on the
critic-specific parameters.

C.4 REPLAY-BASED METHODS

A simple way to mitigate forgetting is to add the prior data to the training dataset for the current
dataset (in supervised learning (Chaudhry et al., 2019; Buzzega et al., 2021)) or to the replay buffer
(in off-policy RL (Rolnick et al., 2019; Kessler et al., 2022b)). By mixing the data from the previous
and the current task, one approximates the perfectly mixed i.i.d. data distribution, thus going closer
to continual learning.

In our experiments, we use a simple episodic memory (EM) approach along iwth the off-policy
SAC algortihm. At the start of the training, we gather a set of trajectories from the pre-trained
enviornment and we use them to populate SAC’s replay buffer. In our experiments, old samples take
10% of the whole buffer size. Then, throughout the training we protect that part of the buffer, i.e.
we do not allow the data from the pre-trained task to be overriden.

Although episodic memory performs well in our experiments, it is difficult to use this strategy in
settings with on-policy algorithms. In particular, we cannot trivially use it with PPO in Montezuma’s
Revenge and with APPO in NetHack as these methods do not use a replay buffer and might become
unstable when trained with off-policy data. Additionally, we note that episodic memory seems to
work poorly with SAC in traditional continual learning settings Wołczyk et al. (2021); Wolczyk et al.
(2022). As such, we focus on the distillation approaches instead.

C.5 PARAMETER-ISOLATION METHODS

Standard taxonomies of continual learning De Lange et al. (2021) also consider parameter isolation-
based (or modularity-based) method. Such methods assign a subset of parameters to each task and
preserve the performance by keeping these weights frozen. For example, Progressive Networks Rusu
et al. (2016) introduces a new set of parameters with each introduced task, and PackNet Mallya
& Lazebnik (2018) freezes a subset of existing weights after each task. Recent works showed
that by carefully combining the modules, one can achieve a significant knowledge transfer without
any forgetting Veniat et al. (2021); Ostapenko et al. (2021). However, in most cases, methods
in this family require access to the task ID. Although we provide the task ID in our controlled
RoboticSequence environments, most realistic problems, such as NetHack, do not have clearly
separable tasks and as such application of such methods to the general fine-tuning problem might be
non-trivial.
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Figure 12: The CKA values throughout vanilla fine-tuning (without knowledge retention methods),
computed between the activations of the pre-trained model and the activations of the current model.
The higher the values, the more similar the representations.

D ANALYSIS OF FORGETTING IN ROBOTIC MANIPULATION TASKS

In this section, we present additional results for our robotic manipulation experiments based on
Meta-World.

We use the experimental setting from Section 3.1 and the same sequence of tasks. We adopt the
forward transfer metric used previously in Wołczyk et al. (2021); Bornschein et al. (2022) to measure
how much pre-training helps during fine-tuning, which serves us also as a proxy of knowledge
retention:

Forward Transfer :=
AUC − AUCb

1− AUCb
, AUC :=

1

T

∫ T

0

p(t)dt, AUCb :=
1

T

∫ T

0

pb(t)dt,

where p(t) is the success rate of the pre-trained model at time t, pb denotes the success rate of a
network trained from scratch, and T is the training length. By default, we will compute forward
transfer on the whole RoboticSequence, but it can be also computed on any of its constituent
tasks..

Analysis of internal representations We examine how activations of the actor and critic networks
in SAC change throughout fine-tuning when we do not use any CL methods, with the goal of pin-
pointing the structure of forgetting. In order to measure the representation shift in the network, we
use the Central Kernel Alignment (CKA) (Kornblith et al., 2019) metric, which was previously used
in studying forgetting in the supervised learning paradigm (Ramasesh et al., 2020; Mirzadeh et al.,
2022), see Appendix B for more details. Before starting the fine-tuning process, we collect optimal
trajectories from the pre-trained model along with the activations of the networks after each layer.
Then, at multiple points throughout the training process, we feed the same trajectories through the
fine-tuned network and compare its activations to the prior activations using CKA. Figure 12 shows
that, in general, later layers change more than the early layers, which is consistent with previous
studies (Ramasesh et al., 2020). This is particularly visible in the policy network, while the ten-
dency is not as strong for the critic networks, suggesting that the TD-learning guiding the critic
leads to different representation learning dynamics.

In the policy network, representations in the early layers change rapidly at the beginning of the
fine-tuning process. Then, interestingly, as we solve the new tasks and revisit the tasks from pre-
training, CKA increases and the activations become more similar to the pre-trained ones. As such,
the re-learning visible in per-task success rates in Figure 3 is also reflected in the CKA here. This
phenomenon does not hold for the later layers in the policy network or the Q-networks. This sug-
gests that although we are able to retrieve similar representations, the solution we find is significantly
different.

Impact of the network size Previous studies in supervised continual learning showed that
forgetting might become smaller as we increase the size of the neural network Ramasesh
et al. (2022); Mirzadeh et al. (2022), and here we investigate the same point in RL using
our RoboticSequence setting. We run a grid of experiments with hidden dimensions in
{256, 512, 1024} and number of layers in {2, 3, 4}. For each of these combinations, we repeat
the experiment from Section 3.1 namely, we measure how fine-tuning from a pre-trained solution
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compares to starting from random initialization and how the results change when we apply continual
learning methods. We omit L2 here, as we find EWC, which is conceptually similar, outperforms it
in all cases. The summary of the results is presented in Table 4.

The results do not show any clear correlations between the network size and forgetting, hinting
at more complex interactions than these previously showed in continual supervised learning litera-
ture Ramasesh et al. (2022). The fine-tuning approach fails to achieve a significant positive transfer
for two or four layers, but it does show signs of knowledge retention with three layers. Inspection of
the detailed results for the three-layer case, see Figure 18, shows that the fine-tuning performance on
the known tasks still falls to zero at the beginning, but it can regain performance relatively quickly.
As for the CL methods, we observe that behavioral cloning performs well independently of the size
of the network. On the other hand, EWC tends to fail with two layers. Since EWC directly penalizes
changes in the parameters, we hypothesize that with a small, two-layer network, the resulting loss
of plasticity makes it especially difficult to learn.

Impact of the number of unknown tasks In our APPLERETRIEVAL experiments, we showed
that forgetting of pre-trained capabilities is more visible as we increase the amount of time spent
before visiting the known part of the state space. We investigate the same question in the context
of robotic manipulation tasks by changing the number of new tasks the agent has to solve prior to
reaching the ones it was pre-trained on. That is, we study RoboticSequences where the last
two tasks are peg-unplug-side and push-wall, as previously, but the first tasks are taken as
different length suffixes of window-close, faucet-close, hammer, push We call the tasks
preceding the pre-trained tasks the prefix tasks.

We investigate how the number of the prefix tasks impacts the performance on the known tasks
during the fine-tuning process. Table 5 shows the forward transfer metric computed on the pre-
trained tasks for fine-tuning, EWC and BC. As the number of prefix tasks grows, the forward transfer
values for fine-tuning become smaller, which means that the gains offered by the prior knowledge
vanish. Interestingly, even with a single prefix task the forward transfer is relatively low. On the other
hand, continual learning methods do not suffer as much from this issue. BC achieves high forward
transfer regardless of the setting and EWC experiences only small deterioration as we increase the
number of prefix tasks.

Impact of representation vs policy on transfer Although we see significant positive transfer
once the forgetting problem is addressed, it remains an open question where this impact comes from.
Although there are several studies on the impact of representation learning on transfer in supervised
learning (Neyshabur et al., 2020; Kornblith et al., 2021), the same question in RL remains relatively
understudied. Here, we try to understand the impact of representation and policy on transfer by
resetting the last layer of the network before starting the training. As such, the policy at the beginning
is random even on the tasks known from pre-training, but has features relevant to solving these tasks.
The improvements should then only come from the transfer of representation.

The results for these experiments are presented in Figure 13. First of all, we observe that, expectedly,
this setting is significantly harder, as all methods perform worse than without resetting the head.
However, we still observe significant transfer for BC and EWC as they train faster than a randomly
initialized model. At the same time, fine-tuning in the end manages to match the performance of
BC and EWC, however at a much slower pace. We hypothesize that the gap between knowledge
retention methods and fine-tuning is smaller, since now the methods have to re-learn a new policy
rather than maintain the old one. This preliminary experiment suggests that the benefits of fine-
tuning come from both the policy and the representation since we can still observe a significant,
although reduced, transfer after resetting the heads. Maximizing transfer from the representation
remains an interesting open question.

Other sequences In order to provide another testbed for our investigations, we repeat the main ex-
periments on another sequence of tasks, namely shelf-place, push-back, window-close,
door-close, where again we fine-tune a model that was pre-trained on the last two tasks. The
results are presented in Figure 16. We find that the main conclusions from the other sequence hold
here, although, interestingly, the performance of EWC is significantly better. Additionally, we run
experiments on a simple, two task RoboticSequence with drawer-open and pick-place,
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Figure 13: Performance of different methods on the RoboticSequence where we reset the last layer
of the policy and critic networks. The results are worse than in the standard case, but there is still
some positive transfer, suggesting that benefits come from reusing both the representations as well
as the policy.

Figure 14: The performance on a robotic sequence where the known tasks are in the middle.

showcased in Figure 1. We used behavioral cloning as an example of a method that mitigates for-
getting.

Additionally, we check what happens when the known tasks are "in the middle" of two
known tasks. That is, we use the environment consisting of the following sequence of
goals: hammer, peg-unplug-side, push-wall, push with a model pre-trained on
peg-unplug-side, push-wall. With this setup, we are especially interested in the impact
of different methods on the performance on the last task, i.e. can we still learn new things after
visiting a known part of the state space?

The results presented in Figure 14 show that the relative performance of all methods is the same
as in our original ordering, however, we observe that EWC almost matches the score of BC. The
learning benefits on the last task, push, is somewhat difficult to estimate. That is since BC manages
to maintain good performance on tasks peg-unplug-side and push-wall, it sees data from
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Figure 15: The performance on a robotic sequence where the known tasks are positioned at the
beginning.

push much sooner than approaches that have to re-learn tasks 2 and 3. However, we observe that
even after encountering the later tasks, knowledge retention methods perform much better on push
than vanilla fine-tuning, which in turn is better than a model trained from scratch.

Finally, we verify that the gap between vanilla fine-tuning and knowledge retention methods does not
appear when the relevant skills are only needed at the start of the downstream task. To do this, we
use the following sequence of goals: peg-unplug-side, push-wall, hammer, push
with a model pre-trained on peg-unplug-side, push-wall. Results in Figure 15 show that
indeed in this scenario there is no forgetting and fine-tuning manages just as well or sometimes even
slightly better than knowledge retention methods.

Impact of the memory size on the results The memory overhead is an important consideration
in fine-tuning with a behavioral cloning loss. We run experiments to check how many samples we
actually need to protect knowledge of the previous tasks. Results presented in Figure 17 show that
even with 100 samples we are able to keep good performance, at the cost of a higher performance
drop on the pre-trained tasks at the beginning of the fine-tuning process.

Success rate plots for different architectures In Figure 18, we present the full results from Ta-
ble 4 with success rate plots throughout the training.

Table 5: Forward transfer on the pre-trained tasks depending on the number of prefix tasks in
RoboticSequence.

Prefix
Len

push-wall peg-unplug-side

FT EWC BC FT EWC BC

1 0.18 [-0.19, 0.43] 0.88 [0.84, 0.91] 0.93 [0.89, 0.96] 0.28 [0.01, 0.46] 0.77 [0.58, 0.88] 0.92 [0.88, 0.94]

2 0.17 [-0.21, 0.44] 0.65 [0.44, 0.82] 0.97 [0.97, 0.98] 0.15 [-0.08, 0.35] 0.55 [0.37, 0.70] 0.95 [0.94, 0.96]

3 0.10 [-0.03, 0.23] 0.64 [0.50, 0.75] 0.98 [0.98, 0.98] 0.03 [0.00, 0.06] 0.41 [0.28, 0.54] 0.95 [0.95, 0.95]

4 -0.00 [-0.16, 0.10] 0.62 [0.48, 0.75] 0.97 [0.97, 0.98] 0.03 [-0.00, 0.08] 0.46 [0.33, 0.59] 0.94 [0.94, 0.95]

29



Under review as a conference paper at ICLR 2024

Table 4: Forward transfer depending on the network architecture, with 90% bootstrap confidence
intervals.

Num. Layers 2
Hidden Dim. FT EWC BC

256 0.01 [-0.04, 0.06] 0.01 [-0.16, 0.20] 0.65 [0.61, 0.69]

512 0.10 [0.06, 0.14] 0.32 [-0.07, 0.68] 0.73 [0.71, 0.75]

1024 0.05 [-0.07, 0.16] -0.48 [-0.74, -0.23] 0.59 [0.43, 0.70]

Num. Layers 3
Hidden Dim. FT EWC BC

256 0.20 [0.12, 0.28] 0.56 [0.38, 0.71] 0.73 [0.71, 0.75]

512 0.35 [0.27, 0.42] 0.50 [0.44, 0.56] 0.57 [0.52, 0.60]

1024 0.31 [0.24, 0.37] 0.40 [0.30, 0.49] 0.53 [0.49, 0.57]

Num. Layers 4
Hidden Dim. FT EWC BC

256 0.07 [-0.06, 0.20] 0.34 [0.15, 0.51] 0.62 [0.57, 0.66]

512 -0.18 [-0.38, -0.02] 0.43 [0.24, 0.57] 0.55 [0.49, 0.60]

1024 -0.10 [-0.33, 0.08] 0.30 [-0.06, 0.61] 0.69 [0.63, 0.75]

Figure 16: The performance of the fine-tuned model on RoboticSequence compared to a
model trained from scratch and knowledge retention methods on the sequence shelf-place,
push-back, window-close, door-close.
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Figure 17: The performance of Fine-tune + BC with different memory sizes. Even with 100 samples
we are able to retain the knowledge required to make progress in the training.
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Figure 18: Training performance for different architecture choices.
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(a) Success rate in rooms during fine-tuning when ini-
tialized in that room.

(b) Average return throughout the training. PPO-FT
and PPO-BC are fine-tuned, while PPO is learned from
scratch.

Figure 19: State coverage gap in Montezuma’s Revenge.

E ADDITIONAL MONTEZUMA’S REVENGE RESULTS

Analysis of forgetting with different pre-training schemes We perform additional experiments
on three different rooms analogous to one from Section 3.2. In particular, we are interested in
the behaviour of the pre-trained model from a specific room while fine-tuned. Figure 19 shows
a significant drop in performance for fine-tuned models without additional forgetting mitigation
methods (PPO-FT) just after fine-tuning starts. In contrast, PPO-BC mitigates this effect except for
room 14. For all pre-training types, PPO-BC outperforms PPO-FT with respect to the score.
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(a) Room visiation for PPO

(b) Room visiation for PPO-FT

(c) Room visiation for PPO-BC

Figure 20: Time spent in different rooms across training for PPO (top), PPO-FT (middle), and PPO-
BC (bottom). The agent trained from scratch struggles to explore rooms at the beginning of the
training and eventually visits fewer of them than fine-tuned agents.

Room visitation analysis In Figure 20, we show how the time spent in different rooms changes
across the training for an agent trained from scratch (PPO), fine-tuned agent (PPO-FT), and fine-
tuned agent with KL loss (PPO-BC). The agent trained from scratch spends a significant amount
of time learning to escape the first two rooms, while later, the agent can navigate between different
rooms more effectively. This tendency is not visible for fine-tuned agents, which relatively easily
escape the first room. It is important to note that the agent visits only a part of all possible rooms
(13 out of a total of 23), and some rooms are only visited a few times across training. Most likely,
the reason behind that might be insufficient intrinsic motivation from the RND component and nav-
igation towards rooms where the agent already found the reward.
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F ADDITIONAL NETHACK RESULTS

In this section, we provide additional results for the NetHack experiments shown in Section 4.

Different approaches to distillation In our main NetHack experiments, we use the following
behavioral cloning loss:

LBC(θ) = Es∼B[D
s
KL(π∗(·|s) ∥ πθ(·|s))], (5)

where B is a buffer of data gathered by the AutoAscend, and π∗ is the pre-trained policy. How-
ever, there are more possible ways to apply distillation to this problem. Here, we study two other
approaches – Kickstarting and Behavioral Cloning with Expert Labels.

In Kickstarting (KS) Schmitt et al. (2018), we use a very similar loss, but now we apply KL on the
data gathered online by the student. More formally:

LKS(θ) = Es∼Bθ
[Ds

KL(π∗(·|s) ∥ πθ(·|s))], (6)

where Bθ denotes a buffer of data gathered by the online policy πθ.

In Behavioral Cloning with Expert Label (BCEL), we use the states gathered by the expert, same
as in behavioral cloning, but we use a different target. Namely, we use the prediction from the
AutoAscend dataset on which we pre-trained π∗. Formally,

LBCEL(θ) = Es∼B[D
s
KL(y

∗ ∥ πθ(·|s))], (7)

where y∗ is the label from the AutoAscend dataset corresponding to the action taken by the expert
agent. As such, there is a subtle difference between LBC and LBCEL. In the first one, we attempt
to preserve the knowledge of π∗, in the second one we try to optimize the same loss that was used
to train π∗. If π∗ were to perfectly clone the AutoAscend dataset, these two approaches would be
exactly the same, but in practice, we see that there is a significant discrepancy between these two.

We compare the three approaches and show the results in Figure 21 and Figure 22. First of all, we
observe that APPO-KS performs worse than the other types of distillation. We attribute this gap to
the fact that APPO-KS applies regularization on the online data where the pre-trained policy per-
forms poorly. The regularization stops the model from learning a better behavior on these states and
as such leads to stagnation. On the other hand, quite surprisingly, APPO-BCEL performs slightly
worse than APPO-BC, even though it uses targets from the AutoAscend dataset that performs much
better than π∗. We hypothesize that it is simpler for the model to maintain the initial performance
with APPO-BC rather than to learn something new with APPO-BCEL.

These results show that one should carefully choose how to apply distillation to the model. At the
same time, we do not claim that these rankings will transfer to other settings and that APPO-BC is
inherently better than APPO-BCEL and APPO-KS. We believe that one could fix APPO-KS by e.g.
decaying the regularization term.

Forgetting in the fine-tuned models In Figure 25, we measure how different methods forget
throughout the fine-tuning process. In particular, we measure the KL divergence on the data gener-
ated by the teacher (the pre-trained model). While APPO-FT forgets completely, APPO-BC keeps
the divergence at fairly low levels.

Descent statistics Although the obtained return is a valuable metric of the performance of a policy,
it is far from the only one. Here, for each of the policies introduced in our experiments, we check
the performance in terms of the number of levels visited by each policy. The results are shown in
Figure 26.

Sokoban results and discussion Here, we discuss the Sokoban levels in NetHack and their unique
complexity. n the Sokoboan levels, the player has to face monsters and essentially play the game
as normal in addition to moving boulders. There are specific unlucky scenarios when the monster
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Figure 21: Average return when fine-tuning on NetHack with additional distillation approaches.

Figure 22: Average return of each of each NetHack method throughout the training with additional approaches
to distillation, evaluated when started on a specific dungeon level. The top row shows the initial phase of the
training (up to 100M steps), and the bottom row shows the full training (up to 2B steps, note the x-axis scale
change). While the distillation approaches showed similar performance in the early stages (top row), APPO-BC
stands out in the overall training, particularly on Level 2 and Level 4.
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Figure 23: The distribution of how many pits the agent manages to fill in the Sokoban levels.

Figure 24: Training from scratch on NetHack, ran with twice the budget of other methods. Although
it manages to outperform APPO-FT, APPO-BC still achieves a better results, even with the smaller
timestep budget.

will spawn between boulder and pit, which require the agent to find non-trivial ways of killing the
monster from behind the boulder. Additionally, the Sokoban levels are encountered fairly late in the
game and as such might be relatively underrepresented in the data.

As such, the pre-trained agent that clones the actions of an expert policy starts with a score of 1.5
filled pits. It is worth noting that the mean is somewhat skewed due to the number of episodes when
the agent chooses to ignore Sokoban completely and go into a different branch of the dungeon. This
is a viable strategy, since the agent might try to increase the score in a different manner. In Figure 23,
we show a histogram of the number of pits filled by the pre-trained agent. It is worth highlighting
that it does not progress at the problem in over 50% of trajectories, but in over 25% percent of
trajectories it solves at least half of the level.

Training from scratch with more steps Although in our experiments we observe that fine-tuning
with knowledge distillation methods significantly outperforms training from scratch with a given
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budget of timesteps, it is not clear if a model trained from scratch can finally catch up given enough
timesteps. To investigate this, we run APPO with 4B steps rather than 2B as in the previous experi-
ments. In Figure 24, we compare it with pure fine-tuning. We observe that although APPO manages
to finally overtake pure fine-tuning, in the end it still falls short of knowledge retention-based APPO-
BC that achieved score of over 3500.

Full results In Figure 27 we show the full results of our fine-tuning experiments with evaluation on
specific levels. In addition to the standard average return metrics, we provide additional information
such as the score wrt. to other objectives defined in NLE Küttler et al. (2020) (e.g. eating food,
gathering gold, descending through the dungeon) and additional player statistics (experience level,
energy).

Figure 25: We measure how outputs of the policy change to the pre-trained one during training every
100 million steps, note the log-scale. We can see that APPO-BC aggressively prevents changes to
the policy.
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Figure 26: Average percentage of levels reached by different methods. The red line shows the aver-
age return obtained in trajectories that finished on this level, while the blue bar shows the percentage
of trajectories that reached a given level.
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Figure 27: NetHack performance on various metrics when starting from specific levels
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