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Abstract

This work focuses on multi-shot semi-supervised video ob-
ject segmentation (MVOS), which aims at segmenting the
target object indicated by an initial mask throughout a video
with multiple shots. The existing VOS methods mainly focus
on single-shot videos and struggle with shot discontinuities,
thereby limiting their real-world applicability. We propose
a transition mimicking data augmentation strategy (TMA)
which enables cross-shot generalization with single-shot data
to alleviate the severe annotated multi-shot data sparsity, and
the Segment Anything Across Shots (SAAS) model, which
can detect and comprehend shot transitions effectively. To
support evaluation and future study in MVOS, we intro-
duce Cut-VOS, a new MVOS benchmark with dense mask
annotations, diverse object categories, and high-frequency
transitions. Extensive experiments on YouMVOS and Cut-
VOS demonstrate that the proposed SAAS achieves state-of-
the-art performance by effectively mimicking, understanding,
and segmenting across complex transitions. The complete
version with the appendix is available on our Github now.

Code and Data — https://henghuiding.com/SAAS/
Extended Version — https://github.com/FudanCVL/SAAS

1 Introduction
Semi-supervised video object segmentation (VOS) (Caelles
et al. 2017) aims to segment and track the target object
throughout a video sequence, given its mask in the first
frame as a prompt. This task has received increasing atten-
tion (Ravi et al. 2024) in the research community because
of its broad applicability in human–robot interaction, video
editing, autonomous driving, and annotation assistance, etc.

Despite notable progress, existing VOS methods predom-
inantly focus on single-shot videos, overlooking the increas-
ing prevalence of multi-shot videos (see Figure 1 (a)) in real-
world Internet content. This oversight on multi-shot video
object segmentation (MVOS) has led to a widening gap be-
tween academic research and practical deployment. The cur-
rent representative VOS methods, e.g. XMem (Cheng and
Schwing 2022), DEVA (Cheng et al. 2023), Cutie (Cheng
et al. 2024), and SAM2 (Ravi et al. 2024) exhibit a notable
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performance degradation when exposed to complex shot
transitions. As shown in Figure 1 (b), SAM2-B+ suffers a
21.4% J&F drop on the MVOS benchmark compared to
MOSE (Ding et al. 2023b), highlighting their limitations in
the applications of edited videos, multi-camera systems, and
high-mobility platforms.

To our knowledge, YouMVOS (Wei et al. 2022) is cur-
rently the only dataset that supports MVOS. However, upon
reviewing the playlists provided in their dataset, we find
that the dataset falls short in fully reflecting the chal-
lenges of MVOS task. Specifically, the dataset contains
only sparse shot transitions, exhibits a limited diversity of
object categories with a predominant focus on humans,
and lacks screening or categorization of transition types, as
shown in Figure 2. Furthermore, the mask annotations of
YouMVOS have not been open-sourced to date, making it
unavailable for subsequent model development and training.

To address the lack of multi-shot training data, we pro-
pose the Transition Mimicking Data Augmentation (TMA)
strategy, which simulates diversiform shot transitions on
single-shot datasets to enable effective multi-shot segmen-
tation training without relying on native multi-shot anno-
tations. Meanwhile, the deficiencies of previous methods
in complex multi-shot videos, as shown in Figure 1 (b),
prompt us to develop a specialized cross-shot segmen-
tation method, Segment Anything Across-Shot (SAAS),
equipped with transition detection and comprehension mod-
ules. These modules jointly detect and interpret shot transi-
tions using adjacent frames along with background context,
guided by two auxiliary training objectives. Additionally,
we introduce a training-free memory refinement mechanism
through a local memory bank that stores fine-grained object
features to enhance segmentation quality across transitions.

To fairly evaluate cross-shot segmentation performance
and better reflect the complexity of real-world multi-shot
videos, we introduce a new MVOS benchmark, Complex
Multi-shot Video Object Segmentation (Cut-VOS), con-
taining 10.2K instance masks for 174 unique objects in
100 videos. Compared to YouMVOS, the proposed Cut-
VOS provides 1.6× higher shot transition frequency and
3× more object categories. The transition types are man-
ually screened to ensure greater diversity and difficulty.
For qualitative comparison, we build YouMVOS† test split,
a manually annotated version, as they don’t release mask
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Figure 1: This work focuses on an underexplored task of multi-shot video object segmentation (MVOS). As shown in (a), the
significant variations in object appearance, spatial location, and background across shots pose major challenges in MVOS. We
introduce Cut-VOS, a challenging MVOS benchmark with high transition diversity to support this task. As shown in (b), on
Cut-VOS, SAM2-B+ exhibits a 21.4% J&F drop compared to the challenging single-shot MOSE dataset and a 16.4% Jt drop
compared to YouMVOS†, a sampled MVOS dataset YouMVOS annotated by our team strictly following its original protocol.
The metric Jt specifically measures cross-shot segmentation performance, further highlighting the difficulty of Cut-VOS.
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Figure 2: The comparison between YouMVOS and our
proposed Cut-VOS benchmark. Cut-VOS is distinguished
from YouMVOS by frequent, significant transitions and
more variety in complex scenarios.

annotations. We sample and annotate 30 videos across 10
genres from the playlist, strictly following their protocol.
All the experiments in this paper are conducted on the
reconstructed version. Compared to YouMVOS, the models
perform significantly worse on Cut-VOS, as shown in Fig-
ure 1 (b), indicating a substantial difficulty gap. Extensive
experiments demonstrate that SAAS achieves consistent
improvements across both YouMVOS and Cut-VOS.

Overall, the key contributions of this work are as follows:

• We introduce a new VOS training strategy, Transition
Mimicking Data Augmentation (TMA), to alleviate data
sparsity by simulating shot transitions, thereby promot-
ing the model’s multi-shot segmentation capacity using
only single-shot datasets.

• To the best of our knowledge, the proposed SAAS is the
first semi-supervised VOS method specialized for multi-
shot videos. It incorporates online transition detection,
transition comprehension, and local visual cue encoding.
Extensive experiments demonstrate its robustness and
effectiveness in complex multi-shot scenarios.

• To facilitate future research in MVOS, we introduce
Complex Multi-shot Video Object Segmentation (Cut-
VOS) dataset, which will become the first fully open-
sourced MVOS benchmark with mask annotations upon
publication. Cut-VOS provides diverse object categories
and carefully curated transition types to evaluate cross-
shot tracking performance.

2 Related Work
Video Object Segmentation. Video object segmentation
(VOS) (Caelles et al. 2017; Lin, Qi, and Jia 2019; Huang
et al. 2020; Ding et al. 2023a, 2025b; Ying, Hu, and
Ding 2025; Ding et al. 2025a; Liu et al. 2025) aims at
tracking and segmenting the objects in a video sequence,
given the mask in the first frame. Early methods (Xiao
et al. 2018; Perazzi et al. 2017) are mostly fine-tuning-
based. They model inter-frame correlations via fine-tuning
during inference. Matching-based methods (Cheng et al.
2018; Duarte, Rawat, and Shah 2019; Duke et al. 2021)
generate an object prototype embedding from the condi-
tional frame, performing pixel-level matching to classify
each pixel as foreground or background. Propagation-based
methods (Han et al. 2018; Hu et al. 2018; Jabri, Owens,
and Efros 2020; Wang et al. 2019) leverage the previous
frames and predictions to guide the segmentation on the
current frame. For better use of historical information,
recent methods introduce a memory bank to compress and
store previous frames. For example, XMem (Cheng and
Schwing 2022) conducts multiple granularities of memories,
while Cutie (Cheng et al. 2024) enriches the memory bank
with object-specific queries. Most recently, SAM2 (Ravi
et al. 2024) extends SAM (Kirillov et al. 2023) to the
video domain, yielding a remarkable improvement via a ro-
bust memory architecture and large-scale training. However,
these previous methods only focus on single-shot videos,
lacking solid cross-shot tracking capacity, which leads to
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Figure 3: The overall pipeline of our proposed Segment Anything Across Shots (SAAS) method, consisting of three new
components, Transition Detection Module (TDM), Transition Comprehension Module (TCH), and local memory bank Blocal.
Transition Mimicking Augmentation (TMA) is employed to train the model by synthesizing high-quality multi-shot training
samples using annotated single-shot videos.

their limited applications. This work aims to generalize VOS
to multi-shot videos, bridging the gap between the current
research and practical requirements.

Multi-shot Video Understanding. Multi-shot videos,
which circulate on the internet at an increasingly large
scale, have gradually attracted the attention of the computer
vision community. Most early works (Canny 1986; Jacobs
et al. 2004; Qian, Liu, and Su 2006) aim to detect the
shot boundaries with manual features. With the development
of deep learning, some methods (Hassanien et al. 2017;
Soucek and Lokoc 2024; Bouyahi and Ayed 2020; Wang
et al. 2021) adapt 3D-CNN (Ji et al. 2012) and dilated
filter (Chen et al. 2017; Yu, Koltun, and Funkhouser 2017)
to improve model accuracy. Meanwhile, some works collect
multi-shot videos in their video captioning benchmarks (Xu
et al. 2016; Krishna et al. 2017; Zhou, Xu, and Corso 2018),
asking the model to generate video descriptions. Recently,
Shot2Story (Han et al. 2023) and MMBench-Video (Fang
et al. 2024) posed more fine-grained questions, requiring
clip-wise understandings to answer. MUSES (Liu et al.
2021a) focuses on the multi-shot temporal event localization
task which requests dense frame labels. However, these
works still lack the exploration of pixel-level instance seg-
mentations (Ying et al. 2022, 2023). This paper specifically
targets fine-grained segmentation in multi-shot videos.

3 Methodology
3.1 Overview
Figure 3 shows an overview of our approach, which contains
the proposed Transition Mimicking Data Augmentation
(TMA) training strategy and a transition-aware method,
Segment Anything Across Shots (SAAS), built upon the
SAM2 to generalize VOS to multi-shot videos. Given a
video V = {It}Tt=1 with T frames, and the first frame
I0 with ground truth mask M0, SAAS firstly applies

SAM2 image encoder to extract multi-level visual features
{F t

li}i=1,2,3. At each timestep t, SAAS introduces the
Transition Detection Module (TDM) to detect if a shot
transition occurs and subsequently directs to diverse
segmentation strategies. For the detected transitions, the
following Transition Comprehension Module (TCH) further
comprehends them, generates compressed transition state
representation Qi, thereby refining previous memories. To
capture the local fine-grained features of objects, we also
propose the local memory bank Blocal, to partition the
target and store corresponding information unsupervisedly.
The conditional memories from Bcond and features stored
in Blocal are then concatenated to generate the features
prepared to be segmented F t

tb seg , used to finally predict M̂t

by the mask decoder. The entire architecture is trained via
the TMA strategy, with two additional objectives.

3.2 Transition Mimicking Augmentation
One of the most critical challenges for MVOS is the lack
of available training data. To address this issue, we pro-
pose Transition Mimicking Data Augmentation (TMA),
a new strategy which synthesizes quality-approved multi-
shot training samples from annotated single-shot videos by
simulating diverse transitions. TMA enables the effective
MVOS training utilizing existing single-shot VOS datasets,
significantly alleviating data scarcity.

We show some primary patterns involved in TMA in Fig-
ure 4. TMA maintains a conventional 8-frame continuous
sampling strategy in previous VOS works with a probabil-
ity 1 − ptrans, otherwise performs a transition mimicking
operation. Specifically, TMA conducts a single transition
(as shown in (a), (b), and (d)) with a probability ponce,
otherwise applies multiple transitions (as depicted in (c)).
For each expected transition, TMA employs a well-defined
framework with several control random variables to generate
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Figure 4: Some visualization cases of our proposed TMA
strategy. (a) Random strong transforms. (b) Single transition
across different temporal segments from the same video. (c)
Multiple transitions, conducting a case with cut in and cut
away. (d) Single transition to another video, with random
replication and gradual translations.

different transition patterns. For example, case (a) retains
a continuous 8-frame sampling but applies strong transfor-
mations, including horizon flipping, random scaling, and
random affine on posterior frames after the transition. This
pattern simulates common view transitions, like close-up
view or distant view. Case (b) cuts to a different segment
from the same video, with a higher probability of sampling
more further frames. The substantial temporal gap between
the two clips often results in significant changes in object
poses and camera viewpoints. Case (c) cuts to an unrelated
video and cuts back later, like the cut away and cut in tran-
sitions. Case (d) cuts to an unrelated video while replicating
the object with a random, gradual translation, simulating the
scene change and the delayed cut in transitions effectively.
TMA fully combines these patterns to preserve data richness
while carefully avoiding ambiguous samples and anomalous
noises. More details are offered in the appendix.

3.3 Transition Detection and Comprehension
Transition Detection Module. SAAS employs a light-
weight Transition Detection Module (TDM) to detect dif-
ferent shot segments and occurring transitions in video
sequences. Inspired by previous shot boundary detection
methods (Tu et al. 2017; Soucek and Lokoc 2024), we con-
duct a dilated convolution pyramid (Chen et al. 2018, 2019)
as TDM. At each timestep t, TDM predicts a probability
score for current frame It, directing to different pipelines:

p̂i,tr = Sigmoid(FTDM(F t, F t−i
i=1,2,...,N )), (1)

where FTDM indicates the main network of TDM which uses
the adjacent N frames for detection. When p̂i,tr < τtr,
SAAS passes through the SAM2 segmentation pipeline (the
upper part in Figure 3) directly, and only encodes the mem-
ory Mt into the bank Badj . Otherwise, SAAS recognizes

the transition occurs and adopts a transition segmentation
strategy instead (the down part). Extracted features F t

and F t−1, along with few memory banks, are fed to the
TCH. TCH compresses them to refine the memory tokens,
followed by the segmentation head to achieve a cross-shot
segmentation. Meanwhile, the memory Mt is encoded and
stored in a special memory bank Bscene instead, used to
establish a necessary spatial scene understanding in TCH.

Transition Comprehension Module. SAAS builds a
Transition Comprehension Module (TCH) to firstly asso-
ciate stored scene information and then integrate adjacent
frames to fully comprehend the occurring transition. Specifi-
cally, TCH reads out the background scene information from
the banks Bcond and Bscene. Bscene stores representative
memories for the most closed Ns shots. These memories are
used to build an entire scene understanding, subsequently
integrated into F t

l3 via stacked attention layers, attaining F ′t
l3.

Then, a trainable vector Qinit passes through the module,
sufficiently interacts with the features of the previous frame
and the current frame to comprehend the current transition:

Qn
i = Attn(Attn(Qn−1

i , F ′t
l3), F

t−1
l3 )), (2)

where Q0
i = Qinit, n = {1, 2, ..., N2}. Attn represents a

standard attention layer (Vaswani et al. 2017), consisting of
a multi-head cross-attention, a multi-head self-attention, and
a feed forward layer following previous ViT works (Doso-
vitskiy et al. 2020; Liu et al. 2021b) with a RoPE posi-
tional encoding (Su et al. 2024). To validate the process
of transition state modeling, we incorporate two additional
auxiliary objectives: presence prediction and bounding box
regression. Presence prediction requires the model to predict
the presence of the object on the next frame from the
transition state representation Qi, supervised by a BCE loss
Lexis. For the bounding box regression objective, the model
learns a mapping from the previous bounding box and Qi

to the post-transition bounding box, adopting a MCE loss
Lbox. Simple MLP stacks suffice for these objectives.

Subsequently, an attention-based aggregator is introduced
to decode the transition state Qi to refine the previous
memory Mt−1

adj . This decoding strategy ensures seamless
compatibility with SAM2’s well-trained segmentation head.
The final refined memories are concatenated with memories
from Bcond and Blocal and fed to SAM2’s memory attention
module to prepare the features to be segmented F t

tb seg .

3.4 Local Memory Bank
In a significant proportion of transitions, local object details
can serve as critical segmentation cues, like the clothing of
a person or the painted markings on a vehicle. Previous
VOS methods struggle to actively capture and recognize
such fine-grained features. Informed by such an observation,
SAAS introduces a local memory bank Blocal to capture
and store the target’s local details. Inspired by previous
works (Song et al. 2019; Liang et al. 2022; Lyu, Zhong,
and Zhao 2024), SAAS constructs a minimum spanning tree
(MST) on the masked deepest feature map of the condi-
tional frame M0 ⊙ F 0

l3 to simultaneously preserve semantic
clustering and spatial structural information. By pruning
low-weight edges in the tree, the target is unsupervisedly



Dataset #Videos #Objects #Masks #Shots Trans. Frequency Obj. Categories Available
YouMVOS 200 492 431.0K 13.4K 0.222/s* 4 ✗
YouMVOS-test 30 78 64.6K* 2.4K 0.222/s* 4 ✗
Cut-VOS (ours) 100 174 10.2K 648 0.346/s 11

Table 1: The basic statistics for the Cut-VOS benchmark. * denotes the number is estimated via the corresponding description
in the paper. Cut-VOS has 1.6× higher transition frequency and 3× more categories than the YouMVOS test split.

Figure 5: Comparison of object categories. Cut-VOS
contains 4 categories in YouMVOS and 7 new categories.

partitioned into multiple semantically coherent sub-regions
on a low-resolution map. SAAS further adopts the center
point of each partition as a positive point prompt, the rest as
the negative to segment these sub-regions and extract cor-
responding fine-grained features at a high resolution. These
detailed features are compressed as complementary object
pointers and preserved in the local memory bank Blocal,
which is leveraged to guide the cross-shot segmentation
when a transition is detected. Notably, we set a proportion
threshold τp (2.5% in a common setting) to filter out too
small objects, preventing over-partitioning them.

4 Cut-VOS Benchmark
4.1 Video Collection and Annotation
The new challenging multi-shot video object segmenta-
tion (MVOS) benchmark, Complex Multi-shot Video Object
Segmentation (Cut-VOS), collects large amounts of high-
quality multi-shot videos from mainstream community me-
dia. The videos and objects are carefully selected to ensure
the data samples are unambiguous. The detailed object and
transition distributions are shown in Figure 5 and Figure 6.

For mask annotation, our research team organizes and
trains a cohort of highly responsible annotators and valida-
tors, establishing a robust annotation pipeline. Each anno-
tated video undergoes a dual-review verification to ensure
annotation quality assurance. For videos that are discovered
with uncertain object correlations, we reconvened discus-
sions to determine whether to keep or filter them.

4.2 Dataset Statistics
Overall, Cut-VOS contains 100 videos, 174 annotated ob-
jects, and 10.2K high-quality masks, as shown in Table 1.
Cut-VOS outperforms the existing YouMVOS-test in three

Figure 6: The average accuracies of different transition types
on the SAM2-B+ model and their distribution across two
benchmarks. The drop in expected accuracy shows Cut-
VOS’s more challenging nature.

main aspects: 1) More videos and objects representing more
diverse scenarios. 2) Carefully screened, multiple types
of transitions with a 1.6 times higher frequency reaching
0.346/s, which makes the Cut-VOS more challenging. 3) 11
diversiform object categories which cover the YouMVOS as
depicted in Figure 5, containing 62% actors and 38% static
objects. These characteristics make the Cut-VOS benchmark
more complex and better aligned with real-world scenarios.

4.3 Transition Analysis
To better analyze the latent challenges in the MVOS task,
we classify all shot transitions into 9 different categories:
cut in, cut away, delayed cut in as existence types, and
close up view, distant view, pitch transformation, horizon
transformation, scene change, insignificance as view types.
In specific cases, we allow the coexistence of an existence
type and a view type in one transition. Please refer to the
appendix for detailed explanations and visualized examples.

We test the tracking accuracy on different transition types
with the SAM2-B+ model to pinpoint existing bottlenecks.
As shown in Figure 6, SAM2 performs well on cut away and
insignificance, shows moderate competencies on pitch and
horizon types, but drops ruinously on delayed cut-in, close-
up view, and scene change types (lower than 27%). The
observation indicates that previous methods can recognize
the object disappearing, but struggle with matching targets
with abrupt visual appearance and absolute position shifts.
Cut-VOS filters out simple insignificance and long duration
cut away, involving more difficult transitions to make the
benchmark more challenging. Compared to YouMVOS, the
significant decrease of EAcc (44.7% to 38.8%) reflects the
challenges brought by screened complex transitions.



Method Venue Param.(M) FPS YouMVOS Cut-VOS

J F J&F Jt J F J&F Jt

XMem ECCV’22 62.2 45 61.7 62.1 61.9 54.2 48.4 51.4 49.9 35.5
DEVA ICCV’23 61.2 37 63.3 64.5 63.9 55.2 47.3 50.8 49.1 35.3
Cutie CVPR’24 35.0 40 67.3 68.1 67.7 63.4 51.0 53.6 52.3 40.8
Cutie⋆ CVPR’24 35.0 40 67.9 68.8 68.4 64.7 50.0 52.7 51.4 40.0
SAM2-B+ ICLR’25 80.9 22 67.6 67.6 67.6 63.7 54.0 56.4 55.2 47.2
SAM2-L ICLR’25 224.0 15 69.9 70.3 70.1 68.5 58.3 60.6 59.4 50.7
SAM2-B+⋆ ICLR’25 80.9 22 68.7 69.1 68.9 64.1 53.9 55.9 54.9 46.8
SAM2-L⋆ ICLR’25 224.0 15 69.7 70.7 70.2 68.4 57.6 60.3 58.9 50.4
Cutie+TMA - 35.0 40 69.1 70.0 69.6 65.4 52.0 55.0 53.5 43.1
SAAS-B+ (Ours) AAAI’26 92.5 21 73.4 73.7 73.5 68.9 59.4 61.9 60.7 53.1
SAAS-L (Ours) AAAI’26 235.6 14 74.0 74.4 74.2 69.6 60.5 63.6 62.0 54.0

Table 2: Main results on YouMVOS and Cut-VOS benchmarks. ⋆ denotes the model is directly trained on the YTVOS dataset
without extra data augmentation. Bold and underlined indicate the best and the second-best performance in the tested methods.

ID Blocal TMA TCH J&F Jt

I ✗ ✗ ✗ 55.2 47.2
II ✗ ✗ 57.6 49.4
III ✗ ✗ 58.0 50.7
IV ✗ 58.8 52.0
V ✗ 60.1 52.8
VI 60.7 53.1

Table 3: The ablation study on different modules.

5 Experiments
Benchmark Setting. We benchmark the proposed SAAS
and existing methods on Cut-VOS and YouMVOS un-
der the semi-supervised VOS setting. Following previous
works (Ding et al. 2023b; Ying et al. 2025), we compute
J&F to quantify the region similarity and the contour
accuracy of predictions. Besides, we additionally measure
the cross-shot tracking capacity by computing region simi-
larity Jt on post-transition frames. Given the ground truth
shot set S, for each shot Si we calculate intersection over
union (IoU) on the first frame Iitr and the frame where the
object firstly appears Iiapp (defined as the first frame too if
the object isn’t present in the shot) separately, to accommo-
date different existence transitions, especially delayed cut in.
Then Jt is defined as:

Jt =
1

|S|
∑
i∈|S|

IoU(M̂ i
tr,M

i
tr) + IoU(M̂ i

app,M
i
app)

2
, (3)

where M i denotes the ground truth mask on Ii and M̂ i

represents the predicted one. In all of the following exper-
iments, we report both J&F and Jt as metrics.

Implementation Details. Our method is build upon
SAM2 framework, with MAE-pretrained (He et al. 2022)
Hiera (Bolya et al. 2023; Ryali et al. 2023) serving as image
encoders. We initialize SAM2 original modules with their
official weights, firstly freeze other parameters, and train
our transition detection module on IACC.3 (Awad et al.
2017) and ClipShots (Tang et al. 2018) shot boundary
detection datasets. In the following main training phase, we
unfreeze all parameters and train the model for 30 epochs

on YTVOS (Xu et al. 2018) with TMA enabled. We set the
number of sampling frames as 8 for the base-plus setting
and 6 for the large. We enable focal, dice, iou, and CE
losses in original SAM2, along with our proposed Lbox and
Lexis. The weights of Lbox and Lexis are both set as 0.5.
We employ AdamW as the optimizer, with the learning rate
decaying from 5e-6 to 5e-7 during training. All experiments
are conducted on 4 NVIDIA RTX-A6000 (48G) GPUs.

5.1 Main Results
As shown in Table 2, we conduct exhaustive experiments on
existing VOS methods (Cheng and Schwing 2022; Cheng
et al. 2023, 2024; Ravi et al. 2024) and our proposed
SAAS on YouMVOS and Cut-VOS benchmarks. For SAM2
and SAAS, we test the base-plus setting and the large
setting, respectively. The result shows that SAAS-B+ and
SAAS-L outperform corresponding SAM2 methods and
other existing VOS methods on two benchmarks across both
Jt and J&F metrics, demonstrating its superiority. All
reported data are calculated as the average of three runs.

From the table, we observe that training on YTVOS with
TMA disabled (marked by ⋆) results in a marginal improve-
ment on YouMVOS (0.7% J&F on Cutie and 1.3% J&F
on SAM2-B+). This strategy, however, suppressed methods’
performance by 0.3% to 0.9% on Cut-VOS. The finding
reveals that some videos from YouMVOS insufficiently
represent MVOS difficulties, as they exhibit characteristics
similar to conventional single-shot videos. In contrast, di-
rectly training on single-shot clips offers diminishing returns
for Cut-VOS, which is specifically collected for MVOS.

The experimental result illustrates the effectiveness and
robustness of the SAAS method. SAAS-B+ reaches 73.5%
J&F , 68.9% Jt on YouMVOS(vs. 67.6% and 63.7%) and
60.7% J&F , 53.1% Jt on Cut-VOS(vs. 55.2% and 47.2%).
Compared to SAM2-L, SAAS-L also attains consistent
improvements of J&F (from 59.4% to 62.0%) and Jt

(from 50.7% to 54.0% ). Notably, SAAS has virtually no
degradation in inference speed due to efficient designs.
Cutie+TMA method, compared to Cutie and Cutie⋆, reaches
69.6% (vs. 68.4%) and 53.5% (vs. 52.3%) J&F on two
benchmarks, showing great generalization of TMA strategy.
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Figure 7: Qualitative comparison of some representative cases from Cut-VOS between the SAAS and the SAM2 methods. (a)
shows a case with a delayed cut in transition and an abrupt position shift of target objects. (b) demonstrates SAAS’s better
capacity in a crowded scene with complex relations. SAAS coherently segments the target object among ten similar objects.

In the following ablation study, we offer more detailed data
to further corroborate TMA and other modules’ advantages.

5.2 Ablation Studies
We analyze the validation of our modules via rigorous
ablation studies, shown in Table 3. The ablation studies
maintain the same implementation as the main experiments,
employing the base-plus setting and uniformly tested on
the Cut-VOS benchmark. In Table 3, we mainly study the
effectiveness of different modules. Compared to baseline
model I, the local memory bank Blocal and TMA (model
II and III) improve J&F by 2.4% and 2.8% respectively,
while TMA plus TCH (V) achieves a 4.9% J&F increase.
For more ablation studies and hyperparameters analysis in
detail, please refer to the appendix.

5.3 Qualitative Results
Figure 7 presents several representative visualized examples
and corresponding segmentation results of SAM2 and SAAS
models. Case (a) shows a delayed cut in transition, one of
the most difficult types, and a classical abrupt position shift
of the target object, with a similar appearance distractor
appearing at the same position. SAM2 misses the target
man (orange) when he reoccurs in shot 2, and incorrectly
segments one another man with the same clothing (green)
in shot 3, whereas our method successfully segments them.
In case (b), we highlight a crowded scene with complex
relations between multiple similar objects. SAM2 model

struggles to match different instances correctly, leading to
flickering predictions. In contrast, by effectively capturing
detail cues and establishing scene understanding, SAAS
predicts high-quality masks for the object of interest con-
sistently. These examples demonstrate the superiority of
our approach in complex multi-shot videos. A few more
qualitative analyses are involved in the appendix.

6 Conclusion
We introduce TMA, a new training strategy that miti-
gates MVOS data sparsity by mimicking different transi-
tions on single-shot datasets, and SAAS, a new MVOS
method performing robust multi-shot segmentation capacity
on complex edited videos. Meanwhile, we present a complex
multi-shot benchmark, Cut-VOS, enabling evaluation and
facilitating future research in MVOS. Extensive experiments
demonstrate that our proposed strategy and method achieve
state-of-the-art performance on MVOS benchmarks.

Limitations. Our method still struggles with extreme
appearance changes of the target. For example, the same
person with different clothing and hairstyles. The proposed
TMA can’t simulate this type effectively, and captured local
cues may not help. This reflects one of the key challenges for
MVOS: the model is required to both match unlike targets
and distinguish similar distractors, demanding reducing the
reliance on pure visual feature matching and requiring a
stronger reasoning ability, which is to be further explored.
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H.; Rädle, R.; Rolland, C.; Gustafson, L.; et al. 2024. Sam 2:
Segment anything in images and videos. arXiv:2408.00714.
Ryali, C.; Hu, Y.-T.; Bolya, D.; Wei, C.; Fan, H.; Huang, P.-Y.;
Aggarwal, V.; Chowdhury, A.; Poursaeed, O.; Hoffman, J.; et al.
2023. Hiera: A hierarchical vision transformer without the bells-
and-whistles. In ICML 2023, 29441–29454. PMLR.
Song, L.; Li, Y.; Li, Z.; Yu, G.; Sun, H.; Sun, J.; and Zheng,
N. 2019. Learnable tree filter for structure-preserving feature
transform. Advances in Neural Information Processing Systems,
32.
Soucek, T.; and Lokoc, J. 2024. Transnet v2: An effective deep
network architecture for fast shot transition detection. In ACMMM
2024, 11218–11221. ACM.
Su, J.; Ahmed, M.; Lu, Y.; Pan, S.; Bo, W.; and Liu, Y. 2024.
Roformer: Enhanced transformer with rotary position embedding.
Neurocomputing, 568: 127063.
Tang, S.; Feng, L.; Kuang, Z.; Chen, Y.; and Zhang, W. 2018. Fast
video shot transition localization with deep structured models. In
ACCV 2018, 577–592. Springer.
Tu, C.; Zhang, Z.; Liu, Z.; and Sun, M. 2017. TransNet:
Translation-Based Network Representation Learning for Social
Relation Extraction. In IJCAI 2017, 2864–2870. IJCAI Inc.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention is
all you need. Advances in Neural Information Processing Systems,
30.
Wang, T.; Feng, N.; Yu, J.; He, Y.; Hu, Y.; and Chen, Y.-P. P. 2021.
Shot boundary detection through multi-stage deep convolution
neural network. In MMM 2021, 456–468. Springer.
Wang, Z.; Xu, J.; Liu, L.; Zhu, F.; and Shao, L. 2019. Ranet:
Ranking attention network for fast video object segmentation. In
ICCV 2019, 3978–3987. IEEE.
Wei, D.; Kharbanda, S.; Arora, S.; Roy, R.; Jain, N.; Palrecha,
A.; Shah, T.; Mathur, S.; Mathur, R.; Kemkar, A.; et al. 2022.
Youmvos: an actor-centric multi-shot video object segmentation
dataset. In CVPR 2022, 21044–21053. IEEE.
Xiao, H.; Feng, J.; Lin, G.; Liu, Y.; and Zhang, M. 2018. Monet:
Deep motion exploitation for video object segmentation. In CVPR
2018. IEEE.
Xu, J.; Mei, T.; Yao, T.; and Rui, Y. 2016. Msr-vtt: A large video
description dataset for bridging video and language. In CVPR
2016, 5288–5296. IEEE.
Xu, N.; Yang, L.; Fan, Y.; Yue, D.; Liang, Y.; Yang, J.; and Huang,
T. 2018. Youtube-vos: A large-scale video object segmentation
benchmark. arXiv:1809.03327.
Ying, K.; Ding, H.; Jie, G.; and Jiang, Y.-G. 2025. Towards
omnimodal expressions and reasoning in referring audio-visual

segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 22575–22585.
Ying, K.; Hu, H.; and Ding, H. 2025. MOVE: Motion-guided few-
shot video object segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 11632–11642.
Ying, K.; Wang, Z.; Bai, C.; and Zhou, P. 2022. Isda: Position-
aware instance segmentation with deformable attention. In ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2619–2623. IEEE.
Ying, K.; Zhong, Q.; Mao, W.; Wang, Z.; Chen, H.; Wu, L. Y.;
Liu, Y.; Fan, C.; Zhuge, Y.; and Shen, C. 2023. Ctvis: Consistent
training for online video instance segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, 899–
908.
Yu, F.; Koltun, V.; and Funkhouser, T. 2017. Dilated residual
networks. In CVPR 2017, 472–480. IEEE.
Zhou, L.; Xu, C.; and Corso, J. 2018. Towards automatic learning
of procedures from web instructional videos. In AAAI. AAAI Press.


