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Figure 1: EgoDex is a large-scale egocentric dataset that focuses on human dexterous manipulation.

ABSTRACT

Imitation learning for manipulation has a well-known data scarcity problem. Un-
like natural language and 2D computer vision, there is no Internet-scale corpus of
data for dexterous manipulation. One appealing option is egocentric human video,
a passively scalable data source. However, existing large-scale datasets such
as Ego4D do not have native hand pose annotations and do not focus on object
manipulation. To this end, we use Apple Vision Pro to collect EgoDex: the largest
and most diverse dataset of dexterous human manipulation to date. EgoDex has
829 hours of egocentric video with paired 3D hand and finger tracking data col-
lected at the time of recording, where multiple calibrated cameras and on-device
SLAM can be used to precisely track the pose of every joint of each hand. The
dataset covers a wide range of diverse manipulation behaviors with everyday
household objects in 194 different tabletop tasks ranging from tying shoelaces
to folding laundry. Furthermore, we train and systematically evaluate imitation
learning policies for hand trajectory prediction on the dataset, introducing metrics
and benchmarks for measuring progress in this increasingly important area. By re-
leasing this large-scale dataset, we hope to push the frontier of robotics, computer
vision, and foundation models. EgoDex is publicly available for downloa

1 INTRODUCTION

The “bitter lesson” 2019) of recent breakthroughs in large language models and large
vision models is that the simple recipe of supervised learning with vast amounts of data is far more

"We provide sample data as part of the supplemental material. Full access will be available upon request due
to the double-blind review and technical difficulty of maintaining anonymity due to institutional requirements.
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effective than competing approaches. Two key challenges have prevented the application of the
bitter lesson to the longstanding challenge of autonomous robot manipulation: (1) it is unclear what
data should be collected, and (2) it is unclear how such data can be collected at the requisite scale.

The leading approach to data collection for robot imitation learning is teleoperation, in which
human operators provide demonstrations by directly controlling robot hardware. Recent works
such as Open X-Embodiment (Padalkar et al.l [2024) and DROID (Khazatsky et al.| |2024) pio-
neer community-wide efforts to pool together hundreds of hours of teleoperation data. While such
datasets can be used for pretraining robot control policies, teleoperation is bottlenecked by physi-
cal robot operation, and it is unclear how to continue scaling this paradigm beyond its current size.
Other works explore learning visual representations from existing in-the-wild Internet videos and
images (Radosavovic et al., [2023; Ma et al., 2023). In this case, while large-scale data is available,
unstructured video data lacks the precise annotation necessary to learn dexterous manipulation.

We explore a middle path between the two: egocentric human video with paired 3D hand pose
annotations. As suggested by recent work (Kareer et al., [2024; |Q1u et al., [2025), such an approach
is passively scalable, similar to text and images on the Internet. Effectively learning from such
data is critical in a future where wearable headsets and smart glasses may be omnipresent. Data is
a crucial component for doing so; before AlexNet (Krizhevsky et al., 2012) must come ImageNet
(Russakovsky et al.| 2015).

To this end, we introduce EgoDex: a large-scale dataset and benchmark for learning dexterous
manipulation from large-scale egocentric video. EgoDex consists of 829 hours of 30 FPS video and
paired skeletal data with a total of 90 million frames and 338000 task demonstrations across 194
tabletop manipulation tasks. To our knowledge, the EgoDex dataset is the largest and most diverse
dataset of dexterous human manipulation to date.

There are several key properties of the proposed data that make it more suitable for dexterous ma-
nipulation than existing alternatives:

* EgoDex is passively scalable, unlike robot teleoperation and other approaches that require de-
liberate effort for data collection. EgoDex suggests the human hand as a common embodiment,
unlike teleoperation and other approaches that collect data that is only compatible with specific
robot hardware platforms.

* EgoDex has 30 FPS 1080p egocentric video with a wide field of view, capturing much of what
a human sees while manipulating objects. It has precise and highly detailed 3D pose informa-
tion for the user’s head, arms, wrists, and each joint of each finger from on-device SLAM and
calibrated cameras, containing critical dexterous manipulation data unlike in-the-wild Internet
videos and Ego4D (Grauman et al., 2022).

* EgoDex consists of extremely diverse behaviors beyond simple pick-and-place such as unscrew-
ing a bottle cap, flipping pages of a book, and plugging a charger into a socket. It consists entirely
of active manipulation, unlike existing large egocentric video datasets such as Ego4D.

We systematically evaluate imitation learning policies for hand trajectory prediction to assess the
state of the art and identify challenges for future research. We hope that EgoDex will not only
accelerate progress in robot manipulation but also be useful more broadly in applications such as
augmented reality, computer vision, assistive prosthetics, and human-computer interaction.

2 RELATED WORK

2.1 LARGE-SCALE MANIPULATION DATASETS

Several prior works introduce large-scale open-source robot teleoperation datasets including Robo-
Turk (Mandlekar et al., 2019)), BridgeData (Walke et al., [2023), RT-X (Padalkar et al.| [2024), and
DROID (Khazatsky et al.,[2024). While such datasets contain up to hundreds of hours of valuable
manipulation data, it is not clear how to scale the paradigm further than its present scale. Robot
teleoperation is extremely labor-intensive and resource-constrained, requiring an operational phys-
ical robot and a human teleoperator actively controlling the robot to perform each desired task.
Furthermore, it is not clear to what degree such datasets can generalize beyond the set of hardware
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Dataset #Traj. #Tasks #Frames Lang. Annot. Cam. Ext. Dexterous Annot. Collection Method
RoboTurk (Mandlekar et al.|2019) 2k 3 12M X X X teleoperation
RoboNet (Dasari et al.;2019) 162k n/a 15M X X X scripted
BridgeData V2 (Walke et al.[2023) 60k 13 2M v X X teleop+scripted
DROID (Khazatsky et al.|[2024) 76k 86 19M v v X teleoperation
EgoMimic (Kareer et al.|[2024) 2k 3 0.4M X v X egocentric video
EPIC-KITCHENS (Damen et al.{|[2018) 40k 125 12M 4 X X egocentric video
HOI4D (Liu et al.}2022) 4k 54 2M X X v egocentric video
Ego4D (HOI) (Grauman et al.|[2022) 89k n/a 21M v X X egocentric video
EgoDex (ours) 338k 194 90M v v v egocentric video

Table 1: Comparison of different robot manipulation datasets (above middle line) and human ma-
nipulation datasets (below middle line). Ego4D (HOI) considers the subset of Ego4D that involves
hand-object interaction. EgoDex has the largest amount of trajectories, tasks, and frames by a large
margin and has language annotation, camera extrinsics, and dexterous annotation. “Dexterous an-
notation” is defined here as labels for multi-finger hand poses, which does not include lower fidelity
pose data like parallel jaw robot grippers or wrist-only tracking.

embodiments and camera viewpoints with which they were collected, even when the datasets consist
of samples collected across multiple different embodiments.

Other large-scale datasets such as Ego4D (Grauman et al., |2022) and EPIC-KITCHENS (Damen
et al.,|2018)) consist of egocentric video recording humans performing various activities. While such
datasets are more scalable and not limited to particular hardware platforms, they typically do not
focus on manipulation and do not have paired 3D annotations for dexterous manipulation.

There is also a large body of work that considers hand-object interaction (Liu et al.| 2022} Banerjee
et al., 2025} |Chao et al.| 2021). While these datasets often do have 3D hand pose annotations, they
are orders of magnitude smaller than EgoDex due to manual annotation processes. Moreover, their
emphasis is primarily on grasping rather than diverse and long-horizon manipulation tasks.

2.2  SCALABLE METHODS FOR ROBOT DATA COLLECTION

Recent work identifies the data scarcity problem in robot imitation learning and proposes innovative
techniques for scalable data collection. |Chi et al.| (2024) propose the “universal manipulation in-
terface”: handheld grippers that enable human teachers to provide demonstrations without physical
robots. [Wang et al.| (2024) introduce a portable data collection system with motion capture gloves.
Others propose collecting robot-free demonstrations by simulating robot hardware in augmented
reality (Chen et al.,|2024bj; [Park et al., 2024} Nechyporenko et al., 2024).

These approaches all face a similar pitfall: they require active data collection. While they may
make it easier to collect data than teleoperation, human demonstrators must still be incentivized to
intentionally collect the data. Such approaches face a significant uphill battle in approaching the
scale of Internet datasets, where text and images are not deliberately collected but rather a passive
byproduct of human interaction with the Internet.

2.3 LEARNING FROM HUMAN VIDEO

Video data is abundant on the Internet. Prior work explores representation learning on unstructured
large-scale image and video data for pretraining visual encoders (Radosavovic et al. [2023; Ma
et al.,|2023) and grasp affordances (Bahl et al., 2023) for downstream manipulation. However, raw
unstructured video data faces a prohibitively large gap between its image distribution and that of
a dexterous manipulation task. Moreover, such videos are not labeled with corresponding motor
actions with which to train a policy.

One option is to postprocess the unstructured video data with 3D hand prediction networks such
as HaMeR (Pavlakos et al.l [2024])), recently explored by |[Ren et al.[(2025). However, the prediction
quality of these networks can suffer without multiple viewpoints and detailed knowledge of the
camera extrinsics at all times, usually unavailable with raw Internet video. In contrast, the EgoDex
dataset includes 3D head and hand tracking at the time of collection, where multiple cameras on
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Figure 2: Distribution of EgoDex dataset. Top: Distribution of distinct verbs, sorted by frequency.
The horizontal axis are verbs of EgoDex. The orange plot is taken from DROID
2024). While many verbs in DROID are below the 10! mark, most verbs in EgoDex are above the
10° mark. Bottom: Distribution of distinct objects. The clustering is suggested by GPT-4.

the Vision Pro, known intrinsics and extrinsics, and a production-grade hand prediction network all
contribute to precise annotation.

Most similar to our work is EgoMimic (Kareer et al.,[2024), which proposes the collection of ego-
centric video and paired 3D hand tracking. The primary difference is scale: while EgoMimic collects
around 4 hours of data, we collect 829 hours with a much broader data and task distribution. We also
collect more dexterous annotations, critical for downstream manipulation: 3D positions and orien-
tations for the upper body including the head, shoulders, arms, and 25 joints in each hand, whereas
EgoMimic collects only the wrist positions.

3 EGODEX DATASET

3.1 OVERVIEW
3.2 DATA COLLECTION

All data is collected with Apple Vision Pro running visionOS 2. The high-resolution and high-
frequency passthrough and wide field of view enable intuitive egocentric data collection, where the
collector can observe the environment unobstructed as if with their own eyes, and the camera data
records precisely what the collector sees without any pose offsets (unlike, for instance, a head-
mounted camera). We use ARKit, a production-grade pose tracking software, to collect natural
demonstration with bare hands and without any additional hardware apparatus.

To streamline data collection, data is recorded in sessions: approximately 10-15 minute segments
that consist of many individual episodes, where episode boundaries are indicated by a “pause” and
subsequent “resume” of recording from the data collection app. Raw video is compressed to facil-
itate data transfer, upload, download, and storage. Without the use of modern video compression
algorithms, the raw data would take over 500 TB of disk space, about 250 its current size. At
training time, data is loaded efficiently with PyTorch torchcodec 2024), which only decodes
the desired frames in the sampled batch of data.

3.3 MODALITIES

The data consists of the following: 1) Egocentric RGB video with 1920 x 1080 resolution at 30 Hz
frequency. 2) Camera intrinsics and extrinsics at 30 Hz. 3) 3D position and orientation of all upper
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Figure 3: Left: Joints captured by EgoDex. Right: Examples of dexterous manipulation behaviors.
Tracked fingertips are highlighted in distinct colors and show 0.5 seconds of motion before the
current frame. From left to right, top to bottom, the tasks are: unzipping a ziploc bag, removing a
book from a bookshelf, removing a screw from a fixture, folding a t-shirt, decluttering, opening a
case, unscrewing a bottle cap, tying shoelaces, and washing a cup.

body joints (including 25 joints for each hand) at 30 Hz. 4) Confidence values for pose predictions
at 30 Hz. 5) Natural language annotation of the manipulation.

The metadata annotated by data collectors includes the task name, a brief task description in natural
language, details about the environment, and details about the object(s) that are manipulated. Since
the metadata can be noisy, these fields are provided as input to GPT-4 (OpenAI et al.| [2024), which
combines this information into a single detailed natural language description.

Confidence values are scalars between 0 and 1 indicating the ARKit prediction confidence per skele-
tal joint. A confidence of zero indicates that the joint is fully occluded from view. See Appendix[A.3]
for a comprehensive list of all the joints and more information.

3.4 TASK TYPES
EgoDex consists of 3 types of tasks:

* Reversible tasks are pairs of tasks that are the inverse of each other. The distribution of final states
for one task is within the distribution of initial states for its inverse. For example, connecting a
charger to a device and removing a charger from the device.

* Reset-free tasks are tasks with a final state distribution that falls within its own initial state distri-
bution. For example, throwing a ball in the air and catching it (where gravity acts as the reset).

¢ Reset tasks are tasks in which the environment must be reset to the initial state distribution after
each demonstration.

Reversible and reset-free tasks enable a higher yield from data collection as they eliminate costly
resets, which are not included in the recorded data.

3.5 DIVERSITY

Prior works (Khazatsky et al. 2024} [Padalkar et al.,[2024)) identify several potential axes of demon-
stration diversity: viewpoint diversity, task diversity, scene diversity, object diversity, and more. In
EgoDex, the emphasis is diversity in dexterous manipulation behaviors. Tasks and objects vary
such that the required dexterity ranges far beyond pick-and-place, the primary behavior in most
robot teleoperation datasets. For example, tasks include tightening a screw, tying shoelaces, dealing
cards, flipping pages, catching tennis balls, and slotting batteries. The task distribution covers a wide
range of everyday household manipulation tasks that can be performed on a tabletop surface. There
is also a significant amount of basic pick-and-place with diverse objects as well as the benchmark
tasks from the FurnitureBench assembly benchmark [2023). The full list of 194 tasks is
provided in Appendix [A2]
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To get a sense of the spread of the task distribution, as in prior work we plot the distribution of de-
duplicated verbs in Figure[2] We observe that the distribution is much wider than prior works such as
DROID (Khazatsky et al., 2024])), where a large fraction of verbs have less than 10! demonstrations
and sometimes only a single demonstration; in contrast, most of the verbs in EgoDex have more
than 10® demonstrations.

Still, the verb distribution does not capture the full diversity of manipulation behaviors or tasks.
For example, “assemble” can involve radically different behaviors in the context of different objects
and tasks. See Figure [3|for examples of different dexterous manipulation behaviors captured in the
dataset.

While the scene diversity in EgoDex is limited to tabletop environments, the Cartesian product of
scene and behavior is not the focus of our work, which focuses on behavioral diversity. Scene
diversity can be introduced with modern visual data augmentation methods such as image-to-image
generative models (Yuan et al.,[2025;|Chen et al., 2024a).

4 EGODEX BENCHMARKS

4.1 ACTION REPRESENTATION

Given the full set of skeletal joints in the EgoDex dataset, many action representations are possible:
wrist positions, wrist orientation, positions of fingertips, and so on. Since we focus on dexterous
manipulation, we choose a representation that captures sufficient bimanual dexterity. Specifically,
the action aq at time ¢ is represented as the 3D position of each wrist, the 6D orientation of each wrist
(as suggested by [Zhou et al.[(2018)), and the 3D position of each fingertip. Thus, each action has a
total dimensionality of 2 hands x (3 + 6 + (3 x 5 fingertips)) = 48. In practice, actions are predicted
in chunks over a fixed time horizon. Poses are expressed in the current camera frame (Kareer et al.,
2024), and each action chunk is a relative trajectory (Chi et al., 2024).

4.2 BENCHMARKS

We propose two benchmark tasks for EgoDex. The first is dexterous trajectory prediction: from the
egocentric image observations, skeletal joint poses, and natural language description, the task is to
predict the trajectories of the hands for a given time horizon following the observations. Specifically,
we seek to train the following estimator:

fa (00..t, S0..t5 l) = é-t:tJrH

where 0. ; are the egocentric image observations up to and including time ¢, s¢. ; are skeletal pose
observations up to and including time ¢, [ is a natural language description, a;.;+ 7 is the predicted
action chunk, and H is the prediction horizon.

Since multimodality can be very severe in natural human motion, the second benchmark is inverse
dynamics: from the image observations and skeletal poses up to time ¢ as well as a goal image
observation at the end of the time horizon, the task is to predict the trajectories of the hands in
between the start and end observations. In this case, we train the following estimator, which can be
interpreted as a visually goal-conditioned policy:

fe (00..t, 50..t, Ot+H, l) = ét:zt+H

Each of these benchmarks are parameterized by prediction horizon H. For example, a short-horizon
trajectory prediction task may set H = 30 (1 second), while a more difficult long-horizon task may
set H = 90 (3 seconds).

Unlike typical robot hardware experiments that can vary across physical environments, the EgoDex
benchmarks are fully reproducible with a fixed training and test set. We set aside 1% of the EgoDex
dataset as a fixed held-out test set for evaluations, where the remaining 99% can be split across
training and validation as desired.
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Figure 4: Model prediction visualizations for Dec + BC on test set images with a 2 second horizon.
Blue trajectories are ground truth and red trajectories are predictions, where darker colors and closer
to the current frame and lighter colors are further in the future. The points shown are the wrist and
fingertip positions projected into the camera frame (a total of 12 trajectories).

4.3 EVALUATION METRICS

Since trajectory prediction for natural human motion is inherently multimodal, evaluating a single
predicted trajectory against the ground truth sample may be insufficient for measuring correctness.
For example, for the simple task of placing a fruit in a basket, it could be placed at variable locations
within the basket, moved at variable speeds, and moved in different but equally valid trajectories
from the initial position to the basket.

Thus, for each benchmark task we evaluate performance with a “best of K metric. For each data
point in the full test set, we sample the trained model K times to capture different possible modes.
We then compute the distance between the ground truth trajectory and the trajectory closest to it
out of the K samples, where “distance” is calculated as the Euclidean distance between predicted
3D keypoint positions and their ground truth 3D counterparts, averaged over each timestep in the
predicted chunk and each of the 12 keypoints (i.e., the wrist and fingertips of each hand). Intuitively,
this value can be interpreted as the average positional error in 3D space between ground truth and
prediction in meters. The final value is averaged over the full test set. For deterministic models, the
value is the same regardless of K'; for stochastic models, the value improves as K increases, as the
model gets more chances to sample the ground truth mode.

5 EXPERIMENTS

We train and evaluate state-of-the-art imitation learning policies from the X-IL framework
on the benchmarks from SectionEi Specifically, we train two Transformer model architectures
(encoder-decoder and decoder-only) and three policy representations (behavior cloning, denoising
diffusion, and flow matching). We also run experiments to evaluate the effect of prediction horizon,
visual goal-conditioning, dataset size, and model size. In total we train and evaluate 14 different
models. We train all models for 50,000 gradient steps with a batch size of 2048 parallelized across 8
NVIDIA A100 GPUs. To make the train-test split, we randomly sample a 1% subset of each task and
set it aside as a held-out set for evaluation. Since this test set does not contain out-of-distribution
(OOD) tasks, we provide additional OOD experiments in Appendix [A-T} Additional training and
model details are provided in Appendix [A:4] The results are presented in Tables [2] 3] f] and Figure
and summarized below.

Encoder-decoder architectures outperform decoder-only. In Table[2] we observe that all encoder-
decoder (“EncDec”) models consistently outperform their decoder-only (“Dec”) counterparts by a
small margin.
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Avg Distance (m) Final Distance (m)
Model K=1 K=5 K=10|K=1 K=5 K=10
Dec + BC 0.045  0.045 0.045 0.062  0.062 0.062
Dec + DDPM 0.063  0.044 0.041 0.071 0.050 0.044
Dec + FM 0.052  0.042 0.040 0.071 0.049 0.043
EncDec + BC 0.044 0.044 0.044 0.060 0.060 0.060
EncDec + DDPM | 0.052  0.042 0.039 0.071 0.048 0.043
EncDec + FM 0.051 0.041 0.038 0.070  0.047 0.041

Table 2: Evaluations for different models on trajectory prediction with a 2 second horizon.

Avg Distance (m) Final Distance (m)
Model H=30(ls)y H=6012s) H=90@3s) | H=30(ls) H=60(2s) H =90(3s)
Dec + BC | 0.031 0.045 0.053 | 0.049 0.062 0.069

Table 3: Results for models trained and evaluated with different prediction horizons. As expected,
accuracy falls as the prediction horizon increases. H = 60 values are repeated from Table [2] for
convenience.

Different policy representations excel in different settings. In Table [2] we observe that the
encoder-decoder flow matching (“FM”) model outperforms the other models for K’ = 5 and K = 10
by up to 34%. As expected, denoising diffusion (“DDPM”) and FM evaluations improve as K in-
creases, while behavior cloning (“BC”) remains the same independent of K as it is deterministic.
Note however that for the K = 1 setting, BC outperforms both diffusion and flow-matching by
about 15%. This suggests that the average prediction of BC is better than DDPM and FM, while the
best prediction of DDPM and FM is better than BC’s single prediction.

Performance degrades as the prediction
horizon increases. In the remaining experi- Data Scaling

ments we vary different properties while fixing e~ Avg Distance
the model to the simplest policy: decoder-only ] o final Distance
behavior cloning. In Table [3| we see that reduc- 0.075 |
ing the horizon from 2 seconds to 1 second im-
proves average and final distance by 31% and
21% respectively, while increasing the horizon
from 2 to 3 seconds worsens average and final
distance by 18% and 11% respectively. Intu-
itively, accurate prediction becomes more chal-
lenging as the horizon increases as the model 0.0501
must predict 48-dimensional dexterous actions 0.085 |
farther into the future. Appendix[A.T|shows ad- % 10% 25% 50% 100%
ditional experiments using the encoder-decoder Dataset size

with flow matching (EncDec + FM) model,
which shows a similar trend.

0.070 1

o
=3
)
v

Distance (m)
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Figure 5: Distance metrics w.r.t. training dataset
size, where size is plotted on a log-scale. Perfor-
Visual goal-conditioning significantly im- mance improves as the dataset gets larger.
proves performance. In Table 4] we observe

that visual goal-conditioning reduces average distance by 22% and final distance by 53%. Intu-

Model | Avg Distance (m) | Final Distance (m)
Dec + BC 0.045 0.062
Dec + BC w/ goal image 0.035 0.029

Table 4: Visual goal-conditioning results. Training a model with visual goal conditioning reduces
average distance by 22% and final distance by 53%.
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itively, a visual goal provides a visual “anchor” to ground the endpoint of the predicted trajectory
and mitigate multimodality. This yields a baseline score for the inverse dynamics benchmark speci-
fied in Section

Medium-size model capacity is sufficient for the current dataset size. We train and evaluate a
larger Dec+BC model with 500 million parameters as opposed to the default 200 million parameters.
The larger model attains average distance 0.045 and final distance 0.062, exactly the same as the
default 200 million parameter model. This may increase accessibility for the EgoDex benchmarks,
as medium-size models fit comfortably on commodity GPU hardware.

Performance scales with dataset size. In Figure [5] we observe that average and final distance
improve as dataset size increases. Results suggest that performance scales with data, motivating the
collection of large-scale egocentric datasets like EgoDex.

6 RESEARCH USE CASES

Robotics While significant progress has been made in the development of robot hardware with
humanoid morphologies and dexterous hands, there remains a prohibitive embodiment gap between
humans and today’s robots. Some options for bridging the embodiment gap include 1) co-training
with a small-scale robot dataset, as demonstrated by |Kareer et al.| (2024); |Qiu et al.| (2025); 2) pre-
training with large-scale human data and supervised fine-tuning with smaller-scale robot data, simi-
lar to the training recipe for large language models; 3) training a visual encoder on the human data
for more data-efficient imitation learning downstream (Nair et al.,[2022)); 4) learning robot manipu-
lation priors from the human-object interaction trajectories and then fine-tuning with reinforcement
learning or imitation learning (Singh et al., [2024} |Gavryushin et al., 2025)).

Perception EgoDex can be used for learning tasks such as action recognition and human-object
interaction detection. Datasets like EPIC-KITCHENS (Damen et al.l 2018) has demonstrated the
value of egocentric video for recognizing and anticipating daily actions, and even more challenging
tasks like detecting active objects and predicting state changes from egocentric video. Researchers
can also study which objects are involved in each action and how. For example, one could model
the contact points, grasps, and trajectories when using a tool (screwdriver, scissors, etc.). A related
task is learning object affordances, i.e., understanding what actions each object supports.

Video Generation and World Models Recent advances in large-scale diffusion models have sig-
nificantly enhanced the capabilities of language-conditioned video generation, producing temporally
consistent and semantically accurate visual narratives from natural language inputs (L1 et al.| 2024;
Peng et al., [2025; NVIDIA et al.| 2025). These generative frameworks have demonstrated potential
not only in creating realistic and detailed video content but also as world models for decision-making
tasks, supporting reinforcement learning agents by simulating future outcomes based on predicted
visual dynamics (Wang et al., 2025} [Bruce et al., 2024} |Yang et al., [2023; Hafner et al., [2019).
Despite these impressive advancements, there remains a substantial research gap in video gener-
ation and world modeling from an egocentric viewpoint. Egocentric perspectives present unique
challenges, including managing significant viewpoint variability, maintaining temporal and spatial
consistency amid frequent camera movements, and accurately reflecting agent-centric interactions
and intentions. Since EgoDex provides large-scale video data with 3D pose and language annota-
tions, it enables the training of an egocentric world model.

7 CONCLUSION

We introduce EgoDex, a massive dataset of egocentric video paired with 3D pose annotations in a
wide range of dexterous manipulation tasks. We train and evaluate imitation learning policies for
hand trajectory prediction on this data.

While EgoDex has significant diversity across tasks and manipulation behaviors, it is limited in
background and scene diversity. The dexterous annotations can also be imperfect, especially during
heavy occlusion (e.g., towel folding) or very high speed motions, as they are themselves model
predictions. Future work involves procedural background randomization on the existing data (Yuan
et al., [2025) as well as data collection in more diverse environments.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

The EgoDex dataset also includes a set of 6 entirely out-of-distribution (OOD) tasks in the dataset
under a separate folder (titled extra). We ran additional experiments testing the decoder-only behav-
ior cloning (Dec+BC) model on these OOD tasks. We observe that some OOD tasks are comparable
to in-distribution performance, while tasks that are further out of distribution have worse perfor-
mance. This suggests EgoDex models can generalize to OOD tasks that are at least somewhat
similar to in-distribution tasks.

Model | Avg Distance (m) | Final Distance (m)
In-Distribution Avg 0.045 0.062
(OOD) Jigsaw Puzzle 0.047 0.065
(OOD) Tetra Board 0.060 0.082
(OOD) Knit Scarf 0.064 0.093
(OOD) Play Reversi 0.065 0.096
(OOD) Blowdry Hair 0.083 0.118
(OOD) Stamp Paper 0.099 0.162

Table 5: Additional experimental results on out-of-distribution tasks.

In main experiments, we chose to use a decoder-only BC model to evaluate the effect of increasing
the prediction horizon. We additionally ran experiments to evaluate the effect of the prediction
horizon with the encoder-decoder with flow matching (EncDec+FM) model for further clarity. The
trend is consistent with the Dec+BC model, where performance degrades as the horizon increases.

Avg Distance (m) Final Distance (m)
Model K=1 K=5 K=10|K=1 K=5 K=10
H=30(s) | 0.036 0.028 0.026 0.055 0.037 0.033
H=60(2s) | 0.051 0.041 0.038 0.070  0.047 0.041
H=90@3s) | 0.061 0.050 0.047 0.079 0.053 0.046

Table 6: Ablation of prediction horizon for the encoder-decoder with flow matching (EncDec+FM)
model.

A.2 COMPLETE LIST OF TASKS

We provide a complete list of task names here, labeled as they appear in the dataset and separated by
task type (reversible, reset-free, or reset, with definitions in Section @ Recall that each reversible
task is actually a pair of two tasks. There are a total of 194 tasks. See Figure [6] for a visual of a
subset of the objects used in the various manipulation tasks.

For users interested in robot deployment, the basic_pick_place task in particular has a large
amount of very diverse pick-and-place data as well as high-quality language annotation.

Reversible (76 x 2 total tasks):

* braid_unbraid

* charge_uncharge_airpods

* deal_gather_cards

e fry bread

e assemble_disassemble_furniture_bench_chair
* assemble_disassemble_furniture_bench_drawer

* assemble_disassemble_furniture_bench_square_table
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e fold_unfold_paper_basic

e insert_remove_furniture_bench_cabinet
* gather_roll_dice

* insert_remove_airpods

* insert_remove_drawer

e insert_remove_shirt_in_tube

* insert_remove_usb

* load_dispense_ice

* open_close_insert_remove_tupperware
* pick_up_and_put_down_case_or_bag

* put_away_set_up_board_game

* screw_unscrew_fingers_fixture

e sleeve_unsleeve_cards

* stack_unstack_cups

* thread_unthread_bead_necklace

* tie_and_untie_shoelace

* insert_remove_tennis_ball

* open_close_insert_remove_case

e pick_place_food

e put_in_take_out_glasses

* screw_unscrew_allen_fixture

* set_up_clean_up_chessboard

e slot_batteries

e stack_unstack_bowls

* stack_unstack_tupperware

* throw_collect_objects

* vertical_pick_place

* wash_put_away_dishes

e add_remove_1lid

* arrange_topple_dominoes

* assemble_disassemble_legos

* assemble_disassemble_soft_legos

* assemble_disassemble_structures

* assemble_disassemble_tiles

* boil_serve_egg

* build_unstack_lego

* charge_uncharge_device

* clip_unclip_papers

e crumple_flatten_paper

* fry_egg

e assemble_disassemble_furniture_bench_desk
* assemble_disassemble_furniture_bench_lamp
e assemble_disassemble_furniture_bench_stool
* fold_stack_unstack_unfold cloths
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e fold_unfold_paper_origami

e insert_remove_furniture_bench_round_table
* insert_remove_bagging

* insert_remove_cups_from_rack
* insert_remove_plug_socket

e insert_remove_utensils

* lock_unlock_key

* open_close_insert_remove_box
* scoop_dump_ice

* screw_unscrew_pottle_cap

* setup_cleanup_table

* stock_unstock_fridge

* stack_unstack_plates

* throw_and_catch_ball

* tie_untie_rubberband

* wrap_unwrap_food

* zip_unzip_bag

* zip_unzip_case

* assemble_disassemble_Jjigsaw_puzzle
* stack_unstack_tetra_ board

* stack_remove_jenga

* insert_dump_blocks

* rake_smooth_zen_garden

* play_reset_connect_four

* insert_remove_bookshelf
Reset-free (28 total tasks):

* color

e fidget_magnetic_spinner_rings
* measure_objects

* staple_paper

e use_rubiks_cube

* wash_kitchen_dishes

* wipe_screen

* knead_slime

* point_and_click_remote
* type_keyboard

* clean_surface

* dry_hands

* play_mancala

e flip_coin

e flip_pages

* paint_clean_brush

* play_piano
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* push_pop_toy

* put_toothpaste_on_toothbrush
* wash_fruit

* wipe_kitchen_surfaces

* stamp_paper

* blowdry_hair

e knit_scarf

* makeup

* write

* clean_cups

e roll_ball
Reset (14 total tasks):

* clean_tableware
* declutter_desk

* basic_pick_place
* stack

* make_sandwich

* peel_place_sticker
* sweep_dustpan

* wrap

* assemble_jenga

* basic_fold

* pour

e sort_beads

* use_chopsticks

* play_reversi

A.3 COMPLETE LIST OF SKELETAL JOINTS

The annotations consist of SE(3) poses (represented as 4 x 4 homogeneous transformation matrices)
for each of the following joints, labeled by their names as they appear in the dataset:

Upper Body:

hip, spinel, spine2, spine3, spined4, spineb5, spine6, spine’,
neckl, neck2, neck3, neck4, leftShoulder, leftArm, leftForearm,
leftHand, rightShoulder, rightArm, rightForearm, rightHand

Left Hand:

leftIndexFingerIntermediateBase, leftIndexFingerIntermediateTip,
leftIndexFingerKnuckle, leftIndexFingerMetacarpal,
leftIndexFingerTip, leftlLittleFingerIntermediateBase,
leftlLittleFingerIntermediateTip, leftLittleFingerKnuckle,
leftlLittleFingerMetacarpal, leftlLittleFingerTip,
leftMiddleFingerIntermediateBase, leftMiddleFingerIntermediateTip,
leftMiddleFingerKnuckle, leftMiddleFingerMetacarpal,
leftMiddleFingerTip, leftRingFingerIntermediateBase,
leftRingFingerIntermediateTip, leftRingFingerKnuckle,
leftRingFingerMetacarpal, leftRingFingerTip,

18



Under review as a conference paper at ICLR 2026

Figure 6: Some of the objects used in the various manipulation tasks.

leftThumbIntermediateBase, leftThumbIntermediateTip,
leftThumbKnuckle, leftThumbTip

Right Hand:

rightIndexFingerIntermediateBase, rightIndexFingerIntermediateTip,
rightIndexFingerKnuckle, rightIndexFingerMetacarpal,
rightIndexFingerTip, rightLittleFingerIntermediateBase,
rightLittleFingerIntermediateTip, rightLittleFingerKnuckle,
rightLittleFingerMetacarpal, rightLittleFingerTip,
rightMiddleFingerIntermediateBase,
rightMiddleFingerIntermediateTip, rightMiddleFingerKnuckle,
rightMiddleFingerMetacarpal, rightMiddleFingerTip,
rightRingFingerIntermediateBase, rightRingFingerIntermediateTip,
rightRingFingerKnuckle, rightRingFingerMetacarpal,
rightRingFingerTip, rightThumbIntermediateBase,
rightThumbIntermediateTip, rightThumbKnuckle, rightThumbTip

Note that 1eftHand and rightHand refer to the wrists. Note also that the joint confidence values
in the data behave differently for the wrists and the hands. Wrist confidence values (for leftHand
and rightHand) indicate whether each hand is detected as a whole, while finger joint confidence
values indicate confidence relative to the wrist. If, for instance, the left index fingertip has high
confidence but the left wrist has low confidence, it is unlikely that the left index fingertip is reliable.

A.4 TRAINING DETAILS

In the experiments section we train and evaluate 14 different models: 6 combinations of architec-
tures and policy optimization methods, 4 additional models with different training dataset sizes, 2
additional models with different prediction horizons, 1 model with a larger model size, and 1 model
with visual goal-conditioning. See Figure[7]for intuition on the model architecture.

Each model is trained and evaluated on a single node with 96 logical CPUs (48 physical CPUs)
and 8 NVIDIA A100 GPUs each with 80GB RAM. Training is run for 50,000 gradient steps with
a batch size of 2048 (256 per GPU with data parallelism), at which point training and validation
loss plateau. The full training run takes approximately 72 hours. The models are optimized with
Adam and a learning rate of le-4. Image observations are resized to 224 x 224 and sent through a
pretrained ResNet encoder, while language annotations are passed through a frozen CLIP
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