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Abstract

Toxic language detection is crucial for creat-
ing safer online environments and limiting the
spread of harmful content. Here we show how
distant supervision can expand the available
datasets for Persian (Farsi) while minimizing
the dependence on manual labeling. With this
enriched dataset, we assess the effectiveness
of various large language models (LLMs) in
detecting hate speech, vulgarity, and violent
content in Persian. This establishes the first
comprehensive benchmark for LLMs in Per-
sian toxic language detection. As expected,
these LLMs do not perform as well on Persian
toxic detection as on English. We also consider
the impact of cultural context on transfer learn-
ing for toxic content detection. Specifically,
we show that languages with closer cultural
similarities to Persian yield better results on
transfer learning. Conversely, languages with
more distinct cultural differences exhibit lim-
ited improvements. This underscores the criti-
cal role of cultural alignment in enhancing the
performance of transfer learning models in this
domain.

1 Introduction

Toxic language detection focuses on identifying
and mitigating harmful content in text, including
but not limited to hate speech, harassment, and
threats (Hoang et al., 2024). With the rapid growth
of online platforms and forums, the prevalence of
such toxic language has become a pressing concern.
Engaging in online discussions on social media,
blogs, or comment sections often exposes users to
hostile or disrespectful interactions (Olteanu et al.,
2018). Such toxic behaviors undermine the overall
quality and inclusivity of online communities.
Over the years, studies have explored various
techniques for tackling the challenge of detect-
ing toxic language across diverse languages (Abro
et al., 2020; Zimmerman et al., 2018; Badjatiya
et al., 2017; Gaydhani et al., 2018). Since Large
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language models (LLMs) have shown exceptional
performance on a wide range of language-related
tasks across multiple languages, there has been a
growing interest in evaluating their effectiveness
on toxic detection (Khondaker et al., 2023; Kumar
et al., 2024; Abaskohi et al., 2024).

However, toxic language detection in Persian
remains under-explored, primarily due to the lack
of high-quality datasets and tailored tools. Per-
sian (also known as Farsi) and its variants—Dari
and Tajik—are spoken by over 110 million people
worldwide, with significant linguistic and cultural
importance!. Only a recent work by Delbari et al.
(2024) showed that advanced models, such as chat-
GPT, struggle with detecting hate-speech in Per-
sian, while the best performance using a fine-tuned
Persian BERT model achieves only 0.61 F-Score.
Addressing the challenges of toxic language detec-
tion in Persian is critical, given its widespread use
and, made more difficult by its non-Latin script,
diverse writing styles, and regional dialects.

The current work is a comparative study on using
different methods for Persian toxic-speech detec-
tion, including fine-tuning, data enrichment, zero-
shot and few-shot of multiple LLMs, and transfer-
learning across languages.

It aims to address four research questions (RQs):

RQ1. What is the performance of existing generative

LLMs on toxic language detection in Persian,
using zero-shot and few-shot learning?
Could better performance be achieved using
fine-tuning?

Would data enrichment (using distant super-
vision) improve Persian toxic language detec-
tion?

Given the fact that toxic speech classifiers are
culturally insensitive (Lee et al., 2023), can
transfer learning from particular languages en-
hance model performance? Which languages
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lead to better performance?

We study these RQs through experiments on the
PHATE dataset (Delbari et al., 2024), which cov-
ers three types of toxic language in Persian,- hate-
speech, vulgarity, and violence. We find that toxic
language identification in Persian continues to be
a challenging task for most existing LLMs. How-
ever, tuning ParsBERT (Farahani et al., 2021) leads
to better results, also outperforming other multi-
lingual transformer-based models such as XLM-R
and mT5. In addition, using distant supervision
to obtain additional Persian training data, signifi-
cantly enhances the performance of ParsBERT. We
also find that transfer learning for toxic detection in
Persian is highly dependent on cultural context. In
particular, when there is a cultural overlap between
the source and destination languages, the results
tend to improve significantly.

2 Related Work

2.1 Toxic Language Detection

Early studies of toxic language detection focused
on using Machine Learning (ML) and Deep Learn-
ing (DL) techniques for English hate speech detec-
tion on social media (Asogwa et al., 2022; David-
son et al., 2017; Mullah and Zainon, 2021; Malik
et al., 2024; Zimmerman et al., 2018; Zhou et al.,
2020; Roy et al., 2020; Zhang et al., 2018). Similar
efforts addressed offensive and abusive language
detection (Bade et al., 2024; Aiyanyo et al., 2020;
Cao et al., 2020; Risch et al., 2020), as well as
violence and cyberbullying (Wang et al., 2020; Pa-
mungkas and Patti, 2019; Van Hee et al., 2015; Guo
and Gauch, 2024; Cano Basave et al., 2013; Huang
etal., 2018).

Research has expanded to other languages, such
as Indonesian (Ibrohim and Budi, 2019), Dan-
ish (Sigurbergsson and Derczynski, 2020), Ara-
bic (Mubarak et al., 2021; Bensalem et al., 2023;
Abuzayed and Elsayed, 2020), Korean (Jeong et al.,
2022), Chinese (Deng et al., 2022), Greek (Pite-
nis et al., 2020), and Indic languages (Gupta et al.,
2022), with notable studies on Hindi (Kapoor et al.,
2019).

The emergence of LLMs has further advanced
this field, with studies benchmarking their perfor-
mance across various languages (Zampieri et al.,
2020; Verma et al., 2022; Koufakou et al., 2020;
Caselli et al., 2021; Saleh et al., 2023; Nguyen
et al., 2023; Chiu et al., 2021; Zampieri et al.,
2023). Shared tasks, such as SemEval OffensE-

val (Zampieri et al., 2019), HASOC (Mandl et al.,
2019), OSACTS5 (Mubarak et al., 2022), and Ger-
mEval (Wiegand et al., 2018), have fostered collab-
oration and innovation in this field.

However, research on Persian toxic language de-
tection remains sparse. Existing studies (Jey et al.,
2022; Sheykhlan et al., 2023; Safayani et al., 2024;
Ataei et al., 2023; Delbari et al., 2024) provide
limited publicly available datasets and primarily
focus on a single category of toxic language. No-
tably, Delbari et al. (2024) provides a hierarchical,
multi-label dataset categorizing violence, hate, and
vulgarity, which forms the foundation of our work.
The study evaluated different models, including
ParsBERT, mBERT, XML-R, and ChatGPT, with
the F1-Macro of 57.8, 55, 58.3, and 43.5 respec-
tively. Because this work uses a limited dataset,
relies solely on fine-tuning BERT-base models,
with GPT models restricted to zero-shot scenar-
ios, focuses only on binary classification tasks, and
lacks thorough error analysis, the current work en-
hances the dataset with distant supervision, exper-
iments with various LLMs and transfer learning
techniques, and shifts from binary to multi-class
classification to better capture real-world complexi-
ties. Additionally, we establish a robust benchmark
and perform comprehensive error analysis, offer-
ing deeper insights and a more reliable evaluation
framework.

2.2 Transfer Learning

Transfer learning leverage pre-trained models to im-
prove performance on new tasks with limited data.
Understudied languages can benefit significantly
from this technique, as pre-trained models provide
a strong foundation for adaptation and learning
(Unanue et al., 2023), even though they may yield
suboptimal results for tasks that rely heavily on con-
text and culture(Zhou et al., 2023b). Bigoulaeva
et al. (2021) uses cross-lingual transfer learning for
hate speech detection, leveraging English as the
source and German as the target language. The
approach successfully achieves strong performance
on the target language without requiring annotated
German data. Another study (Zhou et al., 2023a)
focuses on detecting offensive language in Chinese
using transfer learning with data from English and
Korean. It finds that culture-specific biases hinder
the transferability of language models.



2.3 Weak Supervision Annotation

Distant supervision is a weak supervision method
that automates the creation of labeled training data
by aligning unstructured text with existing anno-
tated data. Magdy et al. (2015) demonstrates how
distant supervision can assign YouTube video cat-
egories as labels to tweets linking those videos,
enabling the generation of a large, automatically
labeled dataset. Similarly, Go et al. (2009) applied
this method for Twitter sentiment classification,
achieving promising results. Additionally, stud-
ies such as (Lin et al., 2022), (Zeng et al., 2015),
(Purver and Battersby, 2012), and (Mintz et al.,
2009) have successfully deployed distant supervi-
sion across various NLP tasks, further showcasing
its effectiveness. In this study, we introduce, for
the first time in Persian, a novel distant supervision
method to enhance the existing dataset.

3 Dataset

The dataset PHATE (Delbari et al., 2024), which
forms the foundation of our work, consists of 7,056
tweets distributed across four classes: 582 labeled
as violence, 1,583 as vulgar, and 1,632 as hate. The
remaining 3,259 tweets are categorized as neutral.
The annotation methodology adopted in the base-
line defines "hate speech" as any instance labeled
under vulgarity, violence, or hate, resulting in over-
lapping labels. Since our objective is not binary
classification but rather distinct multi-class catego-
rization, we dropped this overlapping label to focus
on distinct toxic categories.

To apply distant supervision, we need to create
a toxic lexicon for Persian. To build a toxic lexi-
con, we had three native Persian speakers carefully
examine the dataset to identify frequently used key-
words in each class. This initial examination re-
sulted in 164 keywords, which we reduced to 127
by eliminating terms likely to be used in neutral
contexts, such as specific names, to mitigate po-
tential bias. The selection of these keywords was
finalized using majority voting among the annota-
tors. At this stage, nearly 40% of the keywords
were related to vulgarity.

We then followed a structured approach for each
toxic class to expand the lexicon further. To en-
rich the "hate" category, we relied on definitions
from the baseline annotation guidelines (Delbari
et al., 2024) and introduced annotators to the most
common hate targets, including racial and ethnic
groups, religious groups, gender, individuals with

disabilities, and other social groups (Silva et al.,
2016). We further added another hate target, pol-
itics, as the frequency of this target in the dataset
is high (Delbari et al., 2024). Inspired by (Grim-
minger and Klinger, 2021), we also selected spe-
cific critical cultural events and asked annotators to
generate keywords associated to hate speech based
on those events. This approach ensured a more con-
textually relevant hate speech categories, tailored to
the sociocultural climate of the region. Annotators
were asked to add relevant keywords associated
with these targets, leaving categories blank where
no suitable terms were identified. This process
produced 216 distinct keywords, which were then
narrowed down to 118 through majority voting.
Next, for "violence" category, the annotators used
the baseline definitions to identify relevant terms,
ultimately finalizing 81 distinct keywords. Since
the vulgarity class already had substantial repre-
sentation, we supplemented it with 51 additional
keywords at this stage.

To enhance the lexicon further, we employed the
FastText model (Bojanowski et al., 2017) trained on
Persian to identify related and synonymous terms
for the 377 keywords identified earlier. Filtering
out duplicates and irrelevant words, produced a
final lexicon of 604 toxic keywords across the three
categories.

Using this toxic lexicon and a Twitter archive?,
containing tweets from 2011 to 2022, we identified
tweets that included the identified toxic keywords.
These tweets were then labeled according to the
respective categories in our lexicon. To ensure
that our dataset remained distinct from the base-
line dataset, which focuses on tweets from 2020 to
2023, we excluded any repeated tweets from this
overlapping time frame.

Ultimately, this process yielded 3291 toxic
tweets across the three categories. To keep the
dataset fairly balanced, we supplemented this with
3,200 neutral tweets. Tweets were considered neu-
tral if they did not contain any of the toxic key-
words from our lexicon.

4 Experiments and Results

We use ParsBERT (Farahani et al., 2021) as our
baseline model, as it is the only model exclusively
pre-trained on Persian data, making it an essential
benchmark for evaluating the performance of other
multilingual models. Additionally, ParsBERT has
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Model #Params Reference

ParsBERT 162M (Farahani et al., 2021)
XLM-RoBERTa-Base 125M (Conneau, 2019)
mT5-Base 120M (Xue et al., 2021)
Llama 3-Base 8B (Dubey et al., 2024)
Llama 3 Instruct 8B (Dubey et al., 2024)
Gemma 2 9B (tea, 2024)

GPT 3.5 Turbo 175B (Brown, 2020)

Table 1: LLMs used in our Study.

demonstrated promising results across a variety of
Persian NLP tasks, further establishing its relia-
bility and effectiveness for this domain. Table 1
provides the list of language models used in our
benchmarking process. All models were trained for
10 epochs, and the final results on the test dataset
are reported based on the epoch that achieved the
highest F1 score on the validation set. This method-
ology ensures that we capture the optimal perfor-
mance of each model during evaluation.

In our experiments, we fine-tuned different
LLMs and evaluated their performances on both
the enriched and baseline datasets to address two
main objectives: (1) to assess the effectiveness of
our distant supervision method in enriching the
toxic dataset, and (2) to benchmark the perfor-
mance of different state-of-the-art LLMs on the
task of toxic content detection in Persian. Among
our experiments on multilingual LLMs, Llama 3
consistently achieved better results compared to
other models. Motivated by these findings and in-
spired by (Abaskohi et al., 2024), we conducted an
additional experiment by translating the baseline
Persian dataset (PHATE) into English using the
Google Translate API. We then evaluated Llama
3 on the translated dataset to further analyze its
performance and the impact of language transla-
tion on classification results. This step underscores
Llama 3’s adaptability and robustness across differ-
ent languages. Further elaboration on this will be
provided in the discussion section.

In our experiments, we conducted few-shot and
zero-shot evaluations with Llama 3 and Gemma 2.
However, due to their poor and non-competitive
performance, we excluded these results from the
benchmark. Further, we employed GPT 3.5 Turbo
in both zero-shot and few-shot settings to com-
pare performance across each class. Additionally,
we used a binary classification setting to evalu-
ate whether the model performs better in binary or
multi-label tasks. Inspired by prior work (Abaskohi
et al., 2024), we exclusively used English prompts,

as they have proven to yield better performance
for various Persian tasks. Our prompt provides
definitions for each label, based on the definitions
presented in (Delbari et al., 2024), which are par-
tially derived from Twitter’s rules and policies.

Regarding transfer learning, we utilized three
languages—Arabic, Indonesian, and English— and
explored the interplay of linguistic and cultural
factors in toxic speech detection. Since Llama 3
consistently achieved better results compared to
other multilingual models, we selected this model
for our transfer learning experiments.

Arabic, a Semitic language, is commonly used
for communication throughout the Arab world. It
is written in the Arabic script and is known for its
rich structure, complex grammar, and variety of
regional dialects. Arabic was included in this study
due to its cultural and linguistic similarities with
Persian, as both languages share certain linguistic
and cultural features and use similar scripts.

English, a high-resource language with extensive
datasets, allows us to assess how effectively mod-
els can adapt knowledge from a linguistically and
culturally unrelated yet well-documented source.

Indonesian, or Bahasa Indonesia, is the official
language of Indonesia and a standardized form of
Malay. As part of the Austronesian language fam-
ily, it is spoken by millions across the Indonesian
archipelago. Written in the Latin script, it is known
for its straightforward grammar and simple pho-
netics. Indonesian was selected for this study due
to its cultural ties with Persian, enabling an explo-
ration of how cultural similarities and linguistic
differences impact transfer learning.

Regarding Arabic, we leverage the availability of
large datasets for vulgar and hate speech (Mubarak
et al., 2022) to examine whether the cultural and
linguistic proximity between Arabic and Persian
supports this approach. In one experiment, we train
the Llama 3-base model on Arabic vulgar and hate
datasets and evaluate its performance on the test
set. In another experiment, we combine the base-
line Persian training dataset with the Arabic dataset,
retrain the Llama 3-base model, and test it on the
test set. A similar approach has been applied to
English, leveraging extensive datasets containing
hate, vulgarity, and violence (Kennedy et al., 2020),
as well as to Indonesian, utilizing a comprehensive
hate dataset (Ibrohim and Budi, 2019). To ensure
comparability, we maintained fairly equal dataset
sizes for all languages, with balanced label distri-
bution across all classes. Notably, since we could



Violence Hate

Model P R Fif|P R F|P R F|Fnuero

GPT 0-shot 35 75 48|39 89 54|61 46 52 51

GPT 2-shot 40 81 54|55 69 61|79 37 50 55

Zero/Few  GPT O-shotbinary |81 73 77 |83 64 72|85 30 44 64
shot GPT 1-shot binary | 80 70 75|77 83 80 |74 43 54 69

GPT 2-shot binary | 78 75 76 | 74 86 80 |77 42 55 70
GPT 3-shot binary |79 71 75|76 81 78 |76 36 49 67
ParsBert(Baseline) | 68 42 52|63 59 60 |55 68 60 57
XLM-R-base 63 50 56|58 67 62|55 63 59 59
Llama 3 - Base 68 57 62|53 76 62|51 65 57| 60
Llama 3 Translated | 48 57 52|49 67 57 |36 34 35| 48
Llama 3 Instruct 74 55 63|59 55 57|58 57 57 59

Fine
tuning

Gemma 2 57 35 43|51 69 59 |40 54 46| 49

mT-5 38 41 39|56 49 52|59 26 36| 42

ParsBert 62 58 60|71 81 75 |78 67 72| 69

) XLM-R 54 69 61|71 74 72|76 63 69| 67

supenition Llama 3 36 70 47|70 57 63|56 51 53| 54

Gemma 2 37 65 47|64 54 58|44 50 47| 51

mT-5 34 61 4445 74 56|52 62 57| 52

Llama 3 — Ar S - - [75 89 81|81 84 82| 82

Llama 3 — Ar+Fa - - - |8 88 87 |83 84 84 | 86

Transfer ~ Llama3 - En 78 69 73|55 60 57|74 81 77| 69

learning  Llama3-En+Fa |79 70 74|56 61 59 (81 78 80| 71

Llama 3 —1d - - -89 84 8 |- - - -
Llama3—Id+Fa | - - - |85 83 84

Table 2: Toxic Detection Performance Across Different
Approaches. The best performance for each group of
approaches is presented in bold, and the overall best
performance is underlined.

not find any dataset of vulgar or violent language
with enough samples for training, we limited our
Indonesian experiments to hate detection only.

4.1 Results

Table 2 presents a comprehensive comparison of
model performance. This section is divided based
on the results obtained using different methods as
Zero-Shot/Few-Shot, Fine-Tuning, Distance Super-
vision, and Transfer Learning approach.

4.1.1 GPT 3.5 Turbo Few-Shot and Zero-Shot

For multi-class classification, GPT 3.5 Turbo - 0
Shot achieved moderate scores across categories,
while GPT 3.5 Turbo - 2 Shot improved these met-
rics, notably for Hate and Violence.However, in-
creasing the number of shots beyond two did not
yield significant improvements in performance. To
optimize resource utilization, we limited our exper-
iments to 2-shot settings for multi-class classifica-
tion and shifted our focus to binary classification
for further evaluation. In binary classification, mod-
els demonstrated significantly higher performance
overall. GPT 3.5 Turbo - 0 Shot achieved top scores
in categories such as "Violence" and "Hate".

4.1.2 Fine Tuning
The fine-tuning results revealed distinct trends
among the four LLMs groups.

BERT Models: ParsBERT, the BERT-base
model, served as the baseline (Delbari et al., 2024)
achieved moderate F1 scores for all categories.

When fine-tuned with an enriched dataset, Pars-
BERT with Distant Supervision showed significant
improvements, particularly for "Hate" (F1 = 75)
and "Vulgar" (F1 = 72). Additionally, the perfor-
mance of the XLM-R-base model, fine-tuned with
the enriched dataset, improved significantly across
all categories.

Llama Models: The Llama models displayed
varied performance depending on the dataset and
specefic models. Llama 3 — Base, trained on the
baseline dataset, achieved F1 scores of 62, 62, and
57 for "Violence," "Hate," and "Vulgar," respec-
tively. However, its enriched counterpart, Llama
3 with Distant Supervision, showed mixed results:
while the F1 score for "Hate" improved, the score
for "Violence" dropped significantly, highlighting
challenges in effectively utilizing enriched datasets.
A similar drop occurred for "Vulgar," compared
to other models, Llama 3 — Translated, fine-tuned
on English-translated baseline dataset, underper-
formed, suggesting that translation into English
may have removed critical linguistic features nec-
essary for effective classification. Finally, Llama 3
— Instruct trained on the enriched dataset achieved
consistent F1 scores of 63, 57, and 57 across the
three categories.

GEMMA Models: The GEMMA 2 mod-
els, underperformed compared to Bert - base and
Llama - base models. Enriching the dataset offered
marginal improvements for "Vulgar" but for "Vi-
olence" increased 4% and "Hate" dropped by 1%.
These results highlight the limitations of GEMMA
in task-specific Persian contexts.

mT-5 Model: mT-5 exhibited the weakest per-
formance among all fine-tuned models. While mT-
5 with Distant Supervision showed slight improve-
ments, it struggled to achieve competitive results.

4.1.3 Transfer Learning

Since the results with the Llama 3-based model
were better compared to other multilingual LLMs,
we used this model for all transfer learning experi-
ments in this study. We observed that fine-tuning
on English data alone (Llama 3 — Eng) yielded mod-
erate results: While the model performed well in
"Violence" and "Vulgar," its performance in "Hate"
was weaker. Including Persian in the training pro-
cess alongside English (Llama 3 — Eng + Fa) im-
proved the F1 scores across all categories.
Furthermore, fine-tuning on Arabic data alone
(Llama 3 — Ar) resulted in strong F1 scores of 81 for
both "Hate" and "Vulgar." Adding Persian data to



the Arabic training set (Llama 3 — Ar + Fa) further
enhanced performance, achieving the highest F1
scores of 87 for "Hate" and 84 for "Vulgar." This is
the highest result among all experiments.
Regarding Indonesian, fine-tuning on this lan-
guage alone (Llama 3 — Id) resulted in strong F1
scores of 86 for "Hate.” However, adding Persian
data to the Indonesian training set (Llama 3 — Id +
Fa) decreased performance across all metrics, re-
sulting in a slight drop in the F1 score to 84.

4.2 Analysis and Discussion

In this section, we address our research questions
and provide some additional discussion.

4.2.1 RQI1: Generative LLMs Performance

What is the performance of existing generative
LLMs on toxic language detection in Persian, using
zero-shot and few-shot learning?

Table 3 shows that, in zero/few-shot settings,
GPT-3.5 Turbo demonstrated significantly better
performance in binary classification tasks com-
pared to multi-label classification. The model fre-
quently mislabeled instances in zero-shot multi-
label classification, particularly confusing labels
such as ’hate’ and ’violence.” Additionally, some
instances of "hate’ are incorrectly classified as "neu-
tral.

Given GPT 3.5 Turbo’s stronger performance
in binary settings, we conducted three few-shot
experiments with 1-shot, 2-shot, and 3-shot set-
tings. We observed that the model shows noticeably
better performance, especially in violence detec-
tion, where the results even surpass those achieved
through fine-tuning and transfer learning. After
analyzing the errors in the binary setting, we found
that GPT-3.5 Turbo relies heavily on contextual
clues in the text to distinguish between these la-
bels. However, the predictions can skew incorrectly
when the context is ambiguous or conceptually
overlapping. For example, while the model success-
fully detects hate with common targets (e.g., reli-
gion, politics), it struggles to detect hate for targets
related to specific events. Table 3 presents some
misclassification samples by GPT 3.5 Turbo. Inter-
estingly, the model’s performance either remained
steady or dropped as the number of shots increased.
Ultimately, our analysis shows that instances rely-
ing on context struggle to predict correctly, even
in a 3-shot setting. This finding aligns with prior
work that conducted exhaustive experiments on
GPT models across various tasks (Abaskohi et al.,

2024).

4.2.2 RQ2: Fine-Tuning Effect

Could better performance be achieved using fine-
tuning?

ParsBERT, among fine-tuned models, achieved
a higher F-score across all classes. Despite being
relatively smaller than other models, this monolin-
gual model outperformed others significantly, high-
lighting the effectiveness of ParsBERT in handling
Persian language tasks. However, in comparison to
other reported tasks, (Farahani et al., 2021) Pars-
BERT still lagged in detecting toxic language.

While other models perform worse than Pars-
BERT, Llama 3 performs better than GEMMA 2,
with mT5 being the worst among them. We also
used Llama-Instruct with a definition of the classi-
fication task but observed no significant difference
in performance. Using the translated dataset, we
observed that all metrics dropped notably after this
step. Upon examining the dataset, we found that
the decline in performance stemmed from problem-
atic translations, as most entries were informal and
therefore, difficult for Google Translate to process
correctly.

4.2.3 RQ3: Data Enrchiment via Distant
Supervision

Would data enrichment (using distant supervision)
improve Persian toxic language detection?

Our results demonstrate that distant supervision
leads to improvement on mT5 and significant en-
hancement on BERT base models. However, it
performs poorly on Llama 3 and Gemma 2. No-
tably, the metrics reveal that the results on Llama 3
are 50% worse than those on Gemma, suggesting
that Llama-3 is less tolerant to noise when trained
on Persian. Additionally, our proposed dataset in-
troduces a drop in precision for detecting violence
across all models.

As highlighted by (Magdy et al., 2015), distant
supervision, despite its inherent noise, can substan-
tially enhance model performance by providing
additional contextual data during training. This ob-
servation aligns with our findings, where the BERT-
base models demonstrated improved performance
with distant supervision.

However, as Table 2 shows, for ParsBERT and
XLM-R, the precision for the "violence" cate-
gory dropped by an average of 7%. A detailed
analysis of misclassified labels revealed that 68%
of "neutral" labels were erroneously classified as



Tweet
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Conversation??? For three years, we've been asking every day why you fired the second missile.

Predicted Label
0-shot 0-shot 1-shot 2-shot 3-shot
multi binary binary binary binary

Actual
Label

Hate Violence Neutral Neutral ~ Neutral ~ Neutral
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Ayoung girl visits a clinic for cosmetic surgery and suffers a stroke under the knife; her body is taken Hate Vulgar Hate Hate Neutral Neutral
abroad and set on fire. Don’t you want to take the whole Medical System Organization from top to

bottom and throw it in the trash?
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Ithank God that despite being accepted in the judicial exam and the related selections, | did not Hate Neutral Neutral Neutral ~ Neutral Neutral
attain the honourable position of a judge, so | wouldn't have to give a verdict to detain the mother of

two children while their father spends 80 days in solitary confinement!

Table 3: Samples of misclassified instances in GPT-3.5 Turbo - English translation is literal

Tweet

Actual Predicted
Label Label
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a cold, get COVID, and die, just so the next time | say, "Let’s go home," you don’t say, "No, let’s keep walking." :)))))

Ugh, die already! How much sugar did you add to it

When the power cables in Natanz short-circuit, of course, the missile manufacturing centre in Israel is going to explode @

Cosmetic surgery is neither a source of shame nor pride. (From the "Let's Not Eat Each Other" collection)

Let's walk together in the rain, and you hold the umbrella over me so | don’t get wet, but you get soaked in the rain. Then you catch Neutral Violence
@) S SE psia s e sl Neutral — Violence
©n sadia il omd 5 s Scliga S n 48 deaila A4S sl GG HlUS By
(o533 1) S0 a8 4 gana ) Lo W8T 4G e e 6 ol ) dae Vulgar Hate
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The year that guy compared the incident to Walking Dead and zombies was the moment you should’ve questioned his sanity. &

Table 4: Samples (with translation) of misclassification instances after training ParsBERT on enriched dataset

"violence." This misclassification can primarily
stemmed from overlapping keywords and contex-
tual ambiguities triggered by our toxic lexicon. For
example, in the enriched dataset, the word _ns: (kill)

often appears in both "neutral" and "violent" con-
texts. While in Persian it is typically used humor-
ously or exaggeratedly in neutral conversations,
the models frequently misclassified it as "violent".
Similarly, terms like 2555 u:uj,a (barrage rocket)

and collocation with =aw(explode), neutral in

certain contexts, were incorrectly labeled as vio-
lence. Table 4 displays some of the false positive
instances resulting from the model. Since most of
these tweets were correctly labeled as neutral dur-
ing the baseline training of the BERT-base models,
this suggests that our distant supervision method
introduced noise, complicating the differentiation
between categories in this context.

In addition, we observed that, although the in-
stances for the "vulgar” category increased by ap-
proximately 40% through distant supervision, the
recall remained almost unchanged for both Pars-
BERT and XLM-R. This stability in recall suggests
that the additional data introduced by distant su-
pervision might not have been sufficiently diverse
or contextually rich to enhance the models’ perfor-
mance. Moreover, the models still struggle with
implicit profane speech. Table 4 presents instances
that were not detected as ’vulgar’ during training
on both datasets, even though they explicitly con-
tain words from our toxic lexicon. In contrast, our
dataset significantly improves the recall for "hate".

We observed that this is especially true for hate di-
rected towards politics, where the model trained on
the baseline dataset struggled to identify instances.
However, after training on the enriched dataset, it
successfully detected these instances, suggesting
that our approach for identifying hate keywords in
the toxic lexicon works well for hate detection.

4.2.4 RQ4: Cross-Lingual Transfer Learning

Given the fact that toxic speech classifiers are cul-
turally insensitive (Lee et al., 2023), can transfer
learning across languages enhance model perfor-
mance? Which languages lead to better perfor-
mance?

To evaluate how well Persian can benefit from
other languages, we experimented with three dis-
tinct languages: Arabic, English, and Indonesian.
Our findings indicate that while Persian can effec-
tively leverage the Arabic and Indonesian datasets,
its performance gains from the English dataset are
less pronounced. A closer analysis of the results
suggests two potential reasons for this disparity.
First, the general culture of hate in Persian, Arabic,
and Indonesian appears to be more similar, particu-
larly in targets related to religion, politics, and com-
mon controversial events. In contrast, the English
hate dataset predominantly focuses on contexts di-
verging significantly from the Persian hate dataset
(e.g. sexual orientation and ethnic groups). Sec-
ond, both Persian and Arabic are morphologically
rich languages. This shared characteristic allows
Persian to exploit the morphological richness of
Arabic during transfer learning, leveraging the ca-



Tweet
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Divorce rights belong to the man, but women exploit promiscuity and the leverage of the dowry to do whatever they Hate Neutral Neutral Hate
want. Be fair! This happened to me personally: she cheated to force the man to divorce her and took billions in dowry.
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losing to the Arabs...
At the Riyadh concert, were locusts and camel urine also served?
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Table 5: Culturally-dependent hate instances detected via transfer learning (TL) from Arabic

pacity of LLMs to process such linguistic features
effectively. The pattern observed with the Hate
class was mirrored in the vulgar class, where Per-
sian again benefited more from Arabic than from
English. However, to assess whether the effective-
ness is more cultural or linguistic, we experimented
on Indonesian, which has completely distinct lin-
guistic features from Persian. As the results show,
despite its linguistic divergence, training solely on
the Indonesian dataset produced even better results
than Arabic. This observation suggests that cultural
influence may have a more significant impact than
linguistic similarity.

Due to the lack of an Arabic and Indonesian
dataset for the violence class, we limited our vio-
lence transfer experiments to English. Interestingly,
these experiments demonstrated that English can
still provide relevant contextual information about
violence applicable to Persian.

To further explore the potential of transfer learn-
ing, we conducted supplementary experiments
by integrating datasets from three language pairs
(Arabic-Persian, English-Persian, and Indonesian-
Persian). These experiments showed improved
performance metrics in the first two settings, ex-
cept for a slight decline in recall for the "vulgar"
class in the English-Persian combination (3%) and
the "hate" class in the Arabic-Persian combination
(1%). These minor drops can likely be attributed
to the imbalance in data samples between the two
datasets. However, notably, we observed a decline
in all metrics with the combination of Indonesian
and Persian. Further work will be needed to figure
out why.

Since hate is the only class for which we found
adequate data in all languages for our experiments,
we present hate samples that were not classified cor-
rectly by Llama 3 and ParsBERT but were correctly
predicted through the transfer learning setting in
Table 5. This suggests that the proposed method
provides sufficient contextual information for the

model to detect this class accurately. Ultimately, as
presented in Table 2, results from the integration
of Arabic and Persian datasets yield higher results
among all experiments.

5 Conclusion

This paper presented a comprehensive evaluation of
various fine-tuning, zero-shot/few-shot, and trans-
fer learning methodologies to assess the perfor-
mance of LLMs in detecting toxic content in Per-
sian—a low-resource language. Given the limited
availability of data for Persian, we explored dis-
tant supervision to enrich existing Persian datasets
and transfer learning to evaluate Persian’s ability
to leverage resources from other languages.

Our analyses demonstrate that distant supervi-
sion significantly enhances the performance of
BERT-based models, particularly ParsBERT, which
is currently the only monolingual Persian LLM.
We also find that transfer learning yields better re-
sults when cultural similarities between languages
are prioritized. Specifically, Persian benefits more
from Arabic and Indonesian resources than from
English, likely due to shared cultural contexts. This
emphasizes the importance of considering cultural
alignment when selecting source languages for
transfer learning.

Limitations

One limitation of our study is that the toxic lexicon
introduced for distant supervision cannot compre-
hensively capture all forms of toxic speech. Addi-
tionally, some keywords in the lexicon are heavily
event-specific and may lose relevance over time
as those events fade from public memory. This
limitation suggests that the lexicon may not effec-
tively identify toxic language associated with future
events that provoke hate, violence, or vulgarity.
Furthermore, other forms of toxic speech, ex-
cluded due to dataset constraints, present opportu-



nities for future research to improve toxic speech
detection frameworks.

Ethics Statement

This study adheres to ethical principles by priori-
tizing the fair and responsible use of technology to
detect toxic content. The methods employed are de-
signed to minimize bias, ensure privacy, and avoid
unintended harm. We emphasize the importance of
transparency, accountability, and the careful con-
sideration of societal impacts in the deployment of
toxic detection systems. All data used in this re-
search were collected and processed in compliance
with relevant ethical guidelines and data protection
regulations.
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A Appendix

F1 Scores on Enriched Dataset
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Figure 1: The fine-tuned models’ performance before and after dataset enrichment.
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Figure 2: Label Distribution Before and After the Enrichment
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F1 Score Comparison (0 Shot)
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Figure 3: Comparison Between Binary Classification and Multi-Label Classification in 0-Shot and 2-Shot Configu-
ration for GPT.
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Figure 4: GPT F1 Score Results for Three Classes Across N-Shot Configurations
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Figure 5: Performance of Transfer-Learning methods on the Test Set for Hate Speech Detection.
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Task Description:
Classify the following text into one of two categories: Violent or Neutral.
Determine if the text meets the criteria for violence and assign the appropriate category.

Label Description:

1 (Violent):

The text is classified as Violent if itincludes:
1. Threats of violent acts against an identifiable target.
2. Wishing, hoping, promoting, inciting, or expressing a desire for death or serious physical harm.
3. Calling for and encouraging others to harm or harass.

0 (Neutral):
The text is classified as Neutral if it does not meet any of the criteria for being Violent.

Example Pattern:

<text>

<category>

Examples:

STEXE>: "k a el A G A (s a5 SUAE) 4 ) (Slea S5 el 4S s L

<category>: 0

SHEXE>: i e S sie U (235355 (5340 (38 b Lases 1aem alse (S (0 5 L) (S5 5 43 48 Sl S (e I
<category>: 1

Figure 6: The Prompt Used for the GPT Experiment
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