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ABSTRACT 
Electronic health records (EHR) contain data from disparate sources, spanning various 
biological and temporal scales. In this work, we introduce the Multiple Embedding Model for 
EHR (MEME), a deep learning framework for clinical decision support that operates over 
heterogeneous EHR. MEME first converts tabular EHR into "pseudo-notes", reducing the need 
for concept harmonization across EHR systems and allowing the use of any state-of-the-art, 
open source language foundation models. The model separately embeds EHR domains, then 
uses a self-attention mechanism to learn the contextual importance of these multiple 
embeddings. In a study of 400,019 emergency department visits, MEME successfully predicted 
emergency department disposition, discharge location, intensive care requirement, and 
mortality. It outperformed traditional machine learning models (Logistic Regression, Random 
Forest, XGBoost, MLP), EHR foundation models (EHR-shot, MC-BEC, MSEM), and GPT-4 
prompting strategies. Due to text serialization, MEME also exhibited strong few-shot learning 
performance in an external, unstandardized EHR database.  



Introduction 
In recent years, increased access to Electronic Health Records (EHR) has enabled the 
development and application of clinically relevant artificial intelligence (AI) and machine learning 
(ML). For example, both traditional and cutting-edge machine learning techniques have been 
harnessed to augment medical image interpretation1, drug discovery and delivery 2,3, diagnosis 
4,5, and prognosis 6, to name a few 7,8. Due to the large variety of bespoke clinical applications 
built upon clinical health data, recent efforts have turned to developing generalist AI for 
healthcare 9,10. Foundation models (FMs), the basis of large, generalist AI, are pre-trained on 
massive amounts of diverse data which exhibit adaptability and effectiveness across numerous 
domains11. These models have been shown to be adaptable into the healthcare setting, 
exhibiting state-of-the-art performance in multiple settings 12.  
 
The application of FMs to healthcare generally fits into one of two paradigms 13. One approach 
augments widely-accessible large language models (LLMs) with clinical text (e.g., ClinicalBert14, 
MedPaLM15, GPT11, etc), taking advantage of the general reasoning capabilities of these 
models. For example they have recently been able to generate discharge summaries from 
structured EHR without being trained on that particular task. However, continued adaptation of 
these models has been hampered by the fact that they are restricted to a text-based interface, 
making them incompatible with tabular EHR.  
 
Another group of FMs are trained from scratch to operate upon sequences of discrete, 
structured items captured within the EHR (e.g., BEHRT16 and its variants17). EHR FMs have 
been shown to exhibit better predictive performance than bespoke ML models. However, there 
are substantially less data available to develop EHR FMs, which casts doubt on their general 
utility across diverse healthcare populations13. In addition to the relative lack of publicly available 
EHR for developing EHR FMs, a data standard is yet to be adopted that harmonizes tabular 
EHR across institutions 18–20. 
 
EHR are recorded in a variety of data types including numerical, categorical, and free-text, 
which traditional ML has struggled to jointly process. These issues are partially addressed by 
EHR FMs, which can be configured to process categorical codes and continuous 
measurements21, but are limited by the need to harmonize these concepts. While EHR are 
commonly referred to and modeled by FMs as a single data type, these records span multiple 
biological scales and domains from laboratory measurements, to clinical interpretations and 
actions, to diagnostic codes. It is possible that this approach doesn’t capture the underlying 
distributions given the high cardinality of EHR data and the relatively small amount of training 
data.  
 
In this work, we present a modeling framework for EHR decision support that addresses the 
gaps above. First, we introduce clinical pseudo-notes, which convert tabular EHR into text. Our 
rationale is that text-serialization provides an alternative to concept harmonization and serves 
as an interface between EHR and LLMs. We leverage these pseudo-notes to develop the 
Multiple Embedding Model for EHR (MEME) for clinical decision support. MEME separately 
processes EHR concepts which are combined using self-attention. We demonstrate the 
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effectiveness of this approach through various prediction tasks in the emergency department 
setting, showing that our framework outperforms both traditional machine learning models and 
EHR FMs. 

Results 

Study Design and Cohort 
This study was conducted retrospectively on datasets collected from the Beth Israel 
Deaconness Medical Center in Boston, USA22 and the UCLA Health medical system in Los 
Angeles, USA (UCLA). From each database, deidentified electronic health records from 
emergency room visits were identified and extracted (MIMIC: n=400,019, UCLA: n=947,028) 
with additional details in Table 1. These were used to predict discharge and decompensation 
outcomes including Emergency Room disposition (EDdisp), discharge location (discharge), 
intensive care (ICU), and mortality as defined in Chen et al., 2024 23. The publicly available 
MIMIC database was used for model development and validation. We used a 70/15/15 split for 
the MIMIC Dataset treating each patient visit independently. 
 
Table 1: Demographic and Clinical Characteristics of Patient Encounters at MIMIC and UCLA 
Hospitals: This table summarizes the demographic details such as median age, gender, and 
racial distribution, as well as clinical outcomes including emergency department disposition and 
details of ED decompensation among admitted patients. The data includes total patient 
encounters for MIMIC (n=400,019) and UCLA (n=947,028). 
 

Patient Encounters MIMIC (n=400,019) UCLA (n=947,028) 

Median Age [IQR] 56 [35, 71] 42 [18, 66] 

Male (n, %) 195,189 (48.8%) 518,532 (54.8%) 

Race (n,%)   

White 228,123 (57.0%) 583,925 (61.7%) 

African American 76,798 (19.2%) 139,497 (14.7%) 

Asian  18,528 (4.7%) 83,329 (8.8%) 

Other 76,570 (19.1%) 140,277 (14.8%) 

   

Outcomes (n,%)   

Ed Disposition 158,007 (39.5%) 239,598 (25.3%) 

   

ED Decompensation (Only N = 158,007  N = 239,598 
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Patient Encounters MIMIC (n=400,019) UCLA (n=947,028) 

Median Age [IQR] 56 [35, 71] 42 [18, 66] 

Male (n, %) 195,189 (48.8%) 518,532 (54.8%) 

Race (n,%)   

White 228,123 (57.0%) 583,925 (61.7%) 

African American 76,798 (19.2%) 139,497 (14.7%) 

admitted patients) 

Discharge Location 70,945 (44.9%) 91,287 (38.1%) 

ICU 31,127 (19.7%) 37,616 (15.7%) 

Mortality 4,582 (2.9%) 7427 (3.1%) 

 



Multiple Embedding Model for EHR (MEME) 
 
The goal of our framework is to design a model that leverages off-the-shelf text models to 
represent EHR data effectively, addressing the challenges of variable-length inputs and the 
multistream nature of clinical records (e.g., triage information, medication info, vitals, etc). 
Streams of EHR data include, for example, diagnostic codes, prescription orders, and triage 
vitals, which represent separate biological and temporal scales. MEME processes each stream 
independently, embedding concepts separately to overcome token limit constraints (e.g., 
BERT's 512-token limit), thus preserving the integrity of patient data without truncation (See 
Methods).  

Preprocessing: Conversion to Clinical Pseudo-notes 
Electronic Health Records (EHR) are heterogeneous datasets encompassing various biological 
and temporal scales, represented across multiple tables in categorical, numerical, and textual 
formats. Integrating these data types presents additional challenges in terms of data 
harmonization and standards adoption. Instead, we perform text-serialization24 in which tabular 
EHR are converted to text, which we refer to as clinical pseudo-notes.  
 
While text generation with Large Language Models (LLMs) has been explored25–27, persistent 
issues such as data hallucination pose significant challenges, as noted in24. Our approach uses 
a template approach (Figure 1),  in which structured data is inserted into a pre-configured 
template. This resembles the manner in which the majority of clinical text is generated (e.g, 
SmartPhrases/DotPhrases from the Epic/EMR system28 ).  
 
We process each stream independently, assigning a distinct embedding to each EHR data 
stream. This results in multiple paragraphs of clinical pseudo-notes, each containing a separate 
“domain” of EHR (diagnoses, encounter metainformation, medications, vitals, and information at 
triage). These embeddings are then concatenated and subjected to a self-attention layer, which 
synthesizes the entire patient context prior to decision-making (Figure 1; see Methods for 
additional details).  
 
Multiple embedding for decision support 
 
Our approach assigns distinct embeddings to each EHR stream, which are then concatenated 
and processed through a self-attention layer to synthesize the patient representation for 
decision-making. Prior work, such as ExBEHRT17, along with our findings, demonstrates that 
this method improves performance by avoiding the truncation and ordering issues of single, 
heterogeneous embeddings. Figure 1 illustrates a schematic of the framework's workflow. 
 
Embeddings for each pseudo-note paragraph are extracted using language foundational 
models, resulting in high-dimensional vectors that capture various aspects of a patient's medical 
history. These embeddings are then concatenated into a unified input vector for further 
processing. In the proceeding step, a self-attention layer analyzes the combined vector as a 
whole, capturing relationships between different medical concepts. The processed vector is then 
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passed through a classifier to predict outcomes such as ED Disposition or Decompensation, 
with the model optimized using a tailored loss function. 
 
 
 

 

Figure 1: Overview of the Multiple Embedding Model for Electronic Health Records (EHR). 
This model integrates various input streams from distinct biological and temporal concepts of 
the EHR. Each concept is represented independently before being merged and processed 
through a self-attention layer. This multistream embedding is then passed through a Fully 
connected layer for downstream prediction. 

 
This approach contrasts with existing efforts to develop foundational models for EHR 
representation 16,29,30. We evaluated performance against representative foundational EHR 
models as well as baseline non-deep learning models trained from scratch31. Reference model 
comparisons were run within the MIMIC dataset due to data harmonization issues with the 
institutional database and quantified in terms of the Area Under the Receiver Operating 
Characteristic Curve (AUROC), the Area Under Precision-Recall Curve (AUPRC), and F1 
scores. 95% confidence intervals were generated for each metric by resampling the test set 
1,000 times. 
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MEME vs EHR Foundation Models 

 

 



 
Figure 2a,b,c: Comparative Performance of EHR Foundation models: MC-BEC, EHR-Shot, 
and MEME Models Across Different Clinical Tasks. This bar chart displays the F1 Scores, 
Area under the Receiver Operating Characteristic (AUROC) and Area under the precision recall 
curve (AUPRC) for each model, assessed over various clinical tasks such as ED Disposition, 
Discharge, Tasks, ICU, and Mortality. Error bars represent the confidence intervals, highlighting 
the variability in model performance across tasks. 
 
 
EHR-specific foundation models (EHR FMs) have been recently developed and have shown 
predictive capabilities across a variety of healthcare applications 13 We selected the following 
reference EHR FMs as representatives of the approach.  
 
On the MIMIC validation set, MEME significantly outperformed EHR FMs in ED disposition as 
displayed in Figure 2. In the context of decompensation, MEME outperformed EHR FMs in all 
metrics when predicting ICU necessity and either outperformed or was statistically 
indistinguishable from EHR FMs when predicting mortality. We also show that by increasing the 
context window in the clinical longformer32 (512 tokens vs 1024 tokens), it does not necessarily 
result in better performance supporting the added benefit of our framework design.  
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MEME vs traditional ML



 
Figure 3a,3b,3c: Comparative Performance of MEME relative to Traditional ML 
techniques: Logistic Regression, XGBoost, MLP, MEME. This bar chart displays the 
AUPRC, AUROC, F1 for each model, assessed over various clinical tasks such as ED 
Disposition, Discharge, Tasks, ICU, and Mortality. Error bars represent the confidence intervals, 
highlighting the variability in model performance across tasks. All Statistics for the ED  
Traditional techniques including logistic regression and gradient boosting may be appropriate 
when there is a clear relation between input features and prediction targets, for example when 
decision protocols are governed by quantitative thresholds.  
 
We evaluated MEME against a logistic regression, xgboost, and neural network model31 
operating over tabular EHR prior to pseudonote generation (Table/Figure 3a,3b,3c). MEME 
significantly outperformed these approaches in ED disposition. Evaluation on decompensation 
tasks were varied. The xgboost classifier outperformed MEME in terms of AUROC for discharge 
and ICU, and in terms of F1 for mortality. However, MEME significantly outperformed the same 
approaches in terms of AUPRC across all tasks. This could be due to differences in the 
incidence of these events, as discussed in33.  
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Ablation Studies 

 
Figure 4: Ablation Study Comparing Different Model Variants on Area under the Receiver 
Operating Characteristic (AUROC) and Precision-Recall Curves (AUPRC). The left panel 
displays AUROC curves for independent concept models versus a Multiple Single Embedding 
Model (MSEM) and our MEME model. The right panel illustrates AUPRC curves, depicting the 
precision-recall relationship for the same models. Model performance metrics (AUC values) are 
annotated on both curves. It is evident that neither any single modality nor MSEM outperforms 
MEME. 
 
MEME is composed of the combination of pseudo-notes as an interface between EHR and 
natural language LMs, and a multiple embedding approach in which EHR data domains are 
separately embedded. As shown above, the combination of these approaches achieves 
comparable or superior performance to alternative approaches for EHR modeling. We 
conducted the following ablation studies to characterize the contribution of the multiple 
embedding approach. 
 
MEME was referenced against a single-modality embedding model (MSEM; see Methods), in 
which pseudo-notes were combined into one large text that produced a single embedding. This 
significantly compromised predictive performance in all scenarios tested, highlighting the 
importance of embeddings for separate modalities to MEME’s performance17.   
An ablation study was also conducted to characterize the contribution of different EHR input 
modalities, such that only pseudo-notes from one data category at a time could be considered. 
Again, no single modality on its own approached MEME’s performance. (Figure 8) 

https://www.zotero.org/google-docs/?PR2w2e


MEME vs LLM Prompting 

 
Figure 5: Comparing Model Accuracy for Predicting Emergency Department (ED) 
Disposition Using Pseudonotes against Zero-shot Prompting. The left panel showcases a 
code snippet illustrating how we prompted a GPT4 API. The right panel presents a bar graph 
comparing the accuracy of GPT-4 and MEME models in predicting ED dispositions. The graph 
highlights the significant performance disparity between the two models, with MEME 
outperforming GPT-4. 
Given the emergent capabilities of generative AI models (e.g. GPT 11,34, LLaMA-2 35, Claude, 
etc.), we investigated predictive performance of MEME relative to a zero-shot prompting 
approach36. We compared the MEME classifier and a zero-shot GPT4 API using 100 random 
samples to predict ED disposition based on pseudo-notes. We observed a notable difference in 
performance such that all EHR-specific models outperformed and GPT-4 in terms of Accuracy 
and F1 score, indicating the continued need for specialized models adapted to uncommon 
settings. We noticed from this experiment that training classifiers still outperform current 
generative models despite their general reasoning capabilities. We noticed a nearly 20% 
performance gap between these two models on both metrics with a 16% difference in accuracy 
and a 17% difference in f1 scores. 

Multimodal embedding is compatible with evolving language models 
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Figure 6: Longitudinal Performance Metrics of Foundation Models Predicting ED 
Disposition Using the MIMIC Dataset. This series of plots tracks the evolution of three key 
performance metrics—F1 score, Area Under the Receiver Operating Characteristic Curve 
(AUROC), and Area Under the Precision-Recall Curve (AUPRC)—for foundational models 
across several years. The aim is to demonstrate that future foundation models are compatible 
with our framework, potentially leading to further improvements. Each plot shows a steady 
enhancement in model metrics over time, underscoring the effectiveness of utilizing 
open-source models that continue to get better. 
 
 
The multimodal embedding approach is agnostic to the natural language model which embeds 
clinical pseudo-notes. We repeated the ED disposition experiment, testing several clinical 
language models in the MEME framework (Bio_ClinicalBERT14 (June 2019), BioBERT37 
(October 2019), and MedBERT38,39 (2022)). We found that advances in clinical language models 
translated to improvements in ED disposition.  

Cross-institution generalization and adaptation 

 
Figure 7. Performance of the ED Disposition task across and within datasets. We see 
noticeable performance dropoff in both AUROC and AUPRC when we test across sites. 
 
MEME exhibited strong performance within individual institutions but showed poor 
generalizability when directly applied across different sites. This decline in performance is a 
common challenge in healthcare, where models trained on data from one institution often fail to 
generalize to others due to differences in patient populations, clinical practices, and data 
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collection methods40. In our cross-site experiments, training on one hospital's data and testing 
on others led to significant drops in F1, AUROC, and AUPRC scores. 
 
However, few-shot learning offers a promising solution by enabling models to rapidly adapt to 
new environments with minimal data, improving generalization and robustness in the face of 
distribution shifts or out-of-distribution (OOD) data41–43. Many existing EHR foundation models, 
while powerful, struggle with real-world applications due to their lack of interoperability with 
proprietary databases11. In contrast, the pseudo-notes approach used in MEME enhances 
interoperability, allowing for generalization across proprietary datasets when combined with 
few-shot learning, making it a more practical tool in diverse clinical settings. 
 

 
 
Figure 8: Performance Generalization via Few-Shot Learning. This set of graphs 
demonstrates the F1 score, AUROC (Area Under the Receiver Operating Characteristic Curve), 
and AUPRC (Area Under the Precision-Recall Curve) for few-shot learning models across 
multiple tasks as a function of increasing sample size. The plots illustrate steady improvements 
between 128-512 samples showcasing that this model can overcome OOD which is a current 
struggle of healthcare AI models. 
 
To evaluate MEME's adaptability, we tested its performance on an external population from the 
UCLA Health system. Fine-tuning MEME for the same ED disposition and decompensation 
tasks, we varied the number of local training samples from 2 to 1024. MEME achieved 
near-maximal performance (AUROC, AUPRC, and F1) between 128 and 512 samples, 
consistent with previous findings for EHR foundation models like EHRshot12. This demonstrates 
MEME’s potential for real-world applications where rapid adaptation to new data is crucial. 
 

Discussion 
In this work we introduce the Multimodal Embedding Model for EHR (MEME), a representation 
and decision-support framework for EHR. This approach uses pseudo-notes as an intuitive 
interface between structured electronic health data and foundational language models, and 
adopts a multi-stream approach to encoding EHR data domains. The combination of these 
approaches results in comparable or superior performance compared with canonical and 
modern machine learning approaches across decision support tasks around Emergency 
Department disposition and decompensation.  

https://www.zotero.org/google-docs/?Wq2IOb
https://www.zotero.org/google-docs/?RC8qcN
https://www.zotero.org/google-docs/?QYjX8I
https://www.zotero.org/google-docs/?BBjMYc


Pseudo Notes as an interface between EHR and Foundational Language Models 

Our study revealed that using multiple sources of EHR information independently appears to 
have significant results. We generally see that MEME outperforms all models with considerable 
improvement over EHR-shot, and the three standard methods on the ED disposition task. We 
also noticed that XGBoost performs better on two of the decompensation tasks in terms of the 
AUROC metric, but this could be nuanced due to class imbalance 33.  We notice more subtle 
improvements in all other metrics across all models. 

We designed our model to be compatible with the pseudo-notes design, which encodes 
separate biological and temporal scales. To test the algorithmic design of MEME, we compared 
it with several baselines from33, ranging from traditional ML techniques to EHR foundation 
models. Our ablation study revealed that the multi-stream approach, which integrates multiple 
concepts, significantly outperforms individual models and the Multi-stream Single Embedding 
Model (MSEM). This method enables MEME to represent each EHR concept with high fidelity 
and dynamically combine them for inference using self-attention. Our comparative studies 
further demonstrate that MEME surpasses both single-stream models and EHR foundation 
model alternatives, highlighting its superior capability in handling the multifaceted nature of 
healthcare data and supporting our design choices. Questions regarding context length were 
also studied where we compared our MEME approach against the clinical-longformer 32 to 
motivate our framework design. We notice a considerable gap between these two methods, 
supporting our claims that different temporal and biological scales should be encoded 
separately instead of in a model with longer context length. 

In addition to the performance advantages demonstrated by our experiments, the Multiple 
Embedding Model for EHR (MEME) offers several qualitative benefits in terms of portability and 
extendibility. Unlike EHR-specific models such as BEHRT16, CHIRoN 44, and EHR-shot29, which 
depend on evolving data standards and harmonization procedures for interoperability 18,45, 
MEME utilizes a natural language approach that is extendible to any data that can be 
text-serialized (e.g. 24,46,47 ), providing a straightforward interface for serializing both public and 
proprietary EHR systems. This approach is more easily adopted by institutions and can 
gracefully handle changes in coding standards, leveraging general reasoning capabilities and 
increasing the medical domain knowledge captured by existing and emerging foundation 
language models (Figure 6). This framework not only promotes interoperability across diverse 
healthcare systems with varying protocols but also outperforms both EHR FMs and machine 
learning models which rely on harmonized structured formats, which are yet to be universally 
adopted.  

MEME is adaptable across institutions  
Healthcare AI models have often been criticized for failing to generalize across institutions40. We 
observed that MEME also displayed similar behavior. However, it has been shown that 
foundational models are more efficient to adapt to new scenarios 15,48. We found that MEME, 
using language-based embedding models, approached ceiling performance using between 128 
and 512 training examples for ED Decision support tasks, which is comparable to the EHR FM 
EHRshot in the few-shot learning setting12. Coupled with the interoperability benefits of not 
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requiring a data standard, this approach could be applied in settings where limited data 
annotations are available and the EHR are not recorded using a common data model.  
 
Limitations 
A limitation of this work is our inability to release our private institutional data, due to privacy 
restrictions and university policy. This highlights the significance of independent benchmarks, 
and underscores the necessity of external validation, for example benchmark datasets and 
tasks such as MC-BEC23. Additionally, our analysis was limited to a small set of hospital 
datasets and tasks from two sites, potentially not reflecting the full diversity of EHR systems. We 
did not investigate methods to harmonize different data schemas, which could affect the model’s 
adaptability across diverse healthcare settings. 
 
Conclusion 
We describe a decision-support modeling framework which interfaces between structured 
electronic health data and foundational language models. This approach is adaptable across a 
variety of settings and is compatible with evolving foundational models, and may streamline the 
incorporation of modern AI into clinical decision support.  
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Methods 
Data: 
Our study sources de-identifed data from the publicly availableMedical Information Mart for 
Intensive Care (MIMIC)-IV v2.2 database22, and UCLA Health 49. This analysis was deemed non 
human-subjects research by the local institutional review board (IRB) due to its retrospective 
and deidentified nature. We detail the components of these databases to comprehensively 
explore the data inputs for our model. 
 
MIMIC-IV ED 22: This database is used for various downstream tasks, employing EHR concepts 
such as arrival information, which captures patient demographics and means of arrival; triage, 
documenting patient vitals and complaints at arrival; medication reconciliation (medrecon), 
detailing prior and current medications; diagnostic codes (ICD-9/10) for diagnoses; and 
measurements throughout the ED stay, including patient vitals and medications from pyxis. Data 
across these modalities are linked via unique visit or hospital admission IDs (Hadm_id) and 
associated with all prediction labels. 
 
UCLA Database49: This database mirrors the MIMIC-IV in data modalities except for the 
absence of medication reconciliation (medrecon), with some variations due to different EHR 
system features. Our approach aims to make pseudo-notes across both databases closely 
resemble each other. Like MIMIC-IV, all concepts/streams in our UCLA data can be linked using 
a hospital admission ID and are also associated with all prediction labels. 
 
In the MIMIC-IV database, we analyzed 400,019 unique visits, each associated with six 
modalities, contributing to a dataset size of approximately 2.4 million text paragraphs. For 
predicting ED disposition, we used the available data for training, validation, and testing with a 
set seed for reproducibility. For the decompensation prediction tasks, we utilized the subset of 
visits admitted to the hospital from the ED, resulting in a sample size of 158,010 patients. In the 
UCLA database, we analyzed a larger sample of 947,028 patients with five available modalities 
(excluding medrecon), resulting in approximately 4.75 million text paragraphs. All available data 
were used for the ED disposition task, and the 240,161 admitted patients were used for 
decompensation prediction. Further breakdowns can be found in our strobe diagrams in Table 1. 
 

Benchmark 
This paper focuses on binary prediction tasks related to Emergency Department (ED) 
disposition and decompensation, as defined in23. We evaluate our multistream method's 
effectiveness in both single and multilabel classification tasks, benchmarking it against other 
tabular-based and text-operating machine learning models. This assessment aims to highlight 
the performance advantages of using a text-based, multiple embedding strategy. 
 
ED Disposition (Binary Classification): The first objective is to predict ED disposition, 
specifically where patients are sent after their Emergency Room visit, based on EHR 
measurements recorded during their stay. This is framed as a binary classification problem, 
distinguishing between patients discharged home and those admitted to the hospital. 
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ED Decompensation (Multilabel Binary Classification): The second objective involves 
analyzing the subset of patients admitted to the hospital and predicting various outcomes 
related to their ED visit. This is approached as a multilabel binary classification task, where the 
model predicts three ED outcomes simultaneously. The first task is to predict the patient's next 
discharge location, distinguishing between home and other facilities. The second task is to 
predict the need for Intensive Care Unit (ICU) admission. The final task is to predict in-patient 
mortality, specifically whether the patient dies during their hospital stay. 
 
MEME  
In the Results section, we introduced the Multiple Embedding Model for EHR (MEME). Here, in 
the Methods section, we provide a detailed explanation of how this framework progresses from 
processing pseudo-notes to generating predictions, outlining each step of the process 
comprehensively. This includes the transformation of raw data into structured embeddings, the 
application of self-attention mechanisms, and the integration of these embeddings into a 
predictive model, ensuring clarity at every stage of the pipeline. 

Generating Embeddings 
In the initial step of our model, we aim to generate embeddings for each EHR concept by 
feeding tokenized data into our foundational models' encoders, which produce rich, 
high-dimensional vector representations encapsulating various aspects of a patient's medical 
history. We choose to freeze the encoder layers, focusing on the training parameters of the 
subsequent layers dedicated to the prediction task. After generating embeddings for all 
concepts, we concatenate them into a unified input vector for further processing. This procedure 
can be mathematically represented as follows: In the model's first phase, modality-specific 
pseudo-notes are processed and structured into a tokenized format, denoted , which 𝐷

𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑑

outlines a series of unique medical concepts or characteristics derived from a patient's 𝑐
𝑖
 

records. Each concept undergoes transformation via the foundation models encoder into a 

high-dimensional vector , offering nuanced, context-rich portrayals of each EHR concept and 𝑣
𝑖

→

capturing complex clinical information. These vectors are then unified into a comprehensive 

vector through concatenation, laying the groundwork for our multimodal patient 𝑣
𝑐𝑜𝑛𝑐𝑎𝑡

→

embeddings. 

 𝑣
𝑖

= 𝐹𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑒𝑙(𝑐
𝑖
) ∀𝑐

𝑖 
∈ 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑑

→

 𝑉
→

𝑐𝑜𝑛𝑐𝑎𝑡
= 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑣

1

→
 ,  𝑣

2

→
 , ...,  𝑣

𝑛

→
)

Self-attention Classifier 
In the second step of our network, we introduce a new use case of a self-attention layer 50 

designed to analyze the singular concatenated representation vector, , as a unified entity. 𝑉
𝑐𝑜𝑛𝑐𝑎𝑡

→

This approach arises from our intention to interpret aligned modalities collectively, rather than as 
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separate entities, allowing the network to operate comprehensively on the entire vector. It 
evaluates the relationships between elements within the vector, capturing patterns across 
different EHR concept vectors. The output from this layer is then directed through a fully 
connected layer, followed by a ReLU activation function, before being fed into the final 
classifying layer for prediction. This method, characterized by a unified analysis and 
attention-based processing, distinguishes our approach from traditional models and is pivotal to 
the enhanced predictive capabilities of our framework. Mathematically, this process involves 

transforming the input vector ,  into an attention vector using the self-attention 𝑉
𝑐𝑜𝑛𝑐𝑎𝑡

→
𝑉

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

→

mechanism, further processing it through a fully connected (FC) layer and a Rectified Linear 

Unit (ReLU) activation to obtain a refined feature vector , as outlined below: 𝑉
𝑓𝑐

→

 

 𝑉
𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

= 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑉
→

𝑐𝑜𝑛𝑐𝑎𝑡
)

→

 𝑉
𝑓𝑐

= 𝑅𝑒𝐿𝑈(𝐹𝐶(𝑉
𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

→
))

→

 𝑧
→

= 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 (𝑉
𝑓𝑐

→
)

 

The model leverages these refined features, ,, in a classifier to produce logits , 𝑉
𝑓𝑐

→
𝑧
→

subsequently processed to predict probabilities for ED Disposition or ED Decompensation 
tasks. The classifier's output is optimized by minimizing Cross Entropy Loss , ensuring 𝐿

alignment of predicted probabilities  with true labels . For multi-label tasks like ED  𝑦
^

𝑖
𝑦

𝑖

 

 𝐿 =
𝑖=1

𝑛

∑
𝑙=1

𝑚

∑ 𝐵𝐶𝐸(σ(𝑧
𝑖,𝑙

)𝑦
𝑖,𝑙

)

Decompensation, each logit  undergoes individual sigmoid activation , and the model's 𝑧
𝑖,𝑙

→
σ

training involves minimizing a tailored Cross Entropy Loss that aggregates binary cross-entropy 
losses across all labels for each observation, capturing the multi-label aspects of the data 
effectively.  



Selecting Optimal Thresholds for F1, Precision and Recall 

To select the optimal threshold for F1 and AUPRC (Area Under the Precision-Recall Curve) 
scores, we implemented a dynamic algorithm that samples thresholds from 0.00 to 1.00 in 1,000 
discrete steps. This approach allows us to identify the threshold that maximizes the F1 score 
and AUPRC by evaluating model performance at each point. The algorithm dynamically adjusts 
and evaluates precision, recall, and F1 at each threshold, selecting the one that strikes the best 
balance between precision and recall for the F1 score, while optimizing the trade-off between 
sensitivity and precision for AUPRC. By using such fine granularity in threshold selection, the 
model ensures that the chosen threshold is optimal for both metrics, leading to better prediction 
performance. 
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