
Under review as submission to TMLR

[Re] GNNInterpreter: A probabilistic generative model-level
explanation for Graph Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

Graph Neural Networks have recently gained recognition for their performance on graph
machine learning tasks. The increasing attention on these models’ trustworthiness and
decision-making mechanisms has instilled interest in the exploration of explainability tech-
niques, including the model proposed in "GNNInterpreter: A probabilistic generative model-
level explanation for Graph Neural Networks." (Wang & Shen (2022)). This work aims to
reproduce the findings of the original paper, by investigation the main claims made by its
authors, namely that GNNInterpreter (i) generates faithful and realistic explanations with-
out requiring domain-specific knowledge, (ii) has the ability to work with various node and
edge features, (iii) produces explanations that are representative for the target class and
(iv) has a much lower training time compared to XGNN, the current state-of-the-art model-
level GNN explanation technique. To reproduce the results, we make use of the open-source
implementation and we test the interpreter on the same datasets and GNN models as in
the original paper. We conduct an enhanced quantitative and qualitative evaluation, and
additionally we extend the original experiments to include another real-world dataset. Our
results show that we are not able to validate the first claim, due to significant hyperpa-
rameter and seed variation, as well as due to training instability. Furthermore, we partially
validate the second claim by testing on datasets with different node and edge features, but
we reject the third claim due to GNNInterpreter’s failure to outperform XGNN in producing
dataset aligned explanations. Lastly, we are able to confirm the last claim.

1 Introduction

Graph Neural Networks (GNNs) have recently surfaced as powerful tools for modeling graph-structured
data, demonstrating cutting-edge performance in various applications, such as graph classification (Xu et al.
(2018), Zhang et al. (2018)), node classification (Veličković et al. (2017)) and link prediction (Zhang &
Chen (2018)). However, as these models gain prominence, the scrutiny on their trustworthiness and their
decision-making mechanisms intensifies, especially in high-stakes domains such as chemistry or biomedicine
where inaccurate predictions can have substantial consequences.

This has instilled a lot of interest in the exploration of explainability techniques for graph models. Compared
to models that work on text or image data, there are considerably more challenging obstacles that need to be
addressed (Yuan et al. (2022)): discrete adjacency matrices cannot be optimized via gradient-based methods
(Duval & Malliaros (2021)), domain knowledge is often necessary and graph data is heterogeneous and
highly complex. Despite these challenges, two types of graph explainability methods have emerged, each
with several potent techniques: instance-level explanations (Luo et al. (2020), Ying et al. (2019), Vu & Thai
(2020) and model-level explanations (Yuan et al. (2020)).

Model-level explanations have been shown to possess considerable advantages over their counterparts,
with the XGNN (Yuan et al. (2020)) being the current state-of-the-art such model. A more recent
work however, "GNNInterpreter: A probabilistic generative model-level explanation for Graph Neural
Networks" (Wang & Shen (2022)) proposes a novel approach that claims to be more general, flexible
and computationally efficient. In this work, we will analyze the findings presented in this paper and

1

Under review as submission to TMLR

verify its claims, as well as present additional experiments that provide further evidence to our anal-
ysis. The code for running the reproduced experiments as well as our extensions can be found at
https://anonymous.4open.science/r/Reproduction_GNNInterpreter/README.md.

2 Scope of reproducibility

This study aims to examine and validate the results demonstrated by Wang & Shen (2022) through repro-
duction of their experiments. The claims made in the original paper can be summarized as follows:

• Claim 1: The explanations generated by GNNInterpreter are faithful and realistic. Additionally,
GNNInterpreter doesn’t require domain-specific knowledge to achieve that.

• Claim 2: GNNInterpreter is a general approach that performs well with different types of node and
edge features.

• Claim 3: The explanations generated by GNNInterpreter are more representative regarding the
target class compared to XGNN.

• Claim 4: The time complexity for training GNNInterpreter is much lower than for XGNN.

3 Background

Graph Neural Networks (GNNs). GNNs have demonstrated remarkable progress in recent years, ad-
dressing challenges associated with diverse types of graph-based data. Despite the plethora of proposed
models (Kipf & Welling (2017), Gilbert (1959), Veličković et al. (2017)), they often converge on a shared
concept of message passing. Due to their success and ubiquity in various applications, as well as due to their
increased complexity, the need for interpretability and explainability has become more pronounced than
ever. As such, numerous post-hoc techniques that aim to explain the inner workings of GNN models have
emerged, with two main categories, namely instance-level and model-level explanations.

Instance-Level Explanation of GNNs. Explaining GNNs at an instance level has recently gained momen-
tum, with a goal of explaining particular predictions for specific inputs one at a time. With some exceptions,
GNN instance explanation methods can broadly be classified into six categories, including gradient-based
(Baldassarre & Azizpour (2019)), perturbation-based(Yuan et al. (2021)), decomposition(Schwarzenberg
et al. (2019)), surrogate(Duval & Malliaros (2021)), generation-based(Shan et al. (2021), Lin et al. (2021))
and counterfactual-based methods.

Model-Level Explanation of GNNs. In contrast with local explanations, model-level explanations can
give insight into how a black box machine learning model makes decisions as a whole, irrespective of any
particular input. For tabular data, this can be achieved using techniques such as partial dependence plots
(Friedman (2001), Hooker (2007),Apley & Zhu (2020)) or permutation feature importance (Strobl et al.
(2008), Strobl et al. (2007), Apley & Zhu (2020)). However, these techniques are not applicable to GNNs as
the intricate nature of graph configurations doesn’t allow for straightforward modifications. For explaining
graph classification, one approach that can deal with the variability of graph data is the generation of
explanation graphs, namely prototypical examples for a given class. This allows for the opportunity of
analyzing what graph patterns or sub-graphs patterns lead to certain predictions. In turn, this gives high-
level insights about what the GNN model is focusing on and a better understanding of whether the model
works as expected and otherwise how it can be adjusted.

GNNInterpreter and XGNN. GNNInterpreter, the focus of the original paper that is being reproduced
in this study and one approach to model-level explanation, achieves its purpose by training a generative
model, while relaxing the discrete nature of edges. Further details about this can be found in Section 4.3.
Another such model and the current state-of-art approach for graph explainability is XGNN Yuan et al.
(2020), which in contrast formulates the graph generation problem as a reinforcement learning task. In this
case, the generator predicts how to add an edge into the current graph and it is trained to generate graphs
that maximize the class score of the target class by using a policy gradient method based on information from
the trained GNN. Ensuring the validity and intelligibility of explanation graphs is done by incorporating

2

Under review as submission to TMLR

graph rules, which may include simple constraints such as enforcing a single edge between any two nodes or
more complex domain specific rules (e.g. chemical valency check in a molecular graphs dataset).

Self-interpretable GNNs. In response to post-hoc methods failing to reveal the original reasoning of
GNNs, the pursuit of self-interpretable GNN models, which integrate explainability into their architecture,
has also recently gained traction (Kakkad et al. (2023)). Some examples include: (1) ProtGNN (Zhang
et al. (2022)) that derives explanations from a case-based reasoning process and generates predictions by
comparing inputs to learned prototypes in the latent space and (2) the model introduced by Dai & Wang
(2021) which explains node classification tasks based on a K-nearest approach. Worth mentioning is that
self-interpretability is also not ideal, and it often comes at the cost of model accuracy.

4 GNNInterpreter model

GNNInterpreter is a model-agnostic and model-level explanation method aiming to reveal the high-level
decision-making process of message passing based GNNs. It works by learning a probabilistic generative
graph distribution in order to produce the most discriminative graph pattern that the explained GNN
detects when making a prediction.

Learning objective. GNNInterpreter achieves its goal by numerically optimizing a novel objective function
with two distinct but important parts: (1) maximizing the likelihood of the explanation graph to be predicted
as the target class by the GNN model and (2) confining the explanation graphs distribution within domain-
specific boundaries. Instead of manually defining domain rules, GNNInterpreter leverages the abstract
knowledge learned by the GNN and achieves its second goal by maximizing the similarity between the
embedding of the explanation graph and the average embedding of all target class graphs from the training
data. Mathematically, this can be formulated as follows:

max
G

L(G) = max
A,Z,X

L(A,Z,X) = max
A,Z,X

ϕc(A,Z,X) + µ · simcos(ψ(A,Z,X), ψ̄c) (1)

where L is the objective function; A represents the adjacency matrix, Z the edge feature matrix and X the
node feature matrix; ϕc is the scoring function corresponding to the target class c; ψ is the graph embedding
function of the explained GNN and ψ̄c is the average graph embedding of c class graphs; simcos denotes the
cosine similarity; and lastly, µ is a hyper-parameter describing the weight factor.

Continuous relaxation. To address the discrete nature of graphs and achieve node and edge feature
flexibility, GNNInterpreter employs continuous relaxation of features to continuous variables which are then
specified using the Concrete distribution (Maddison et al. (2016)). The reparameterization trick is also
applied to make this distribution differentiable, facilitating gradient-based optimization. With these two
modifications, the learning objective can be approximated as follows, using the Monte Carlo method with K
samples:

max
Θ,Q,P

EG∼P (G)[L(A,Z,X)] ≈ max
Ω,H,Ξ

Eϵ∼U(0,1)[L(Ã, Z̃, X̃)] ≈ max
Ω,H,Ξ

1
K

K∑
k=1

L(Ã, Z̃, X̃). (2)

where Ã, Z̃, X̃ represent the continuously relaxed versions of A,Z,X (described above) obtained after ap-
plying the reparameterization trick.

Regularization. L1 and L2 regularization are used to avoid gradient saturation and to also encourage
model sparsity. Equation 3 shows how both types are applied to the Ω parameter, which describes the
categorical distribution for each connection in the adjacency matrix:

RL1 = ||Ω||k with k ∈ {1, 2} (3)

To limit the size of the explanation graphs and to prevent them from growing indefinitely with repeated
discriminative patterns, a budget penalty regularization is also used. This is expressed in Equation 4 where
additional parameter B represents the expected maximum number of edges in the explanation graph.

RL1 = softplus(||sigmoid(Ω)||1 −B)2 (4)

3

Under review as submission to TMLR

Lastly, as inspired by the work of Luo et al. (2020), a connectivity incentive term is also applied to promote
correlation, which is done by minimizing the Kullback-Leibler divergence DKL between the probabilities of
each pair of edges that share a common node. This can be seen in Equation 5, where Pij represents the
Bernoulli distribution parameterized by sigmoid(ωij).

Rc =
∑
i∈V

∑
j,k∈N (i)

DKL(Pij ||Pik) (5)

5 Methodology

The GNNInterpreter implementation, alongside with datasets, pre-trained classifiers and experiment note-
books is publicly available1. Consequently, we make use of the authors’ code, in 2 different versions, namely
the initial and the latest version, and with some minor bugfixes and improvements. We set up an environment
that replicates the required versions for all frameworks and packages and run all experiments consistently in
this environment. Additionally, we enhance and extend the work of Wang and Shen by conducting additional
experiments and presenting further results on the reddit-binary dataset.

5.1 Datasets

The experiments conducted in the original paper, both quantitative and qualitative, involve the use of 4
different datasets with the aim of demonstrating the flexibility of GNNInterpreter of working with various
feature types.

Synthetic Datasets. The authors have created 3 synthetic datasets, namely Cyclicity, Motif and Shape,
each with their unique characteristics:

• The Shape dataset consists of 5 classes of graphs: Lollipop, Wheel, Grid, Star and Others. Each
class contains graphs with the corresponding shape, while the Others class has graphs with random
topology.

• Within the Motif dataset, graphs are classified based on the presence of specific motifs, including
House, House-X, Complete-4, and Complete-5, each corresponding to a distinct class label. Addi-
tionally, there is a separate class encompassing graphs without any unique motifs. Nodes in this
dataset are characterized by a categorical feature with 5 potential color values.

• The graphs in the Cyclicity dataset are identified by edge features with 2 potential values: green
or red. The classification involves 3 labels: Red-Cyclic, Green-Cyclic and Acyclic graphs. A graph
belongs in the red/green cyclic classes only if it contains a cycle formed of exclusively red or green
edges. Acyclic graphs or graphs that contain a heterogeneous edge cycle are categorized as Acyclic.

For further insights into each synthetic dataset generation procedure, please refer to Appendix F.

Real-world Dataset. Additionally, the authors used the real-world MUTAG dataset (Morris et al. (2020)).
This dataset contains 188 graphs representing molecules with either the class label mutagenic or non-
mutagenic. These graphs have an average of 17.93 nodes and 19.79 edges. Both the nodes and the edges
have labels (although edge labels are unused), representing atoms and types of chemical bonds respectively.
Important to note is that hydrogen atoms were removed from all graphs . The original paper that collected
the dataset (Debnath et al. (1991)) notes that the main factors for mutagenic properties were the hydropho-
bicity of the molecule, the energy of the lowest unoccupied electron orbital and the presence of three or more
fused rings. For our purposes, as the hydrogen atoms have been removed, this translates to the presence
of many NO2 bonds and the presence of many fused rings. However, it is essential to acknowledge that
determining the mutagenicity of a molecule is a highly challenging task and that these assumptions give a
simplified view that is only valid for the purposes of testing out the GNNInterpreter.

Additional Dataset. Since the original paper only tested the model on one real-world dataset, we have
broaden the scope of our investigation for Claim 1 and 2 by using the Reddit-Binary dataset (Yanardag &
Vishwanathan (2015)). This dataset comprises 2000 real-world examples of text posts and their correspond-
ing comments, known as threads, from two different types of posts on Reddit. These posts are represented

1https://github.com/yolandalalala/GNNInterpreter

4

Under review as submission to TMLR

as graphs where nodes correspond to users and edges denote interactions, such as comments on each other’s
posts or replies to comments. The posts are categorized into 2 classes based on their origin within spe-
cific subreddits: the first class includes threads from the IAmA and Askreddit subreddits, characterized by
question-answer interactions, while the second class consists of discussion threads from TrollXChromosomes
and atheism, where multiple users engage in diverse interactions. The distribution of these classes is bal-
anced, although the first class has larger graphs, with 641.24 nodes and 1471.90 edges on average, while the
second class only has 217.99 nodes and 519.11 edges on average.

5.2 GNN architectures

The experimental study of the original paper employs different GNN classifiers trained on each of the datasets
mentioned above. For MUTAG, Motif and Shape datasets, a GCN model is used (Kipf & Welling (2017)),
consisting of 3 graph layers of width 64, a global mean pooling and 2 dense layers. For the additional Reddit-
Binary dataset, this architecture remained the same but with 5 layers to accomodate the larger graph size.
Lastly, the GNN classifier used for the Cyclicity dataset is a deep NNConv model (Gilmer et al. (2017)) with
5 NNConv layers of width 32, and again a global mean pooling layer and 2 dense layers at the end. Both
model architectures use LeakyReLU activation.

5.3 Hyperparameters

To closely replicate the original experiments, we first adopted the same hyperparameter values as in the
paper whenever they were explicitly mentioned. This entailed using τ = 0.2 for the Concrete Distribution
temperature, a sample size K = 10 for Monte Carlo samplings, an SGD optimizer with learning rate 1 during
training, a max node count of 20 and an embedding similarity µ = 10 for MUTAG and µ = 1 for all other
datasets. In our experimentation with regularization weights, we discovered that certain values led to empty
graph generation errors. As we have noticed a discrepancy between the values mentioned in the paper and
the ones used in the code notebooks provided in the original GitHub repository, the next step was to try
this other set of values. However, for some datasets these values also led to sub optimal results. Please
refer to Appendix A for the actual paper and notebook parameters, and to Appendix B for results using
these values. Finally, we extensively tuned these weights separately for each dataset, in order to achieve the
highest quantitative results, just as would be done when applying GNNInterpreter to a new problem. Note
that adjustments were not necessary for all datasets, as for example, the paper parameters already have
close to perfect quantitative results on the MUTAG dataset, while the notebook ones achieved comparable
results on the Cyclicity dataset. The final values based on which we later report the results can be found in
Appendix C.

For the additional Reddit-Binary dataset, hyperparameter tuning had to be done from scratch. Due to the
larger size of the graphs, a larger max node count of 50 was required, although it was kept as small as
possible to ensure readability of the explanations. The other hyperparameters can be found in Appendix C.

5.4 Experimental setup

GNN reproduction. To validate the accuracy of the base GNN models, we tested both the provided
model checkpoints and retrained models. First, we loaded the provided checkpoints into the architectures
outlined in section 5.2. To test these models, we used the same test-train split as reported in the authors’
notebooks. Subsequently, we retrained the models according to the original paper specifications, employing
Kaiming parameter initialization and an AdamW optimizer with a 0.01 learning rate and 0.01 weight decay.

GNN Interpreter. To verify the first three claims, we measured the performance of the GNNInterpreter
both quantitatively and qualitatively like in the original paper. The quantitative analysis involved passing
model-generated explanation graphs to the GNN classifiers to obtain class probabilities. The main rationale
guiding the original authors’ decision for this was that both GNNInterpreter and XGNN are designed to
maximize target class scores. As such, a GNNInterpreter model is considered to have good quantitative
performance if the explanation graphs yield high probabilities for the correct class. Based on this, the original

5

Under review as submission to TMLR

study sampled 1000 explanation graphs from a single GNNInterpreter and averaged over the resulting GNN
class probabilities to measure the quantitative performance.

During our reproduction however, we noticed that the performance of a GNNInterpreter depends heavily
on the random initialization and thus we decided to train 100 different models for each class with seeds
between 0 and 100. We then applied the same 1000 explanation graph quantitative analysis for each model
individually and averaged over all models. Furthermore, we quantified the frequency with which the GNN
Interpreter could be categorized as a good model, defined by a correct class probability of at least 0.9. In
contrast, we defined a bad model as either a model that generated empty graphs or graphs with target class
probability less than 0.1. Building upon these definitions, we analyze and report the quantitative analysis
for each class in all datasets using the worst and best performing models, as well as by averaging over all
100 models. To test Claim 4, we used the same 100 models to get the average training times per class for
GNNInterpreter across all 4 datasets and for XGNN with the MUTAG dataset.

For the qualitative analysis, we used explanation graphs that got target class probability of 1.0 whenever
possible, and otherwise explanations generated by the best model out of 100 seeds. We then performed visual
inspections on these graphs, paying particular attention to properties mentioned in the original paper.

Additional Dataset. Due to the larger graph and model size of the Reddit-Binary dataset, replicating
the same experiments as with the other datasets was computationally infeasible. Therefore, we only trained
the base GNN once and averaged GNNInterpreter results over just 10 seeds. In addition, we constructed a
random baseline to examine the effect of the substantial difference in graph size between the two classes.

Ablation study. The ablation study reported in the original paper aimed to illustrate the importance of
the cosine similarity term in the learning objective for generating meaningful explanations. This was done
by setting the µ parameter to 0 in Equation 1. To recreate this experiment, we trained a GNNInterpreter
on the mutagen class, using the same parameters as reported in the original paper and, once more, averaged
over 5 different seeds for a more accurate representation.

Verification study. The verification study as performed by the original authors aimed to confirm that
the GNNInterpreter’s explanation graphs were actually explaining the behavior of the GNN. As part of
the qualitative analysis, rules were extracted from the explanation graphs and used to create 8 new motifs.
For all of these new motifs alongside with the original ground truth class, 5000 new graphs, each with the
attached motif, were generated and subsequently passed through the GNN classifier. If the extracted rules
and explanation graph reflect the GNN faithfully, it is expected for the GNN to misclassify the 8 fake motifs
as the ground truth motif.

5.5 Computational requirements

All our experiments were run using a single CPU, an AMD Ryzen 5900x. We made an effort to replicate the
Python environment as closely as possible to the one specified by the authors. As such, we used Python 3.9.0
and PyTorch 2.0.0. For PyTorch Geometric, we employed version 2.3.0, as indicated in the authors’ GitHub,
rather than the version specified in the paper. We opted for this approach because we ran all experiments
using the code from this source. In addition, we used the libraries torch-scatter and torch-sparse for torch
2.0.0 with cuda version 118, although no GPU is required. This environment can be found in our repository.
Prior to use, please ensure to follow the provided installation guide. All models, including XGNN, use 83
watts of power during training. The total training time for averaging over 100 seeds, experimenting on
GNNInterpreter, and training the GNNs was 15.26 hours, with a total power consumption of 1.267 kWh.

6 Results

6.1 GNN accuracies

Our analysis on both the pretrained and retrained GNN models revealed that for all datasets, both approaches
consistently yielded lower, yet still relatively comparable, accuracy scores compared to those reported in the
paper. Averaged results can be found in Table 1.

6

Under review as submission to TMLR

Dataset Pre-trained model Re-trained model Original paper accuracy
MUTAG 0.8333 0.7222 ± 0.1267 0.9468
Cyclicity 0.9493 0.9302 ± 0.0091 0.9921

Motif 0.9966 0.991 ± 0.00235 0.9964
Shape 0.9812 0.9795 ± 0.0016 0.9725

REDDIT-BINARY - 0.8650 -

Table 1: The accuracies of the GNN models. Retraining was done on 5 different seeds, for which the mean
and standard deviation are reported. The GNN for the Reddit-Binary dataset was only trained once due to
its long training time.

6.2 Quantitative and qualitative evaluation

As explained in section 5.4, we performed both a quantitative and qualitative analysis. Quantitative results,
in the form of predicted class probabilities and training times, are presented in Table 2. One explanation
graph per class generated from the best interpreter that was found can be seen in Table 3, while more
qualitative results are later presented in Appendix D.

MUTAG. The quantitative analysis shows that training the GNNInterpreter is almost always successful in
terms of reaching high class probabilities. However, the qualitative results do not seem to match with the
examples from the dataset and for the mutagen class they also do not match with the result from the original
paper. In terms of training times for this dataset, we observe a significant disparity between GNNInterpreter
and XGNN. Specifically, the average training time for the former is 0.79, while for the latter, it is 38.83.

Cyclicity. The quantitative results show that the model is capable of achieving a perfect predicted proba-
bility for all 3 classes in this synthetic dataset, as it can be seen in the column for the Best model in Table
2. The qualitative results further corroborate this, with the explanation graphs containing a single red and
green cycle for the first 2 classes respectively, and a cycle with heterogeneous edge features for the Acyclic
class. However, it is crucial to emphasize that under different random initialization, the model predominantly
predicts correct results only the Red Cyclic class, while for the other 2 classes the likelihood of a good model
is only 0.22 and 0.37 respectively.

Average of
all Models

Best
Model

Worst
Model

Percentage of
good models

Percentage of
bad models

Training
time (s)

MUTAG
(XGNN)

Mutagen 0.987 ± 0.100 - - - - 38.83Nonmutagen 0.999 ± 0.002 - - - -
MUTAG

(GNNInterpreter)
Mutagen 0.999 ± 0.006 1.000 ± 0.000 0.921 ± 0.254 1.00 0.00 0.79Nonmutagen 0.943 ± 0.068 1.000 ± 0.000 0.330 ± 0.429 0.87 0.00

Cyclicity
(GNNInterpreter)

Red Cyclic 0.926 ± 0.0677 1.000 ± 0.000 0.000 ± 0.000 0.84 0.02
24.85Green Cyclic 0.665 ± 0.372 1.000 ± 0.000 0.101 ± 0.290 0.22 0

Acyclic 0.525 ± 0.120 1.000 ± 0.000 0.000 ± 0.000 0.37 0.40

Motif
(GNNInterpreter)

House 0.787 ± 0.220 0.991 ± 0.006 0.000 ± 0.000 0.41 0.08

19.17House-X 0.276 ± 0.085 0.999 ± 0.009 0.000 ± 0.000 0.11 0.63
Complete-4 0.077 ± 0.020 0.995 ± 0.052 0.000 ± 0.000 0.06 0.91
Complete-5 0.131 ± 0.034 0.997 ± 0.053 0.000 ± 0.000 0.07 0.82

Shape
(GNNInterpreter)

Lollipop 0.222 ± 0.294 0.43 ± 0.374 0.096 ± 0.199 0.00 0.01

23.48Wheel 0.84 ± 0.279 0.997 ± 0.056 0.058 ± 0.231 0.45 0.02
Grid 0.782 ± 0.327 .911 ± 0.216 0.612 ± 0.408 0.02 0.00
Star 1.000 ± 0.001 1.000 ± 0.000 0.987 ± 0.109 1.00 0.00

Reddit-Binary
(GNNInterpreter)

Question-Anwser 0.8454 ± 0.019 0.89199 0.72159 - - 25.774Discussion 0.989 ± 0.000 0.9889 0.9889 - -

Table 2: The quantitative results for the 4 original datasets plus and the Reddit-Binary dataset. The metric
used per model is the average class probability of 1000 explanation graphs. Reported is the average of the
class probabilities for 100 models across different seeds, with the exception of Reddit-Binary where testing
was done only using 10 seeds. We also report the probabilities generated by the best and worst interpreter,
together with the percentages of good and bad models obtained. The standard deviations represent the
standard deviation obtained from each quantitative test, averaged over all models.

7

Under review as submission to TMLR

Dataset
[Method] Generated Model-Level Explanation Graphs

Mutag
[XGNN]

Mutagen Non-Mutagen

us original example us original example

Mutag
[GNNInterpreter]

Mutagen Non-Mutagen

us original example us original example

Cyclicity
[GNNInterpreter]

Red Cyclic Green Cyclic Acyclic

us original example us original example us original example

Motif
[GNNInterpreters]

House House-X Complete-4 Complete-5

us them example us original example us them example us them example

Shape
[GNNInterpreter]

Lollipop Wheel Grid Star

us original example us original example us original example us original example

Reddit-Binary
[GNNInterpreter]

Question-Anwser Discussion

us example us example

Table 3: The qualitative results for the 4 datasets. For easy comparison, 3 figures for each class in all
datasets are reported, namely (1) an explanation graph generated while reproducing the experiments, (2)
the explanation graph reported in the original paper and (3) an example graph from the dataset, chosen to
have the highest class probability that was found for its respective target class.

Shape. Quantitative results on the Shape dataset revealed that GNNInterpreter struggled to reliably
converge, except for the star class. While this class achieved an average accuracy of 1, other classes did not
perform as well. The lollipop class has a low accuracy of 0.22, while the wheel class had 0.84 and the grid
class 0.78.

Motif. The quantitative results of the Motif dataset seen in Table 2 show that GNNInterpreter’s performance
decreases as the motif becomes less unique. Complete-4 and Complete-5 motifs are much more likely to occur
in random graphs than House and House-x. Furthermore, Complete-4 and Complete-5 classes had a good
model only 6% and 7% of the time. Despite the rarity of good models, we managed to get at least 1 model for
each class that achieved target class probability 1. We believe the high dependence on random initialization
may stem from the instability of the training procedure, a topic further explored in the discussion section.

As for qualitative analysis we can see in Table 3 that if a GNNInterpreter with high target class probabilities
is used, we can get the motif, or part of the motif in the explanation graphs. Small triangles resembling the
roof of the house, x shaped connection of House-x, and many interconnected nodes like complete-5, are key
features of the ground truth motifs present in the respective explanation graphs. The explanation graph for
Complete-4, actually contains the entire ground truth motif positioned at the top left. We also observed an
exact match with the house-x motif which is the first image of house-x row in Appendix Table11. However,
this graph achieved a class probability of 0.62 instead of 1.

Verification study. In their verification study, the original authors derived a discrete rule from the ex-
planation graphs through qualitative analysis. However, our explanation graphs, despite having a class
probability of 1.0, were significantly larger and lacked the same level of interpretability as those in the
original paper. This made qualitative rule extraction impractical, thus rendering the replication of this
experiment unfeasible.

Ablation study. The explanation graphs generated did not change when changing µ to zero for 19 out of
20 of the seeds checked. The logits also stayed exactly the same, except for one case where it changed. In
that case the GNNInterpreter did not manage to converge on the correct class and the logit was actually

8

Under review as submission to TMLR

negative with µ = 0 and positive with µ = 10. This means that the impact of changing mu is minimal for
this model and dataset, only changing the outcome in some cases.

6.3 Results beyond original paper

The random graph baseline results indicate that when the maximum node count is set to 50, the Discussion
class is consistently selected by default, with an average class probability of 0.9887. Moreover, analysis of
the Reddit-binary dataset, as presented in Tables 2 and 3, illustrates that the GNNInterpreter achieves both
good quantitative and qualitative results for the Ask-question class. This suggests that the model effectively
captures a distinguishing feature of this class, namely the presence of a few experts answering numerous
questions. Despite its robust quantitative performance, GNNInterpreter appears to generate nearly random
graphs for the Discussion class, providing limited explanation. This outcome is however somewhat expected,
given that random graphs perform well for this class, as evident from the baseline.

7 Discussion

7.1 Discussion of the results

This study assessed four claims regarding the effectiveness of GNNInterpreter as an explainability technique
for Graph Neural Networks. Firstly, the GNNs used were reproduced to ensure a solid base for further
analysis and they were found to match the original paper to a satisfying degree.

Regarding the realism and faithfulness of generated explanations, as per Claim 1, we have found that
adjusting hyperparameter values yielded mixed quantitative and qualitative results across datasets, with a
significant sensitivity to seed variation. While the technique holds promise for generating realistic results,
its unreliability poses a significant challenge to achieving those in practice. Firstly, the necessity of tuning
numerous hyperparameters across various seeds calls into question the usefulness of this technique. Secondly,
for some classes, like Lollipop from the Shape dataset, GNNInterpreter was never able to reliably achieve
realistic results even after checking 100 seeds. This indicates its performance is also heavily influenced by
the dataset and class. As for faithfulness, we found that, for the MUTAG dataset, good quantitative results
did not lead to good qualitative results. This indicates that while using this technique on a new problem,
it is possible that the provided explanations are not representative even after proper fine-tuning. Although
this technique yielded faithful qualitative results for certain datasets such as Reddit-Binary, distinguishing
between faithful and unfaithful explanations remained impossible without domain knowledge. Ultimately,
despite demonstrating promising results for some datasets, we must reject Claim 1 based on these results.

One reason we think could explain the instability in GNNInterpreter’s training procedure is the implemen-
tation of the dynamic weighting of the budget penalty, combined with the arbitrary selection of an early
stopping criteria. These were design decisions not mentioned in the original paper and during testing we
observed them to have a large impact on model performance. Sometimes their presence was the key to
achieving convergence, while at other times it led to very small graphs with near-zero probabilities. Our
experiments on modifying and removing these all together can be found in Appendix E.

Moreover, by being able to train at least some good interpreters on multiple datasets, each with unique types
of node features, our results support Claim 2 as valid. While results were not good for the Shape dataset, the
inclusion of the Reddit-Binary dataset shows that GNNInterpreter can perform well without node or edge
features. The Cyclicity dataset showed good results for datasets with only edge features, while MUTAG and
Motif showed promising results for datasets with just node features. This just leaves the case of a dataset
with both node and edge features, which could be explored further in future research. However, our results
do not indicate that GNNInterpreter would encounter challenges with such a dataset.

Despite the limitation of solely experimenting with XGNN on the MUTAG dataset, our results provide
sufficient basis for drawing meaningful conclusions about Claim 3 and 4. As evident from our qualitative
results, GNNInterpreter did not produce explanation graphs aligned significantly better with the dataset for
either the mutagen or the non-mutagen class, compared to XGNN. Therefore, we reject Claim 3. While we
were able to replicate the training times for a single model as reported by the authors, it is worth noting

9

Under review as submission to TMLR

that for most datasets, we had to train on multiple seeds (as many as 20) to obtain a single good interpreter.
Particularly for classes with greater complexity, we observed a decrease in the number of good models. As
such, we believe that the training times should better reflect the actual amount of time required to achieve
a good model. Nevertheless, for a single model, we have found GNNInterpreter to be nearly 38 times faster
than XGNN and we thus affirm the validity of Claim 4.

7.2 Reflection: What was easy? What was difficult?

The architecture of GNNInterpreter was clearly described in the paper, both intuitively and formally. The
set-up and objectives of each experiment were also explicitly mentioned with enough level of detail. Despite
not being linked to the paper, the original code implementation was publicly available on one of the author’s
personal GitHub. Beyond that, model checkpoints and the code for generating the synthetic datasets was
also available together with some general experimental notebooks.

However, it was not trivial to recreate the experiments. The main reasons for that include the perplexing
structure of the code base, the lack of documentation, the abundance of unused or erroneous code, but more
importantly the numerous discrepancies we found regarding implementation details and hyperparameters
values between the paper and the open-source implementation.

7.3 Communication with original authors

We have contacted the original authors of the paper seeking clarification on various aspects of the paper and
the associated code. Specifically, we included topics like confirming the official repository and recent up-
dates, identifying potential bugs in the code base, understanding the configuration of regularization weights,
confirming seed usage and averaging in reporting results as well as resolving mismatches between hyperpa-
rameter values in the appendix and code repository. Moreover, we have also made inquiries about certain
aspects that were present in the code but not mentioned in the paper, such as thresholding qualitative results
and adding a mean penalty to the weighting criterion. Unfortunately, we have not received any response.

10

Under review as submission to TMLR

References
Daniel W Apley and Jingyu Zhu. Visualizing the effects of predictor variables in black box supervised learning

models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 82(4):1059–1086, 2020.

Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional networks.
arXiv preprint arXiv:1905.13686, 2019.

Enyan Dai and Suhang Wang. Towards self-explainable graph neural network. In Proceedings of the 30th
ACM International Conference on Information & Knowledge Management, pp. 302–311, 2021.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin Hansch.
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation
with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34(2):786–797, 1991.

Alexandre Duval and Fragkiskos D Malliaros. Graphsvx: Shapley value explanations for graph neural
networks. In Machine Learning and Knowledge Discovery in Databases. Research Track: European Con-
ference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part II 21, pp. 302–318.
Springer, 2021.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statis-
tics, 29(5):1189 – 1232, 2001. doi: 10.1214/aos/1013203451. URL https://doi.org/10.1214/aos/
1013203451.

Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144, 1959.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message
passing for quantum chemistry, 2017.

Giles Hooker. Generalized functional anova diagnostics for high-dimensional functions of dependent variables.
Journal of Computational and Graphical Statistics, 16(3):709–732, 2007.

Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu Aggarwal, and Sourav Medya. A survey on ex-
plainability of graph neural networks. arXiv preprint arXiv:2306.01958, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks, 2017.

Wanyu Lin, Hao Lan, and Baochun Li. Generative causal explanations for graph neural networks. In
International Conference on Machine Learning, pp. 6666–6679. PMLR, 2021.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Pa-
rameterized explainer for graph neural network. Advances in neural information processing systems, 33:
19620–19631, 2020.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020 Workshop on
Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL www.graphlearning.io.

Robert Schwarzenberg, Marc Hübner, David Harbecke, Christoph Alt, and Leonhard Hennig. Layerwise
relevance visualization in convolutional text graph classifiers. arXiv preprint arXiv:1909.10911, 2019.

Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, and Dongsheng Li. Reinforcement learning enhanced ex-
plainer for graph neural networks. Advances in Neural Information Processing Systems, 34:22523–22533,
2021.

Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn. Bias in random forest variable
importance measures: Illustrations, sources and a solution. BMC bioinformatics, 8(1):1–21, 2007.

11

https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
www.graphlearning.io

Under review as submission to TMLR

Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and Achim Zeileis. Conditional
variable importance for random forests. BMC bioinformatics, 9:1–11, 2008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph neural
networks. Advances in neural information processing systems, 33:12225–12235, 2020.

Xiaoqi Wang and Han-Wei Shen. Gnninterpreter: A probabilistic generative model-level explanation for
graph neural networks. arXiv preprint arXiv:2209.07924, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 1365–1374, 2015.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating
explanations for graph neural networks. Advances in neural information processing systems, 32, 2019.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of graph neural
networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 430–438, 2020.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural networks via
subgraph explorations. In International conference on machine learning, pp. 12241–12252. PMLR, 2021.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A taxonomic
survey. IEEE transactions on pattern analysis and machine intelligence, 45(5):5782–5799, 2022.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning architecture
for graph classification. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Cheekong Lee. Protgnn: Towards self-explaining
graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
9127–9135, 2022.

12

Under review as submission to TMLR

8 Appendix

A Original hyperparameter values

Table 4 gives the regularization weights reported in the original paper, while Table 5 gives the values from
the experimental notebooks found in the authors’ GitHub repository.

Dataset Class Regularization Weights
RL1 RL2 Rb Rc

MUTAG Mutagen 10 5 20 1
Nonmutagen 5 2 10 2

Cyclicity
Red Cyclic 10 5 10000 100

Green Cyclic 10 5 2000 50
Acyclic 10 2 5000 50

Motif

House 1 1 5000 0
House-X 5 2 2000 0

Complete-4 10 5 10000 1
Complete-5 10 5 10000 5

Shape

Lollipop 5 5 1 5
Wheel 10 5 10 0
Grid 1 1 2 0
Star 10 2 200 0

Table 4: Values mentioned in the original paper for the regularization weights of GNNInterpreter.

Dataset Class Regularization Weights
RL1 RL2 Rb Rc

MUTAG Mutagen 1 1 1 0
Nonmutagen 1 1 1 0

Cyclicity
Red Cyclic 2 2 1 5

Green Cyclic 2 2 1 5
Acyclic 2 2 1 5

Motif

House 1 1 1 0
House-X 1 1 1 0

Complete-4 1 1 1 0
Complete-5 1 1 1 0

Shape

Lollipop 1 1 0 15
Wheel 1 1 0 10
Grid 1 1 0 20
Star 1 1 0 10

Table 5: Values found in the authors’ original experimental notebooks for the regularization weights of
GNNInterpreter.

B Tests on Provided Hyperparameters

Table 6 and Table 7 below display a small-scale version of our experimental results averaged over 5 random
seeds, where each dataset has been tested using the paper and the notebook parameters respectively. Im-
portant to note is that we didn’t perform the same complete analysis with reporting good and bad models,
the purpose of this set-up being solely to motivate the necessity of the hyperparameter tuning for obtaining
the main results. The paper parameters result in empty graphs for Motif dataset.

13

Under review as submission to TMLR

Dataset Predicted Class Probability by GNN

MUTAG Mutagen: Nonmutagen:
1.000 ± 0.000 0.9990 ± 0.002

Cyclicity Red Cyclic: Green Cylic: Acyclic:
0.200 ± 0.000 0.580 ± 0.056 0.730 ± 0.095

Motif House: House-X: Complete-4: Complete-5:
0 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Shape Lollipop: Wheel: Grid: Star:
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Table 6: The reproduced quantitative results for the 4 datasets using the hyperparameters in the original
paper, averaged over 5 different seeds.

Dataset Predicted Class Probability by GNN

MUTAG Mutagen: Nonmutagen:
1.000 ± 0.000 0.9712 ± 0.058

Cyclicity Red Cyclic: Green Cylic: Acyclic:
1.000 ± 0.000 0.490 ± 0.476 0.447 ± 0.113

Motif House: House-X: Complete-4: Complete-5:
0.721 ± 0.195 0.181 ± 0.048 0.347 ± 0.096 0.225 ± 0.028

Shape Lollipop: Wheel: Grid: Star:
0.7935 ± 0.053 0.8965 ± 0.27 0.0881 ± 0.0988 0.9806 ± 0.14

Table 7: The reproduced quantitative results for the 4 datasets using the hyperparameters in the original
notebooks, averaged over 5 different seeds.

C Tuned hyperparameter values

Table 8 reports the regularization weights used for the quantitative and qualitative evaluations presented in
the body of this paper.

Dataset Class Regularization Weights
RL1 RL2 Rb Rc

MUTAG Mutagen 10 5 20 1
Nonmutagen 5 2 10 2

Cyclicity
Red Cyclic 2 2 1 5

Green Cyclic 2 2 1 5
Acyclic 2 2 1 5

Motif

House 1 1 1 0
House-X 1 1 1 0

Complete-4 1 1 1 0
Complete-5 1 1 1 0

Shape

Lollipop 1 1 0 15
Wheel 1 1 0 10
Grid 1 1 0 50
Star 1 1 0 20

Table 8: Refined regularization weights of GNNInterpreter for explaining the GNN models corresponding to
each dataset.

14

Under review as submission to TMLR

D Multiple explanation graphs per class per dataset

Table 11 below augments the qualitative results reported in the paper with a few extra explanation graphs
that were generated during the reproducibility study for each class in each dataset.

Dataset Class Explanation Graphs

MUTAG Mutagen

Non-mutagen

Cyclicity
Red Cyclic

Green Cyclic

Acyclic

Motif

House

House-X

Complete-4

Complete-5
Continued on next page

15

Under review as submission to TMLR

Shape

Lollipop

Wheel

Grid

Star

Reddit Ask-Answer

Discussion
Table 11: Multiple qualitative results for all datasets.

E Dynamic Weight of Budget Penalty and Early Stopping

The official code repository of the original paper dynamically adjusts the weight of the budget penalty
regularization during training, a detail overlooked in the original paper. The weight of the budget penalty
decreases until the model achieves a target class probability of 0.9, after which it begins to increase again.
This mechanism aims to enlarge the graph until the desired class probability is achieved, and subsequently
reduce its size to produce a more concise explanation graph. The 0.9 target class probability criteria was
determined by the original authors in the official code repository, which is employed alongside a maximum
number of nodes criteria for early stopping purposes.

The official code repository featured two distinct implementations for dynamically adjusting the weight of
the budget penalty. In the most recent commit, the weight was increased by multiplying it by 1.1 and
decreased by multiplying it by 0.95 at each iteration, with the budget penalty weight initialized to 1. In
contrast, the earliest commit in the repository modified the dynamic weight by adding and subtracting 0.1
from the budget penalty weight per iteration. In this latter version, the initial budget penalty weight could
be adjusted via a parameter.

We experimented with the two versions of the repository, as well as with removing the dynamic weight
penalty and early stopping criteria entirely. Results varied across datasets: Mutag showed similar class
probabilities and graph sizes to the original paper with both versions, while the Cyclicity dataset performed
better on the latest version, yielding smaller graphs compared to the oldest version. Conversely, Motif and
Shape datasets performed significantly better by getting smaller explanation graphs on the oldest version of
the repository. For example, Motif dataset gets explanation graphs of size 80 to 100 in the latest version,
while the oldest version resulted in graphs of size 20. Size 20 is still higher than the results of the original
paper, but it is much closer and the smallest size we can achieve.

Finally, we tried removing the dynamic weight penalty and the early stopping criteria all together to prevent
the oscillation problem we mentioned in the discussion section. Instead of using the model from the latest
iteration, we started using the model with the minimum loss. This change decreased effect the unstable

16

Under review as submission to TMLR

training had on our results. However, we got much larger explanation graphs of size 100 for Motif dataset,
when we removed the dynamic weight which led us to not use this version.

F Synthetic dataset generation

The synthetic datasets used in this reproducibility study were generated following the identical procedures
outlined in the original paper. These procedures are detailed for each dataset in Figure 1 below, using the
algorithmic pseudocodes extracted from the original paper.

Figure 1: Synthetic datasets generation procedures.

17

	Introduction
	Scope of reproducibility
	Background
	GNNInterpreter model
	Methodology
	Datasets
	GNN architectures
	Hyperparameters
	Experimental setup
	Computational requirements

	Results
	GNN accuracies
	Quantitative and qualitative evaluation
	Results beyond original paper

	Discussion
	Discussion of the results
	Reflection: What was easy? What was difficult?
	Communication with original authors

	Appendix
	Original hyperparameter values
	Tests on Provided Hyperparameters
	Tuned hyperparameter values
	Multiple explanation graphs per class per dataset
	Dynamic Weight of Budget Penalty and Early Stopping
	Synthetic dataset generation

