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ABSTRACT

Neural activity in the visual cortex of blind humans persists in the absence of
visual stimuli. However, little is known about the preservation of visual represen-
tation capacity in these cortical regions, which could have significant implications
for neural interfaces such as visual prostheses. In this work, we present a series of
analyses on the shared representations between evoked neural activity in the pri-
mary visual cortex (V1) of a blind human with an intracortical visual prosthesis,
and latent visual representations computed in deep neural networks (DNNs). In
the absence of natural visual input, we examine two alternative forms of inducing
neural activity: electrical stimulation and mental imagery. We first quantitatively
demonstrate that latent DNN activations are aligned with neural activity measured
in blind V1. On average, DNNs with higher ImageNet accuracy or higher sighted
primate neural predictivity are more predictive of blind V1 activity. We further
probe blind V1 alignment in ResNet-50 and propose a proof-of-concept approach
towards interpretability of blind V1 neurons. The results of these studies suggest
the presence of some form of natural visual processing in blind V1 during elec-
trically evoked visual perception and present unique directions in mechanistically
understanding and interfacing with blind V1.

1 INTRODUCTION

Despite lacking visual input, neural activity in the visual cortex of blind humans persists after vision
loss (Burton, 2003; Fine et al., 2003; Huber et al., 2015; Striem-Amit et al., 2015; Fine & Park,
2018). Research suggests that cortical plasticity enables the cortex to undertake non-visual tasks
(Burton et al., 2002; Sadato et al., 2002), though the extent to which visual processing capabilities
are preserved remains under explored (Lambert et al., 2004; Striem-Amit et al., 2012; Hahamy et al.,
2021). Unraveling how the blind visual cortex represents visual information could unlock profound
insights into brain function, cortical plasticity, and sensory compensation (Beyeler et al., 2017). This
knowledge is crucial for advancing rehabilitative technologies, like visual neuroprostheses, which
evoke visual sensations (phosphenes) through electrical stimulation (Fernandez, 2018).

Recent studies have shown that the latent representations in DNNs trained for vision tasks align
with neural activity in the visual cortex of sighted primates (Yamins et al., 2013; 2014; Cadena
et al., 2019; Schrimpf et al., 2020; Marques et al., 2021; Pogoncheff et al., 2023). This synergy has
fueled advancements in visual neuroscience, such as the discovery of maximally exciting images
for individual neurons in primate cortex (Bashivan et al., 2019). Yet, the critical question remains:
does this alignment hold for spiking activity in visual cortex of humans or, specifically, the blind?
Answering this could pave the way for accurate modeling of visual processing in the blind human
cortex, enabling the design of prostheses which deliver more perceptually intelligible visual experi-
ences (de Ruyter van Steveninck et al., 2022; Granley et al., 2022a;b; 2023; Castro et al., 2023).
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In this study, we analyze the alignment of DNN representations with neural activity from an awake
blind human participant implanted with a 96 channel intracortical prosthesis (Ferniandez & Nor-
mann, 2017) measured during a delayed-response working memory (WM) task (Figure 1). Neural
activity related to visual WM has been found in primates and humans (Albers et al., 2013), but the
role of spiking activity in human V1 during WM to support visual processing is not fully understood.
This setup therefore provides a unique opportunity to probe the similarities between DNN-computed
visual representations and human perceptual representations. Novel contributions include:

* We show a significant representational alignment between DNN activations and V1 in a
blind human for both spiking activity and local field potentials. Across 69 DNNs, blind
V1 alignment was positively correlated with 1) DNN alignment with neural activity in the
visual cortex of sighted primates as well as 2) DNN ImageNet object recognition accuracy.

* We demonstrate that DNN activity not only aligns with neural activity during stimulation,
but also with local field potentials measured after stimulation or during mental imagery.

* We propose a proof-of-concept approach towards enhancing the interpretability of neurons
recorded in blind V1, a neural system which cannot be probed with traditional psychophys-
ical experiments that rely on the ability to present visual stimuli (e.g., image or video).

These preliminary results mark a crucial step towards understanding visual processing in the blind
visual cortex—a key to advancements in both neuroscience and rehabilitative neuroengineering.
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Figure 1: Schematic of neural recording and alignment evaluation. A. Electrical stimulation de-
livered via an intracortical prosthesis (Cortivis) elicits visual perception. B. Intracortical neural
recordings are simultaneously acquired during stimulation, delay, and recall periods of a working
memory task. C. Representational alignment between DNN and blind V1 are evaluated by compar-
ing representations measured from both systems when presented with the same perceptual input.

2 METHODS

2.1 EVOKING VISUAL PERCEPTION VIA INTRACORTICAL ELECTRICAL STIMULATION

The data analyzed in this work was acquired using recordings and behavioral responses from an
awake blind human with a 96-channel intracortical visual prosthesis (Fernandez & Normann, 2017),
implanted in right parafoveal V1, during a delayed-response WM task. The participant (61, Male)
had no light perception for 5 years due to optic neuropathy following pituitary adenoma surgery.
Over 90 trials, one of three chosen electrodes was stimulated with a 167 ms cathodic-first biphasic
pulse train, reliably evoking a spatially distinct phosphene (“stimulation period”, Figure 1A). The
participant would then remember the evoked visual perception during a 3 —5s “delay” period, after
which an audio cue triggered the participant to visually recollect the phosphene in vivid detail (ac-
counting for shape, brightness, and visual field location; “recall period”). Following ten consecutive
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trials for a given electrode, the participant was asked to verbally describe and draw the perceived
phosphene. These drawings were then refined by a sighted researcher during an extensive discussion
with the participant, given the difficulty of replicating the perceived phosphene without vision.

2.2 DATA PROCESSING

Each phosphene drawing was digitized and placed within a 244 x 244 pixel image with black back-
ground, assumed to span 8 degrees visual angle (DVA). Based on verbal feedback from the partic-
ipant, the phosphene drawings were scaled to span 2 DVA and placed within the left visual field of
the image (corresponding to the implant’s placement in the right occipital lobe). Noise in raw neu-
ral activity resulting from stimulation artifacts was suppressed via blanking during the stimulation
window and interpolation with a 3rd order polynomial. Multi-unit activity (MUA), entire/envelope
spiking activity (ESA), as well as 0, «, (3, and « bands of the local field potential (LFP) were ex-
tracted from the filtered neural activity (Appendix A.3).

2.3 EVALUATING REPRESENTATIONAL ALIGNMENT

Traditionally, the representational alignment between two systems is measured by inputting the same
stimulus to each system, measuring an internal state for each system (e.g., DNN activations, neural
activity), optionally projecting the latent activity to a shared space, and quantifying the similarity be-
tween embeddings with an alignment score (Sucholutsky et al., 2023). Common techniques include
representational similarity analysis (RSA) (Kriegeskorte et al., 2008) and linear regression followed
by a correlational score (Schrimpf et al., 2020; Cadena et al., 2019; Conwell et al., 2022).

For blind subjects, however, there is no natural visual input. Therefore, we investigated neural
activity triggered by electrical stimulation or mental imagery. To obtain DNN activations, we used
the corresponding phosphene drawings as input, assessing the network’s capability to mirror the
neural activity associated with the participant perceiving said phosphene (Fig. 1C). Importantly,
these networks were not designed to predict neural activity, but to perform ImageNet classification.

To quantify representational alignment between DNN and blind V1 activity, we utilized RSA and
correlations of learned linear encodings. For RSA, correlations between trials of neural activity were
used to compute dissimilarity matrices, which were compared using correlation score. For linear re-
gression, cross-validated ridge regression from PCA-projected model activity was used to predict
biological neural activity measured on each of 96 channels. The alignment between neural repre-
sentations and encoded DNN representations was then scored according to Pearson’s correlation
coefficient (Schrimpf et al., 2020).

3 RESULTS

3.1 SUSTAINED STIMULUS-SELECTIVE MULTI-UNIT ACTIVITY IN HUMAN V1

We first examined how intracortical recordings differed across the three phases of the WM task. We
found significant increases in neural activity at the onset of stimulation and the audio cue for recall
initiation (t-test, p < 0.001). During stimulation, delay, and recall periods, neural activity was sig-
nificantly different than spontaneous activity (p < 0.001). Analysis revealed shared neural activity
patterns per electrode across stimulation, delay, and recall periods, allowing for the successful clas-
sification of stimulating electrodes based on recall-period activity alone, achieving 97% accuracy
for the delay and 88% for the stimulation periods using a random forest classifier. These shared sig-
natures could be learned from the delay or recall period activity, but not from the electrically evoked
activity, suggesting that WM elicits a subset of the full activity present during electrical stimulation.

3.2 DNN-SIGHTED V1 ALIGNMENT CORRELATES WITH DNN-BLIND V1 ALIGNMENT

We then examined how well different brain-like DNNs aligned with intracortical recordings in blind
V1. We selected 69 models evaluated on the Brain-Score benchmark suite (Schrimpf et al., 2020)
as candidates for measuring DNN-Blind V1 alignment. DNN-blind V1 alignment was measured for
all six feature sets (MUA, ESA, and LFP measures) during the stimulation (Figure 2, top) and recall



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

w

Stimulation Period

T
T FF s

o
o

=)
N

Blind V1 Score (RSA)

Hik o

Blind V1 Score (Regression) >
o
=

|
o ¢
N

°
MUA ESA LFPg LFP, LFPg LFP,
Recall Period

&

o

:

MUA ESA LFPg LFPq LFPg LFPy, 020 025 030 035 025 030 035 040 04 05 06 07 08
Sighted V1 Predictivity Sighted Neural Predictivity ImageNet Top-1 Accuracy

°
=

E I
=N

. 0
.02 r=0.29 r=0.45
88 baselme.ngZ p=0.017 base\m.e.0.0Z p=0.00018

baseline:0.02 P

Blind V1 Score (Regression)
Blind V1 Score (Regression)

Figure 2: A. Distribution of blind V1 alignment scores (regression method) across DNNGs of different
features for stimulation and recall activity. B-D. Scatterplots showing correlation between sighted
V1 predictivity (B), overall sighted neural predictivity (C) or ImageNet top 1 accuracy (D) with blind
MUA representational similarity score (top: RSA, bottom: regression) across DNNs for stimulation-
evoked activity. Dashed lines: baseline alignment measured without DNN features.

period (bottom). A baseline similarity score (dashed lines) measures the representational alignment
(using regression or RSA) calculated directly from the drawing, without using DNN activations.

For electrically evoked activity, blind V1 alignment scores were significantly higher than baselines
(t-test, p < 0.001) for all features except LFP,. For recall activity, only LFPg activity predictivity
was significantly higher than the baseline. Across DNNs, we found a significant, moderate positive
correlation between blind V1 scores and sighted V1 predictivity scores (Figure 2B; Freeman et
al., 2013), sighted neural predictivity across V1, V2, V4, and IT (Figure 2C; Schrimpf et al., 2020),
and ImageNet top-1 accuracy (Figure 2D; Deng et al., 2009). The only exception was that sighted V1
predictivity measured using regression was not correlated with blind V1 score (Figure 2B; bottom).
In general, similar trends were observed for recall period activity, but the blind V1 scores were not
significantly above baseline.

3.3 DNN-BLIND V1 ALIGNMENT IN RESNET50

We then specifically examined ResNet-50 (He et al., 2016), a model known for its shared repre-
sentations with neural activity in V1 of sighted primates (Schrimpf et al., 2020; Pogoncheff et al.,
2023) and which predicted blind V1 activity well. Analysis of alignment scores across the 96 neural
recording sites (Fig. 3A) showed significant correlations between DNN outputs and neural activi-
ties during the initial 200 ms of stimulation, except for LFP., (Fig. 3, left), with ESA showing the
strongest correlation (average » = 0.518). In the post-stimulation phase (167 — 367 ms after onset),
only LFPy, LFP,, and LFPg activities showed significant positive correlations with DNN outputs.
During phosphene recall (0 — 200 ms after the audio cue), only LFPg activity significantly corre-
lated with the DNN (p < 0.01), suggesting that visual representations in LFP activity, even without
electrical stimulation, align with findings that alpha activity is influenced by visual imagery and
perception (Bartsch et al., 2015; Xie et al., 2020).

3.4 TOWARDS UNDERSTANDING NEURON PROPERTIES BY PROBING ALIGNED DNNS

Optimization-based feature visualization has become a key method for interpreting DNNs (Erhan
et al., 2009; Mordvintsev et al., 2015; Olah et al., 2017), offering insights into how these networks
process visual information. By applying this technique to our dataset of neural recordings and
perceived phosphenes from a blind individual, we aim to uncover the functional characteristics of
neurons in blind V1, similar to studies in sighted primate V4 (Bashivan et al., 2019). Our approach
involves creating a linear model that maps activations from the first layer of ResNet-50 to blind V1,
and computing images that maximally activate specific neural sites according to this mapping.

We demonstrate this concept with maximally exciting images (MEIs) for the neural sites most active
during each of the 9 phosphenes, (Figure 3B). Generally, the predicted MEIs share visual features



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Stimulation 10 Delay Recall

00000A 3 L ppa B L (]
anli\Twzéw [TL0]E Yot .

-1.0 -1.0

>

o °
N
[T

Pearson R
°
o

-}
SN ¢
o O

}—{]—0

-1
MUA ESA LFPy LFPy LFPg LFP, MUA ESA LFPy LFPy LFPg LFP, MUA ESA LFPy LFPy LFPg LFP,
Neural Activity Type

Figure 3: A. Blind V1 alignment scores over the 96 neural recording sites during stimulation (left),
delay (middle), and recall (right). B. Top row: Rendered images of the 9 unique phosphenes per-
ceived by the participant. Bottom row: maximally exciting images (MEIs) predicted for the neuron
site that responded with greatest firing rate (relative to it’s average activity) for each phosphene.

with the phosphene that elicited a strong response at that site. Given our limited sample, we are
hesitant to conclude that these MEIs fully capture the neurons’ visual representations, but rather,
suggest that this technique may help enhance understandings of visual processing in blind V1.

4 DISCUSSION

In this work, we present exploratory analyses on the representational alignment between neural
activity measured in V1 of a blind human and latent DNN activations when presented with the same
visual perception. While previous research has quantified representational alignment between DNNs
and neural activity in V1 of sighted primates, this work is the first of its kind to extend these studies
to intracortical neural activity in human, let alone in a blind participant.

Studying blind visual cortex presents unique challenges due to the absence of visual input. To nav-
igate this, we utilized neural responses from electrical stimulation and mental imagery, discovering
significant correlations between the activity in blind V1 and both the activity in sighted primate V1
and the performance of DNNs on ImageNet. Specifically, ResNet-50 activations showed strong cor-
relations with neural spiking and various LFP responses during stimulation, with fewer correlations
during delay and recall. This opens up future opportunities to delve deeper into these distinct neural
activities across different phases. Moreover, we introduce a proof of concept for interpreting blind
V1 neurons, suggesting that with a diverse dataset of neural recordings and phosphenes, we could
better understand neuron properties and refine stimulation strategies for visual prostheses.

The significant, positive correlation between DNN-blind V1 alignment and DNN-sighted neural
alignment suggests the potential use of V1-aligned DNN models for studying visual processing in
both sighted and blind individuals. Interestingly, however, we observed that DNN-blind V1 align-
ment was more correlated with DNN-sighted overall neural predictivity than with DNN-sighted V1
neural predictivity. This observation raises two critical questions: 1) whether electrically evoked
visual perception in blind individuals activates different processing mechanisms than natural visual
processing, and 2) whether cortical reorganization alters the functional role of V1 in the blind.

A notable limitation of the present study is that the dataset used for analysis contains a limited num-
ber of neural responses and visual percepts. Furthermore, our method relies on phosphene drawings
for predicting neural activity. Even in this limited setting, well-aligned DNNs could inform more
natural stimulation strategies for visual prostheses or deepen our understanding of neural representa-
tions in blindness. Moreover, innovative approaches such as topographic networks (Schrimpf et al.,
2024) might predict neural activity without these drawings. Despite these challenges, our findings
provide a valuable proof of concept, suggesting that existing techniques for assessing representa-
tional alignment could be extended and applied to understanding the visual cortex in blind humans.
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A APPENDIX

A.1 SIGNAL PROCESSING

Stimulation Artifact Removal

During the anodic and cathodic pulses of electrical stimulation, noise artifacts distort the underly-
ing neural recordings signals. Signal blanking and filtering are commonly processing approaches
applied to prevent such artifacts from corrupting the underlying data (Culaclii et al., 2018). We ap-
ply both methods in our analyses of blind V1 representations during stimulation. Hardware-based
blanking prevents signal saturation by disconnecting recording electrodes from the amplifier while
current is being delivered. As a result, no signal is sampled during these blanking periods. To com-
pensate for this, we performed 3rd order polynomial interpolation within these blanking periods.
Finally, signal filtering was applied before computing MUA, ESA, or LFP activity (detailed below).

Computing Entire/Envelope Spiking Activity (ESA)

Entire spiking activity is a threshold-free approach to approximating multi-unit spiking activity
(Drebitz et al., 2019). In this work, we computed ESA for each channel of recorded neural data
by first applying a zero-phase bandpass filter (750 Hz low frequency cutoff, 7500 Hz high frequency
cutoff), full-wave rectifying the band-pass filtered signal, applying a zero-phase lowpass filter (12 Hz
cuttoff frequency), binning the resulting signal into 10 ms, and finally convolving with a Gaussian
filter (25 ms kernel standard deviation).

Computing Multi-Unit Spiking Activity (MUA)

Prior to estimating the multi-unit spiking activity, a zero-phase bandpass filter (500 Hz low frequency
cutoff, 5000 Hz high frequency cutoff) was applied to each of the 96 channels of recorded neural
data. Subsequently, for each channel, we detected spikes as peaks in the filtered signal that crossed
a threshold set equal to 3 standard deviations above the mean peak amplitude of the filtered signal.
A peri-stimulus time histogram was then computed from the extracted multi-unit spike times (10 ms
bin size) and smoothed with a Gaussian filter (25 ms kernel standard deviation).

Computing Local Field Potentials (LFP)

Theta (4 —8 Hz), alpha (8 —13 Hz), beta (13 —30 Hz), and gamma (30 —100 Hz) local field poten-
tials were studied in this work. Time-series activity in each frequency band was computed by band-
pass filtered (zero-phase, 0.5 Hz low frequency cutoff, 100 Hz high frequency cutoff) the neural data,
computing the time-frequency representation of each channel using a Morlet wavelet transform, and
finally averaging the activity in each frequency band within 10 ms windows.

A.2 LINEAR FITTING

In order to fit the regression model used to measure blind V1 predictivity, we first projected DNN
activations onto the first 90 principal components. Then, cross validated ridge regression was used
to learn the mapping between DNN activations and recorded neural activity, using a leave-one-
electrode-out cross validation approach. i.e., the data corresponding to all repeat trials of one stim-
ulating electrode on a given day were left out of training, the model was fit to all other data, and
predictions were made for the left out activity. This was then repeated across all electrodes for all
days, and the correlation (Pearson r) across the left out set was computed as the blind V1 alignment
score.

A.3 FEATURE VISUALIZATION

Visualization of blind V1 neuron preferences was performed using the python package ‘lucent’
(github.com/greentfrapp/lucent). Computing a MEI for a given neuron involved ap-
proximating the image that would lead the linearly-mapped DNN to predict a maximum firing rate
for the given neuron in question, iteratively computed via gradient descent. Regularization was em-
ployed to prevent high frequency artifacts from distoring the resulting MEIs (Mordvintsev et al.,
2015; @ygard, 2015; Olah et al., 2017). Specifically, during optimization, the input image was
transformed with random jitter, scaling, and rotation at each optimization step. Given that all visual
percepts lacked color in this study, we enforced each MEI to be grayscale.
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