
How to Prune Your Language Model:
Recovering Accuracy on the “Sparsity May Cry”

Benchmark
Eldar Kurtic1∗, Torsten Hoefler2, Dan Alistarh1,3

1Institute of Science and Technology Austria, 2ETH Zürich, 3Neural Magic, Inc.

Pruning large language models (LLMs) from the BERT family has emerged as a
standard compression benchmark, and several pruning methods have been pro-
posed for this task. The recent “Sparsity May Cry” (SMC) benchmark put into
question the validity of all existing methods, exhibiting a more complex setup
where many known pruning methods appear to fail. We revisit the question of
accurate BERT-pruning during fine-tuning on downstream datasets, and propose
a set of general guidelines for successful pruning, even on the challenging SMC
benchmark. First, we perform a cost-vs-benefits analysis of pruning model compo-
nents, such as the embeddings and the classification head; second, we provide a
simple-yet-general way of scaling training, sparsification and learning rate sched-
ules relative to the desired target sparsity; finally, we investigate the importance
of proper parametrization for Knowledge Distillation in the context of LLMs. Our
simple insights lead to state-of-the-art results, both on classic BERT-pruning bench-
marks, as well as on the SMC benchmark, showing that even classic gradual mag-
nitude pruning (GMP) can yield competitive results, with the right approach.

1. Introduction
The massive growth of accurate language models (LMs) has motivated several advanced model
sparsification techniques [1], encompassing unstructured and structured pruning. In this paper,
we focus on the popular task of unstructured pruning of LMs [2–5], that is, removing individual
weights from such models, which is known to lead to both storage and computational benefits [5].
The recent “Sparsity May Cry (SMC-Bench)” benchmark [6] investigates unstructured pruning
of BERT-family models, specifically RoBERTa-large [7], on a set of more complex sequence-based
tasks, e.g. CommonsenseQA [8] and WinoGrande [9].
The authors reach a very surprising conclusion about sparse neural networks (SNNs), namely:

“All of the SOTA sparse algorithms bluntly fail to perform on SMC-Bench, some-
times at significantly trivial sparsity e.g., 5%. [...] This observation alarmingly
demands the attention of the sparsity community to reconsider the highly pro-
claimed benefits of SNNs.” [6]

Contribution. In this paper, we follow this call to arms. On the constructive side, we codify a con-
sistent set of pruning best-practices for LLMs, which we either state for the first time, or we isolate
as having been implicitly or explicitly adopted by the literature, e.g. [1]. On the deconstructive side,
we examine the relationship between these best-practices and SMC-Bench, and show that adapting
the benchmark’s setup to follow these best-practices inverts the very strong negative claims made
by SMC, even in the case of basic gradual magnitude pruning (GMP) [10]. Figure 1 provides an
illustration of accuracy recovery across various sparsity targets after applying our guidelines on the
hardest task in the SMC benchmark, as identified by its authors, with two different pruners, GMP
and oBERT, with and without Knowledge Distillation (KD).

∗Correspondence to: Eldar Kurtic <eldar.kurtic@ist.ac.at>, Dan Alistarh <dan.alistarh@ist.ac.at>.

First Conference on Parsimony and Learning (CPAL 2024).



60 70 80 90
Encoder Sparsity (%)

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y 
(%

)

SMC-Bench: RoBERTa-large / CommonsenseQA

Dense baseline
oBERT, with KD
oBERT, without KD
GMP, with KD
GMP, without KD

Figure 1: Accuracy recovery on the “hardest” task in the SMC-Bench suite after following the prun-
ing guidelines we propose, using either basic gradual magnitude pruning (GMP) or the state-of-
the-art second-order Optimal BERT Surgeon pruning (oBERT) [5].

The LLM pruning best-practices we propose are as follows:

1. The length of the post-pruning training period, as well as the sparsification and learning rate sched-
ules should be adapted to the desired target sparsity and model/task combination.

2. Certain model components, such as embeddings and classification heads, naturally have outsize im-
pact on accuracy. Since pruning them brings negligible performance gains for Transformer models
such as the ones considered in SMC-Bench, these layers should remain dense.

3. Knowledge distillation [11], which is known to bring significant gains even for dense models, should
be standard for LM pruning, as it can be highly-effective when properly-tuned.

Contributions. In this setting, our main contributions are as follows:

1. We detail and justify the above guidelines, both conceptually and practically, in the con-
text of standard BERT-pruning benchmarks, widely adopted in the literature, on tasks such
as question-answering on SQuADv1.1 [12], sentence classification Quora Duplicate Query
Dataset QQP [13], and natural language inference MNLI [14].

2. We then instantiate them directly to the two tasks identified by the authors to be “hardest”
by SMC-Bench, CommonsenseQA [8] and WinoGrande [9]. Across both settings, follow-
ing these best-practices outperforms the best existing results on the benchmark, by wide
margins at larger sparsities. Specifically, we are able to achieve high sparsities, in the range
of 80-90%, accurately (see e.g. Figure 1) on SMC-Bench, contradicting the strongly negative
claims initially made by this benchmark.

3. In conjunctionwith the accurate oBERT pruner, our setup sets new state-of-the-art sparsity-
vs-accuracy results for the BERT-base model on the SQuADv1.1 task. Moreover, on SMC-
Bench, both GMP and oBERT can provide stable results when pruning RoBERTa-large up
to 90% sparsity. Our work therefore shows that unstructured sparsity can in fact be a viable
option even in challenging settings.

2. Context
We examine a standard setting for LM pruning, in which models are first pre-trained on a large
upstream corpus of unlabelled text. Then, they are fine-tuned in a supervised manner on a smaller
downstream task, such as question-answering or text-classification. Specifically in thiswork, we focus

2



on downstream pruning, where pruning and fine-tuning are done directly on the target downstream
dataset.
As a running baseline, we use gradualmagnitude pruning (GMP) [10, 15], which periodically removes
a fraction of weights with smallest magnitudes during training, interspersed with fine-tuning steps.
However, the literature on pruning LLMs, and in particular BERT models [2–4], clearly states that
GMP does not perform well, and uses this as motivation for more complex methods. We contradict
this claim here, showing that well-tuned GMP can outperform results of most prior methods. As an
alternative to GMP, we will also employ the currently state-of-the-art oBERT pruner [5]. For a fair
comparison, we follow most prior references which focus on pruning BERT-base [16] on standard
tasks such as SQuADv1.1 and a subset of the GLUE benchmark [17].

The SMC Benchmark. The recently-proposed “Sparsity May Cry” benchmark, which we alterna-
tively call SMC or SMC-Bench, contains four categories of tasks: commonsense reasoning, arith-
metic reasoning, protein thermostability prediction, and multilingual translation.
Of these, the first category, commonsense reasoning, is identified by the authors to be the most
challenging; specifically, the CommonsenseQA (CSQA) [8] is stated to be the “hardest” task in
terms of accuracy-vs-sparsity trade-offs, as all pruningmethods appear to crash to random accuracy
even at low (10-20%) sparsity. Due to space constraints, we will mainly focus on this CSQA task,
but also validate our results on other tasks, such as WinoGrande.
On CSQA, SMC provides results for sparsities between 20% and 90% using a fixed-length schedule
of 3-epochs with linearly-decaying learning rate, which is the same as fine-tuning recipe for the dense
pre-trained model. The standard version of SMC prunes all layers except LayerNorm, including the
token, segment, and position embeddings, as well as the classification head. Knowledge Distillation [11] is
not used in SMC experiments.

3. Pruning Best Practices: A Case Study on BERT Architectures

3.1. What to prune?

Matching Sparsity to Model Structure. The multi-layer bidirectional BERT architecture [16] is
comprised of three key components: an embedding component, an encoder, and a task-specific clas-
sification head. The embedding component, in turn, is composed of three sub-components: token
embeddings, segment embeddings, and positional embeddings. These sub-components transform
tokenized words into H-dimensional vector representations, where H refers to the model’s hidden-
dimension. Specifically, we have the following:

• Token embeddingsmap each token to its corresponding vector representation, which is then
combined with the position and segment embeddings to form a unique representation for
each input token.

• As BERT is a bidirectional model, positional embeddings encode positional information for
each token, ensuring that tokens in different positionswithin a sentence are not represented
with the same embedding vector.

• Segment embeddings encode information about multiple sequences packed together for
downstream tasks (e.g. context-question in SQuAD, duplicate questions in QQP, etc).

These embeddings are learned through unsupervised methods, often using large text corpora, and
they capture the distributional properties of words, enabling the model to infer meaning and rela-
tionships between them. Position embeddings address the sequential nature of language by pro-
viding positional information to the model. They encode the relative or absolute positions of words
within a sentence, allowing the model to understand the contextual dependencies and capture im-
portant syntactic and structural information.

3



Table 1: A brief overview of FLOPs and parameter counts of the three main components of the
RoBERTa-largemodel on the CSQA task from the SMC-Bench suite. For simplicity, we count FLOPs
and parameters only for weights of all linear layers in the model and ignore negligible costs associ-
ated with LayerNorm, Dropout, biases, and non-linearities such as ReLU/GELU.

Parameter count Fraction of total FLOPs Fraction of total
Embeddings 51.5M 14.5% ≈ 0 ≈ 0%
Encoder 302M 85.5% 604M 99.9%

Classification head 0.001M ≈ 0% 0.002M ≈ 0%

Conceptually, unstructured pruning of pre-trained embedding layers during short fine-tuning stage
would completely destroy learned token representations, and literally make the model position-
agnostic if a large fraction of positional encodings are sparsified.
Practical Issues. Virtually all popular frameworks, e.g. Hugging Face Transformers [18] and Py-
Torch [19], implement embeddings as lookup tables, which clearly implies that imposing unstruc-
tured sparsity will not improve their efficiency. In addition, pruning of the classification head for
models at the scale considered in SMC-Benchmark is not desirable, since at higher sparsities en-
tire rows/columns could get pruned, thus disabling model’s ability to ever predict those logits. To
formalize these arguments, in Table 1we present FLOP and parameter count analysiswhich demon-
strate that these two components, embeddings and classifier head, consume negligible amount of
compute. While pruning embeddings could be justified in terms of reducing parameter count (but
not computational cost!), pruning the classification head is hard to justify via either criterion.

60 70 80 90 95 98
Sparsity (%)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

du
p 

fa
ct

or

SQuADv1.1

BERT-large, encoder
BERT-large, encoder+embeddings+head
BERT-base, encoder
BERT-base, encoder+embeddings+head

Figure 2: Speedups of sparse BERT-base and
BERT-large models relative to corresponding
dense baselines, evaluated in the sparsity-aware
CPU-inference engineDeepSparse (version 1.4)
at 4-cores of AMD EPYC 7702, batch-size 32,
and sequence-length 384. Inference speedups
from sparse embeddings and classification head
(encoder+embeddings+head) are negligible,
hence the plots are perfectly superimposedwith
plots where only the encoder is sparsified.

0 20 40 60 80
Sparsity (%)

0

20

40

60

80

F1
 sc

or
e

One-Shot pruning BERT-base / SQuADv1.1

Dense baseline
GMP, encoder
GMP, encoder+embeddings+head
oBERT, encoder
oBERT, encoder+embeddings+head

Figure 3: Sensitivity analysis of the impact
of pruning the embeddings and the classifica-
tion head on accuracy of the fine-tuned BERT-
base model on the SQuADv1.1 dataset. Both
GMP and oBERT pruners, suffer from signifi-
cant performance drops even at moderate spar-
sities. Accuracy of GMP pruned model de-
teriorates quickly, even at sparsities as low as
40%, whereas oBERT absorbs negative impacts
from pruning of embeddings and head until
60% sparsity target.

Cost-Benefit Analysis. To examine the effects of pruning the embeddings and classification head
we perform a simple cost-vs-benefits analysis. First, we sparsify either encoder alone or altogether
encoder, embeddings and classification head in BERT-base and BERT-large models. On the one
hand, we evaluate the speedups of the resulting sparse models in the sparsity-aware CPU-inference
engine DeepSparse [20]. Figure 2 demonstrates that there are no speedup improvements when
embeddings and head are sparsified, even at 98% sparsity. Second, in Figure 3 we examine the drops
in accuracy when these layers are included in pruning to reach target sparsities, a procedure also
known as sensitivity analysis [21]. GMP starts dropping accuracy even at 40% sparsity target, while

4



oBERT manages to absorb impacts until 60%, after which the drops are critical and the models
become unusable in practice. In summary, this analysis shows that, in this context, pruning the
embeddings and classification head does not yield practical gains during inference, while negatively
impacting model’s accuracy. Therefore, we suggest to keep these layers dense and prune only the
encoder, where the majority of the computational gains can be made.
We note that not pruning embeddings is a well-established practice in the LLM-pruning litera-
ture [1–5, 22–24], as illustrated in Table 6. We identify this choice as the first major cause ex-
plaining the apparent failure of pruning methods on the SMC benchmark.

3.2. The Impact of Knowledge Distillation

Knowledge Distillation (KD) is standard in many pruning references [2, 4, 5, 22, 23]. The loss func-
tion is formulated as a linear combination of the standard loss associated with the specific task (e.g.
cross-entropy for classification LCE) and the KL divergence (LKL) between output distributions of
the dense (teacher)model and the sparse (student)model in the form: L = (1−h)LCE+hLKL. The
ratio between the two is controlled with the hardness hyperparameter h. To determine its optimal
value at high sparsities we run an ablation study (Table 4), and adopt value h = 1.

Knowledge Distillation Temperature. The temperature T is an additional KD-hyperparameter
that requires proper tuning, as it controls the “softness” of the output distribution. In the prun-
ing literature, it is standard to use the “stronger” T = 1 or T = 2 values [2, 4, 5, 22, 23]; we revisit
this by visualizing teacher’s output distributions to get an insight into what the sparse student is
learning.

0 250
0

50

T = 1.0

0 250
0

50
T = 2.0

0 250
0.0

2.5

T = 5.5

0 250
0

100

0 250
0

50

0 250
0.0

2.5

Teacher's output logits

Pr
ob

ab
ili

ty
 (%

)

Figure 4: Teacher’s output distribution at
commonly used temperatures T ∈ {1.0, 2.0}
and the proposed T = 5.5.

0 2 4 6 8 10
Epoch

1.00

0.01Le
ar

ni
ng

 ra
te

1e 4

0

70
90

Sp
ar

si
ty

 (%
)

Figure 5: Visualization of the learning rate
with rewinds and accelerated cubic sparsity
scheduler for the proposed gradual pruning
framework.

In Figure 4, we visualize generated distributions for randomly picked samples from the SQuADv1.1
task softened with three values of the temperature. As can be seen, teacher’s high confidence in
predicting the correct class at the commonly used temperatures T ∈ {1.0, 2.0} makes the knowl-
edge distillation almost obsolete. Motivated by this observation, we run an ablation study for many
higher temperatures and report a fraction of results in Table 5. Given the results, we adopt the
temperature T = 5.5.

3.3. How to Prune? The Importance of the Pruning Schedule

As noted in the Background section, SMC adopts a fixed gradual pruning schedule, independently
of the target sparsity, and observes that all knownmethods quickly collapse even onmoderate spar-
sities, around 50%− 60%, on CSQA task.
We probe the validity of this choice of scheduling via the following experiment. We apply the
state-of-the-art oBERT pruner in One-Shot, without any retraining, on the RoBERTa-large / CSQA
SMC-Bench task, while allowing the pruner to sparsify embeddings and classification head. This
makes the setup much harder for pruning but enables a fair comparison against results presented
in the SMC-Bench.

5



In Figure 6 we see that even in this setup, without any fine-tuning, this one-shot pruning approach
does not collapse up to 80% sparsity, while also significantly outperforming all other methods, which have
been executed in gradual pruning fashion, with short fine-tuning cycles to recover from accuracy
drops incurred by pruning. These results, in which One-Shot pruning significantly outperforms
gradual pruning across different methods, point to the need for careful design of gradual pruning
schedules, such that the fine-tuning cycles actually enable accuracy recovery. We identify this as a
second cause for failure of pruning methods on the SMC benchmark.

We now take a step back, and reflect upon the most important components of a gradual pruning
schedule, which needs to be designed to recover from pruning accuracy drops.
Accelerated sparsity schedule. The established convention adopted in the literature is to impose
sparsity on themodel by following either a cubic [15] or a linear sparsity scheduler, starting from the
dense model (zero-sparsity) and pruning until the target sparsity is reached. Motivated by the ob-
servation that language models are heavily overparametrized for downstream tasks, we emphasize
the importance of a seemingly-incremental improvement in the aforementioned sparsity schedulers.
Namely, a large first pruning step turns out to be of a crucial importance for competitive results at
high target sparsities (e.g. 97%). Instead of starting to prune the model from zero-sparsity, in the
first pruning step the model should be pruned to a much higher target (e.g. 50% or 70%). This
leaves more time to distribute pruning to high sparsity targets over a longer fine-tuning range, and
thus enables better accuracy recovery. In Table 2, we report results from an ablation study with
respect to the size of the initial pruning step on the standard benchmark. Removing either 50% or
70% of weights in the initial step significantly helps improving results at very high sparsity (97%).
We visualize the accelerated sparsity scheduler in Figure 5.
Table 2: Ablation study for initial pruning
step on the BERT-base/SQuADv1.1 bench-
mark.

Sparsity
(%)

F1 score at sparsity target
90% 97%

0 85.2 77.2
30 85.5 77.8
50 85.8 78.5
70 85.8 79.1

Table 3: Ablation study for initial learning
rate on the BERT-base/MNLI benchmark.

Initial LR Accuracy at sparsity target
90% 97%

3e-5 80.8 76.3
5e-5 81.4 77.8
8e-5 81.9 78.6
1e-4 81.6 79.3

Table 4: Ablation study for Knowl-
edge Distillation hardness on the BERT-
base/SQuADv1.1 benchmark.

Hardness F1 score at sparsity target
90% 97%

0.6 84.6 78.4
0.8 85.9 80.1
0.9 86.2 80.7
1.0 86.7 81.0

Table 5: Ablation study for Knowledge
Distillation temperature on the BERT-
base/SQuADv1.1 benchmark.

Temperature F1 score at sparsity target
90% 97%

1.0 84.7 77.3
2.0 85.8 79.0
5.5 86.7 81.0
8.5 86.4 80.9

Learning rate schedule. Our goal is to provide a simple baseline setup that works well across wide
range of datasetswithout any additional task-dependent tuning. Currently, papers either report best
results following an extensive hyperparameter search for each task, e.g. Zafrir et al. [4] investigate
more than 50 different hyper-parameter settings, or they make use of carefully crafted schedulers
for each setup independently which may include warm-up phases with andwithout rewinds [2, 5].
This may lead to high specialization to the target task/model, which is undesirable in practice and
makes it hard to distinguish benefits from the pruning technique itself. We propose to simply repli-
cate the standard dense fine-tuning schedule [16] by a certain factor and intertwine it with pruning
steps. For a fair comparison with Sanh et al. [2] we replicate the 2-epoch fine-tuning schedule by a
factor of 5, matching their 10-epoch setup. For a fair comparison with Chen et al. [3] we replicate it

6



by a factor of 15, reproducing their 30-epoch setup. For convenience, we visualize the learning rate
schedule in Figure 5. In Appendix B, we describe results with inferior schedulers.

20 30 40 50 60 70 80 90
Encoder+Embeddings+Head Sparsity (%)

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y 
(%

)

SMC-Bench: RoBERTa-large / CommonsenseQA

Dense baseline
One-Shot oBERT

LTH
GMP

SNIP
RigL

OMP
Random

Figure 6: For comparison with SMC-Bench re-
sults, we prune encoder, embeddings and clas-
sifier head of the model in One-Shot, with-
out any retraining, with second-order oBERT
pruner. Relative to all other methods, which
were applied by SMC-Bench in a gradual fash-
ion with retraining phases in-between pruning
steps, oBERT demonstrates dominance up to
very high sparsities (<80%).

20 30 40 50 60 70 80 90
Sparsity (%)

40

45

50

55

60

65

70

75

80

A
cc

ur
ac

y 
(%

)

SMC-Bench: RoBERTa-large / WinoGrande

Dense baseline
oBERT with KD

LTH
GMP

SNIP
RigL

OMP
Random

Figure 7: Accuracy recovery on the second
“hardest” task in the SMC-Bench suite, after fol-
lowing our proposed pruning guidelines with
the oBERT pruner. Results of othermethods are
obtained by the SMC-Bench work, and are not a
direct comparison since oBERT prunes only the
encoder while others distribute sparsity over
encoder, embeddings, and classifier head, re-
sulting in a more dense encoder which leads to
reduce inference speed (see Figure 2).

3.4. Literature Context

To reinforce our points from the previous sections regardingwhat and how to prune, we summarize
the set of choices made by some representative methods from the literature, in Table 6. It appears
clear that the literature largely follows our best practices in terms of choice of what to prune, which
appears reasonable given our discussion on practicality above.

Table 6: Overview choices for pruning made by Sparsity May Cry benchmark, relative to choices
made by the most representative literature on LM pruning over time.

What to prune? How to finetune?

Embeddings Encoder Classification
head

Extended
schedule

Knowledge
distillation

Movement Pruning [2] No Yes No Yes Yes
Lottery Tickets [3] No Yes No Yes No

Block Movement Pruning [23] No Yes No Yes Yes
Sparse BERT [22] No Yes No Yes Yes

Prune Once for All [4] No Yes No Yes Yes
Optimal BERT Surgeon [5] No Yes No Yes Yes

PLATON [24] No Yes No Yes No
Sparsity May Cry [6] Yes Yes Yes No No

4. Experimental Validation
Now, we aggregate all of the previously analyzed improvements in a downstream pruning recipe,
which we summarize for convenience in Appendix A. We validate its effectiveness on two bench-
marks: the standard BERT-base pruning benchmark widely adopted across the pruning litera-
ture [2–5, 23], and the recently proposed Sparsity May Cry (SMC) benchmark [6].

7



4.1. Results on the standard BERT-base benchmark

The standard BERT-base benchmark consists of pruning the BERT-basemodel on three downstream
datasets: extractive question-answering SQuADv1.1 [12], sentence classification Quora Duplicate
Query Dataset QQP [13], and natural language inference MNLI [14]. Pruning refers to the process
of removing weights (connections) from all linear layers in the encoder part of the BERT architec-
ture, which amounts to 85M params out of the total 110M. All sparsities are reported with respect
to the encoder size. Pruning is performed in a gradual manner where pruning steps are intertwined
with fine-tuning steps to recover accuracy.

Improved gradual magnitude pruning (GMP⋆ ). To illustrate effectiveness of the proposed best
practices, we first focus on improving the classic gradual magnitude pruning approach, which we
simply call GMP⋆ . The literature on BERT-pruning [2–4] motivates development of new pruning
techniques by demonstrating very poor performance of the baseline GMP technique. In this sec-
tion we argue that such negative conclusions arise mainly due to the poorly designed pruning and
fine-tuning schedules, and can be mitigated by adopting our best practices. In Table 7 we present
downstream pruning results obtained with our GMP⋆ and other GMP-based baselines. For a fair
comparison with respect to the compute budget, we consider both setups, 10- and 30-epoch. In
the former, we compare against the GMP baselines reported in Sanh et al. [2] and refer to them as
GMPMvP . In the latter, we compare against the best results in Chen et al. [3], obtained either via
GMP or Lottery Ticket (LTH) approach, and refer to them as GMPLTH . As can be seen from the Ta-
ble 7, our GMP⋆ remarkably outperforms all other results by extremely large margins; in some cases
by even more than 20 points! These results indicate a significant improvement in the performance
of the GMP baseline, elevating it to a level of competitiveness that rivals top-performing pruners.

Table 7: Downstream pruning comparison
of GMP⋆with other GMP-based baselines.
GMP⋆ remarkably outperforms all other ap-
proaches by extremely large margins.

Method Spars. Ep. SQuAD MNLI QQP
F1 m-acc acc

BERT-base 0% 88.5 84.5 91.1
GMPMvP 90% 10 80.1 78.3 79.8
GMP⋆ 86.7 81.9 90.6
GMPMvP 97% 10 59.6 69.4 72.4
GMP⋆ 81.3 79.1 89.7

GMPLTH 90% 30 68.0 75.0 90.0
GMP⋆ 87.9 82.7 90.8
GMP⋆ 97% 30 85.4 80.9 90.6

Table 8: Downstream pruning comparison of
GMP⋆with advanced pruning techniques.

Method Spars. Ep. SQuAD MNLI QQP
F1 m-acc acc

BERT-base 0% 88.5 84.5 91.1
GMP⋆ 90% 10 86.7 81.9 90.6
MvP 84.9 81.2 90.2
GMP⋆ 97% 10 81.3 79.1 89.7
MvP 82.3 79.5 89.1
GMP⋆

90% 30
87.9 82.7 90.8

oBERT 88.3 83.8 91.4
oBERT⋆ 88.6
GMP⋆

97% 30
85.4 80.9 90.6

oBERT 86.0 81.8 90.9
oBERT⋆ 86.6

We now compare GMP⋆with methods that rely on higher-order information to make pruning de-
cisions, like gradients in Movement Pruning (MvP) [2] and the loss curvature in oBERT [5]. Both
of these have higher computational overhead, but we still put our results in context to realize the
extent of the improvements introduced by following the above guidelines. As can be seen from re-
sults in Table 8, GMP⋆ is able to improve upon the performance of MvP in 4 out of 6 configurations,
but cannot match the performance of the oBERT method. In addition to these comparisons, we run
the state-of-the-art BERT-pruning method oBERT with optimized hyperparameters from GMP⋆ on
the SQuADv1.1 task. We refer to these results as oBERT⋆ . As can be seen from the Table 8, even the
very competitive oBERT results benefit from the GMP⋆ setup. For all GMP⋆ runs, we report mean
performance across three runs with different seeds.
Since oBERT presented state-of-the-art results on BERT-base/SQuADv1.1 benchmark, we observe
that following our guidelines (oBERT⋆) leads to new state-of-the-art pruning results on this bench-
mark.

8



4.2. Results on the SMC Benchmark
Now, we adapt our downstream pruning recipe to the RoBERTa-large model and conduct experi-
ments on the two “hardest” tasks in the SMC Benchmark, unstructured pruning of the RoBERTa-
large model on CommonsenseQA and WinoGrande datasets. Specifically, we adopt the previously
presented best practices as follows: do not prune the embedding layer and classification head (Sec-
tion 3.1), scale the fine-tuning schedule for better accuracy recovery according to Section 3.3, and
use well-tuned Knowledge Distillation (Section 3.2).
Figure 1 shows that, contrary to what has been reported in Liu et al. [6], basic gradual magni-
tude pruning (GMP) does not fail to perform on SMC-Bench. In addition to GMP results, the
figure demonstrates that approximate second-order information via oBERT ensures even better ac-
curacy recovery in this challenging setup. Further, we demonstrate that incorporating a properly-
configured Knowledge Distillation on top of the gradual pruning schedules brings non-trivial im-
provements in accuracies for sparse models.
To demonstrate that our proposed guidelines do not pertain only to the CommonsenseQA dataset
presented in Figure 1, we report results on the second “hardest” task (WinoGrande) of the SMC
Benchmark in Figure 7. Namely, we apply second-order oBERT pruning in conjunction with our
proposed gradual pruning guidelines. As can be seen from the Figure, even in this task, gradual
pruning does not bluntly fail to perform and reasonably recovers accuracy of the dense model rel-
ative to all other methods reported in Liu et al. [6] which at 80% produce unusable models.

5. Conclusion
We have presented, discussed and evaluated a set of three simple guidelines for successful pruning
of LLMs in the “downstream” pruning setup, illustrating our results on BERT-base and RoBERTa-
large models, across different tasks, including the recent SMC benchmark. Some of the best-
practices we proposed are either known or implicitly-adopted by some, but not all, works in the
literature.
As we have discussed and shown experimentally, following these simple guidelines can lead to
much more solid baseline performance across different models and tasks. Specifically, the fact that
our variant of GMP⋆ outperforms most of the existing methods in the literature, and is the first
method to provide good performance on SMC-Bench suggests that there is value to popularizing
these best-practices. Further, our work provides a solid set of new competitive baselines, which can
help researchers interested in high-performance compression of large language models.

9



References
[1] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity

in deep learning: Pruning and growth for efficient inference and training in neural networks.
arXiv preprint arXiv:2102.00554, 2021.

[2] Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by
fine-tuning. Advances in Neural Information Processing Systems, 33:20378–20389, 2020.

[3] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, ZhangyangWang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in neural
information processing systems, 33:15834–15846, 2020.

[4] Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, and Moshe Wasserblat. Prune once for
all: Sparse pre-trained language models. arXiv preprint arXiv:2111.05754, 2021.

[5] Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran,
Michael Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-
order pruning for large language models. arXiv preprint arXiv:2203.07259, 2022.

[6] Shiwei Liu, Tianlong Chen, Zhenyu Zhang, Xuxi Chen, Tianjin Huang, AJAY KUMAR
JAISWAL, and Zhangyang Wang. Sparsity may cry: Let us fail (current) sparse neural net-
works together! In International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=J6F3lLg4Kdp.

[7] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretrain-
ing approach. arXiv preprint arXiv:1907.11692, 2019.

[8] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa:
A question answering challenge targeting commonsense knowledge. arXiv preprint
arXiv:1811.00937, 2018.

[9] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[10] Masafumi Hagiwara. A simple and effective method for removal of hidden units and weights.
Neurocomputing, 6(2):207 – 218, 1994. ISSN 0925-2312. Backpropagation, Part IV.

[11] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2(7), 2015.

[12] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ ques-
tions formachine comprehension of text. InConference on EmpiricalMethods in Natural Language
Processing (EMNLP), 2016.

[13] Iyer Shankar, Dandekar Nikhil, and Csernai Kornel. First quora dataset release: Question
pairs. 2017.

[14] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1112–1122. Association for Computational Linguistics, 2018.

[15] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning
for model compression. arXiv preprint arXiv:1710.01878, 2017.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In North American Chapter of the
Association for Computational Linguistics (NAACL), 2019.

10



[17] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

[18] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-
the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.
emnlp-demos.6.

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In Conference on Neural Information Processing Systems
(NeurIPS). 2019.

[20] NeuralMagic. DeepSparse, 2022. URL https://github.com/neuralmagic/deepsparse.

[21] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and Huffman coding. In International Conference
on Learning Representations (ICLR), 2016.

[22] Dongkuan Xu, Ian EH Yen, Jinxi Zhao, and Zhibin Xiao. Rethinking network pruning–under
the pre-train and fine-tune paradigm. arXiv preprint arXiv:2104.08682, 2021.

[23] François Lagunas, Ella Charlaix, Victor Sanh, and Alexander Rush. Block pruning for faster
transformers. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 10619–10629. Association for Computational Linguistics, 2021.

[24] Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen,
and Tuo Zhao. Platon: Pruning large transformer models with upper confidence bound of
weight importance. In International Conference on Machine Learning, pages 26809–26823. PMLR,
2022.

[25] Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von
Platen, Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davi-
son, Mario Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor
Sanh, Canwen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger,
Clément Delangue, Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault
Goehringer, Victor Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets:
A community library for natural language processing. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 175–184, On-
line and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. URL https://aclanthology.org/2021.emnlp-demo.21.

[26] Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin,
William Leiserson, Sage Moore, Bill Nell, Nir Shavit, and Dan Alistarh. Inducing and exploit-
ing activation sparsity for fast inference on deep neural networks. In International Conference
on Machine Learning (ICML), 2020.

11



A. Downstream pruning recipe
All of our implementations are built on top of HuggingFace’s Transformers 2 [18] and Datasets 3

[25] libraries, andNeuralMagic’s SparseML 4 [26] library for model compression, andwill be open-
sourced to community along with our sparse models.
As our goal is to provide a simple and unique gradual pruning setup, all of our downstream runs
(for all datasets) are using the same set of hyperparameters. The ones used to obtain results reported
in Tables 7 and 8, are as follows:

• learning-rate: recurring 2-epoch scheduler (visualized in Figure 5) with the initial value
of 1e-4, and the final value of 1e-6,

• number-of-epochs: 10 or 30 epochs, depending on the methods we compare against,
• sparsity: cubic scheduler with the initial pruning step of 70% sparsity (visualized in Fig-

ure 5),
• pruning: prune frequency of ten times per epoch, except during the first and last 2-epochs

when only fine-tuning happens and masks are fixed,
• student-initialization: standard BERT-base(bert-base-uncased5),
• knowledge-distillation (KD): (hardness, temperature) = (1.0, 5.5),
• KD-teachers: standard BERT-basefine-tuned on the corresponding task,
• weight-decay: 0.0,
• all other hyper-parameters are set to the standard default values, e.g. Sanh et al. [2]:

– SQuADv1.1: batch-size=16, max-sequence-length=384, doc-stride=128,
– MNLI and QQP: batch-size=32, max-sequence-length=128.

B. Learning rate schedulers we tried, but didn’t work
The schedulers we tried but didn’t work: 1) linearly decaying learning rate, 2) the default fine-
tuning learning rates (3e-5 for SQuADv1.1 and 2e-5 for MNLI and QQP), 3) learning rates with the
warm-up phase. In the preliminary experiments, we have noticed that 1) and 2) have problems in
recovering from the pruning steps at higher sparsities. The former one has extremely small learning
rate values during the last few epochs when the model is pruned to high sparsities. The latter
one continuously fails to recover properly even at moderate sparsity targets, which is why we run
a sweep over a range of initial learning rate values. Given the results in Table 3, we decided to
proceed with the 1e-4 as it helped to recover significantly at high sparsities. We haven’t observed
any benefits from the warmup phase, which is why we have decided not to use it as it adds an
additional hyperparameter to tune.

2https://github.com/huggingface/transformers
3https://github.com/huggingface/datasets
4https://github.com/neuralmagic/sparseml
5https://huggingface.co/bert-base-uncased

12


