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ABSTRACT

Generative diffusion models provide strong priors for text-to-image generation
and thereby serve as a foundation for conditional generation tasks such as im-
age editing, restoration, and super-resolution. However, one major limitation
of diffusion models is their slow sampling time. To address this challenge, we
present a novel conditional distillation method designed to supplement the diffu-
sion priors with the help of image conditions, allowing for conditional sampling
with very few steps. We directly distill the unconditional pre-training in a sin-
gle stage through joint-learning, largely simplifying the previous two-stage pro-
cedures that involve both distillation and conditional finetuning separately. Fur-
thermore, our method enables a new parameter-efficient distillation mechanism
that distills each task with only a small number of additional parameters combined
with the shared frozen unconditional backbone. Experiments across multiple tasks
including super-resolution, image editing, and depth-to-image generation demon-
strate that our method outperforms existing distillation techniques for the same
sampling time. Notably, our method is the first distillation strategy that can match
the performance of the much slower fine-tuned conditional diffusion models.

1 INTRODUCTION

Text-to-image diffusion models (Saharia et al., 2022b; Rombach et al., 2022; Ramesh et al., 2022)
trained on large-scale data (Lin et al., 2014; Schuhmann et al., 2022) have significantly dominated
generative tasks by delivering impressive high-quality and diverse results. A newly emerging trend
is to use the diffusion prior of pre-trained text-to-image generative models to guide the generated re-
sults with external image conditions for traditional image-to-image transformation tasks such as
image manipulation, enhancement, or super-resolution (Meng et al., 2021; Zhang & Agrawala,
2023). Among these transformation processes, the diffusion prior introduced by pre-trained models
is shown to be capable of greatly promoting the visual quality of the conditional image generation
results (Brooks et al., 2023).

However, diffusion models heavily rely on an iterative refinement process (Song et al., 2020c; Sa-
haria et al., 2022c;a; Whang et al., 2022; Delbracio & Milanfar, 2023) that often demands a sub-
stantial number of iterations, which can be challenging to accomplish efficiently. Their reliance on
the number of iterations further increases for high-resolution image synthesis. For instance, in state-
of-the-art text-to-image latent diffusion models (Rombach et al., 2022), achieving optimal visual
quality typically requires 20− 200 sampling steps (function evaluations), even with advanced sam-
pling methods (Lu et al., 2022a; Karras et al., 2022). The slow sampling time significantly impedes
practical applications of the aforementioned conditional diffusion models.

Recent efforts to accelerate diffusion sampling predominantly employ distillation methods (Luhman
& Luhman, 2021; Salimans & Ho, 2022; Song et al., 2023). These methods achieve significantly
faster sampling, completing the process in just 4− 8 steps, with only a marginal decrease in gener-
ative performance. Very recent works (Meng et al., 2023; Li et al., 2023) show that these strategies
are even applicable for distilling pre-trained large-scale text-to-image diffusion models. Based on
these distillation techniques, a two-stage distillation procedure (Meng et al., 2023) can be used
for distilling conditional diffusion models —either distillation-first or conditional finetuning-first.
These two procedures offer different advantages in terms of cross-task flexibility and learning diffi-
culty, but their generated results (Meng et al., 2023) are generally better than those of the undistilled
conditional diffusion model when given the same sampling time.
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(a) Low-resolution image restoration with noise and compression artifacts removal (4 steps)

(b) Editing with prompt: ”Make it sunset” (1 step) (c) Editing with prompt: ”Make it lowkey” (1 step)

(d) Generating images from the depth map. (4 steps)

Figure 1: Our method distills a conditional diffusion model directly from the unconditional model.
We show the generated results of our distilled model in various conditional tasks, which demon-
strates the capability of our proposed method in replicating diffusion priors in a short sampling time.

In this paper, we introduce a new distillation approach for distilling a conditional diffusion model
from a pre-trained unconditional diffusion one. Unlike the previous two-stage distillation proce-
dure, our method only has a single stage that starts from the unconditional pretraining and ends with
the distilled conditional diffusion model. In Figure 1, we show that our distilled model can predict
high-quality results in 1−4 sampling steps by using the hints from the given image conditions. This
simplified learning eliminates the need for the original text-to-image data, a requirement in previous
distillation procedures (i.e., those that first distill the unconditional text-to-image model) thereby
making our method more practical. Additionally, our formulation avoids sacrificing the diffusion
prior in the pre-trained model, that commonly occurs in the first stage of the finetuning-first proce-
dure. Extensive experimental results show that our distilled model outperforms previous distillation
methods in both visual quality and quantitative performance, when given the same sampling time.

Parameter-efficient distillation methods for conditional generation are a relatively understudied area.
We demonstrate that our methodology enables a new parameter-efficient distillation mechanism. It
can transform and accelerate an unconditional diffusion model for conditional tasks by incorporat-
ing a limited number of additional learnable parameters. In particular, our formulation allows the
integration with various existing parameter-efficient tuning algorithms, including T2I-Adapter (Mou
et al., 2023) and ControlNet (Zhang & Agrawala, 2023). Our distillation process learns to replicate
diffusion priors for conditional tasks with few iterative refinements, using both the newly added
learnable parameters of the conditional adapter and the frozen parameters of the original diffusion
model. This new paradigm significantly improves the practicality of different conditional tasks.
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2 BACKGROUND

Continuous-time VP diffusion model. A continuous-time variance-preserving (VP) diffusion
model (Sohl-Dickstein et al., 2015; Ho et al., 2020) is a special case of diffusion models1. It has
latent variables {zt|t ∈ [0, T ]} specified by a noise schedule comprising differentiable functions
{αt, σt} with σ2

t = 1 − α2
t . The clean data x ∼ pdata is progressively perturbed in a (forward)

Gaussian process as in the following Markovian structure:

q(zt|x) = N (zt;αtx, σ
2
t I), and q(zt|zs) = N (zt;αt|szs, σ

2
t|sI), (1)

where 0 ≤ s < t ≤ 1 and α2
t|s = αt/αs. Here the latent zt is sampled from the combination of

the clean data and random noise by using the reparameterization trick (Kingma & Welling, 2013),
which has zt = αtx + σtε.

Deterministic sampling. The aforementioned diffusion process that starts from z0 ∼ pdata(x)
and ends at zT ∼ N (0, I) can be modeled as the solution of an stochastic differential equation
(SDE) (Song et al., 2020c). The SDE is formed by a vector-value function f(·, ·) : Rd → Rd, a
scalar function g(·) : R→ R, and the standard Wiener process w as:

dzt = f(zt, t)dt+ g(t)dw. (2)

The overall idea is that the reverse-time SDE that runs backwards in time, can generate samples of
pdata from the prior distribution N (0, I). This reverse SDE is given by

dzt = [f(zt, t)− g(t)2∇z log pt(zt)]dt+ g(t)dw̄, (3)

where the w̄ is a also standard Wiener process in reversed time, and ∇z log pt(zt) is the score of
the marginal distribution at time t. The score function can be estimated by training a score-based
model sθ(zt, t) ≈ ∇z log pt(zt) with score-matching (Song et al., 2020b) or a denoising network
x̂θ(zt, t) (Ho et al., 2020):

sθ(zt, t) := (αtx̂θ(zt, t)− zt)/σ
2
t . (4)

Such backward SDE satisfies a special ordinary differential equation (ODE) that allows deterministic
sampling given zT ∼ N (0, I). This is known as the probability flow ODE (Song et al., 2020c) and
is given by

dzt = [f(zt, t)−
1

2
g2(t)sθ(zt, t)]dt, (5)

where f(zt, t) = d logαt

dt zt, g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t with respect to {αt, σt} and t accord-

ing to Kingma et al. (2021). This ODE can be solved numerically with diffusion samplers like
DDIM (Song et al., 2020a), where starting from ẑT ∼ N (0, I), we update for s = t−∆t:

ẑs := αsx̂θ(ẑt, t) + σs(ẑt − αtx̂θ(ẑt, t))/σt, (6)

till we reach ẑ0.

Diffusion models parametrizations. Leaving aside the aforementioned way of parametrizing dif-
fusion models with a denoising network (signal prediction) or a score model (noise prediction equa-
tion 4), in this work, we adopt a parameterization that mixes both the score (or noise) and the signal
prediction. Existing methods include either predicting the noise ε̂θ(xt, t) and the signal x̂θ(zt, t)
separately using a single network (Dhariwal & Nichol, 2021), or predicting a combination of noise
and signal by expressing them in a new term, like the velocity model v̂θ(zt, t) ≈ αtε − σtx (Sal-
imans & Ho, 2022). Note that one can derive an estimation of the signal and the noise from the
velocity one,

x̂ = αtzt − σtv̂θ(zt, t), and ε̂ = αtv̂θ(zt, t) + σtzt. (7)

Similarly, DDIM update rule (equation 6) can be rewritten in terms of the velocity parametrization:

ẑs := αs(αtẑt − σtv̂θ(ẑt, t)) + σs(αtv̂θ(ẑt, t) + σtẑt). (8)
1What we discussed based on the variance preserving (VP) form of SDE (Song et al., 2020c) is equivalent

to most general diffusion models like Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020).
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Self-consistency property. To accelerate inference, Song et al. (2023) introduced the idea of con-
sistency models. Let sθ(·, t) be a pre-trained diffusion model trained on data x ∼ Odata. Then, a
consistency function fφ(zt, t) should satisfy that (Song et al., 2023),

fφ(zt, t) = fφ(zt′ , t
′), ∀t, t′ ∈ [0, T ], and fφ(x, 0) = x, (9)

where {zt}t∈[0,T ] is the solution trajectory of the PF ODE (equation 5). The consistency function
can be distilled from the pretrained model by enforcing the above self-consistency property. In
practice, fφ(zt, t) is usually a denoising network that is distilled from a pre-trained diffusion model.

3 RELATED WORK

To reduce the sampling time of diffusion models, Luhman & Luhman (2021) proposed to learn a
single-step student model from the output of the original (teacher) model using multiple sampling
steps. However, this method requires to run the full inference with many sampling steps during
training which make it poorly scalable. Inspired by this, Progressive Distillation (Salimans & Ho,
2022) and its variants, including Guided Distillation (Meng et al., 2023) and SnapFusion (Li et al.,
2023), use a progressive learning scheme for improving the learning efficiency. A student model
learns to predict in one step the output of two steps of the teacher model. Then, the teacher model
is replaced by the student model, and the procedure is repeated to progressively distill the mode by
halving the number of required steps. We demonstrate our method by comparing with a fine-tuned
version of Guided Distillation (Meng et al., 2023) on the conditional generation tasks. We also note
that the learning strategies like classifier free guidance aware distillation, used by Meng et al. (2023)
and Li et al. (2023), is orthogonal to our method, and they could be still applicable in our framework.

Song et al. (2023) introduced Consistency Models, a single-step generative approach that learns
from a pre-trained diffusion model. The learning is achieved by enforcing a self-consistency in the
predicted signal space. However, learning consistency models for conditional generation has yet to
be thoroughly studied. In this paper, we compare our method against consistency models in a brute
force way that learns to enforce the self-consistency in a fine-tuned conditional diffusion model. We
will later show that this is less effective than our conditional distillation.

4 METHOD

4.1 FROM AN UNCONDITIONAL TO A CONDITIONAL ARCHITECTURE

In order to utilize the image generation prior encapsulated by the pre-trained unconditional2 diffu-
sion model, we first propose to adapt the unconditional diffusion model into a conditional version
for the conditional data (x, c) ∼ pdata. Similar to the zero initialization technique used by con-
trollable generation (Nichol & Dhariwal, 2021; Zhang & Agrawala, 2023), our method adapts the
unconditional pre-trained architecture by using an additional conditional encoder.

To elaborate, we take the widely used U-Net as the diffusion network. Let us introduce the
conditional-module by duplicating the encoder layers of the pretrained network. Then, let hθ(·)
be the encoder features of the pretrained network, and hη(·) be the features on the additional condi-
tional encoder. We define the new encoder features of the adapted model by

hθ(zt)
′ = (1− µ)hθ(zt) + µhη(c), (10)

where µ is a learnable scalar parameter, initialized to µ = 0. Starting from this zero initialization,
we can adapt the unconditional architecture into a conditional one. Thus, our conditional diffusion
model ŵθ(zt, c, t) is the result of adapting the pre-trained unconditional diffusion model v̂θ(zt, t)
with the conditional features hη(c).

4.2 CONDITIONAL DIFFUSION DISTILLATION

Our core idea is to optimize the adapted conditional diffusion model ŵθ(zt, c, t) from v̂θ(zt, t), so
(i) it satisfies the self-consistency property in equation 9, and (ii) it jointly learns to generate samples
from the conditional data. To motivate our approach, let us introduce the following general remark.

2The discussed unconditional models include text-conditioned image generation models, e.g., StableDiffu-
sion (Rombach et al., 2022) and Imagen (Saharia et al., 2022b), which are only conditioned on text prompts.
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Algorithm 1 Conditional Diffusion Distillation

Input: conditional data (x, c) ∼ pdata, adapted diffusion model ŵθ(zt, c, t) with parameters θ,
learning rate η, distance functions dε(·, ·) and dx(·, ·), and exponential moving average γ
θ− ← θ .target network initlization
repeat

Sample (x, c) ∼ pdata and t ∼ [∆t, T ] .empirically ∆t = 1
Sample ε ∼ N (0, I)
s← t−∆t
zt ← αtx + σtε
x̂t ← αtzt − σtŵθ(zt, c, t) .signal prediction in equation 7
ε̂t ← αtŵθ(zt, c, t) + σtzt .noise prediction in equation 7
ẑs ← αsx̂t + σsε̂t .update rule in equation 8
ε̂s ← αswθ−(ẑs, c, t) + σsẑs .noise prediction in equation 7
L(θ, θ−)← dε(ε̂t, ε̂s) + dx(x, x̂t) .the distillation loss in equation 11
θ ← θ − η∇θL(θ,θ−)
θ− ← stopgrad(γθ− + (1− γ)θ) .exponential moving average

until convergence

Remark 1. If a diffusion model, parameterized by v̂θ(zt, t), satisfies the self-consistency property
on the noise prediction ε̂θ(zt, t) = αtv̂θ(zt, t) + σtzt, then it also satisfies the self-consistency
property on the signal prediction x̂θ(zt, t) = αtzt − σtv̂θ(zt, t).

The proof is a direct consequence of change of variables from noise into signal and is given in
Appendix ??. Based on this general remark, we claim that we can optimize the conditional diffusion
model ŵθ(zt, c, t) to jointly learn to enforce the self-consistency property on the noise prediction
ε̂θ(zt, c, t) and the new conditional generation (x, c) ∼ pdata with the signal prediction x̂θ(zt, c, t).

To elaborate the distillation learning, we denote the latent variables zt as the randomly sampled
latent variable (equation 1), and ẑs is the predicted latent variable that belongs to the same trajectory
of zt in the PF ODE (equation 5), integrates the adapted conditional diffusion model ŵθ(zt, c, t)).
Inspired by Remark 1, we introduce the following training scheme.

Training scheme. Inspired by consistency models (Song et al., 2023), we use the exponential
moving averaged parameters θ− as the target network for stabilize training. Then, we seek to mini-
mize the following training loss for conditional distillation:

L(θ) := E[dε( ε̂θ− ( ẑs , s, c), ε̂θ (zt, t, c))) + dx(x, x̂θ (zt, t, c)], (11)
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Figure 2: The diagram illustrates the distillation pro-
cess of our proposed method. The green arrow denotes
the gradient of the back propagation during learning.

where dε(·, ·) and dx(·, ·) are two distance func-
tions to measure difference in the noise space
and in the signal space respectively. Note that
the total loss is a balance between the condi-
tional guidance given by dx, and the noise self-
consistency property given by dε.

The overall conditional distillation algorithm is
presented in Algorithm 1, and illustrated in Fig-
ure 2. In the following, we will detail how we
sample ẑs and discuss other relevant hyperpa-
rameters in our method (e.g., dx).

Prediction of ẑs. In the distillation process given by equation 11, the latent variable ẑs is achieved
by running one step of a numerical ODE solver. Consistency models (Song et al., 2023) solve
the ODE using the Euler solver, while progressive distillation (Salimans & Ho, 2022) and guided
distillation (Meng et al., 2023) run two steps using the DDIM sampler (equation 6).
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Figure 3: Sampled results between distilled models learned with alternative conditional guidance.
Left curves shows the quantitative performance between the LPIPS and FID in {1, 2, 4, 8} steps.
Right part show the visual results where each result comes from the 1 sampling step (top) or 4
sampling steps (bottom). The distance function from the left to right is ‖x − E(D(x̂θ(zt, c)))‖22,
‖D(x)− D(x̂θ(zt, c))‖22, Flpips(D(x),D(x̂θ(zt, c)), and our default ‖x− x̂θ(zt)‖22, respectively.

Here, we propose an alternative prediction for ẑs. Our prediction depends on the signal prediction
x̂θ(zt, c, t) from the adapted diffusion model, and the original random noise ε used when sampling
zt. We dubbed this partial real-value predictor (PREv-predictor), and as the reader may see, it
consists of replacing the noise prediction in the DDIM sampler (equation 6) by the real noise ε,

zt = αtx + σtε, ε ∼ N (0, I), and ẑs = αsx̂θ(zt, c, t) + σsε. (12)

Specifically, we first sample ε ∼ N (0, I) for generating zt, and then use the same noise ε in ẑs.

The generated ẑs not only depends on the conditional diffusion model prediction x̂θ(zt, c, t), but
also on the stochastic noise component. As we show in Figure 5, this leads to better performance
than directly using the prediction from DDIM (equation 6).

4.3 CONDITIONAL GUIDANCE

To finetune the adapted diffusion model with the new conditional data, our conditional diffusion
distillation loss in equation 11 penalizes the difference between the predicted signal x̂θ(zt, c, t) and
the corresponding image x with a distance function dx(·, ·) for distillation learning.

Here we investigate the impact of the distance function dx(·, ·) in the conditional guidance. Accord-
ing to both qualitative and quantitative results, shown in Figure 3, different distance functions lead
to different behaviours when doing multi-step sampling (inference). If dx = ‖ · ‖2 in the pixel space
or the encoded space, i.e., ‖x−E(D(x̂θ(zt, c, t)))‖22 and ‖D(x)−D(x̂θ(zt, c, t))‖22, multi-step sam-
pling leads to more smooth and blurry results. If instead we adopt a perceptual distance in the pixel
space, i.e., Flpips(D(x),D(x̂θ(zt, c, t))), the iterative refinement in the multi-step sampling leads
to over-saturated results. Overall, by default we adopted the `2 distance in the latent space since it
leads to better visual quality and achieve the optimal FID with 4 sampling steps in Figure 3.

4.4 PARAMETER-EFFICIENT CONDITIONAL DISTILLATION

Text

Noise

...
pretraining

Image

new conditional data 

...

zero-conv

zero-conv

Noise 

frozen target / online network diffusion latent variables attention layers

Signal 

Noise 

Signal 

Figure 4: Network architecture illustration of our
parameter-efficient conditional distillation framework.

Our method offers the flexibility to selectively
update parameters pertinent to distillation and
conditional finetuning, leaving the remaining
parameters frozen. This leads us to introduce a
new fashion of parameter-efficient conditional
distillation, aiming at unifying the distilla-
tion process across commonly-used parameter-
efficient diffusion model finetuning, including
ControlNet (Zhang & Agrawala, 2023), T2I-
Adapter (Mou et al., 2023), etc.

We highlight the ControlNet architecture illus-
trated in Figure 4 as an example. This model duplicates the encoder part of the denoising network,
highlighted in the green blocks, as the condition-related parameters. Similar to Algorithm 1, our
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Figure 5: Ablations between different alternative settings of our method, where each point corre-
sponds to the result under different sampling steps (i.e., {1, 2, 4, 8}).

distillation objective is to minimize the noise prediction, but instead, this prediction comes from the
combination of the frozen denoising network and the learnable conditional adapter.

5 EXPERIMENTS

We demonstrate the efficacy of our method on representative conditional generation tasks, including,
real-world super-resolution (Wang et al., 2022), depth-to-image generation (Zhang & Agrawala,
2023), and instructed image editing (Brooks et al., 2023). We utilize a pre-trained text-to-image
generation model3 and conduct conditional distillation directly from the unconditional model. Prior
to presenting our results, we first detail the ablations of each hyperparameter in our method.

5.1 ABLATIONS

Here we compare the performance of the aforementioned designs in our conditional distillation
framework. Specifically we focus on the representative conditional generation task i.e., real-world
super-resolution (Wang et al., 2022) that conditions on the low-resolution, noisy, blurry images.

Pretraining. To validate the effectiveness of leveraging pretraining in our model, we compare
the results of random initialization with initialization from the pre-trained text-to-image model. As
shown in Figure 5, our method outperforms the random initialized counterpart by a large margin,
thereby confirming that our strategy indeed utilizes the advantages of pretraining during distillation
instead of simply learning from scratch.

Sampling of zt. We empirically show that the way of sampling zt plays a crucial role in the
distillation learning process. Compared with the previous protocol (Salimans & Ho, 2022; Meng
et al., 2023) that samples zt in different time t in a single batch, we show that using a consistent time
t across different samples in a single batch leads to a better performance. As the comparisons shown
in Figure 5, the model trained with a single time t (in a single batch) achieves better performance in
both the visual quality (i.e., FID) and the accuracy (i.e., LPIPS) when the number of evaluations is
increasing during inference. As our joint-learning is challenging, we believe this simplified sampling
protocol helps to simplify the learning by learning on images in the same noise level.

Conditional guidance. In order to demonstrate the importance of our proposed conditional guid-
ance (CG) for distillation, which is claimed to be capable of regularizing the distillation process
during training, we conduct comparisons between the setting of using the conditional guidance as
r = ‖x − x̂θ(zt, c)‖22 and not using as r = 0. As the result shown in Figure 5, the conditional
guidance improves both the fidelity of the generated results and visual quality. We further observed
that the distillation process will converge toward over-saturated direction without CG, which thus
lower the FID metric. In contrast, our model can avoid such a local minimum because our learning
is lower bounded by the guidance loss, which can be seen as a typical diffusion loss.

3We base our work on a version of Latent Diffusion Model trained on internal data sources.
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lr StableSR (200 steps) LDM-SR (4 steps) GuidedDistill (4 steps) Ours (4 steps) LDM-SR (200 steps)

Figure 6: Visual comparisons of various diffusion-based methods and ours on the super-resolution
data that has noise, compression, and blur degraded images. Compared with the other methods, our
distilled model achieves the best visual quality by using less sampling time.

Prediction of ẑs. In order to demonstrate the effects of our proposed PREv-predictor that uses
the initial noise ε, we conduct comparisons between the deterministic predictor (i.e., equation 6)
used by previous distillation methods (Salimans & Ho, 2022), the adapted DDIM predictor in the
velocity model (Salimans & Ho, 2022), and ours. As shown in Figure 5, both the derived DDIM
with v-prediction and our proposed PREv-predictor benefit to the distillation, while the previous
DDIM predictor that solely depends on the pretrained model without using sampled noise ε fails
at the conditional distillation learning. Moreover, we empirically find that our PREv-predictor that
utilizes the sampled ε can achieve slightly better performance than the DDIM with v-prediction.

5.2 RESULTS

Method Params Steps FID LPIPS

Real-ESRGAN 16.6M 1 37.64 0.3112
StableSR 865M 200 24.44 0.3114

LDM-SR 1.22B 4 30.99 0.3070
DPM Solver 1.22B 4 30.12 0.3077
DPM Solver++ 1.22B 4 30.03 0.3073
CM 1.22B 4 30.63 0.3066
GD 1.22B 4 27.81 0.3172
Ours* 364M 4 25.21 0.2941
Ours 1.22B 4 19.64 0.2656
LDM-SR 1.22B 200 18.63 0.2551

Table 1: Quantitative performance com-
parisons on real-world super-resolution.

Real-world super-resolution. We demonstrate our
method on the challenging real-world super-resolution
task, where the degradation is simulated using the Real-
ESRGAN pipeline (Wang et al., 2021). We com-
pare our distilled model against the fine-tuned latent
diffusion-based model (LDM-SR) (Rombach et al., 2022)
with different sampling steps, and the distilled LDM
by using guided-distillation (GD) (Meng et al., 2023)
in a distillation-first fashion and consistency models
(CM) (Song et al., 2023) in a conditional finetuning-first
fashion. We alternatively compare the recent fast ODE
solver including DPM-Solver Lu et al. (2022a) and DPM-
Solver++ Lu et al. (2022b). Moreover, we also include
our parameter-efficient distillation, where only the conditional adapter is trained.

The quantitative performance is shown in Table 1. The results demonstrate that our distilled method
inherits the performance superiority from the pretraining. It even achieves better results than the fine-
tuned diffusion models that costs 50×more sampling time, which benefits from the joint distillation-
finetuning optimization. Compared with the distilled model by applying the guided-distillation, our
model outperforms it both quantitatively and in visual quality as shown in Figure 6.

Depth-to-image generation. In order to demonstrate the generality of our method on less informa-
tive conditions, we apply our method in depth-to-image generation. The task is usually conducted in
parameter-efficient diffusion model finetuning (Mou et al., 2023; Zhang & Agrawala, 2023), which
can demonstrate the capability of utilizing text-to-image generation priors. As Figure 7 illustrated,
our distilled model from the unconditional pretraining can effectively utilize the less informative
conditions and generate matched images with more details, while the fine-tuned model can hardly
generated reasonable results in the same sampling steps.

Instructed image editing. To demonstrate our conditional distillation capability on text-to-image
generation, here we apply our method on text-instructed image editing data (Brooks et al., 2023)
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(a) Depth (b) Naive ControlNet (4 steps) (c) Ours (4 steps)

Figure 7: Samples generated according to the depth image (left) from ControlNet sampled in 200
steps (middle left), ControlNet sampled in 4 steps (middle right), and our distilled ControlNet from
the unconditional pretraining sampled in 4 steps (right).

Input IP2P (200 steps) Ours-1

make it sunset

Input IP2P (200 steps) Ours (1 step)

make it long exposure
Input IP2P (200 steps) Ours (1 step)

make it low key

Input IP2P (200 steps) Ours (1 step)

make it sunny

Figure 8: Generated edited image according to the input image and the instruction (bottom) from
Instructed Pix2Pix (IP2P) sampled in 200 steps and ours sampled in 1 step.

and compare our conditional distilled model with the InstructPix2Pix (IP2P) model. As the results
shown in Figure 8, our single-step sampling result can achieve comparable visual quality to 200
steps of the IP2P model. We experimentally find only small visual difference between the results
from our single-step sampling and the 200 steps sampling. We believe this suggests that the effect
of the conditional guidance on distillation correlates with the similarity between the conditions and
the target data, further demonstrating the effectiveness of our conditional diffusion distillation.

6 CONCLUSION

We introduce a new framework for distilling an unconditional diffusion model into a conditional
one that allows sampling with very few steps. To the best of our knowledge, this is the first method
that distills the conditional diffusion model from the unconditional pretraining in a single stage.
Compared with previous two-stage distillation and finetuning techniques, our method leads to bet-
ter quality given the same number of (very few) sampling steps. Our method also enables a new
parameter-efficient distillation that allows different distilled models, trained for different tasks, to
share most of their parameters. Only a few additional parameters are needed for each different
conditional generation task. We believe the method can serve as a strong practical approach for
accelerating large-scale conditional diffusion models.

Limitations. We have shown image conditions benefit our distillation learning. However, the distil-
lation learning depends on the adapter architecture that takes conditions, and it is difficult to reduce
the inference latency introduced by the adapter network in our current framework. As a future
work, we would like to explore lightweight network architectures (Li et al., 2023) in our distillation
technique to further reduce the inference latency.

9
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Reproducibility statement. Our implementation can be reproduced according to the Algorithm 1.
In Section 5.1 and Section 4.3, we show the effects of using different hypereparameters, providing
references to the reader who wants to implement the method for customized applications.

Ethics statement. The diffusion distillation technique introduce in this work holds the promise of
significantly enhancing the practicality of diffusion models in everyday applications such as con-
sumer photography and artistic creation. While we are excited about the possibilities this model
offers, we are also acutely aware of the possible risks and challenges associated with its deployment.
Our model’s ability to generate realistic scenes could be misused for generating deceptive content.
We encourage the research community and practitioners to prioritize privacy-preserving practices
when using our method. Additionally, we recommend that readers refer to the work by Rostamzadeh
et al. (2021) for a thorough examination of ethics in generating visual content.
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