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Abstract

In view of training increasingly complex learning architectures, we establish a non-
smooth implicit function theorem with an operational calculus. Our result applies
to most practical problems (i.e., definable problems) provided that a nonsmooth
form of the classical invertibility condition is fulfilled. This approach allows for
formal subdifferentiation: for instance, replacing derivatives by Clarke Jacobians
in the usual differentiation formulas is fully justified for a wide class of nons-
mooth problems. Moreover this calculus is entirely compatible with algorithmic
differentiation (e.g., backpropagation). We provide several applications such as
training deep equilibrium networks, training neural nets with conic optimization
layers, or hyperparameter-tuning for nonsmooth Lasso-type models. To show
the sharpness of our assumptions, we present numerical experiments showcasing
the extremely pathological gradient dynamics one can encounter when applying
implicit algorithmic differentiation without any hypothesis.

1 Introduction

Differentiable programming. The recent introduction of deep equilibrium networks [7], the in-
creasing importance of bilevel programming (e.g., hyperparameter optimization) [48] and the ubiquity
of differentiable programming (e.g., TensorFlow [1], PyTorch [47], JAX [16]) in modern optimization
call for the development of a versatile theory of nonsmooth differentiation. Our focus is on nonsmooth
implicit differentiation. There are currently two practices lying at the crossroads of mathematics
and computer science: on the one hand the use of the standard smooth implicit function theorem
“almost everywhere” [31, 30] and on the other hand the development of algorithmic differentiation
tools [2, 3, 59]. The empirical use of the latter in the nonsmooth world has shown surprisingly
efficient results [59], but the current theories cannot explain this success. We bridge this gap by
providing nonsmooth implicit differentiation results and illustrating their impact on the training of
neural networks and hyperparameter optimization.

Backpropagation: a formal differentiation approach. Let us consider z implicitly defined
through F (z(x)) = h(x) where F and h have full domain and adequate dimensions. How does
autograd apply to evaluating the “derivative” of the implicitly defined function z? Regardless of
differentiability or nonsmoothness, and provided that inversion is possible, one commonly uses (or
dynamically approximates) this derivative by

(backpropF (z(x)))
−1

backprophx,
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where backprop outputs the result of formal backpropagation, see e.g., [50]. This identity1 is
used to provide efficient training despite the fact that the rules of classical nonsmooth calculus are
transgressed [7, 59]. Note that spurious outputs may be created by this approach, but on a negligible
set. Consider for example the simple implicit problem x = f(z(x)) where f(z) := tanh(z) +
relu(−z) + z − relu(z), whose solution is z(x) = tanhx. Yet applying the implicit differentiation
framework of [7] using JAX library, as presented in [59], provides inconsistency of the derivative
at the origin, see Figure 1. As mentioned above, despite these unpredictable outputs, propagating
derivatives leads to an undeniable efficiency. But can we parallel these propagation ideas with a
simple mathematical counterpart? Is there a rigorous theory backing up formal (sub)differentiation
or formal propagation? The answer is positive and was initiated in [14, 15] through conservative
Jacobians (see also [41, 24]).

A mathematical model for propagating derivatives. Conservative calculus models nonsmooth
algorithmic differentiation faithfully and allows for a sharp study of training methods in Deep
Learning [14, 15]. It involves a new class of derivatives, generalizing Clarke Jacobians [20]. A
distinctive feature of conservative calculus is that it is preserved by Jacobian multiplication. Consider
for example a feed forward network combining analytic or relu activations and max pooling. A
conservative Jacobian for this network can be obtained by using Clarke Jacobians formally as classical
Jacobians, regardless of qualification conditions, compared to other approaches, e.g. [37], for which
stricter qualification conditions are imposed to ensure that an element of the Clarke Jacobian itself
can be computed using algorithmic differentiation. For instance, Figure 1 depicts a selection in a
conservative Jacobian. This approach is general enough to handle spurious points such as in Figure
1 while keeping the essence of the properties one expects from a derivative. It was proved in [14]
that backprop, applied to any reasonable program of a function, is a conservative Jacobian for this
function; in contrast, backprop cannot be modelled by some subdifferential operator. For instance
for the fixed point problem above, given conservative Jacobians JF and Jh (e.g., Clarke Jacobians)
for F and h one obtains a new conservative Jacobian Jz implicitly defined through

JF (z(x))Jz(x) = Jh(x).

This property exactly parallels the idea of “propagating derivatives” in practice. It gives a strong
meaning to the formal use of Jacobians proposed in [7], and many empirical approaches [32, 2, 31, 30].

Main contributions:
— We establish a nonsmooth conservative implicit function theorem that comes with an implicit
calculus which is the central focus of this paper. Our calculus amounts somehow to formal subdiffer-
entiation with Clarke Jacobians. This approach cannot rely on classical tools like the inverse of a
Clarke Jacobian or a composition of Clarke Jacobians, which are not in general Clarke Jacobians.
Indeed, a surprising example (Example 1) shows that an “inverse function theorem with Clarke
calculus” is not possible.

— We study a wide range of applications of our implicit differentiation theorem, covering deep
equilibrium problems [7], conic optimization layers [2], and hyperparameter optimization for the
Lasso [9]. Each case is detailed and its specificities are discussed.

— As a consequence, we obtain convergence guarantees for mini-batched stochastic algorithms with
vanishing step size for training wide classes of Neural Nets, or for Lasso hyperparameter selection.
The assumptions needed for our results are mild and fulfilled by most losses occurring in ML in
the spirit of [15, 40]: elementary log-exp functions [15], semialgebraic functions [12], all being
subclasses of definable functions [23, 55]. The use of such structural classes has become standard in
nonsmooth optimization and is more and more common in ML (see, e.g., [18, 15, 40, 35]).

— As in the smooth implicit function theorem, the invertibility condition is not avoidable in general.
We provide various examples for which the assumption is not satisfied; this results in severe failures
for the corresponding gradient methods. In Figure 1, one sees how lack of invertibility on an otherwise
ordinary problem may provide totally unpredictable behavior for smooth quadratic optimization.

Related work on implicit differentiation: The classical implicit function theorem has two parts:
an existence and regularity part, and a calculus part, which is called implicit differentiation. Nons-

1The notation backpropz instead of backprop(z) is indicative of the fact that backprop is an operator that
does not act on functions themselves but rather on the program used to represent them, see [15].
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Figure 1: Left: Inconsistencies due to combination of implicit differentiation and algorithmic
differentiation. Right: A gradient trajectory of an implicitly defined quadratic function.

mooth generalizations have mostly focused on the existence part. We focus on Lipschitz equations,
for which existence of an implicit functional relation is due to [34], based on Clarke’s inverse mapping
theorem [19], all these elements being summarized in [20]. Various extensions of this result have
been proposed, let us mention a result in an approximation context in [36], a semismooth extension in
[52] and a tame extension in [29]; however, all these extensions lack a calculus amenable to implicit
differentiation in practice. There have been extensions of the nonsmooth implicit function theorem
with a calculus limited to directional derivatives and lexicographic derivatives (a sort of directional
derivative introduced in [45]) in [49, Corollary 3.4] and [38, Theorem 2.3], respectively; the former
requiring stronger assumptions than just the invertiblity condition. The limitation of the calculus
of these extensions to directional derivatives is furthermore incompatible with the most common
numerical libraries used for algorithmic differentiation in practice, as opposed to the framework we
present.

Definitions and Notations. A function F : Rn → Rm is locally Lipschitz if, for each x ∈ Rn,
there exists a neighborhood U of x such that F is Lipschitz on U . Given matrices A ∈ Rn×m and
B ∈ Rn×p, [A B] ∈ Rn×(m+p) denotes their concatenation; Idn denotes the n× n identity matrix.
For q ∈ Rn, diag (q) ∈ Rn×n denotes the diagonal matrix whose diagonal entries are given by
the qi; sign (q) ∈ {−1, 0, 1}n denotes the componentwise sign function. The convex hull of U is
denoted conv U . The projection onto a closed convex set C ∈ Rn is given, for each x ∈ Rn, by
PC (x) := argmin{ 1

2 ‖u− x‖
2

: u ∈ C}. Given a convex proper lower semicontinuous function
f : Rn → R∪{+∞}, we define its proximal operator through x ∈ Rn, proxf (x) := argmin{f (u)+
1
2 ‖u− x‖

2
u ∈ Rn}. Set-valued maps are denoted by ⇒, for example the subgradient ∂f : Rn ⇒

Rn. Additional details and notations are provided in Appendix A.

2 Implicit Differentiation with Conservative Jacobians

Definitions and conservativity. Conservative Jacobians are generalized forms of Jacobians well
suited for automatic differentiation, introduced in [14]. Given a locally Lipschitz continuous function
F : Rn → Rm, we say that JF : Rn ⇒ Rn×m is a conservative mapping or a conservative Jacobian
for F if JF has a closed graph, is locally bounded, and is nonempty with

d

dt
F (γ(t)) ∈ JF (γ(t))γ̇(t) a.e. (1)

whenever γ is an absolutely continuous curve in Rn. When m = 1, the corresponding vectors are
called conservative gradient fields. Note that when JF is conservative, so is its pointwise convexified
extension conv JF .

A locally Lipschitz function is called path differentiable if it has a conservative Jacobian. Recall that
the Clarke Jacobian is defined as

Jacc F (x) = conv

{
lim

k→+∞
JacF (xk) : xk ∈ diffF , xk −→

k→+∞
x

}
where diffF is the full measure set of points where F is differentiable and JacF is the standard
Jacobian of F . Path differentiability is equivalent to having a chain rule as in (1) for the Clarke
subdifferential, see [14, 25].
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Examples of path differentiable functions and conservative Jacobians. (a) Convex functions
and concave functions are path differentiable, see [14]. This implies that their subdifferential in the
sense of convex analysis is a conservative field.
(b) The vast class of definable functions are path differentiable [25, 14]. As a result, the Clarke
Jacobian of a Lipschitz definable mapping is a conservative Jacobian. Definable functions (see
[5, 25, 18, 14] for an optimization context and [23] for a foundational work) encompass semialge-
braic functions [12], elementary log-exp selection [14], PAP [40] (restricted to analytic functions
with full domain), and many others, see [55] and references therein. This includes networks with
common nonlinearities: for example analytic with full domain (e.g., square, exponential, logistic loss,
hyperbolic tangent, sigmoid), relu, max pooling, sort, (see Appendix A.2 for more detail).
(c) The backpropagation can be seen as an oracle (in the optimization sense) for a conservative Jaco-
bian. Let PF be a numerical program for a function F , aggregating elementary functions, for instance,
relu, max pooling, affine mappings, polynomials (in general, any definable function). Then the back-
propagation algorithm applied to PF , which we denote (abusively) by backpropPF := backpropF ,
outputs an element of a conservative Jacobian [14, Theorem 8] which depends on PF and can be
constructed by a closure procedure [15, definition 5]. As described in [15], due to spurious behaviors,
backpropF is not in general an element of the Clarke Jacobian of F .

The structure of conservative Jacobians. As established in [41] in a semialgebraic context, the
discrepancy between conservative gradients and Clarke subdifferentials is somehow negligible. Let
us provide a version of that result matching our concerns. We call conservative mappings of the null
function residual or residual conservative. Such a mapping R has the property that R(x+ tv)v = 0
for almost all t in R and all x, v in Rn × Rn. The following theorem and proposition (partially)
extend results from [14] and [41], their proof is given in Appendix B.

Theorem 1 (The Clarke Jacobian is a minimal conservative Jacobian) Given a nonempty open
subset U of Rn and F : U ⊂ Rn → Rm locally Lipschitz, let JF be a convex-valued conservative
Jacobian for F . Then for almost all x ∈ U , JF (x) = {JacF} and, for all x ∈ U , Jac cF (x) ⊂
JF (x).

Proposition 1 (Decomposition of conservative fields) Let JF be a conservative Jacobian for F ,
then there is a residual R such that

JF ⊂ Jac cF +R.

Note that the above may not hold with equality. Consider F (x) = |x| and JF (0) = [−1, 1] ∪ [2, 3],
JF (x) = sign (x) otherwise. One cannot write JF = Jac cF +R with a residual operator R.

Formal subdifferentiation in a nonsmooth setting. Propagating derivatives within a nonsmooth
function finds its justification in the following:

Proposition 2 (Stability by composition, [14]) Let F : Rn → Rm and G : Rm → Rl be two
locally path differentiable functions having respective conservative Jacobians JF and JG. Then
F ◦G is path differentiable and the point-to-set matrix-valued x⇒ JF (G(x))JG(x) is conservative.

A conservative Implicit Function Theorem. There is already a long tradition of nonsmooth
implicit function theorems, e.g., [20, 6, 49, 26]. What makes the following theorem useful is that it
comes with a qualification-free calculus. The proofs are given in Appendix B.

Theorem 2 (Implicit differentiation) Let F : Rn × Rm → Rm be path differentiable on U × V ⊂
Rn × Rm an open set and G : U → V a locally Lipschitz function such that, for each x ∈ U ,

F (x,G(x)) = 0. (2)

Furthermore, assume that for each x ∈ U , for each [A B] ∈ JF (x,G(x)), the matrix B is invertible
where JF is a conservative Jacobian for F . Then, G : U → V is path differentiable with conservative
Jacobian given, for each x ∈ U , by

JG : x⇒
{
−B−1A : [A B] ∈ JF (x,G(x))

}
.
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Corollary 1 (Path differentiable implicit function theorem) Let F : Rn × Rm → Rm be path
differentiable with conservative Jacobian JF . Let (x̂, ŷ) ∈ Rn × Rm be such that F (x̂, ŷ) = 0.
Assume that JF (x̂, ŷ) is convex and that, for each [A B] ∈ JF (x̂, ŷ), the matrix B is invertible. Then,
there exists an open neighborhood U × V ⊂ Rn × Rm of (x̂, ŷ) and a path differentiable function
G : U → V such that the conclusion of Theorem 2 holds.

Corollary 2 (Path differentiable inverse function theorem) Let U and V be open neighborhoods
of 0 in Rn and Φ : U → V path differentiable with Φ(0) = 0. Assume that Φ has a conservative Jaco-
bian JΦ such that JΦ(0) contains only invertible matrices. Then, locally, Φ has a path differentiable
inverse Ψ with a conservative Jacobian given by

JΨ(y) =
{
A−1 : A ∈ JΦ(Ψ(y))

}
.

Remark 1 (a) (On the necessity of conservativity) Example 1 in Appendix B shows that one
cannot hope for the formulas in Corollaries 1 & 2 to provide Clarke Jacobians in general, even if the
input(s) are Clarke Jacobians themselves. This example is bivariate and piece-wise linear, illustrating
that even in this simple situation, implicit differentiation fails and produces artifacts when formaly
applied to Clarke Jacobians.
(b) (Lipschitz definable implicit and inverse function theorems) See Theorem 4 and 5 in the
appendix

3 Nonsmooth implicit differentiation in Machine Learning

Detailed proof arguments for all considered models are given in Appendix C.

Monotone deep equilibrium networks. Deep Equilibrium Networks (DEQs) [7] are specific
neural network architectures including layers whose input-output relation is implicitly defined
through a fixed point equation of the form

z = f(z, x) (3)

where x ∈ Rp is a given input and z ∈ Rm is the corresponding output. We may consider
that the variable x represents both the input layer and layer parameters. Assuming that, for each
x ∈ Rp, there is a unique z ∈ Rm satisfying the relation (3), this defines an input-output relation
z : Rp → Rm. Furthermore, if f is path differentiable with convex-valued conservative Jacobian
Jf : Rm × Rp ⇒ Rm×(m+p) whose projection on the first m columns are all invertible, then the
function z itself admits a conservative Jacobian which can be computed from Theorem 2.

We now focus on monotone operator implicit layers [58] for which assumptions are easily stated. Our
method applies to other similar architectures, e.g., DEQs [7] or implicit graph neural networks [32].
Let σ : Rm → Rm be the proximal operator of a convex function and assume σ is path differentiable
with conservative Jacobian Jσ : Rm ⇒ Rm×m, assumed to be convex-valued. This encompasses
the majority of activation functions used in practice [21]. Let W ∈ Rm×m be a matrix such that
W +WT � 2θI with θ > 0. Under these assumptions the implicit equation

z = σ(Wz + b) (4)

has a unique output z(W, b) [58, Theorem 2]. The transformation (W, b) 7→ z(W, b) is a monotone
implicit layer.

The set-valued mapping obtained from Theorem 2 provides a conservative Jacobian for (W, z) 7→
z(W, z). A similar expression was described in [58, Theorem 2], without using conservativity and
using the Clarke Jacobian formally as a classical Jacobian. The proposition below provides a full
justification of this heuristic and ensures convergence of algorithmic differentiation based training.

Proposition 3 (Path differentiation through monotone layers) Assume that Jσ is convex-valued
and that, for all J ∈ Jσ(Wz(W, b) + b), the matrix (Idm − JW ) is invertible. Consider a loss-like
function ` : Rm → R with conservative gradient D` : Rm ⇒ Rm, then g : (W, z) 7→ `(z(W, b)) is
path differentiable and has a conservative gradient Dg defined through

Dg : (W, b) ⇒
{
JT (Idm − JW )−T vzT , JT (Idm − JW )−T v) : J ∈ Jσ(Wz + b), v ∈ D`(z)

}
.

Remark 2 Convexity and invertibility assumptions are satisfied when Jσ is the Clarke Jacobian [58].
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Optimization layers: the conic program case. Optimization layers in deep learning may take
many forms; we consider here those based on conic programming [17, 3, 2, 4]. We follow [3],
simplifying the analysis by ignoring infeasability certificates, which correspond to the absence of a
primal-dual solution [17], in line with the implementation described in [2, Appendix B]. Consider a
conic problem (P) and its dual (D):

(P) inf cTx
subject to Ax+ s = b

s ∈ K

(D) inf bT y
subject to AT y + c = 0

y ∈ K∗,
(5)

with primal variable x ∈ Rn, dual variable y ∈ Rm, and primal slack variable s ∈ Rm. The set
K ⊂ Rm is a nonempty closed convex cone and K∗ ⊂ Rm is its dual cone. The problem parameters
are the matrix A ∈ Rm×n and the vectors b ∈ Rm and c ∈ Rn; the cone K is fixed. Under the
assumption that there is a unique primal-dual solution (x, y, s), we study the path differentiability of
the solution mapping as a function of its parameters:

(A, b, c) 7→ sol(A, b, c) = (x, y, s).

For this, let us interpret the solution mapping as a composition mapping involving equation-like
implicit formulations. Set N = n+m, given A, b, c ∈ Rm×n × Rm × Rn, define

Q(A, b, c) =

[
0 AT

−A 0

]
∈ RN×N V (b, c) =

[
c
b

]
∈ RN .

Consider a vector z = (u, v) ∈ Rn × Rm, denote by Π the projection onto Rn ×K∗ and define the
residual map N : RN × Rm×n × Rm × Rn → RN as

N (z,A, b, c) = (Q(A, b, c)− IdN )Πz + V (b, c) + z.

The mapping N is a synthetic form of optimality measure for (P) and (D), capturing KKT conditions.
To simplify the presentation, we ignore the extreme cases of infeasibility and unboundedness which
correspond to an absence of solution in [17].

Define the function φ : RN → Rn × Rm × Rm through φ(u, v) := (u, PK∗(v), PK∗(v) − v). As
shown in Appendix C.2, φ(u, v) provides a primal-dual KKT solution of problems (P) and (D) if and
only ifN (z,A, b, c) = 0. When we assume that, for fixed A, b, and c, there is a unique z ∈ RN such
that N (z,A, b, c) = 0, we have an implicitly defined a function z = ν(A, b, c), such that

sol(A, b, c) = [φ ◦ ν] (A, b, c). (6)

The following result extends the discussion in [17, 3], limited to situations where Π is differentiable
at the proposed solution z, to a fully nonsmooth setting; its proof is postponed to Appendix C.2.

Proposition 4 (Path differentiation through cone programming layers) Assume that PK∗ , N
are path differentiable, denote respectively by JPK∗ , JN corresponding convex-valued conservative
Jacobians. Assume that, for allA, b, c ∈ Rm×n×Rm×Rn, z = ν(A, b, c) ∈ Rn×Rm is the unique
solution to N (z,A, b, c) = 0 and that all matrices formed from the N first columns of JN (z,A, b, c)
are invertible. Then, φ, ν, and sol are path differentiable functions with conservative Jacobians:

Jν(A, b, c) :=
{
−U−1V : [U V ] ∈ JN (ν(A, b, c), A, b, c)

}
,

Jφ(z) :=

[
Idn 0
0 JPK∗ (v)
0 (JPK∗ (v)− Idm)

]
,

Jsol(A, b, c) := Jφ(ν(A, b, c))Jν(A, b, c).

In practice, the path differentiability of conic projections is pervasive since they are generally
semialgebraic (orthant, second-order cone, PSD cone). See [33, 43, 39, 43] for the computations of
the corresponding Clarke Jacobians (which are conservative). Note that a conservative Jacobian for
N may be obtained from JPK∗ using Proposition 2.

6



Hyperparameter selection for Lasso type problems. Implicit differentiation can be used to tune
hyperparameters via first-order methods optimizing some measure of task performance, see [10]
and references therein. In a nonsmooth context, we recall the formulation in [9] of the general
hyperparameter optimization problem as a bi-level optimization problem:

min
λ∈Rm

C(β̂(λ)) such that β̂(λ) ∈ argmin
β∈Rp

ψ(β, λ)

where C : Rp → R is continuously differentiable (e.g., test loss) and ψ : Rp ×Rm → R is a possibly
nonsmooth training loss, convex in β, with hyperparameter λ ∈ Rm. We seek a subgradient type
method for this problem with convergence guaranties; our nonsmooth implicit differentiation results
can be used for this purpose. We demonstrate this approach on the Lasso problem [53]

β̂ (λ) ∈ argmin

{
1

2
‖y −Xβ‖22 + eλ ‖β‖1 : β ∈ Rp

}
(7)

where y ∈ Rn is the vector of observations, X = [X1, . . . , Xp] ∈ Rn×p is the design matrix with
columns Xj ∈ Rn, j ∈ {1, . . . p}, and λ ∈ R is the hyperparameter. Define F : R× Rp → Rp to be

F (λ, β) := β − proxeλ‖·‖1

(
β −XT (Xβ − y)

)
and recall that, for each i ∈ {1, . . . , p}, [proxeλ‖·‖1(β)]i = sign(βi) max{|βi|−eλ, 0}. The function

F (λ, β) is thus nonsmooth but locally Lipschitz on R× Rp. An optimal β̂(λ) for (7) must satisfy
F (λ, β̂(λ)) = 0 [22, Prop. 3.1]. For a given solution β̂(λ), we introduce the equicorrelation set by
E := {j ∈ {1, . . . , p} : |XT

j (y −Xβ̂(λ))| = eλ} which contains the support set supp β̂ := {i ∈
{1, . . . , p} : β̂i 6= 0}. In fact, E does not depend on the choice of the solution β̂, see [54, Lemma 1].
The proof of the following result is given in Appendix C.3.

Proposition 5 (Conservative Jacobian for the solution mapping) For all λ ∈ R, assume XT
E XE

is invertible where XE is the submatrix of X formed by taking the columns indexed by E . Then β̂(λ)
is single-valued, path differentiable with conservative Jacobian, Jβ̂ (λ), given for all λ as{[
−eλ

(
Idp − diag (q)

(
Idp −XTX

))−1
diag (q) sign

(
β̂ −XT

(
Xβ̂ − y

))]
: q ∈M(λ)

}
where M(λ) ⊂ Rp is the set of vectors q such that qi = 1 if i ∈ supp β̂, qi = 0 if i 6∈ E and
qi ∈ [0, 1] if i ∈ E \ supp β̂.

Taking, in Proposition 5, qi = 1 for all i ∈ E corresponds to the directional derivative given by LARS
algorithm [28], see also [42]. Alternatively, taking qi = 0 for i 6∈ supp β̂ gives the weak derivative
described by [9]. Both are particular selections in Jβ̂ , which is the underlying conservative field.

4 Optimizing implicit problems with gradient descent

We establish the convergence of gradient descent algorithms for compositional learning problems
involving implicitly defined functions. The result follows from the previous section and the general
convergence results of [15].

The minimization problem. The applications considered in the previous section all yield mini-
mization problems of the type

min
w∈Rp

`(w) :=
1

N

N∑
i=1

`i(w) with `i = gi,L ◦ gi,L−1 ◦ . . . ◦ gi,1 (8)

where, for each i ∈ {1, . . . , N}, `i : Rp → R is a composition of functions having appropriate input
and output dimensions. The indices i correspond in practice to learning samples while the loss `
embodies an empirical expectation, as for instance in deep learning. We will enforce the following
structural condition.
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Assumption 1 For i ∈ {1, . . . , N} and j ∈ {1, . . . , L}, the function gi,j is locally Lipschitz with
conservative Jacobian Ji,j and one of the following holds

• gi,j and Ji,j are semialgebraic (or, more generally, definable).

• gi,j is defined as G in Theorem 2, with F and JF semialgebraic (or, more generally, definable).

Actually, in Assumption 1 the second point implies the first point; we list both for clarity. More
details on semialgebraicity and definability are given in Appendix A.2. Let us stress that virtually all
elements entering the definition of neural networks are semialgebraic or, more generally, definable,
see for example [15] for a constructive model. In particular, beyond classical networks with usual
nonlinearities (e.g., relu, sigmoid, max pooling . . . ), this setting encompasses (through Corollary 1):

(a) Deep equilibrium networks: each gi,j may correspond to usual explicit layers or an implicit layer
involving a fixed point mapping and a learning sample i as in (4) or (3).

(b) Training with optimization layers: similarly, the inner maps gi,j may also be solution mapping to
convex conic programs and related to the sol function (6) of conic problems.

(c) One may assume that N = 1, L = 2 and retrieve the hyperparameter tuning for Lasso in its
implicit formulation.

SGD with backpropagation. Algorithmic differentiation (AD) is an automated application of the
chain rule of differential calculus. When applied to `i, it amounts to computing one element of the
product Ji :=

∏L
j=1 Ji,j by choosing one element in each Ji,j with appropriate inputs given by

intermediate results kept in memory during a forward computation of the composition.

In this context AD stochastic gradient descent requires an initial w0 ∈ Rp and a sequence of i.i.d.
random indices uniform in {1, . . . , N}, (Ik)k∈N. It gives:

wk+1 = wk − sαkvk (9)
vk ∈ JIk(wk), (given by backprop), (10)

where (αk)k∈N is a sequence of positive step sizes and s ∈ (smin, smax) is a scaling factor where
smax > smin > 0. A simpler choice could be vk ∈ ∂c`Ik(wk), however, the chain rule used within
algorithmic differentiation routines does not produce subgradients (see, e.g., Figure 1). In contrast,
conservative Jacobians are faithful models of AD outputs. The asymptotic behavior of the above
algorithm depends on the variational properties of the conservative Jacobian J := 1

N

∑N
i=1 Ji.

Theorem 3 (Convergence result) Consider minimizing ` given in (8) using algorithm (10) under
Assumption 1. Assume furthermore the following

• Step size:
∑+∞
k=1 αk = +∞ and αk = o(1/ log(k)).

• Boundedness: there exists M > 0, and K ⊂ Rp open and bounded, such that, for all
s ∈ (smin, smax) and w0 ∈ cl K, ‖wk‖ ≤M almost surely.

For almost all w0 ∈ K and s ∈ (smin, smax), the objective value `(wk) converges and all accumula-
tion points w̄ of wk are Clarke-critical in the sense that 0 ∈ ∂c`(w̄).

This result shows that AD SGD may be applied successfully to all problems described in Section 3,
combining algorithmic differentiation with implicit differentiation. Its proof may be adapted directly
from [14, 11]; details are given in Appendix D.

5 Numerical experiments

Using implicit differentiation when the invertibility condition in Theorem 2 does not hold can result
in absurd training dynamics.

A cyclic gradient dynamics via fixed-point/optimization layer. Consider the bilevel problem:
min
x,y,s

`(x, y, s) := (x− s1)2 + 4(y − s2)2 (11)

s.t. s ∈ s(x, y) := arg max {(a+ b)(−3x+ y + 2) : a ∈ [0, 3], b ∈ [0, 5]} .
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Problem (11) has an equivalent fixed-point formulation using projected gradient descent on the inner
problem (Appendix E.1.1). Backpropagation applied to (11) associates to (x, y) the following:

∇(x,y)`(x, y, s(x)) + J̃s(x, y)T∇s`(x, y, s(x)) (12)

where J̃s is piecewise derivative. We implement gradient descent for (11), evaluating (12) either
using cvxpylayers [2] or the JAX tutorial [59] for fixed-point layers. In both cases, the invertibility
condition in Theorem 2 fails when −3x+ y + 2 = 0, resulting in discontinuity of s, affecting the
dynamics globally: the gradient trajectory converges to a limit cycle of non critical points (Figure 2a);
see Appendix E.1 for details.

Persistence under small perturbations: For different initial points the gradient flow converges to the
same limit cycle (Figure 2a). The cycle persists even if we perturb the coefficients in the problem
(11) ( see Appendix E.1.2 for more details) .

(a) (b)

Figure 2: (a) Gradient flow for several initializations. (b) Gradient flow for 20 perturbed experiments
with σ2 = 0.4.

A Lorenz-like dynamics via implicit differentiation. The Lorenz Ordinary Differential Equation
(ODE) writes:

ẋ = σ(y − x), ẏ = x(ρ− z)− y, and ż = xy − βz. (13)
It is well-known that taking (σ, ρ, β) = (10, 28, 8/3), and (x(0), y(0), z(0)) = (0, 1, 1.05) gives a
chaotic trajectory, displayed in Figure 3a. Denoting F : (x, y, z) 7→ (σ(y−x), x(ρ−z)−y, xy−βz)
the vector field of the Lorenz system (13), consider the optimization problem:

max
u∈R3

uT z s.t. z ∈ arg min
s∈R3

‖s− F (u)‖4 (14)

which is obviously equivalent to
max
u∈R3

uTF (u). (15)

(a) (b) (c)

Figure 3: Implicit gradient ascent (b) outputs a pathological curve with some qualitative aspects of
the Lorenz dynamics (a) and really different from a classical gradient (c).
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The function g : u 7→ uTF (u) is a nondegenerate quadratic function whose expression can be found
in Appendix E.2.1. The function g has for unique critical point (0, 0, 0) which is a strict saddle-
point. We perform gradient ascent with implicit differentiation using cvxpylayers on (14), and the
classical gradient ascent on the equivalent problem (15). The path obtained by implicit differentiation
(Figure 3b) resembles the Lorenz attractor (Figure 3a), in stark contrast to the conventional method
(Figure 3c). The chaotic dynamics are a consequence of the lack of invertibility, due to the power 4
in (14), and various numerical approximations related to optimization and implicit differentiation.

6 Conclusion and future work

This article provides a rigorous framework and calculus rules for nonsmooth implicit differentiation
using the theory of conservative Jacobians. In particular, it describes precise conditions under which
implicit differentiation can be used, in a way that is compatible with backpropagation and first-order
algorithms.

We show the applicability of our results on practical machine learning problems including training of
neural networks involving layers with implicitly defined outputs (deep equilibrium nets, networks
with optimization layers) and nonsmooth hyperparameter optimization (Lasso-type models).

Finally, we demonstrate the necessity of a rigorous theory of nonsmooth implicit differentiation
through multiple numerical experiments. These illustrate the range of extremely pathological gradient
dynamics that can occur when algorithmic differentiation is combined with nonsmooth implicit
differentiation outside the scope of our theorem, i.e., without satisfying the invertibility condition we
specify.
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