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Abstract

Recently, diffusion models have gained popularity due to their impressive generative abilities.
These models learn the implicit distribution given by a training dataset, and sample new
data by transforming random noise through the reverse process, which can be thought of
as gradual denoising. In this work, to shed more light on the evolution of denoisers in
the reverse process, we examine the generation process as a “correlation machine”, where
random noise is repeatedly enhanced in correlation with the implicit given distribution. To
this end, we explore the linear case, where the optimal denoiser in the MSE sense is known
to be the PCA projection. This enables us to connect the theory of diffusion models to
the spiked covariance model, where the dependence of the denoiser on the noise level and
the amount of training data can be expressed analytically, in the rank-1 case. In a series
of numerical experiments, we extend this result to general low rank data, and show that
low frequencies emerge earlier in the generation process, where the denoising basis vectors
are more aligned to the true data with a rate depending on their eigenvalues. This model
allows us to show that the linear reverse process is a generalization of the prevalent power
iteration method, where the generated distribution is composed of several estimations of
the given covariance, in varying stages of convergence. Finally, we empirically demonstrate
the applicability of our findings beyond the linear case, in the Jacobians of deep, non-linear
denoisers, used in general image generation tasks.

1 Introduction

Recently, diffusion models have gained much popularity as very successful generative models, showcasing
impressive performance in image generation tasks (Dhariwal & Nichol, 2021; Ho et al., 2020; Song & Ermon,
2019; Song et al., 2021c). These models learn the implicit distribution given by a training dataset and sample
new data by transforming random noise inputs through a reverse diffusion process, which can be thought
of as gradual denoising. More formally, it has been shown in Kadkhodaie et al. (2024) that learning the
underlying distribution is equivalent to optimal denoising at all noise levels.

In order to shed more light onto the mechanism behind the success of diffusion models, in this work we
analyze the behavior of denoisers in the context of image generation, where pure noise is gradually processed
into a sample from a given (implicit) distribution by gradual denoising. Unlike other works, e.g. Kadkhodaie
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et al. (2024), we focus on the denoisers throughout the generation process, and not only on the final generated
data.

To this end, we suggest the following simple model to illustrate our point. Consider the class of linear denois-
ers, where the optimal denoiser in MSE sense has a closed-form solution. We explore two linear denoising
trajectories, corresponding to the DDPM (Ho et al., 2020) and DDIM (Song et al., 2021a) approaches of
sampling. To simulate the diffusion generation process, we learn a series of projections onto noisy data at
different noise levels, and use them to transform pure noise into samples from the underlying distribution.
Given this simple model we can inspect the evolution of eigenvectors spanning gradual projections with
decreasing noise levels, as well as the distribution of the generated data samples.

We show that the correlation of the noisy basis eigenvectors with their clean version decays as the noise level
increases, with a rate determined by the eigenvalues and the size of the training dataset. In other words,
we show that low frequencies, corresponding to large eigenvalues, emerge earlier in the reverse process, as
empirically observed in Ho et al. (2020), and analyze how more training data contribute to generalization
(Kadkhodaie et al., 2024). Analytically, this corresponds to the spiked covariance model (Johnstone, 2001),
in which we bound this decay to the leading eigenvector (corresponding to the largest eigenvalue).

Next, we demonstrate the applicability of our findings to more general, non-linear deep denoisers. Although
the network is not linear, its application can be written as a linear operation of the Jacobian calculated on
the input image. We empirically show that the aforementioned decay of eigenvector correlations is prevalent
also in the Jacobians of deep denoisers, in the final stages of image generation, thus showing the relevance
of our analysis in a broader context, and not just in a simplified linear case.

2 Background and Related Work

Since their introduction in Sohl-Dickstein et al. (2015), diffusion models have been vastly used in image
generation tasks (Dhariwal & Nichol, 2021; Ho et al., 2020; Song & Ermon, 2019; Song et al., 2021c), more
general computer vision tasks (Amit et al., 2021; Baranchuk et al., 2022; Brempong et al., 2022; Cai et al.,
2020), and in other domains such as natural language processing (Austin et al., 2021; Hoogeboom et al.,
2021; Li et al., 2022; Savinov et al., 2022; Yu et al., 2022) and temporal data modeling (Alcaraz & Strodthoff,
2023; Chen et al., 2021; Kong et al., 2021; Rasul et al., 2021; Tashiro et al., 2021). On top of their practical
success, different flavors of training and sampling have risen based on interesting theoretical reasoning, e.g.,
considering the statistical properties of the intermediate data (Song et al., 2021a; Sohl-Dickstein et al., 2015),
or by framing the problem in the form of stochastic differential equations (SDEs) (Karras et al., 2022; Song
et al., 2021b;c; Chen et al., 2024) or score based generative models (Song & Ermon, 2019; 2020). In this
work, we look at diffusion models in the context of iterative denoising, and focus on the properties of the
learned denoiser (Milanfar & Delbracio, 2024).

Recently, the work in Kadkhodaie et al. (2024) showed that the learned denoising functions are equivalent
to a shrinkage operation in a basis adapted to the underlying image. In this sense, the diffusion denoiser is
an adaptive filter (Milanfar, 2013; Talebi & Milanfar, 2014; 2016). While they focus on the analysis of the
nonlinear denoiser at the point of the final generated data, we are interested in the evolution (adaptation)
of the denoiser throughout the generation process, and its dependence on the noise level. To this end, we
suggest a simple linear denoising model, presented in Section 3. In this case, the (optimal) denoiser does
not depend on the underlying image, and its dependence on the noise level can be traced analytically, as we
show hereafter.

Due to their phenomenal empirical success, some attempts have been devoted towards providing theory
supporting the sample and iteration complexity of diffusion models. The current body of work can be
generally parted to attaining iteration complexity bounds assuming approximately accurate scores (Li et al.,
2024b;a; Chen et al., 2023b; Huang et al., 2024; Benton et al., 2024), and to assessing the sample complexity
to learn the score functions (Chen et al., 2023a; Block et al., 2020; Biroli & Mézard, 2023). Among these
works, many assume a low dimensional data distribution (Bortoli, 2022; Li & Yan, 2024; Oko et al., 2023;
Chen et al., 2023a; Wang et al., 2024), which is a reasonable assumption in practice (see e.g., Pope et al.
(2021)). Yet, it might particularly explain the gap between the current iteration bounds and the much lower
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complexity apparent in practice (Li & Yan, 2024). In our work, we consider linear models and deduce a linear
sample complexity bound associated with learning the score function in Sec. 4 and discuss the trade-offs
of the synthesis conversion rate in Sec. 4.1. The previous works mentioned above mainly develop bounds
assuming specific samplers and scaling details, which differ from our setting. In addition, they generally
bound the Total Variation distance (under varying assumptions on the target distributions), which is not
trivial to translate to the generated covariance matrix that we focus on even in the linear Gaussian case
(Devroye et al., 2018). The difference in our setting enables us to connect the theory of diffusion models to
a broad body of work concerning the spiked covariance model (Johnstone, 2001), and supports the analysis
of denoising diffusion as a correlation machine, which is the main purpose of this paper.

In the setting of Statistical Mechanics, the work in Biroli & Mézard (2023) analyzes diffusion models in very
large dimensions, focusing on the Curie-Weiss model of ferromagnetism. As an introduction to their work,
they also discuss a simple linear score model, in the context of the sample complexity of learning the score
function. They focus their discussion on the case of Gaussian data, where the eigenvalues of the covariance
matrices can be typically characterized. Relatedly, the work in Wang & Vastola (2024) recently showed
that the learned neural score is dominated by its Gaussian approximation for moderate to high noise scales,
and supply both theoretical and empirical arguments to support this claim. Compared to these works, we
consider data that reside in a low dimensional subspace, with no specific distribution, described in Sec. 4.
We limit the denoiser to be linear and focus on two stochastic sampling trajectories, which give rise to the
spiked covariance model.

Power iteration is a fundamental algorithm for approximating the dominant eigenvalue and eigenvector of
a matrix. It relies on iteratively multiplying an initial vector by the matrix, where its convergence rate
is proportional to the ratio of the largest and second-largest eigenvalues. The method’s simplicity and
scalability have made it a cornerstone in various fields, including numerical linear algebra, machine learning,
and graph theory. For the ease of reading, we include a formal presentation of the method and discuss its
convergence in Appendix A. In this work, we shall show how a linear denoising chain converges in mean to
the celebrated power iteration method.

3 Linear Diffusion - Problem Setup

For our analysis, we define the following simple iterative linear generation model. First, define the standard
diffusion model. Let qD denote the natural data distribution and let x0 ∼ qD be a sample from the natural
data (x0 ∈ Rd). The forward (diffusion) process is defined (Ho et al., 2020) by

q(xt|xt−1) = N (
√

1− βtxt−1, βtI) (1)

for some fixed noise schedule {βt}T
t=1 and x0 ∼ qD. It can be shown that

q(xt|x0) = N (
√

ᾱtx0, (1− ᾱt)I), (2)

where αt = 1 − βt and ᾱt = Πt
s=1αs. The reverse (generation) process is defined using a parameterized

distribution model pθ, generally defined by the Markov process

pθ(x0:T ) = p(xT )ΠT
t=1pθ(xt−1|xt), (3)

pθ(xt−1|xt) ≜ N (µθ(xt, t), Σθ(xt, t)), (4)

where p(xT ) = N (0, I). By choices of parametrization and loss manipulations (see (Ho et al., 2020)), one
generally learns to estimate the error ϵθ(xt, t), where

µθ(xt, t) = 1
√

αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)

, (5)

Σθ(xt, t) = e2
t I, and et is a designed schedule. Thus, the reverse process can be expressed as a denoising

chain
Dt(xt) = 1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)

+ etz, (6)
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where z ∼ N (0, I) and z1 = 0. This is a stochastic denoiser which preserves the Markovian property of the
forward process. Later versions suggested similar (non-Markovian) deterministic denoisers, e.g., DDIM (Song
et al., 2021a), or more general stochastic denoiser chains, for a continuous forward model (InDI (Delbracio
& Milanfar, 2023)).

Now, we turn to define our linear setting within the diffusion context. For our simplified model, consider
the process (without scaling),

q(xt|xt−1) = N (xt−1, σ2
t I). (7)

This implies that xt = xt−1 + ϵσt , where ϵσt ∼ N (0, σ2
t I) for some fixed noise schedule {σt}T

t=1. We discard
the scaling to comply with previous analysis of the spiked covariance model (Nadler, 2008) (more details
in Section 4). This corresponds to the "Exploding Variance" formulation, used with Langevin dynamics to
sample data as a variant of score based diffusion models (Song & Ermon, 2019; Song et al., 2021c; Song &
Ermon, 2020). We choose to present the "standard" diffusion models in the setting of denoising diffusion (Ho
et al., 2020) and not using the score-based approach entirely, as we focus our discussion on the qualities of
the denoiser. In our case, we restrict the denoisers to be a linear function of xt. For the reverse process, we
shall now define two linear denoising trajectories, corresponding to different approaches of diffusion models.

Recall that at each time step xt = xt−1 +ϵσt , where ϵσt ∼ N (0, σ2
t I) (Equation 7). Since the noise is assumed

to be Gaussian, we can write xt = x0 + ϵσ̄t , where

σ̄t =

√√√√ t∑
i=0

σ2
i , (8)

where ϵσ̄t
∼ N (0, σ̄2

t I), i.e., σ̄t is the accumulated noise at time t. Let Σt be the covariance of the noisy data
at time t,

Σt = Ex0x†
0 + σ̄2

t I ≜ Σ0 + σ̄2
t I. (9)

Considering an intermediate denoising step from t + 1 → t, the optimal linear denoiser D∗
t+1→t in the ℓ2

sense is the minimizer of the loss

ℓt+1→t = Ext,ϵσt+1
∥Dt+1→t(xt + ϵσt+1)− xt∥2

2 , (10)

given by
D∗

t+1→t = (Σt + σ2
t+1I)−1Σt (11)

(full derivation in Appendix D). Notice, that in the limit of diminishing σt,

D∗
t+1→t = Ut


λ0

λ0+σ2
t+1

. . .
λr−1

λr−1+σ2
t+1

U†
t →

σt+1→0
UtU

†
t ≜ Dt

PCA, (12)

where Ut is the diagonalizing basis of Σt with the time dependent spectrum {λi}, where we omit an explicit
temporal dependency in the notation for brevity (more on that in Sec. 4). Our sampling process is based on
the sequential application of Dt

PCA, which is the projection on perturbed principal components with respect
to the clean data distribution, followed by the addition of noise with variance σt. This generation path is
in the spirit of (Ho et al., 2020), with its gradual temporal denoising. However, Dt

P CA is a deterministic
denoiser given the sampling of training data and noise, which does not depend either on xt or on x0. In
Section 4, we analyze the change in the finite sample approximation of Dt

P CA over time, to study its evolution
along the generation trajectory.

Given a similar ℓ2 loss (to Equation 10), an alternative denoising chain can use multiple estimations of x0,
in the essence of Song et al. (2021a). The corresponding loss is thus

ℓt→0 = Ext,ϵσ̄t
∥Dt→0(x0 + ϵσ̄t)− x0∥2

2 , (13)
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Figure 1: Digit generation from pure noise (class conditioned). The reverse process runs from left to right.

where σ̄t is the overall added noise (defined in Equation 8). The adequate denoising chain in this case is the
application of D∗

t→0 to estimate x0, followed by the addition of noise with the appropriate variance σ̄2
t−1,

before the iterative application of D∗
t−1→0. In this case, the optimal denoiser is given by

D∗
t→0 = (Σ0 + σ̄2

t I)−1Σ0. (14)

Despite the different approaches the two paths represent, their resulting denoising chains exhibit similar
properties - in both cases, the appearance of frequencies in the generated images is gradual, where low
frequencies are first to emerge.

Empirical Demonstration of a Linear Diffusion Model. To illustrate the forward and backward
processes in the linear case, we perform a numerical simulation using the MNIST dataset, which is simple
enough to be estimated via a linear model. We start here with the training and generation procedures, and
use the same setting and trained denoisers to demonstrate our findings throughout the paper.

In the following experiment we simulate the process described above using the MNIST dataset (we use the
default train / test splits). In the class conditioned case, we learn a (finite sample approximation of a) PCA
denoiser with 30 components for each time step where xt = xt−1 + ϵσt , σt ∝ t, and T = 65 iterations.
Figure 1 shows a (decimated) example of digit generation from pure noise, where we apply the sequence of
(finite sample approximation of) denoisers Dt

P CA. In order to understand the reverse process, we now turn
to analyze the gradual change in the denoisers, that might be expressed by the angle between the clean and
noisy components over time.

Notations. We use At to denote the matrix A at time t, and at
i to denote the ith column of At.

4 Linear Diffusion as Basis Perturbation

We now turn to analyze the linear model presented above and show how the generation process can be
seen as a kernel “correlation machine”. Specifically, we are interested in the temporal (i.e., noise level)
dependence of the finite sample approximation of Dt

P CA throughout the generation process. Assume that
the data distribution is such that its population covariance is given by

Σ0 = Ex0x†
0 =

r−1∑
i=0

λ2
i uiu

†
i , (15)

where r−1 < d, i.e., the data reside in a low dimensional subspace (which is generally true for natural data).
Thus, the population covariance at time t is given by

Σt =
r−1∑
i=0

λ2
i uiu

†
i + σ̄2

t I. (16)

This data model is known as the “spiked model” (Johnstone, 2001), with a vast body of work covering the
distribution and identifiability of the spikes spectrum (e.g., (Nadler, 2008); for more information, please see
Appendix B). Throughout the paper, we use the term "index" to refer to to the index i in Equation 16, where
the eigenvalues λi are ordered largest to smallest.

Given n samples concatenated as columns in the matrix X0 and n noise vectors in the columns of Eσ̄t , at
each time step we learn the PCA basis associated with Xt = X0 + Eσ̄t

, by the diagonalization of the sample
covariate matrix

Σ̂t = 1
n

XtX
†
t = 1

n
(X0X†

0 + X0E†
σ̄t

+ Eσ̄t
X†

0 + Eσ̄t
E†

σ̄t
) ≜ ÛtŜtÛ

†
t . (17)

5



Published in Transactions on Machine Learning Research (10/2025)

Figure 2: The sine of the angle between the clean principal components and their noisy versions, colored
by the order of the eigenvalues (the darkest being largest eigenvalue). Low frequencies emerge earlier in the
generation process (at higher noise levels). This motivates Assumption 4.1, that extends Equation 19 to
higher ranks.

Thus, during the reverse process, at each time step we apply the projection

Pt ≜ ÛtÛ
†
t . (18)

In order to understand the generation process, we analyze the decay of the product ⟨ût
i, ui⟩ over time, where

ût
i is the ith column of Ût. Note, that there are two drivers of change in the perturbation of ui to ût

i. The
first being the added noise, i.e., ∥Σt − Σ0∥. This is the key in the diffusion process and our main focus. The
second, is in the finite sample approximation

∥∥∥Σ̂t − Σt

∥∥∥. This source of error is interesting in the context
of sample complexity, as it encompasses the approximation of the denoiser learned from a finite dataset,
the equivalent of the sample complexity of learning the score function (Chen et al., 2023a; Block et al.,
2020; Biroli & Mézard, 2023). For the rank-1 case, Nadler (2008) presented a finite sample theorem which
holds with high probability for the closeness between the leading eigenvalue and eigenvector of sample and
population PCA under a spiked covariance model similar to Equation 16. They bound the angle between the
leading empirical eigenvector and its population counterpart with approximately O(d) sample complexity,
and a linear dependence on the noise level. Their bound can be approximately expressed by

E sin θPCA = E
√

1− ⟨ût, u⟩2 ≈ σ̄t

λ

√
d

n
, (19)

where σ̄t is assumed to be small and d ≫ 1 (for the full derivation, please see Appendix E). This result
shows that the leading eigenvector rotates at a rate proportional to the noise level. Our experiments on the
MNIST dataset (detailed in Section 4.1) show that this is a good approximation in practice, also for the
rank-r case (Fig. 2). We chose to only consider the leading part of the bound in Nadler (2008), as it captures
its essence while significantly simplifying the writing. This approximation is justified since it was also shown
to be sharp (Nadler, 2008, Corollary 1), and empirically by our simulations (and specifically by Fig. 2).

Notice that in Equation 19 the angle is inversely linked to the eigenvalue, inferring a slower change with
higher eigenvalues. In the reverse process, we gradually move from pure noise or high noise levels to smaller
noise variance. Given the lower slope of the components corresponding to larger eigenvalues, we interpret the
result in Fig. 2 as the earlier emergence of low frequencies in the generation process. The first component
to be visible in the generated image is the one with the largest eigenvector, as it is the first one that shows
a correlation in high noise levels. Throughout the generation process, when the noise level decreases, the
next components take presence, by the order of their associated eigenvalue - from the larger to the smaller.
Finally, the components with the smallest eigenvalues appear when the noise level is low. In other words,
we show that low frequencies, corresponding to large eigenvalues, emerge earlier in the reverse process, as
empirically observed in Ho et al. (2020). This phenomenon resonates with recent findings in the context of

6



Published in Transactions on Machine Learning Research (10/2025)

exposure bias (Li et al., 2024c; Ning et al., 2023), who describe the diffusion process as inherently two-staged:
initially pushing samples toward the data manifold, then committing to individual modes. For more context
regarding the connection between the principal component index and frequency, please see Appendix C.

In the linear case, Equation 19 shows that the diffusion model’s sample complexity is determined by the
sample complexity of PCA, with a linear dependence on the dimension of the data. To further enhance
our understanding of the relationship between the amount of training data and generalization, we repeat
the experiment with varying datasets sizes. Figure 3 shows the angle to noise profile for selected principal
components, with the indices 0, 5, 10 (left to right; index 0 corresponds to the largest in a list of ordered
eigenvalues, that was covered by the result in Nadler (2008)). Increasing the amount of training data
improves robustness to noise and enables the emergence of higher frequency components at higher noise
levels, thereby capturing more nuances in the generated data. Thus, the two right plots in Fig. 3 show that
the data behavior in Equation 19 is a good approximation also in higher indices.

Figure 3: Effect of dataset size. The plots show sin θPCA at different noise levels when trained on datasets
with increasing size (lighter color). Each plot is of a different component index, for indices 0, 5, 10 (left to
right; index 0 corresponds to the largest eigenvalue). Increasing the amount of training data improves the
robustness to noise, and allows the appearance of high frequencies at higher noise levels, hence capturing
more data nuances in the generated data and better generalization.

4.1 The Generated Distribution

We now turn to discuss the distribution of the generated output, and how it relates to the natural data
distribution. We shall start from the first sampling path, considering the PCA based denoising (Equation 18),
and then describe the second generation trajectory, using estimations of x0 (Equation 14).

Given our linear model, the generated output is given by

x̂ = ΣT
t=0Πt

τ=0Pτ ξt = P0 · · ·PT ξT + · · ·+ P0ξ0 (20)

for ξt ∼ N (0, σt). For the ease of writing, define Pt = Πt
τ=0Pτ , and so x̂ = ΣT

t=0Ptξt.

Other than the visual aesthetic of the generated images, we are interested in their distribution, and how
well it represents the natural distribution of training images. Thus, we would like to compare the generated
covariance Ex̂x̂† to the natural covariance Σ0. We start our analysis by focusing on the first summand
comprising x̂,

x̂T = PT ξT . (21)

In this context, a natural comparison is the power iteration (PI) method, which may be used to estimate the
leading eigenvector of a matrix. This can be seen as another iterative form of generating data from random
vectors. Unlike our projection, in PI we "project" a random vector onto the entire matrix, i.e. including the
eigenvalues. In this case the denoiser would be Dt

P I = Σ0∀t, where we ignore the normalization and focus
on the direction of the final vector, since there is no normalization constraint for generated data in diffusion
models.
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u

ût+1

ût

1− σ̄2
t

λ
d
n

θt

θt+1

Figure 4: Schematic illustration of the basis perturbation, per index.

We now turn to show how the reverse process performed by a repeated denoising as in Equation 21 converges
in mean to PI. To this end, we make the following assumptions, that are expansions of the result 19 from
Nadler (2008) to the rank-r case. The first describes the correlations of the same index with its noisy versions,
and the second describes the cross index correlations (that are relevant due to the noise in the finite sample).
Assumption 4.1. Assume that Equation 19 holds for all eigenvectors, i.e.,

E
√

1− ⟨ût
i, ui⟩2 ≈

σ̄t

λi

√
d

n
, (22)

for i = 0, . . . , r − 1.

This assumption is the extension of Equation 19 to higher ranks, and is motivated by our simulations (Fig.
2). In addition, we make the following assumption regarding the cross products of components of different
indices, at consecutive time steps.
Assumption 4.2. For each index i there exists a time τi, where for t ≤ τi and j ≤ i,

E⟨ût
i, ût+1

j ⟩ = 0. (23)

In addition, τi > τj for i < j.

This assumption is a supported by our simulations in Fig. 5, and will be further discussed hereafter.
Assumptions 4.1, 4.2, are an extension of Nadler (2008) to higher ranks. We leave their explicit derivation
to future work, and focus on their implications to linear diffusion.

We are now ready to state our main result.
Theorem 4.3 (Convergence to Power Iteration). Let σt = 1

T , t = 0, . . . , T . Assuming 4.1, 4.2, in the limit
T →∞,

Ex̂T x̂†
T ∝ û0û†

0, (24)

where x̂T = PT ξT , as defined in Equation 21.

Proof. Let us analyze the product in Equation 21 to show how it relates to the power method. The linear
operator representing the reverse process can be written as

PT = Û0ΠT −1
t=0 (Û†

t Ût+1)Û†
T . (25)

The matrix product Û†
t Ût+1 can be analyzed using the extension of Equation 19 to higher ranks. Given 4.1,

the expected inner product with the natural population data component ui is given by

E⟨ût
i, ui⟩ ≈ 1− σ̄2

t

λ2
i

d

n
. (26)

The evolution of this product over time is depicted in Figure 4. We are interested in the projection of ût+1
onto ût, which is the cosine of the angle ∆θ = θt+1 − θt. This angle is tractable for small noise levels, so we

8



Published in Transactions on Machine Learning Research (10/2025)

divide our analysis to two parts: 0 ≤ t ≤ τ and τ ≤ t ≤ T , where the choice of τ will soon be motivated. In
addition, we assume adequate sample complexity, such that E⟨ût

i, ut
i⟩ ≈ 0.

First, we inspect the limit of t→ 0 (0 ≤ t ≤ τ). For small angles, we can write

∆θ = arccos
(

1−
σ̄2

t+1
λ2

d

n

)
− arccos

(
1− σ̄2

t

λ2
d

n

)
≈ d

λ2n
(σ̄2

t+1 − σ̄2
t ) =

σ2
t+1d

λ2n
, (27)

since arccos θ ≈ π
2 − θ and σ̄2

t =
∑t

τ=0 σ2
τ . The diagonal elements in U†

t Ut+1 are then given by

E⟨ût
i, ût+1

i ⟩ ≈ cos
σ2

t+1d

λ2
i n

, (28)

where the off-diagonal elements are negligible, since
E⟨ût

i, ût+1
j ⟩ ≈ E⟨ût

i, ût
j⟩ = 0, (29)

which holds for t ≤ τr−1 by Assumption 4.2. Notice, that in small angles, ⟨ût
i−ût+1

i , u⟩ = (σ2
t+1d)/(λ2n)→ 0,

so the vectors ût
i are co planar, as depicted in Figure 4. Thus, the time point basis correlations Û†

t Ût+1 form
an approximately diagonal matrix with the fraction ci ≜ cos σ2

t+1d

λ2
i
n

on the diagonal, where ci > cj for i < j.
We eliminate the dependence of ci on t by choosing the constant schedule σt = 1/T ∀t, to simplify the
proof. However, many schedules can be used, as long as ci,t > cj,t remains correct. Define the partial linear
diffusion operator until time τ by EPτ = Πτ

t=0Pt. Then

EPτ = Û0

cτ
0

. . .
cτ

r−1

 Û†
τ = Û0cτ

0

1 (
c1
c0

)τ

. . .

 Û†
τ →

τ→T
Û0

cτ
0

0
. . .

 Û†
τ , (30)

where the diagonal elements decay as τ grows larger, since ci > cj for i < j. Similarly to power iteration, the
convergence rate depends on the ratio c1/c0. The convergence rate might not be fast enough for the process
to converge while the small angles approximation still holds. Thus, we continue with the second phase of
our analysis, showing the convergence of the full reverse process.

We now turn to analyze the phase where τ ≤ t ≤ T . In high noise levels, the correlation with the natural
basis is low, and the products Û†

t Ût+1 are not exactly diagonal. However, the correlation "leaks" to a close
neighborhood of the original component and the temporal products are still somewhat concentrated around
their diagonal. This process happens in accordance with Equation 4.1, where the spreading of the diagonal
elements happens for high indices in lower values of t (less noise is needed to spread the correlation). This
leads us to Assumption 4.2, claiming that for each index i there exists a time τi after which the small angle
approximation does not hold; τi > τj for i < j. This is apparent in practice, and depicted in 5 (left image
per duo). However, given the decaying diagonal structure of the partial operator Pτ , we will now show that
4.2 is sufficient for the total operator to converge as desired.

Suppose we added one more matrix multiplication to our former analysis, i.e. observe

EPτ Ûτ+1 = Û0cτ
0

1 (
c1
c0

)τ

. . .

 Û†
τ Ûτ+1. (31)

Assumption 4.2 guarantees Û†
τ Ûτ+1 is diagonal just enough not to spoil the diagonality of the next partial

operator EPτ+1. To see this, let us inspect some intermediate index i, where the entries in j > i are already
practically zero. Thus, we have

EPτi
Ûτi+1 = Û0cτi+1

0


1

. . . (
ci

c0

)τi

O


︸ ︷︷ ︸

≜Cτi


1

. . .
ci

c0
A

 = Û0cτi+1
0


1

. . . (
ci

c0

)τi+1

O


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Figure 5: The time point basis correlation matrices Û†
τ Ûτ+1 (left per pair), together with the partial product

Πτ
t=0(Û†

t Ût+1) (right per pair) at different time points. This justifies Assumption 4.2, and shows that the
total projection (bottom right image, for τ = T ) converges to the first eigenvector, similarly to the power
method.

where O is a block of zeros and A is a block matrix the same size as O, that can have nonzero entries,
by Assumption 4.2. Since the elements of the partial product Cτi

decay faster with i than any single
product Û†

τi
Ûτi+1, Cτi+1 is also diagonal. Overall, the final product is a diagonal matrix with a spectrum

that converges to be concentrated around the first eigenvalue, where we can control the distribution of the
generated data by the choice of the diffusion parameters. Figure 5 shows our simulation of the process,
where Û†

τ Ûτ+1 (the left in each duo) is approximately diagonal until a certain index, and the total product
(right in each duo) is also approximately diagonal (with less indices than its counterpart). This supports
both assumption 4.2 and the result stated by this theorem.

Thus, the generated output is a combination of a (purely) noisy image that was repeatedly correlated to
converge to v0 (as shown above), with generally lower noise levels that are "lightly" correlated, although to
the cleaner projection operators. The generated output can thus be seen as a combination of three conceptual
parts, with a different balance of the noise level and the portrayed components.

The first eigenvector The first part of the sum in Equation 20 is P0 · · ·PT ξT , the estimation of the
eigenvector with the largest eigenvalue, as shown above theoretically in Equation 30 and empirically in the
rightmost matrix in Fig. 5. The "strongest" noise is repeatedly correlated to be concentrated around the
first eigenvector.

The entire (clean) spectrum The last part in Equation 20 is P0ξ0, a weak noise level that is spread
across all components. This noise is very lightly and not repeatedly correlated, although to a clean version
of the natural data basis.

In between The third part consists of all the intermediate products Πt
τ=0Pτ ξt. The product operators

Πt
τ=0Pτ preserve varying parts of the natural spectrum, according to t - as t grows, the total projection tends

to retain only the components associated with larger eigenvalues. This can be seen in Fig. 5. The right
matrix in each pair shows the product Πt

τ=0Pτ for varying values of t. The total projections range from the
entire spectrum (left) to only the leading eigenvalue (right). In between, the products are diagonal matrices
where the entries in the indices of the smaller eigenvalues have already diminished, in a similar way to the
convergence described in Equation 30.

Thus, we get a combination of a solid estimation of the leading eigenvector, together with a more uniform
and week sampling of the components with low eigenvalues in the natural data basis. In between, the
intermediate projections are at different levels of convergence to the leading eigenvector, hence tend to be
more concentrated on components with large eigenvalues as t → T . The freedom in choice of schedule
{ξt}T

t=0, allows control of the spread of the final distribution on the natural data components.

The sample trajectory we consider in Equation 20 is stochastic. However, our analysis also covers a deter-
ministic sampling path, where the denoisers are repeatedly applied, with no added noise. This deterministic
sampling is in fact portrayed by the first summand in the generated output Equation 20, which we show to
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converge in mean to the first eigenvector, similarly to the power iteration. Under the limitation of the linear
model, this also implies that this deterministic sampling is insufficient to capture the training data.

Figure 6: The empirical distribution of generated images over the natural principal components, with (mid-
dle) and without (left) injected noise. On the right - the best configuration with the generated standard
deviation (see Sec. 4.1).

To inspect this, we plot the empirical distribution of generated images over the clean PCs, given by

pi = 1
n

n∑
j=1

|⟨ûi, x̂j⟩|
∥x̂j∥2

, (32)

where ûi is the clean principal component with index i (defined in Equation 16) and x̂j is a generated
sample, out of n examples. Figure 6 shows the empirical distribution of generated images over the clean
principal components. On the left, we plot the distribution without injected noise (i.e., x̂ = PT ξ), for
various values of T . As we show above, the distribution tends to be concentrated on the first eigenvector
as T increases. The center plot shows the distribution of the process including the injected noise in the
intermediate denoising steps. While in the low indices the dominant behavior is similar to the former case,
the higher orders do not converge to zero and maintain their presence in the generated distribution. We
note, that more sophisticated nonlinear deterministic samplers might not require the injection of noise in
order to converge to the natural data distribution (e.g. (Lu et al., 2022)). However, given a linear model, it
is natural to accept added stochasticity in the lack of nonlinearity (more on that in Section 5). On the right,
we picked the best configuration (T = 65 in this case) to approximate the natural distribution. Notice, that
the final generated distribution depends on the choice of parameters, where one can control the mean of the
generated spectrum (this might be a feature for some applications, such as segmentation via diffusion, etc.).
It might be interesting to derive the optimal parametrization for the convergence of the linear model - we
leave this for future work. In addition to the convergence in mean, we included the standard deviation of
the natural and generated samples, resulting in a decent fit to the target distribution.

The form of projection in Equation 32 can also help illustrate the appearance of higher frequencies during
(stochastic) sampling. In Figure 7 we plot the mean distribution of the projection of generated samples over
the clean principal components. The color is linked with the time - lighter colors as t→ 0. We can see that
components with higher indices are apparent towards the end of the reverse process, indicating that higher
frequencies appear later in the generation process.

We now turn to analyze the second sampling procedure, considering the loss defined in Equation 13 and
repeated estimations of x0. The generation starts from the denoising of ξT by D∗

T →0 (defined in Equation 14),
to obtain the first estimate of x0, D∗

T →0ξT . The next denoiser is optimal considering the noise level σ̄T −1,
so prior to its application, we add the next noise instance, ξT −1. Thus, the iteration in this denoising chain
is given by

xt−1 = D∗
t→0xt + ξt−1, (33)

where again ξt ∼ N (0, σ̄2
t I). similarly to the former case, the final generated output x̂ can be expressed as

x̂ = ΣT
t=0Πt

τ=0D∗
τ→0ξt = D∗

0→0 · · ·D∗
T →0ξT + · · ·+ D∗

0→0ξ0. (34)
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Figure 7: The empirical distribution of generated images over time - lighter colors for larger t. The high
indices (i.e., high frequencies) appear at the later stages of sampling.

The difference between the generation path in Equation 34 and the one described in Equation 20 is in the
applied denoisers, where the former utilizes the denoiser defined in Equation 14, and the latter employs the
finite sample PCA denoiser (defined in Equation 18). In addition, the accompanying noise schedules should
match the denoiser: {σt} for the PCA denoiser and {σ̄t} considering Equation 14.

Notice, that in this case as well, if we inspect the first element in Equation 34, i.e., D∗
0→0 · · ·D∗

T →0ξT ,
the dominant direction is concentrated in the first eigenvector of Σ0. This can be seen by looking at the
diagonalization of D∗

t→0,

D∗
t→0 = (Σ0 + σ̄2

t I)−1Σ0 (35)

= U0


λ0

λ0+σ̄2
t

. . .
λr−1

λr−1+σ̄2
t

U†
0 ,

since x
x+a is monotonically increasing for x, a ≥ 0. Thus, similarly to the case described in Equation 20, the

generated output can be interpreted as a sum of high noise levels that were repeatedly correlated to estimate
the leading data eigenvector, and lower noise levels that sample the entire data spectrum, in accordance with
our discussion in Section 4.1.

5 Empirical Extension to Deep Denoisers

In the linear case described above, the optimal denoiser is given by PCA projections. These denoisers are
computed with the training data, and their principal components do not depend on the input noise in the
reverse process. When the denoiser is nonlinear, and might be implemented using a deep neural network, its
input-output mapping can be locally expressed via the network Jacobian estimated at the inference point,
∇Dnet(xt), by

Dnet(xt) = ∇Dnet(xt)xt = VtΛtV
†

t xt, (36)

where VtΛtV
†

t denotes the eigen decomposition of the Jacobian calculated at xt. For simplicity, we assume
that the Jacobian is symmetric and non-negative (which is approximately true (Mohan et al., 2020)). Note
that in this case, the denoising base depends also on the input image (on top of the noise level). Although
the network is non-linear, we can follow the generation path in the sampling process and inspect the basis
of the network Jacobians calculated at the intermediate sampled points xt. We can then trace sin θJ =√

1− ⟨vt
i , vt=0

i ⟩2 where the subscript "J" stands for Jacobian, vt
i is the ith column in Vt defined in Equation 36,

in a similar way to our simulations of the linear case (Figure 2). This can be calculated per generation path,
where x0 is the final generated image, and V0 is the basis of the Jacobian calculated at this final point.
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Figure 8: Image generation - the sine of the angle between Jacobian eigenvectors at the final generated image
(t = 0) and intermediate iterations (t > 0). The diffusion model includes a UNet-based denoiser trained
on CelebA (left) or CIFAR10 (rignt). Color by index (the darker the color the lower the index, referring to
columns of the Jacobian basis Vt). The Jacobians of the nonlinear denoiser conform to the behavior of the
linear model.

Figure 8 shows sin θJ calculated using the Jacobians of a UNet based diffusion model, described in Ning et al.
(2023). This model was simply chosen as the 1state-of-the-art in the task of image generation considering the
CelebA dataset at the time of writing this paper. We used the default settings and calculated the Jacobians
at the final iterations. We plot the results for the leading 300 Jacobian eigenvectors, where the color is
assigned by the index - darker colors for lower indices i. We repeated the experiment sampling images from
the CelebA dataset (left) and CIFAR 10 (right). Even though the denoising model is far from linear, the
decay of the angle between the denoising basis in high noise levels and the natural denoising basis is similar
to the decay in the linear case (compare to Figure 2). In this case as well, the correlation of the low indices
(and hence low frequencies) withstands higher noise levels, thus appearing first in the generation process. As
this is the basis of our analysis comparing the reverse diffusion process to power iteration, this experiment
shows that our analysis is relevant in a broader context and not just in the simplified linear case. For more
experiments considering other architectures, please see Appendix F.

This analysis focuses on the local behavior of the nonlinear denoiser at the end of the generation process,
demonstrating its similarity to a linear denoising chain. Each plot represents a single generation path, not
the overall distribution of generated outputs.

While linear diffusion models are easy to analyze, they may struggle to generate complex datasets. Nonlinear
models, on the other hand, can navigate a diverse set of linearized regions during the generation process
(as illustrated in Figure 8). This allows them to generate diverse data even without added noise, unlike
linear models which ultimately converge in mean to a single point (Theorem 4.3) and therefore require noise
injection for diverse outputs. This contrasts with some deterministic nonlinear samplers (e.g., (Lu et al.,
2022)) that do not rely on added noise. The linearization approach we use is accurate at the sampled points
in the generation trajectory, we cannot express the sampling procedure as strictly matrix multiplication (but
rather as the composition of denoisers). However, if the denoiser is near linear in the sense that it has limited
curvature around these sampling points, then our result might be approximately applied. We believe this is
an interesting direction and leave its exploration for future work.

6 Conclusion

In this paper, we discuss a simple diffusion model with a linear denoiser and normalization free sampler, that
allows us to cast the diffusion problem as noisy PCA, and make the connection to the spiked covariance model
assuming that the natural data distribution resides in a low dimensional subspace. This enables us to show
that in the linear case, the generation process acts as a “correlation machine”, where initial random noise is
repeatedly correlated to noisy estimations of the natural data basis, to finally embody the true distribution,

1https://paperswithcode.com/sota/image-generation-on-celeba-64x64
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in a manner similar to the power iteration method. We show that in this process, low frequencies emerge
earlier, and more data contributes to a richer representation per the same diffusion configuration. Finally,
we demonstrate the relevance of our analysis also in a deep, non-linear diffusion denoiser.

We acknowledge the limitation of admitting a linear model, with its lack of ability to represent the complex
data and often expected of diffusion models. In addition, studying whether a similar correlation-based struc-
ture persists in latent-space diffusion, where the manifold hypothesis may no longer apply, is an interesting
direction for future work. While our theoretical setting is modest, we empirically demonstrate how our obser-
vations deduced from a simple linear model and classic theory (Johnstone, 2001; Nadler, 2008) are relevant
to more general models and datasets. This enables us to shed light on the internal mechanism powering this
technology, and connect it to a rich pool of theory and prevalent methods such as power iteration.
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A Power Iteration and its Convergence

Power Iteration is a simple algorithm used to compute the dominant eigenvalue and its corresponding eigen-
vector of a matrix. It iteratively refines an initial random vector by multiplying it by the matrix, which
gradually aligns with the eigenvector corresponding to the largest eigenvalue. For a thorough introduction
to the method, see, e.g. Andrilli & Hecker (2023). Given a square matrix A ∈ Rn×n, the goal is to compute
the dominant eigenvalue λ1 and its corresponding eigenvector v1. The Power Iteration algorithm is defined
as follows:

Algorithm 1 Power Iteration Algorithm
Input: Matrix A ∈ Rn×n, initial vector v0 ∈ Rn, number of iterations k
Output: Approximate dominant eigenvector vk

Normalize the initial vector: v0 ← v0
∥v0∥

for each iteration i = 1, 2, . . . , k do
vi ← Avi−1
Normalize vi ← vi

∥vi∥
end for
return vk

The algorithm starts with an arbitrary vector v0, which is normalized to ensure numerical stability. In each
iteration, the vector vi is updated by multiplying it by the matrix A, followed by normalization. After k
iterations, the vector vk is expected to be close to the eigenvector corresponding to the largest eigenvalue of
A.

A.1 Convergence Analysis

Let A be a square matrix with eigenvalues λ1, λ2, . . . , λn, where the eigenvalues are ordered such that
|λ1| > |λ2| ≥ · · · ≥ |λn|. Denote the corresponding eigenvectors by v1, v2, . . . , vn, where v1 is the eigenvector
corresponding to the dominant eigenvalue λ1.

The key idea behind Power Iteration is that, after sufficient iterations, the sequence of vectors vi converges
to the eigenvector associated with λ1, under certain conditions.

Let v0 be the initial vector, which can be expressed as a linear combination of the eigenvectors of A:

v0 =
n∑

i=1
αivi

where αi are scalar coefficients. After applying the matrix A in each iteration, we obtain the sequence of
vectors:

vi = Avi−1 = A

(
n∑

i=1
αivi

)
=

n∑
i=1

αiλ
i
ivi

Thus, the i-th iteration amplifies the component of v0 along the direction of the eigenvector corresponding
to the eigenvalue λ1, while the other components decay at a rate proportional to the magnitude of their
respective eigenvalues. As the iterations proceed, the contribution of the eigenvectors associated with smaller
eigenvalues diminishes, and the vector vi becomes increasingly aligned with v1, the eigenvector corresponding
to λ1.

Formally, we express the evolution of vi as:

vi = λi
1α1v1 + λi

2α2v2 + · · ·+ λi
nαnvn
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The relative influence of the eigenvectors corresponding to λ2, λ3, . . . , λn decays exponentially as i → ∞
because λ1 > |λ2| ≥ · · · ≥ |λn|. Specifically, the error in approximating v1 decreases at a rate proportional
to |λ2|

|λ1| , leading to the following convergence result:

∥vi − λi
1v1∥

∥v1∥
≤ C

(
|λ2|
|λ1|

)i

for some constant C, where ∥ · ∥ is the vector norm (usually the Euclidean norm).

Therefore, the Power Iteration algorithm converges to the dominant eigenvector v1 at a rate determined by
the ratio of the magnitudes of the first and second largest eigenvalues, ρ = |λ2|

|λ1| . If λ2 is much smaller than
λ1, convergence is fast. However, if λ2 is close to λ1, convergence can be slow, requiring more iterations
to achieve a satisfactory approximation. The convergence is linear, with the error decaying exponentially
as the number of iterations increases. For a matrix A with a well-separated dominant eigenvalue λ1 (i.e.,
|λ1| ≫ |λ2|), Power Iteration converges quickly, typically in O(log(ϵ)/ log(ρ)) iterations to achieve an error
of size ϵ.

B The Spiked Covariance Model

The spiked covariance model is a widely studied statistical framework that describes the behavior of the
sample covariance matrix when a low-rank signal is embedded in high-dimensional noise. Originally intro-
duced by Johnstone (2001), the model captures scenarios where a small number of principal components
(the “spikes”) are distinguishable from an otherwise isotropic Gaussian noise background.

Formally, let X ∈ Rp×n be a data matrix with n i.i.d. observations drawn from a multivariate normal
distribution:

Xi ∼ N (0, Σ), Σ = σ2Ip +
r∑

k=1
θkvkvT

k ,

where σ2 > 0 is the noise variance, r ≪ p is the number of spikes, θk > 0 are the spike strengths, and vk ∈ Rp

are orthonormal eigenvectors associated with the signal. The goal is to understand the spectral properties
of the empirical covariance matrix Σ̂ = 1

n XXT , especially in the high-dimensional regime where p, n → ∞
with p/n→ γ ∈ (0,∞).

A key insight of the spiked covariance model is that in the high-dimensional limit, the bulk of the spectrum
of Σ̂ follows the Marchenko–Pastur distribution (Marchenko & Pastur, 1967), while sufficiently strong spikes
result in outlier eigenvalues. Baik et al. (2005) discovered a phase transition - now known as the BBP phase
transition - characterizing when a spike separates from the bulk spectrum. Specifically, for a single spike θ,
the corresponding sample eigenvalue λ detaches from the bulk if θ > σ2√γ, and the associated eigenvector
becomes asymptotically correlated with the true signal direction.

Subsequent work extended these results to multiple spikes (Paul, 2007), non-Gaussian settings (Benaych-
Georges & Nadakuditi, 2011), and Bayesian and optimal shrinkage estimation (Donoho et al., 2018). Compu-
tationally, algorithms such as PCA and its variants remain the primary tool for extracting low-rank signals,
although care must be taken in interpreting components near the detection threshold.

The spiked covariance model has profound implications in both theoretical and applied contexts. It provides
a rigorous foundation for principal component analysis (PCA) in modern regimes where the dimension is
comparable to or larger than the sample size. Applications span signal processing, wireless communications,
genomics, and finance - anywhere that latent low-dimensional structures are inferred from noisy data.

Furthermore, the model serves as a testbed for understanding fundamental limits in statistical estimation, in-
cluding the detectability of weak signals, the performance of eigenvalue shrinkage methods, and the reliability
of inference under model misspecification.
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C Frequency Characteristics of Principal Components

Principal Component Analysis (PCA) is a cornerstone technique in statistical data analysis and dimension-
ality reduction. Given a data matrix X ∈ Rp×n (with each column representing an observation), PCA
identifies an orthogonal basis of directions u1, u2, . . . , up (the principal components or PCs) such that the
projection of the data onto each ui captures successively less variance.

When applied to natural images, PCA components often exhibit a hierarchical structure, with lower-index
components capturing broad, low-frequency features, and higher-index components capturing finer, high-
frequency details. This phenomenon is particularly evident when analyzing small image patches (e.g., 8×8
or 16×16 pixels) extracted from natural images. The first few principal components often correspond to
smooth, low-frequency patterns, while the later components capture high-frequency structures such as edges
and textures.

This pattern is consistent with the fact that PCA decomposes data using the eigenvectors of the sample
covariance matrix Σ̂ = 1

n XXT . When X arises from smooth processes (e.g., discretized Gaussian processes,
Brownian motion, or autoregressive time series), the covariance matrix has a Toeplitz or smooth kernel
structure. Its eigenvectors, under suitable conditions, converge to sinusoidal or Fourier-like modes (Grenander
& Szegő, 1958; Jolliffe, 2002). This behavior can be theoretically justified under models where the data-
generating process is smooth or governed by a differential operator. In natural images, the covariance
matrix typically exhibits a smooth, spatially invariant structure. This translation-invariance implies that
the eigenvectors of the covariance matrix, i.e., the principal components, tend to be sinusoidal in nature.
As the component index increases, these sinusoidal modes become increasingly oscillatory, corresponding to
higher spatial frequencies, often visualized as “Fourier-like” PCA modes.

This behavior has been observed in various studies. For instance, Hancock et al. (Hancock et al., 1992) found
that the principal components of natural images resemble derivatives of Gaussian operators, similar to those
found in the visual cortex and inferred from psychophysics. In addition, eigenvalues in facial recognition
exhibit smooth lighting and shading variations in early PCs, and finer texture or edge-like patterns in later
PCs (Sirovich & Kirby, 1987).

D PCA Optimality And Other Linear Denoising Chains

In the main text we discuss a gradual denoising chain, where noise is iteratively projected onto cleaner PCA
bases (as defined in 18). In the following, we will clarify the sense in which PCA is optimal, and present
another linear denoising scheme, which will help to frame the subject of this work.

The optimal linear denoiser at time t in the ℓ2 sense is the minimizer of the loss

ℓt+1→t = Ext,w ∥Dt+1→t(xt + σtw)− xt∥2
2 , (37)

where w ∼ N (0, I). For the brevity of writing, we locally denote Dt+1→t by Dt, until Eq. 41. This can be
minimized by deriving the expected loss

Ext,w ∥Dt(xt + σtw)− xt∥2
2 = Ext,w[x†

tD†
t Dtxt − 2x†

tDtxt + σ2
t w†

t D†
t Dtwt + x†

txt]
= Ext,w Tr [D†

t Dtxtx
†
t − 2Dtxtx

†
t + σ2

t D†
t Dtwtw

†
t + xtx

†
t ] (38)

= Tr [D†
t DtΣt − 2DtΣt + σ2

t D†
t Dt + Σt],

where we have used the fact that wt has zero mean. To derive the optimal linear denoiser, we have

dℓ

dDt
= 2DtΣt − 2Σt + 2σ2

t Dt = 0, (39)

and so
Dt = (Σt + σ2

t I)−1Σt. (40)
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Notice, that in the limit of diminishing σt,

Dt = Ut


λ0

λ0+σ2
t

. . .
λr−1

λr−1+σ2
t

U†
t →

σt→0
UtU

†
t ≜ Dt

PCA. (41)

Alternatively, this can be seen as the minimizer when we average also on the input noise variance. In this
work, we focus on the iterative application of Dt+1→t, and use the theory regarding noisy PCA (Nadler,
2008) to analyze the convergence properties of this chain.

Given a similar ℓ2 loss, one might suggest an alternative denoising chain, using multiple estimation of x0.
The corresponding loss is thus

ℓt→0 = Ext,w ∥Dt→0(x0 + σ̄tw)− x0∥2
2 , (42)

where σ̄t is the overall added noise (see Section 4). The adequate denoising chain in this case is the application
of Dt→0 to estimate x0, followed by the addition of noise with the appropriate variance σ̄2

t−1, before the
iterative application of Dt−1. In this case, the optimal denoiser is given by

Dt = (Σ0 + σ̄2
t I)−1Σ0 (43)

= U0


λ0

λ0+σ̄2
t

. . .
λr−1

λr−1+σ̄2
t

U†
0 .

In order to generate data, this denoiser is applied on a series of noises wt, where wt ∼ N (0, σ̄2
t I) for some

schedule {σ̄t}T
t=0. The generation starts from the denoising of wT by DT →0, to obtain the first estimate of

x0, DT ]tto0wT . The next denoiser is optimal considering the noise level σ̄T −1, so prior to its application, we
add the next noise instance, wT −1. Thus, the iteration in this denoising chain is given by

xt−1 = Dt→0xt + wt−1, (44)

where again wt ∼ N (0, σ̄2
t I). Due to the linearity of the denoisers, the final generated output xg can be

expressed as
xg = ΣT

t=0Πt
τ=0Dτ→0wt = D0 · · ·DT →0wT + · · ·+ D0w0. (45)

Notice, that in this case as well, if we inspect the first element, i.e., D0→0 · · ·DT →0wT , the dominant direction
is concentrated in the first eigenvector of Σ0 (since x

x+a is monotonically increasing for x, a ≥ 0). Thus,
similarly to the case described above, the generated output can be interpreted as a sum of high noise levels
that were repeatedly correlated to estimate the leading data eigenvector, and lower noise level that sample
the entire data spectrum, in accordance with our discussion in Section 4.1.

E The Derivation of Perturbation Bounds from Nadler (2008)

In our analysis, we rely on nonasymptotic bounds on the angle between the empirical principal component
vector and the true population component direction, as derived by Nadler (2008). These results pertain to
the spiked covariance model in a finite-sample regime.

Consider the spiked covariance model:
x = uv + σξ,

where u ∈ R is a scalar latent variable with zero mean and unit variance, v ∈ Rp is a fixed signal direction,
ξ ∼ N (0, Ip) is Gaussian noise. Given n i.i.d. samples {x(ν)}n

ν=1, we compute the sample covariance matrix
Sn, and denote its leading eigenvector as vPCA. The angle between vPCA and the true direction v/∥v∥ is
denoted by θPCA, with

sin θPCA =
√

1− ⟨vPCA, v/∥v∥⟩2.
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Assuming v = ∥v∥e1 and defining the signal strength κ = ∥v∥su, where s2
u = 1

n

∑n
ν=1(u(ν))2, Nadler provides

a high-probability upper bound:

sin θPCA ≤
σ

κ

√
p− 1

n

(
1 + 2σs1

κ
√

n

)(
1 + s2√

p− 1

)
+ 4
√

2σ2

κ2 · p

n
· 1

1−
(

2σs1
κ

√
n

)
−
(

σ2

κ2

) ,

which holds with probability at least 1 − ε1 − ε2 − ε3 − ε, where s1, s2 are parameters controlling the tail
probabilities of the underlying Gaussian and chi-squared distributions (Nadler, 2008, Eq. (2.13)), and

ε = exp
(
− p

2(
√

5 + 2)2

)
, ε1 = Pr {|N(0, 1)| > s1} ,

ε2 = Pr
{∣∣∣∣∣χ2

p−1

p− 1 − 1
∣∣∣∣∣ >

s2√
p− 1

}
, ε3 = Pr

{
χ2

1 > s3
}

.

This bound shows that the misalignment of the empirical principal direction with the true signal direction
scales approximately as

sin θPCA ≲
σ

∥v∥

√
p

n
, = σ̄t

λ

√
d

n
,

with additional correction terms involving higher-order noise and concentration effects, where the r.h.s. is
the equivalent notation in the main text. In addition, Nadler (2008) show in their Corollary 1 that this
bound is sharp, in the sense that it is also the the expected value for sin θP CA. This relationship justifies the
dependence on ¯sigma, λ, n, d in our own estimate and supports the analysis used in Section 4 of this paper.

F Additional Non-linear Diffusion Model Simulations

In this section we provide additional experiments to support Section 5. We follow the generation path in
the sampling process of a single image and inspect the basis of the network Jacobians calculated at the
intermediate sampled points xt. We then trace sin θJ =

√
1− ⟨vt

i , vt=0
i ⟩2 where the subscript "J" stands for

Jacobian, vt
i is the ith column in the Jacobian diagonalizing basis Vt defined in Equation 36, in a similar way

to our simulations of the linear case (Figure 2). Each plot represents the generation path of a single image,
where the color is by index - the darker the color, the lower the index.

We reproduce the experiment held in Section 5 using two popular implementations (Karras et al., 2022) of
two different model architectures: “DDPM++ cont. (VP)” and “NCSN++ cont. (VE)” models by Song
et al. (2021c), with the default parameters and 36 generation iterations. We repeat the experiment in
conditional cifar-10 models, reported in Figure 9. In these cases as well, we see that lower indices preserve
correlation to the generated image in higher noise levels, towards the end of the generation process.

Figure 9: Image generation - the sine of the angle between Jacobian eigenvectors at the final generated image
(t = 0) and intermediate iterations (t > 0), for “DDPM++ cont. (VP)” (right) and “NCSN++ cont. (VE)”
(left) models. Color by index (the darker the color the lower the index, referring to columns of the Jacobian
basis Vt). The Jacobians of the nonlinear denoiser conform to the behavior of the linear model.
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