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Extended Abstract

In data on complex networks, the observed network is often assumed to accurately represent
the underlying system. However, this overlooks the inherent uncertainty in network formation
processes and measurements. Random graph ensembles allow to address this by providing a
statistical baseline against which observed networks can be compared, enabling to distinguish
significant structural patterns from random fluctuations. This approach has proven valuable in
different network analysis tasks, such as node clustering [1], identifying significant temporal
patterns in dynamic networks [2], and other applications [3]. Identifying significant patterns is
crucial for Graph Neural Networks (GNNs) due to their message-passing mechanism. GNNs
leverage the network structure of data to propagate information across nodes, capturing rela-
tional patterns for predictive modeling. This reliance on the network structure makes GNNs
sensitive to noise in real-world datasets. However, to the best of our knowledge random graph
ensembles have not been used to tackle this issue.

Addressing this gap, we show how random graph ensembles can improve the performance
of GNNs in a node classification task. For this we define edge scores based on a soft config-
uration model [4] and use them to refine the network. The soft configuration model addresses
limitations of the Molloy-Reed model [5], which is computationally expensive and not analyt-
ically tractable. The soft version provides a closed-form expression for the null model based
on an urn problem. It relaxes the property of a fixed degree sequence to expected degrees.
The model defines a matrix £ € N” x N” that contains entries in the urn. Entries are possible
stub combinations defined as product of in- dj-" and out-degrees d¢* in the observed graph ¥:
Eij=dM™ d}" The total number M of stub combinations or edge placementsis M =} ;; &;;. A
random graph is sampled by drawing m = Y.,d"" =} ; dj-" stub combinations without replace-
ment. This results in degrees that are equivalent to the observed graph only in the expected case.
However, the model is analytically tractable, as the probability of observing edge A;; between

nodes i and j follows a hypergeometric distribution, i.e. P(X;; =A;;) = (’nvf) - (ijf ) (%:i’f ).

We use this to define edge scores by computing the cumulative probability of édge freZ]uen—
cies P(X;; = A;;) in the soft configuration model. Accumulating the observation likelihood to
P(X;; < A;j) measures how likely an edge in a random graph instance occurs with a frequency
lower than the observed one. P(X;; < A;;) = 0.5 means that half of the random realizations have
a lower edge frequency than observed and the other half have a higher one. Hence, the observed
frequency matches the expected frequency. A probability of P(X;; < A;;) > 0.5 means that for
any random realization the chance is higher that the edge frequency is lower than observed.
Hence, the observed edge is over represented compared to the null model and thus has a higher
relevance. For P(X;; <A;j) < 0.5 the edge is under represented.

High edge frequencies can occur as a result of high node activities (i.e. degree) only, and
may not carry information about how strongly two specific nodes are “related”. In contrast,
edge scores help to identify statistically relevant connections. We use edge scores to refine the
graph topology in two ways: (I) We use edge scores as weights instead of edge frequencies.
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Table 1: Comparison of GCN variants. Models 3-6 use at least one configuration-based aug-
mentation (3 in Edge Scores or Filtered Edges). Best balanced accuracy per dataset is in bold.

Edge Edge Filtered SocioPatterns
# Freq. Scores Edges Highschoolll Highschooll2 Hospital Workplacel3  Workplacel5
1 X X X 5093 £8.71 51.70+£5.79 61.58 +18.50 86.75 +13.39 63.06 £ 6.69
2/ X X 56.72 £11.37 5147 +3.40 59.83 £20.78 83.46 £14.80 83.88 +£9.71
3 X X 4 49.52 £8.09 58.55+5.84 67.75+13.81 87.17 =10.59 67.74 +4.87
4 7/ X 4 54.62 £8.05 4896+ 896 62.00+21.65 84.08+ 1540 84.07 £+8.19
5 X v X 54.15£8.24 57.10+7.06 70.58 +22.16 87.17 +10.59 64.68 £ 8.11
6 X v 4 52.37+£9.35 5523+563 66.50+20.19 87.17 £10.59 68.25£5.29

This way, over-represented edges have a strong impact while under-represented ones have a
lower influence. (II) We filter the graph by removing under-represented edges, ensuring that
the graph only contains connections that occur more frequently than expected.

We experimentally evaluate both graph refinement methods in a node classification task
based on Sociopatterns data on face-to-face interactions. We predict student gender (two
classes) for highschool, worker’s department for workplace (five classes in 13, twelve in 15),
and medical personnel roles or patient status (four classes) for hospital. We use the GCN ar-
chitecture [6] with two layers with embedding size 32, ReLLU activation, dropout and batch
normalization. A final linear layer transforms the output for the downstream class. We train
and compare six GCN variants, each differing in whether we remove under-represented edges
(approach (II)), whether we use edge weights, and whether edge weights are frequencies or
edge scores outlined in approach (I). Table 1 reports the balanced accuracy of our node clas-
sification experiments (with numbers in parentheses referring to table rows). As baselines we
use a standard GCN without edge frequencies (1) and a GCN with edge frequencies (2). The
remaining four variants incorporate network refinements based on the soft configuration model:
GCN where we remove under-represented edges (3), GCN where we additionally use edge fre-
quencies as weights (4), GCN with edge scores as weights (5), and GCN with edge scores and
where we additionally remove under-represented edges (6). The results show that refining the
network leads to improved performance in 4 out of 5 cases. We also compare the best perform-
ing refinement to the best performing baseline. For workplace (where baselines already achieve
good performance) we get minor improvements of 0.48% and 0.23%. In contrast, we observe
significant gains of 13.25% for highschooll2 and 14.62% for hospital.

Our results suggest a promising direction for further refinements. Our work further demon-
strates how network science approaches can be used to improve deep graph learning methods.
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