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ABSTRACT

For adversarial attacks on infrared detectors, previous works have focused on de-
signing the physical patches through temperature variations, overlooking the im-
pact of infrared emissivity on infrared imaging. In fact, infrared emissivity sig-
nificantly affects infrared radiant intensity at the same temperature. In this paper,
a QR-like adversarial attack patch is designed by manipulating the surface emis-
sivity of objects to alter the infrared radiation intensity emitted from the object’s
surface, called Emissivity QR-like Patch (E-QR patch). In this paper, the surface
emissivity of the object is manipulated through the adjustment of surface rough-
ness. Various levels of surface roughness are realized by a commonly used metal
material, galvanized iron sheets, to produce physically adversarial patches with
diverse infrared radiation intensity. Considering the possible transformation dis-
tributions between the digital and physical domains, a physical E-QR patch, which
is robust to noise, angle, and position, is generated by an expectation over the
transformation framework. Smoothing loss is incorporated to minimize the loss in
physical reconstruction, thereby effectively mitigating shooting errors in the phys-
ical domain induced by abrupt pixel changes in the digital domain. Experimental
results show that the E-QR patch achieves more than 80% attack success rate for
infrared pedestrian detectors in a physical environment.

1 INTRODUCTION

Infrared object detector that trained by Deep Neural Networks (DNNs) has received extensive at-
tention within the field of computer vision because of their significant performance. Infrared object
detector is widely used in pedestrian detection (Biswas & Milanfar, 2017), autonomous driving (Dai
et al., 2021) due to its unique advantages, such as night imaging, temperature measurement and
others. (Szegedy et al., 2013)

However, DNNs’ lack of interpretability and robustness makes it vulnerable to attack. Szegedy et al.
(2013) first discovered that the DNNs-based image classifier is susceptible to malicious devised
noise, which make DNNs output incorrect results with high confidence. These images with added
adversarial perturbations do not look different from clean images to the human eye. The process
described above is known as adversarial attack. Adversarial attacks can be classified into white-box
attacks, black-box attacks and gray-box attacks (Akhtar & Mian, 2018; Kloukiniotis et al., 2022). In
white-box attack, the attacker has total knowledge of the targeted network, the adversary can easily
detect potential vulnerabilities of the targeted model and generate strong attacks fooling easily the
model (Goodfellow et al., 2014a; Moosavi-Dezfooli et al., 2016a; Madry et al., 2017; Jiang et al.,
2022). Whereas, in black-box attack, the structure of the targeted architecture and its parameters are
unknown to the adversary. the adversary can observe the model outputs to receive some substantial
properties and compromise the targeted model (Li et al., 2022; Su et al., 2019a; Liu et al., 2016).
Attacks between white box and black box attacks are called gray-box attacks. The inducibility of
attack can be categorized into target and non-target attacks (Akhtar & Mian, 2018). In non-targeted
attacks, the adversary only needs to add perturbations to make the target model produce wrong
results, while a targeted attack needs to make the DNNs model produce wrong results toward an
intended target. Some works show that adversarial examples can exist not only in the digital world
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Figure 1: Relationship between roughness and infrared pixels. This figure shows the galvanized
iron sheets with different degrees of roughness, which results in different pixel values captured by
the same infrared sensor.

Table 1: Infrared physical adversarial attack methods.
Methods Descriptions Materials Physical factors

Zhu et al. (2021) Multiple Small Bulbs on a Cardboard. Tungsten Temperature
Bendelac et al. (2021) Heat Generating Resistors are Sorted in an Array. Resistor Temperature

Zhu et al. (2022) A Clothe with QR Code Made by Aerogel Aerogel Temperature
Wei et al. (2023a) Pure Color Blocks with Position and Shape. Warming and Cooling Paste Temperature
Hu et al. (2023) Blocks with Position, Angle, Length, and Color Warming and Cooling Paste Temperature

Wei et al. (2023b) Aerogel with Irregular Patterns Patch. Aerogel Temperature
Ours Method Different Roughness of Sheets. Galvanized Iron Sheets Emissivity

(Kurakin et al., 2016; Moosavi-Dezfooli et al., 2016b; Su et al., 2019b), but can also pose a threat to
detectors in the physical world (Athalye et al., 2018; Duan et al., 2021; Wu et al., 2020).

Recently, there have been studies on infrared adversarial attacks, utilizing the infrared properties of
different materials. To our knowledge, adversarial examples based on light bulbs (Zhu et al., 2021)
and resistors (Bendelac et al., 2021) are implemented through electrical control energy-consuming
materials. However, it requires continuous power consumption and imposes significant restrictions
on the physical placement of patches on the object. In order to solve the non-portability and stealthi-
ness of electronically controlled patches, (Wei et al., 2023a; Hu et al., 2023) employed the chemical
reaction of the warming and cooling pastes to attack the infrared detector. However, it is difficult
for the above chemical reaction to control the surface temperature precisely for a long period. Then
some works utilized the insulation materials to alter the the object’s surface temperature. The ad-
versarial attacking methods based on insulation materials (Zhu et al., 2022; Wei et al., 2023b) used
aerogel’s thermal insulation properties to change the object’s surface temperature, thus creating a
binary adversarial patch. Overall, the existing infrared adversarial attack methods rely on manip-
ulating the surface temperature of objects, resulting in a limited richness of textures in infrared
images.

To address the aforementioned challenges, we introduce another physical factor affecting infrared
radiation intensity: infrared emissivity. Infrared imaging is influenced by temperature and infrared
emissivity on infrared radiation intensity (Hou et al., 2022). By using materials with different in-
frared emissivity, different infrared radiation intensities can be generated at the same temperature
without deliberately changing the surface temperature of the object. Diversified emissivity can be
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achieved not only by using a variety of material properties but also by using different roughness of
a material (Zhang et al., 2023). We introduced a common substance, a galvanized iron sheet, and
polished it into different roughness as raw materials for physical adversarial patches. As depicted
in Figure 1, two galvanized iron sheets exhibit completely different pixel values captured by the
same infrared sensor. It is obvious that adversarial patches with intricate texture structures can be
achieved by using galvanized iron sheets with different degrees of roughness.

In this paper, we propose a physically easy-to-implement infrared attack method called “Emissivity
QR-like Patch” (E-QR patch). First, the galvanized iron sheets with different degrees of roughness
are used to control the emissivity of the object’s surface. Specially, these galvanized iron sheets
are reshaped as a QR-like patch absorbed on a soft magnetic sheet though magnetic force. Second,
the smoothing loss is incorporated to minimize the the loss in physical reconstruction. Finally, the
position and the degree of roughness of the galvanized iron sheets are considered as the decision
variables, which are determined by the black-box optimization. It is obvious that the proposed E-
QR patch is easy to implement. Since these galvanized iron sheets are fixed on the soft magnetic
sheet through magnetic force, the resulting E-QR patch is a reusable physical adversarial carrier.
Our main contributions are summarized below:

• Infrared emissivity is considered as a new physical factor for adversarial attack and galva-
nized iron sheets with different degrees of roughness are used to control the emissivity of
the object’s surface.

• An E-QR patch is designed by searching the position and the degree of roughness of the
galvanized iron sheets. The resulting E-QR patch is reusable since the introduction of the
sort magnetic sheet.

• The experiments on both digital and physical domains demonstrate the effectiveness of the
proposed method for attacking infrared detectors.

The remainder of the paper is organized as follows: Section II provides a brief overview of adver-
sarial attacks and digital-physical modeling. Section III describes the E-QR patch method presented
in this work. Section IV presents the experimental findings. Finally, Section V concludes the paper
and looks ahead.

2 RELATED WORK

In this section, the fundamental idea of infrared physical adversarial attacks is first introduced. Sec-
ond, the background of digital-physical modeling is discussed. Furthermore, the paper’s research
motivation is explained.

2.1 INFRARED PHYSICAL ADVERSARIAL ATTACKS

The current adversarial attacks against infrared images are shown in Table 1. Zhu et al. (2021) used
the heat from small light bulbs to build an infrared adversarial patch on a circuit board to attack
the infrared pedestrian detector. But the small bulb board can only attack at a specific angle of
human body and not stealthy and easy to implement. In order to solve this problem, they design
a “wearable” attack (Zhu et al., 2022) by a piece of clothes. It uses aerogel to make a QR-like
adversarial texture and change the adversarial examples from 2D into 3D as a clothe to insulate
thermal, which can change the pixel values of the pedestrian surface. Although the above approach
achieves an effective attack on the physical world, the adversarial medium is attention-grabbing and
look unnatural to human. To realize a physically stealthy and easy to implement infrared attack,
a method (Wei et al., 2023a) achieved by putting the cooling and warming paste inside clothes to
change temperature as a adversarial patch while another work (Wei et al., 2023b) reshapes the type
of aerogel patch into a irregular shape.

Although the existing methods have made good progress, they are limited by temperature-controlled
mode, which makes it challenging to achieve the effect of low-cost and prolonged attacks. Most of
them can only define the patch as a binary pattern, reducing the attack success rate.
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2.2 DIGITAL-PHYSICAL MODELING

Physical adversarial attacks need to face the complexity of real-world environments, which requires
strong robustness of the generated adversarial examples. With the continuous exploration of attack
methods, Several digital-physical modeling techniques are widely recognized and used to improve
the performance of physical attacks. Physical adversarial attacks on visible light have found that di-
rect printing of adversarial perturbations can distort due to the printer. Non-Printability Score (NPS)
(Shapira et al., 2023) has been devised to measure the distance between the adversarial perturbation
and the printer. Furthermore, the natural world also suffers from noise and deformation problems.
Expectation Over Transformation (EOT) (Athalye et al., 2018) has been proposed to consider poten-
tial transformations in the physical world. EOT discards the paradigm form to constrain the solution
space. Instead, it utilizes the imposed expected distance between the adversarial inputs and the
original inputs. It has been shown that it is difficult for cameras to capture extreme differences in
neighboring pixels due to sampling noise (Sharif et al., 2016). To fit natural images’ smoothness,
the Total variation norm (TV) (Singh et al., 2022) is able to maintain perturbation smoothness.

2.3 MOTIVATION

As was previously indicated, several approaches have explored infrared physical adversarial attacks.
However, all of these approaches generate adversarial patch by changing temperature of object sur-
face, which is limited to deploy in physical world. In order to expand applicable scenarios, this paper
builds physical infrared adversarial patch based on manipulating the infrared emissivity of object’s
surface.

Current physical adversarial patches are disposable while attacking different DNNs. In this study, a
new material, galvanized iron sheets with different roughness, is used to generate infrared adversarial
patch, and soft magnets are used as the background. Changing the arrangement order of galvanized
patches with different roughness could generate a new infrared physical adversarial patch.

3 METHODOLOGY

This section presents our method. We first introduce the problem definition in Section A. Second, we
explain the design of E-QR patch in Section B. Finally, we give the patch modeling and optimization
methods of our attack in Section C.

3.1 PROBLEM DEFINITION

For an infrared detector f(·), the input is represented by an infrared image x. The output prediction,
denoted as f(x; θ), is obtained by feeding the image x, where x ∈ Rh×w, to the detector f with
training parameter P . The attack image is crafted from adversarial patches, which is shown as:

xadv = x⊙ (1−M) + P ⊙M , (1)

where ⊙ signifies the Hadamard product, M ∈ {0, 1}h×w denotes the mask matrix, and P is the
adversarial patch. The position and shape of the infrared patch depend on the matrix M . Mij = 1
means that the position (i, j) has a galvanized iron sheet. The degree of roughness of the galvanized
iron sheet is determined by P .

The output Y from the network f comprises the position of the prediction box Ypos and the confi-
dence level for the predicted class Yobj. Our objective is to minimize the confidence score Yobj = fobj
for the object class in the network’s predictions:

argminYobj = argmin
δ

fobj(xadv). (2)

This above optimization problem aims to find the adversarial patch δ that minimizes the confidence
score for the object class, leading to potential vulnerabilities in the infrared detection system.

3.2 DESIGN OF E-QR PATCH

The mechanism of infrared imaging differs significantly from visible light imaging. Infrared images
are gray-scale, where pixel values reflect the temperature of the object’s surface. Larger pixel values
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Figure 2: Design process of the E-QR patch. The purple region identifies the optimization process
for the adversarial example. The orange region represents the process of making physical patch,
using magnetism to attach galvanized iron sheet patches to a soft magnetic sheet arranged as phys-
ical IR counter patches. The blue region indicates the relationship between surface roughness and
infrared emissivity, and shows the final physical infrared patches.

indicate higher infrared radiation intensity at the corresponding location. The infrared radiation
intensity emitted from an object’s surface is influenced by two factors, the infrared emissivity (µ)
and the temperature (T ):

E = εµT 4, (3)

where E is the radiance intensity of the materials surface, ε is the Stephen Boltzmann constant, µ is
emissivity of thin film and T is the absolute temperature of the object. Depending on different radia-
tion source, the radiation signal is calculated by the corresponding formula. The infrared emissivity
of common materials is highly sensitive to the surface roughness of objects:

εr = [1 + (
1

εs
− 1)R]−1. (4)

In Eq.(4), R is the emissivity of the roughness factor and represents the ratio of true surface area
to apparent surface area. εr and εs express the emissivity of material’s apparent surface and true
surface.

Based on the mentioned relationship, patch patterns are designed using the material’s roughness,
as illustrated in Figure 2, resembling quick response (QR) codes in infrared images. In this paper,
galvanized iron sheets are selected as the base materials. Besides, various polishing tools available
in the manufacturing process can be used to achieve different roughness levels. As shown in Figure
2, white pixels represent that no modification is involved, reflecting the average temperature of
the human body’s surface. In contrast, black and gray pixels indicate that the infrared pixels are
manipulated by galvanized iron sheets with different degrees of roughness. Figure 1 shows the pixel
values corresponding to galvanized iron sheets with different degrees of roughness captured through
an infrared camera. Consequently, it transforms the patch pattern design into a search optimization
problem, exploring the positions of the candidate materials.

3.3 PATCH MODELING AND OPTIMIZATION

The digital patch Pd is a QR-like matrix (N ×N ) generated in the digital domain. In order to make
Pd realize in the physical domain, the TV norm is introduced to enable the aggregation of similar
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Algorithm 1 E-QR Patch Optimization
Input: Clean image x, Detector f , population size Q, the max number of iterations t
Parameter: A vector of parameter set S
Output: Adversarial Image xadv

1: Initialization: Randomly set S.
2: for k = 0 to t do
3: Generate Sk+1 based on crossover and mutation.
4: for i = 1 to Q do
5: Pd ← reshape Sk

i .
6: Pp ← Et∼T (Pd).
7: xadv ← Pp according to Eq.(1).
8: L← Lobj(xadv), LTV (Pd)
9: Sk+1 ← the smaller one in Sk+1 and Sk according to Eq.(5).

10: if f(xadv) is NULL then
11: return xadv

12: end if
13: end for
14: end for
15: return xadv

materials. Considering the distinction between the digital and physical realms, the transformation
from digital to physical is simulated using the EOT method to obtain Pp. Pp is then applied to ob-
jects in datasets, and the resulting images are fed into the object detector. To enhance the acquisition
of physically adversarial and implementable patches, the loss is defined as:

L = Lobj + λLTV, (5)

where λ > 0 serves as a small weight in the optimization algorithm, controlling and optimizing the
shape of the patch to ensure the success of the attack.

Lobj represents the loss calculated from the confidence of the detector in predicting the output of
the patched image. EOT is a broad framework for enhancing the robustness of adversarial patching
by considering a given transformation distribution T during the optimization process, which can be
defined as:

P̃ = Et∼T (d(t(P ), t(P ′))) , (6)

where Et∼T denotes the EOT transform, t(·) is a transformation function chosen from the distribu-
tion T , including rotation, scale, noise, and so on. This constrains the expected effective distance
between the adversarial outputs and the original inputs given the distance function d(·, ·). To enable
the patch to deceive real-world object detectors, attempt a universal attack across different pedestri-
ans. It is assumed that the attack dataset has m images. The highest object prediction confidence
score is selected as the score Y i

obj for each image xi
adv. Then we have:

Lobj =
1

m

m∑
i=1

max(fobj
(
xi

adv, θ
)
). (7)

LTV is designed to encourage the aggregation of the same material as much as possible within the
patch. When the object is located at a considerable distance from the infrared sensor, fine details
may be lost, diminishing the effectiveness of the attack. Simultaneously, placing the same material
in close proximity facilitates the fabrication of adversarial patches. For a patch δ, we have

LTV(P ) =
∑
i,j

[(Pi,j − Pi+1,j)
2+

(Pi,j − Pi,j+1)
2]

1
2 .

(8)

Considering that the selection of candidate materials is discrete and the attack on the detector is
black-box, a nature-inspired optimization algorithm is considered to search the optimal results. In

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

this paper, Differential Evolution (DE) algorithm (Qin et al., 2008) is selected as the fundamental
optimization tool, which consists of four components: initializing a population, generating offspring
through crossover and mutation, selecting individuals with high fitness to survive, and preserving
the best solution as the final result.

In our optimization, the patch is build as a individual I of population. The population size is Q. The
number of coding is matching the adversarial patch size that the patch has N2 block while the I has
N2 coding. The individual I in population can be expressed:

I =
{
Ik
i |Ikij ∈ [0, n], 1 ≤ i ≤ Q, 1 ≤ j ≤ N2

}
, (9)

where Iki is the i-th encoding which can reshape into QR-like patch, k means the iterative number
of generations, Ikij represents the selection of which roughness for the block at position j in the
i-th individual. n is the feasible domain of the decision space, representing the number of available
emissivity to choose. The each block in have n + 1 state Ikij ∈ [0, n], 0 means no sheet put in this
location and other n state means different roughness of the galvanized iron sheets. From this coding
wo could determine the position and degree of roughness of the galvanized iron sheets. Various
polishing tools available in the manufacturing process can be used to achieve different roughness
levels. We make the prediction minimize of object influenced by our patch with EOT transform in
digital domain to ensure it could affect in real world

The algorithm of generating the proposed E-QR patch is shown in Algorithm 1. The initial solution,
S0, is generated based on random initialization. The crossover and mutation among Sk generates
a new solution Sk+1. Evaluate the individuals Sk

i in Sk and Sk+1 using the fitness function 5 and
select Q individuals with the best fitness to form Sk+1 into a new round of optimization.

4 EXPERIMENTS

In this section, benchmark-based experiments are conducted to evaluate the efficiency of the pro-
posed method. All experiments are performed on a windows server with 13th Gen Intel(R)
Core(TM) i9-13900H CPU@2.60-GHz processor and a GPU server with 24G NVIDIA GTX 4090
GPU.

4.1 SIMULATION OF PHYSICAL ATTACKS

Datasets: We use the infrared images in the Teledyne FLIR ADAS Thermal dataset1 to simulate
the physical attacks. Following the (Wei et al., 2023a), We filter the original dataset for better fitting
to the patch-based adversarial attack with three conditions. First, the images contains “person”
category. Second, the height of the object bounding box of the person in images exceeds the 120
pixel value. Third, human bodies have no overlap in the images. Finally, the attack dataset include
378 available images with 479 eligible “person” labels. The target detector’s AP was 100% for the
clean images in attack dataset.

Target Detector: For pedestrian detection task, we choose You Only Look Once (YOLO) target
detector of YOLOv52 because of its fast speed. We used the pretrained weights on the MSCOCO
Dataset (Lin et al., 2014) and fine tuning on the FLIR ADAS datasets. This model is used as the
target model in our attack process. These models are then used as the target models in our attack
process.

Attack Methods: We compare the proposed method with three state-of-the-arts attack methods,
i.e., Infrared Invisible Clothing (Zhu et al., 2022), Hotcold Block (Wei et al., 2023a) and Irregular
Patch (Wei et al., 2023b). The Infrared Invisible Clothing and Irregular Patches are gradient-based
attack methods, and Hotcold Block is based by genetic algorithm.

Parameter Setting: In the DE algorithm, we set the number of the initial population as 50, and
the epochs of evolution as 100. The smooth galvanized iron sheet pixel value is set 0.1, the rough
galvanized iron sheet pixel value is 0.3, and the soft magnetic sheet pixel value is 0.5.

1https://www.flir.com/oem/adas/adas-dataset-form/
2Jocher, G. 2020. https://github.com/ultralytics/yolov5
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Table 2: Quantitative results for the attack dataset in different settings. We report the AP (%), ASR
(%) with our adversarial attack method, E-QR patch (E-QR), versus the Random QR code patch in
YOLOv5 detector, for different patch pixel bit depth value and resolution of patch (side number).

Pixel Bit
Depth Method

Side Number
5 6 7 8 9 10 Average

AP(%) ASR(%) AP(%) ASR(%) AP(%) ASR(%) AP(%) ASR(%) AP(%) ASR(%) AP(%) ASR(%) AP(%) ASR(%)

2
Random 53.5 62.3 58.8 58.7 58.3 60.1 65.2 52.2 68.2 45.7 66.9 50.7 61.8 54.9

E-QR 41.3 86.2 42.8 78.9 40.8 78.2 45.3 76.1 49.2 71.7 47.7 72.4 44.5 77.3

3
Random 58.8 54.3 58.1 54.3 59.9 50.7 66.1 44.2 69.7 41.3 69.1 42.2 63.6 47.8

E-QR 41.6 85.4 43.8 75.6 45.8 67.5 46.0 76.1 49.4 71.0 51.8 66.7 46.4 73.7

4
Random 59.4 49.3 61.2 52.9 61.7 47.1 68.8 39.1 68.7 41.3 69.1 39.8 64.8 45.3

E-QR 42.4 76.1 43.4 76.1 45.1 73.2 50.0 70.2 53.4 65.9 54.0 65.2 48.1 71.1

5
Random 59.1 50.0 59.2 50.1 60.9 49.6 68.3 41.3 70.6 39.9 67.7 41.3 64.3 45.4

E-QR 43.5 79.7 44.6 75.4 48.4 71.7 50.0 70.2 53.8 63.8 57.4 63.0 49.6 70.6

6
Random 60.4 50.7 60.0 49.3 61.3 44.9 66.7 41.3 67.9 37.0 68.9 40.5 64.2 43.9

E-QR 42.7 82.2 42.9 78.3 45.8 78.2 50.0 70.2 55.3 66.7 56.5 61.6 48.9 72.6

7
Random 58.9 51.4 60.3 49.3 61.9 44.9 68.1 42.8 68.0 37.6 68.4 42.0 64.3 44.7

E-QR 40.1 85.9 41.8 84.8 46.6 77.5 47.9 73.2 52.6 69.6 55.9 62.3 47.5 75.6

8
Random 60.9 49.3 59.8 49.3 61.9 44.9 68.7 39.1 68.9 38.4 68.5 41.3 64.8 43.7

E-QR 42.7 80.4 42.5 81.9 43.8 79.0 49.0 73.9 50.5 70.2 56.2 61.6 47.5 74.5

9
Random 58.7 50.0 62.0 47.1 60.1 45.7 68.8 39.1 68.5 37.0 68.1 42.8 64.4 43.6

E-QR 41.9 83.3 41.7 83.3 43.4 79.7 46.4 74.6 51.0 69.6 55.8 62.6 46.7 75.5

10
Random 58.7 50.0 62.0 48.3 59.6 46.9 68.7 39.1 67.9 36.2 69.4 40.9 64.4 43.5

E-QR 40.8 88.4 41.3 86.2 43.2 81.2 47.4 73.2 51.8 80.4 55.5 63.8 46.5 78.8

Performance Metrics: Attack Success Rate (ASR) and Average Precision (AP) are used to evaluate
the attack performance. ASR denotes the ratio of successfully attacked images out of all the test
images. AP is computed by measuring the region under the Precision-Recall (PR) curve.

4.1.1 QUANTITATIVE EXPERIMENT

The quantitative experiment is to attack each image in the attack dataset with different settings for
patch pixel bit depth and patch resolution. The effect of patch resolution and the bit depth of each
pixel on the attack effect is explored, where patch resolution quantitative analysis is done by varying
the total number of patch cells with the same area. Pixel bit depth quantitative analysis is to change
the number of pixel values that can be selected in each patch cell, e.g., when the bit depth is 2, the
pixel values that can be chosen are 0 and 0.5. When the bit depth is 3, the pixel values that can be
selected are 0, 0.25, 0.5, and so on after that. Table 2 reports the results of evaluating the attack
effectiveness of our method (E-QR) with random patches. According to the above results, we can
draw the following conclusions. The proposed E-QR patch outperforms random patches across the
board. The effectiveness of the attack decreases as the resolution of the patches gradually increases,
which we attribute to the sharp rise in the number of patches to be optimized, leading to an increase in
the difficulty of solving the parameters and making it difficult to optimize a higher-quality solution
in the same amount of time. Under the influence of the patch pixel bit depth, the attack effect at
the ends of the parameter interval performs better than the middle. Therefore, choosing the 5 × 5
resolution for the E-QR patch is reasonable. Subsequent experimental alignments are conducted
according to this configuration unless otherwise specified.

4.1.2 COMPARISON WITH SOTA ATTACKS

Precision-Recall Curve
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E-QR Patch: AP=42.9%

Figure 3: Precision-Recall Curve of E-QR Patch
and SOTA Methods

We attacked each image in the validation set
of the FLIR ADAS dataset and compared it
with other methods. In Figure 3, we plotted
the Precision-Recall (P-R) curve for evaluating
YOLOv5 and show qualitative examples of var-
ious baseline methods. In the P-R curve, our
approach demonstrates robust competitive per-
formance. The E-QR patch resulted in a 52.3%
decrease in the AP of the YOLOv5 detector
and 81.5% ASR, significantly outperforming
the 10.6% drop from the Irregular Patch and the
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26.2% drop from Infrared Invisible Clothing, and marginally surpassing the 37% drop from the Hot-
cold Block.

4.2 PHYSICAL ATTACKS

We tested the performance of E-QR Patch in the physical world, and the physical experimental
environment setup is shown in Appendix A. We record 5 videos in various settings using frame
extraction per second in our physical experiment. In total, 243 images were captured, encompassing
316 pedestrian labels. These images are trained by YOLOv5, with a detector confidence threshold
set at 0.7.

4.2.1 ATTACKS IN DIFFERENT SCENARIOS

We investigated the robustness of the E-QR patch in two key aspects: distance and human posture.
The experiment result details are shown at Appendix B. Initially, we tested the attack success rate
(ASR) as a person, holding the adversarial patch, moved away from an infrared detector, starting at
1m. The average ASR was found to be 81.9%, with specific rates of 93.8% at distances of 1-2m,
80.5% at 3m, and a significant drop to 57.6% at distances greater than 4m, attributed to the patch’s
gradual deformation as distance increased. Subsequently, we assessed the impact of human posture
and environmental factors by having a person stand 2m away from the detector while performing
various movements such as angular rotations, standing up, and sitting down. E-QR Patch perform
well in small rotations, both standing and sitting postures exhibited good robustness. However,
with big rotations, crucial information from the patch became obscured, leading to a sharp decline
in ASR. Furthermore, the effectiveness of the E-QR Patch is affected by the infrared radiation of
different environments in different temperature fields.

4.3 EVALUATION OF ROBUSTNESS

Detector Clean AP (%) Attack AP (%) ASR (%)

Faster RCNN 94.6 16.4 93.2
Mask RCNN 97.4 18.7 92.7

YOLOv3 96.6 19.5 91.5
YOLOv5 99.2 42.9 81.5
YOLOv8 95.7 59.0 54.4

Table 3: Evaluation across various detectors.

We evaluated the robustness of our method in
a black-box setting against Faster RCNN (Ren
et al., 2015), Mask RCNN (He et al., 2017)
YOLOv3 (Redmon & Farhadi, 2018), YOLOv8
detector3. These detectors were pretrained
on the MSCOCO dataset and fine-tuning on
the FLIR ADAS dataset. Table 3 reports the
changes in ASR and AP. It is evident that the performance of other DNN detector significantly
decreases when subjected to the E-QR patch attack. The EQR patch was effective on networks pub-
lished before YOLO v5. It was not effective on the latest network, YOLO v8. We consider that
YOLO v8 uses more residual units and a Decoupled Head structure in model training that improves
the robustness of the model.

5 CONCLUSION AND DISCUSSION

This paper introduces an adversarial attack for infrared detectors, known as the E-QR patch. This
innovative approach involves utilizing the different roughness of galvanized iron sheets to modify
the infrared emissivity of object surfaces, creating adversarial patches characterized by intricate tex-
tures. Consequently, these patches hide individuals by fooling the detector with infrared sensors.
Moreover, we have developed a reusable physical adversarial carrier by exploiting the magnetic
properties of soft magnetic sheets to adhere galvanized iron sheets. This innovative carrier system
enhances the practicality and sustainability of the adversarial attack, contributing to its real-world
applicability. A comprehensive set of experiments conducted in both digital and physical domains
provides compelling evidence for the effectiveness of our E-QR patch in successfully circumvent-
ing detection models. In the future, we hope to overcome the shortcomings of physical objects at
different scales, putting the adversarial patch on 3D-based modeling to improve the robustness of
scales. Moreover, emissivity-based adversarial attack patches can be combined with infrared stealth
technology to achieve cross-band adversarial attacks.

3Jocher, G. 2023. https://docs.ultralytics.com/
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(a)1m (b)2m (c)3m (d)4m

Figure 4: Example results of digital attacks. The bounding boxes indicate the infrared detector
successfully detects the person.

A PHYSICAL REALIZATION

Galvanized iron sheets are used as the primary material for fabricating the patches. Varying degrees
of sanding were applied to modify the emissivity of their surfaces, as shown in Figure 1. The patches
consist of a smooth sheet of galvanized iron to achieve a low reflectivity surface and a rough sheet
of galvanized iron to enhance its surface emissivity. These two different roughness levels were
used to finalize the physical patch by affixing the iron sheet to a soft magnetic sheet with magnetic
property. The galvanised iron sheet is easy to paste or remove on the soft magnetic sheet, so a soft
magnetic sheet can be multiplexed with a variety of physical adversarial patch patterns. The thermal
emissivity of the soft magnetic sheet is similar to conventional clothing so adhered to the human
body over an extended. Patches of identical dimensions were also crafted from all three materials to
validate the efficacy of our patches. The attack performance of these clothes was then tested in the
real world.

We employed the FLIR ONE Pro camera with a thermal resolution of 160×120 for infrared imaging.
Throughout the capture process, the camera is connected to a Xiaomi phone, enabling real-time
image display. We captured images of individuals in various indoor and outdoor scenarios, with
the distance between the camera and the subjects ranging from 1 to 4 meters. The images depict
individuals in different poses, such as standing and sitting.

B PHYSICAL EXPERIMENT

We first explored the robustness of the E-QR patch over distance by testing the attack success rate
with the detected person looking squarely at the infrared detector, holding the antagonistic patch,
and starting at a distance of 1m and gradually moving backward by 1m. The average ASR is 81.9%.
As shown in Figure. 4, E-QR patch achieves an 93.8% ASR at a distance including 1-2 meters,
80.5% ASR in the distance of 3m and 57.6% ASR with the distance more than 4m. Due to the
resolution of the detector, the adversarial patch gradually deforms as the distance of the detected
person increases, resulting in a rapid decrease in ASR.

We then explored the robustness of the E-QR patch to human posture as well as the environment.
The detected person stood 2 meter away from the infrared detector holding the counter patch, and
performed angular rotation as well as standing up, sitting down, etc., as shown in Figure. 5. The
human body posture and the environment were then investigated. For small rotations, both standing
and sitting postures show good robustness with an ASR of 92.6%, while after the angle exceeds
30°, part of the patch’s information is obscured and lost, and the ASR drops sharply. In the outdoor
environment, where the ambient background temperature is 0-5°C and subject to a lot of infrared
interference in the environment, the gap between the display effect of patch and that of indoors
becomes larger, and the average ASR drops to 82.4%.
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(a)clean -30°(b)clean -20°(c)clean -10°(d)clean 0°(e)clean 10°(e)clean 20°(f)clean 30°(g)clean sit

(h)patch -30°(i)patch -20°(j)patch -10°(k)patch 0°(l)patch 10°(m)patch 20°(n)patch 30°(o)patch sit

Figure 5: Visual examples of physical attacks with infrared patches under various angles, postures.
The bounding boxes indicate the infrared detector successfully detects the person.

C EFFECT OF λ

λ is a parameter that balances the adversarial loss as well as the Total variation norm, and a larger λ
will make the patch more inclined to the less varied patches.We investigated values of λ with lambda
of 0, 0.01, 0.05, 0.1, and 0.2. As λ gets larger, the value of LTV gets smaller, but the success rate of
the attack gets lower. The more complex the variation of the patch the more effective the attack will
be.

D DEFENSE DISCUSSION

We discussed defense strategies against the E-QR patch. Adversarial training was employed to
enhance the model’s robustness (Goodfellow et al., 2014b). Specifically, adversarial examples gen-
erated by the E-QR patch were added to the training set, and the original model was retrained.
Subsequently, the newly trained network was attacked again using the E-QR patch to assess its ef-
fectiveness in the digital space. Comparing the results, the retrained network achieved an AP of
96.6% without attack and 90.0% after the attack. The retrained model exhibited increased robust-
ness with only marginal performance loss. Therefore, our image enhancement approach can further
improve the detector’s performance. In practical applications, this holds significant implications for
deploying deep learning models in real-world scenarios.
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