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Abstract

Egocentric human experience data presents a vast resource for scaling up end-
to-end imitation learning for robotic manipulation. However, significant domain
gaps in visual appearance, sensor modalities, and kinematics between human and
robot impede knowledge transfer. This paper presents EgoBridge, a unified co-
training framework that explicitly aligns the policy latent spaces between human
and robot data using domain adaptation. Through a measure of discrepancy on
the joint policy latent features and actions based on Optimal Transport (OT), we
learn observation representations that not only align between the human and robot
domain but also preserve the action-relevant information critical for policy learning.
EgoBridge achieves a significant absolute policy success rate improvement by 44%
over human-augmented cross-embodiment baselines in three real-world single-arm
and bimanual manipulation tasks. EgoBridge also generalizes to new objects,
scenes, and tasks seen only in human data, where baselines fail entirely. Videos
and additional information can be found at jhttps://ego-bridge.github.io/
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Figure 1: EgoBridge enables rich knowledge transfer from human to robot, based on our key
hypothesis: aligned latent representations yield stronger transfer. Our algorithm, which adapts
optimal transport, aligns behaviors which are similar across embodiments. This enables EgoBridge
to generalize to objects, scenes and even motions demonstrated only in human data.
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1 Introduction

Supervised imitation learning methods such as behavior cloning have emerged as a promising path to
scaling robot performance across diverse objects, tasks, and environments. However, while large-scale
models in vision and language have achieved remarkable generalization through Internet-sourced
data, replicating this success in robotics remains challenging due to the labor-intensive nature of
collecting teleoperated demonstrations. Deploying physical robots to many new environments to
collect data with enough coverage and diversity is economically and practically intractable.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://ego-bridge.github.io/

In this work, we aim to enable robots to learn from egocentric recordings of natural human behavior,
collected by increasingly ubiquitous wearable devices (e.g., XR devices and smart glasses). Without
a robot in the loop, such data is cheap and scalable to collect and captures natural human interactions
with the world. More importantly, it reflects the embodied human experience, as it contains both
observations (e.g., egocentric RGB images) and actions (e.g., hand motions). Unlike unstructured
data sources such as Internet videos, the rich embodied information allows us to treat human data and
robot data as equal parts in a continuous spectrum of demonstration data and potentially learn from
both with a unified learning framework.

However, the multitudes of domain gaps between human and robot pose significant challenges in
designing such a framework. Human bodies and robots have different visual appearances. Even
within a shared action space, kinematic differences can lead to behavior distribution shifts. Robots
also have additional sensing modalities such as wrist cameras that are often missing from embodied
human data. While recent works such as EgoMimic [1]] have attempted to bridge the embodiment
gaps with techniques such as visual masking, data normalization, and motion retargeting, such
domain gaps still largely remain. More broadly, simply co-training from cross-domain data does not
automatically yield effective knowledge transfer, as suggested by recent studies [2]]. Such challenges
prevent policies from scaling their performance primarily with human data.

We formalize the human-robot cross-embodiment learning problem as a domain adaptation problem,
where human and robot data represent two labeled distributions with significant covariate shifts in
observations due to embodiment gaps. Standard domain adaptation approaches often rely on global
distribution alignment techniques such as adversarial training [3] and maximum mean discrepancy
minimization [4]. However, they primarily address high-level tasks such as image classification and
fail to preserve detailed action-relevant information—a critical requirement for robot learning where
actions and observations are temporally correlated under compounding covariate shift.

To address these challenges, we propose EgoBridge, a novel domain adaptation approach that uses
Optimal Transport (OT) to align latent representations from human and robot domains as part of the
policy co-training objective. Unlike conventional domain alignment methods, our OT formulation
explicitly exploits the inherent relationship between motion similarities in human and robot domains
to form pseudo-pairs as supervision for the adaptation process. Concretely, we use the dynamic time
warping (DTW) distance among human and robot motion trajectories to shape the OT ground cost.
This encourages the transport map to find a minimal-cost coupling between human and robot data
exhibiting similar behaviors. As such, EgoBridge aligns policy representations across domains via a
differentiable OT loss (Sinkhorn distance), while preserving action-relevant information for policy
learning. Importantly, we show that EgoBridge learns a shared latent representation that generalizes
beyond the paired data. This enables the policy to learn behaviors observed only within the human
dataset, effectively enabling the policy to scale primarily with human data.

We evaluate EgoBridge on both a reproducible simulation benchmark task and three challenging
real-world manipulation tasks. Our results show that EgoBridge consistently improves policy success
rates compared to human-augmented cross-embodiment baselines, for up to 44% absolute success
rate improvement, and effectively transfers behaviors from diverse human demonstrations to robotic
execution in tasks requiring spatial, visual, and task generalization.

2 Related Work

Supervised Imitation Learning. Supervised Imitation Learning (SIL), notably Behavior Cloning,
leverages expert demonstrations for policy learning and has achieved significant success in robotics,
particularly with large-scale datasets [S} |6, [7) 8, 19} [1OL [11} [12} [13 [14]. State-of-the-art Vision-
Language-Action (VLA) models [10} (8} [12} [11] integrate Vision-Language Models (VLMs) with
action decoders, enhancing generalization by incorporating semantic understanding from internet-
scale data. Despite these advances, even top-performing models like Pi 0.5 [[11]] require extensive
labeled robot manipulation data for robust physical world interaction and broad capabilities. Given
the intractability of scaling robot teleoperation data, alternative sources such as more accessible
human data are being explored. Consequently, our work leverages scalable human demonstrations
alongside in-domain robot data to improve learning outcomes.

Learning from Human Data. Human data presents two main opportunities for robot learning:
abundant unlabeled online videos and curated, labeled demonstrations [[15} |16} |1]]. Unlabeled web



videos, though plentiful, require pseudo-labeling of actions via inverse dynamics models [[17] or
point tracking [[18] [19] 20] for policy training, forming a basis for some foundation models [12],
yet often still necessitating in-domain robot data. Alternatively, labeled human demonstrations can
be co-trained with robot data as distinct embodiments [1} 21} 22]], enhancing robustness and scene
understanding. However, generalizing to novel behaviors observed only in human data remains
challenging. To address this limitation, we propose a novel learning framework for jointly aligning
observation-action spaces across human and robot embodiments to improve generalization.

Domain Adaptation and Optimal Transport. Domain Adaptation (DA) aims to reduce reliance
on target-specific data by leveraging labeled source domain data to bridge distribution gaps and
improve performance on unlabeled target domains. In cross-embodiment learning, DA has been
applied for shared dynamics modeling [23]], unsupervised reward modeling [24]], and high-level
planning [25]. However, many DA methods primarily focus on global distribution alignment, which
can neglect fine-grained action information crucial for transfer across robot embodiments. To address
this, computer vision research introduced Optimal Transport (OT) as a loss function for DA to
align both local and global distributions [26} 27, [28]]. Building on these insights, we propose an
action-aware DA approach using OT to learn shared representations across embodiments, thereby
improving observation and behavior generalization.

3 Preliminaries and Problem Statement

3.1 Optimal Transport

Optimal Transport for Domain Adaptation. Optimal Transport (OT) offers a principled framework
for comparing probability distributions by considering the geometry of their sample spaces. Given
two distributions, pg (source) and ur (target), over a common metric space X', and a cost function
C(x%,2T) measuring the effort to move mass from z° € X to 7 € X, OT finds a probabilistic
coupling v € P(X x X) that minimizes the expected transport cost:

v =arg min  Egs ,ry., [C(x®, 2T,

yEN(ps,pr)

where II(ug, pr) is the set of all joint distributions whose marginals are pg and pp. For discrete
empirical distributions from Ng source samples {x7 } and N7 target samples {xf} the cost matrix

is Cyj = C(xf, ] ), and the total cost is (v, C)r = 3=, ;7i;Cij-

Differentiable Optimal Transport as a Loss Function. When used as a cost function to align
representations, the standard OT problem is often regularized. The Sinkhorn algorithm [29] introduces
an entropic regularization term to the OT objective, yielding a differentiable approximation 77* to the
optimal transport plan:

* : s T
Te arg TGHIEE},;LT) E(xs,xT)NT[C(x )y L )] GH(T)v
where € > 0 is the regularization strength and H (T') is the entropy of the coupling. This regularization
makes the problem strictly convex and efficiently solvable. The resulting regularized optimal transport
cost, > i (T7):;Cij, is differentiable with respect to the cost matrix C'. This allows OT to serve as a
loss function within deep learning frameworks, enabling the learning of feature encoders that map
inputs to a space X where their distributions are aligned by minimizing this transport cost.

3.2 Human and Robot Data Sources

We consider egocentric human data (D) and teleoperated robot data (Dg). Dy = {(of!, all) iV:’{
consists of Ny egocentric human demonstrations, where ofl € OH gre observations from wearable
sensors (e.g., head-mounted cameras) and af? € A are human actions in a common action space
(e.g., robot end-effector and human hand poses). This data is abundant and captures natural, diverse
behaviors. Conversely, Dr = {(of,al*)} % comprises N robot experiences, typically from
teleoperation, with o € O being robot sensor observations (e.g., ego-centric/wrist cameras, joint
states) and af* € A the robot actions. This data is often scarce. We describe how each data source is
captured and processed in more detail in Sec.[4.3] We assume actions are in trajectory chunks, which
is shown to improve prediction temporal consistency of the trained policies [5.[6].



3.3 Cross-Embodiment Imitation Learning: Challenges and Objectives

Our primary goal is to effectively learn from both limited robot demonstrations (Dg) and more
abundant, diverse egocentric human demonstrations (D). We train a feature encoder fy : OH Y
OF 5 Zto project observations from both human (O™ and robot (OF) into the shared latent space
Z. We jointly train a policy my that maps these learned latent representations z € Z to actions a € A.

Cross-Embodiment Co-Training. A popular approach [1}[21] involves training the policy end-to-end
using a standard Behavior Cloning (BC) loss on the aggregated dataset:

ACBC—CO(rain(¢a 9) = E(o,a)NDHUDR [‘CBC(WQ(f¢>(O>)7 a)],

To effectively learn from both data sources, a critical assumption is that a shared latent space Z would
naturally emerge where the mapping from latent states to actions is domain-invariant, resulting in
Pr(alfs(or)) ~ Pu(alfe(om)) for observations or and oy from aligned underlying states.

Challenge: Observation Covariate Shift. However, we argue that, without explicit mitigation,
the induced marginal distributions over these latents, uy = P(f,;(Of)) and ur = P(f,(O%)),
will exhibit a significant covariate shift (uy # pg). This shift arises from inherent domain gaps
in observations (e.g., differing visual appearances, viewpoints, sensor modalities like robot wrist
cameras absent in human setups) and embodiment kinematics. We also empirically show that such
co-trained representations often form disjoint latent clusters (Sec.[5.3). This covariate shift in the
marginal latent distributions undermines the foundational assumption of consistent conditional action
distributions across domains, thereby limiting effective knowledge transfer from human to robot.

Goal: Generalizable Cross-Embodiment Transfer. This motivates our method that aims at joint
domain adaptation (Sec.[4.T), where we explicitly seek to align the latent representations from human
and robot data while preserving action-relevant information. Successfully addressing this latent
misalignment should enable two crucial levels of generalization: First, for tasks present in both Dy
and Dg, the system must achieve observation generalization. This involves effectively bridging
visual and sensor gaps, which include appearance changes that do not affect behaviour. Second,
and more ambitiously, the system should enable behavior generalization (Beh. Gen.) allowing the
robot to perform tasks or handle novel situations (e.g. task variations) observed only in Dy;. This
requires the learned encoder f, to generalize beyond scenarios with paired human and robot data
which require motion information to be transferred, such as spatial variations in goal pose.

4 EgoBridge

EgoBridge is a co-training framework designed to effectively imitate embodied human demonstra-
tions and robot demonstrations. It explicitly addresses the domain gap between human and robot
experiences through an Optimal Transport (OT)-based domain adaptation mechanism integrated
into the policy learning process. The core of EgoBridge lies in aligning the joint distributions of
latent policy features and corresponding actions across the human and robot domains. The following
sections detail this joint domain adaptation formulation (Sec. d.T)), the design of its OT cost function
(Sec.[£.2), and the overall training process and system details (Sec. {.3).

4.1 Joint Domain Adaptation via Optimal Transport

To address the latent covariate shift (Sec.|3.3) and generalizable cross-embodiment transfer, EgoBridge
builds on Optimal Transport (OT, Sec. to directly shape the shared feature encoder f,. Unlike
standard domain adaptation techniques [30] that often aligns only the marginals P(f4(O)), which
can discard action-relevant information, EgoBridge optimizes f to align the joint distributions of its
output latent features and their corresponding actions, i.e., P(fs(O), A).

Given mini-batches of human data {(0f?, a')} N and robot data {(of, af) }jszl where a represents
a temporally-extended action trajectory, we define an OT-based loss to guide the learning of f4. The
differentiable Sinkhorn OT formulation [29] allows us to compute a loss based on the alignment of
the empirical distributions of (fs(0"),a’") and (f4(0™?),a®):

Lorjoin(¢) = Y _(T7)ij - C ((fo(0l),al"), (f4(0f),af)) .

2%



Here, (T7);; is the optimal transport plan coupling the i-th human and robot (latent, action) pairs.
The cost function C(+, -) measures the dissimilarity between these joint entities. Its design is crucial
for capturing meaningful behavioral similarities across domains, which we detail in Sec.[d.2]

Minimizing Lor.joinc(¢) directly influences the parameters ¢ of the encoder f4. The gradients from
this loss encourage fy to produce latent features f, (o) and f,(of) that minimize the transport cost

required to align them, especially when their associated actions a! and af* are behaviorally similar
(as determined by C). At each step a transport plan is computed which influences the feature encoder
to couple the action pairs This iterative process shapes the latent space Z to be domain-invariant with
respect to the joint observation-action manifold.

4.2 Designing OT Cost Function for Action-Aware Joint Adaptation

Our joint OT formulation (Section[4. 1 relies on a cost function C((z, a'?), (2%, a'?)) to measure
the dissimilarity between joint human and robot latent feature-action pairs. A critical challenge is
designing this cost to be robust to inherent domain differences. Specifically, we aim to account for
temporal misalignments, where human and robot often execute the same task at of different speed,
e.g., humans might be 2-3 times faster than teleoperated robots, and kinematic variations, where
even within a shared SE(3) end-effector action space and hand-eye alignment through an egocentric
coordinate frame (Sec. , minor kinematic differences exist.

Dynamic Time Warping. To identify behaviorally similar action sequences while accounting for
these differences, we propose to leverage Dynamic Time Warping (DTW) to guide the OT alignment.
DTW [31] has been effective in prior work to compare time series data and trajectories. Formally,
given two action sequences a’l = (afl,... afl) from human data and a’* = (af,... aft) from
robot data of identical length 7', DTW finds an alignment path 7 C {1,..., T} x {1,...,T} that
minimizes the cumulative distance:
H R : H _ _Ry2
DTW(a".a™) = min 3 o’ ~ o]l
(i.g)em

where A(T) is the set of admissible monotonic alignments constrained to start at (1, 1) and end at
(T, T), while allowing small local shifts to account for temporal variations.

Soft Supervision. With DTW, we can identify highly correlated samples from both domains.
However, directly utilizing the DTW cost is noisy and instead is a much stronger measure of relative
pairing between human and robot samples. As such the DTW cost can be used to pseudo-pair Dy and
Dp. On a mini-batch of size B of sampled ground-truth state-action pairs from Dg and D, we form
a DTW cost matrix A € RP*5. Here, A; j = DTW(a;,a] ). The row-wise minimum cost gives us
the most behaviorally similar human pseudo-pair for each robot sample : ¢*(j) = argmin; A,;.

Given the standard OT Euclidean distance cost Dy; = || fg(0f") — f4(0l)[|?, we define the joint cost
C((folof"), afl), (fo(0]), af!)) for Lor as:

G _ (D ifi=i()
’ D;; otherwise

where 0 < A < 1 is a small scalar. This cost function strongly incentivizes OT to match robot
samples with their behaviorally closest human pseudo-pair (identified by DTW) by significantly
reducing the cost for these pairs. For all other pairs, the cost is simply the distance in the latent feature
space. This soft supervision from DTW guides the latent space alignment towards behaviorally
relevant correspondences across embodiments.

4.3 Putting it all together: EgoBridge

With all the ingredients for joint distribution adaptation using OT with joint policy co-training, we
present EgoBridge as a unified cross-embodiment imitation learning algorithm and describe its
corresponding robot learning system and policy architecture.

Policy Co-Training with Joint Adaptation. EgoBridge jointly optimizes the feature encoder fg
and 7y, with the joint OT loss applied on the feature encoder and the BC co-training loss applied
end-to-end through both components: Lo = LBC-cotrain (@, 0) + aLorjoint, With tunable weight a.
Detail of the algorithm and hyperparameter choices are described in Appendix.
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Teleoperated Robot Data. We base our robot
platform on the open-source Eve robot [I]]. Figure 2: EgoBridge policy co-training with joint
In particular’ we leverage Aria glasses as adaptation. The encoder f¢ consists of modality-
the main egocentric perception sensor for the speciﬁc input stems and the encoder trunk, while
robot and mount it in a way that emulates the policy gy consists of a shared multi-block trans-
the hand-eye configuration of a human adult former decoder. Lorjoint Optimizes the encoder
(IR ). This effectively mitigates the human- While Lpc.cotrain Optimizes the entire network.

robot camera device gap, allowing us to specif-

ically study the appearance, kinematic and behaviour gaps. The robot additionally provides RGB
streams from its two RealSense D405 wrist cameras, I 7 . ... The actions consist of a sequence of

corresponding future end-effector poses, a’* € SE(3) x SE(3).

o

Shared Policy Architecture. Inspired by recent cross-embodiment policy learning [33]] and DETR-
style architectures [34]], our policy employs a shared transformer encoder “trunk” (f,) and a shared
transformer policy decoder “head” (mg) (Fig.[2). We perform embodiment-specific gaussian normal-
ization to the proprioception and actions. The encoder fy4 begins with stems—shallow networks that
tokenize raw observations; notably, a shared vision stem processes main egocentric RGB images
({ego) from both human and robot to enforce visual alignment, while separate stems handle robot
wrist camera inputs (I,,,;s¢). The subsequent multi-layer encoder trunk processes these concatenated
tokens, along with M prepended learnable context tokens upon which the OT loss is applied. The
multi-block decoder head then generates actions by attending to this encoded context, utilizing T'
learnable action tokens and injecting context through alternating self and cross-attention blocks.

S Experiments

In this section, we aim to validate three core hypotheses. H1: EgoBridge improves co-training perfor-
mance for scenarios present in both human and robot data. H2: EgoBridge enables generalization
to scenarios only seen in human data. H3: EgoBridge learns a shared latent space where human
and robot data are aligned in task-relevant manners. We validate the hypotheses through a standard
simulation benchmark task (Sec.[5.I)) and three complex real-world manipulation tasks (Sec.[5.2).

5.1 Simulation Evaluation

To facilitate reproducible study and eliminate the confounding factors in real robot systems, we study
a well-explored planar pushing task [6], where the goal is to push a T-shaped object to a desired goal
location. We emulate “human” (source) data through a blue circle pusher and “robot” (target) data
through a salmon triangle pusher (Fig. [3), with lower floor friction. The differences aim to analogize
the appearance and agent-environment dynamics gaps between human and robot data.

Source and Target Domain Data. In our "robot" target domain, we collect demos in the standard
push-T setting, but in our "human" source domain, we alter the background color to purple and
change the T configuration to be mirrored, requiring a new motion to slot into place[3] The change in
background color is analogous to the human data containing new visual scenery, and the change in
starting configuration is analogous to the human demonstrating new motions in their demonstrations.

Training and Evaluation. To eliminate factor from model design (Sec. , we choose a standard
ResNet-UNet Diffusion Policy [6] and apply the OT-joint loss on the feature outputs of the ResNet
encoder. We perform standard action normalization and co-train the policy on both the triangle and
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Figure 3: In the simulated Push-T experiments, we probe a toy version of visual and motion level
generalization from human to robot. We have narrow target "robot" data represented by the triangle
pusher on a white background, and diverse source "human" data represented by the circle pusher
with changes in background color and T configuration. We test our "robot" on the diverse human
scenarios, and find that EgoBridge outperforms traditional Domain Adaptation baselines.

Table 1: Real World Evaluation Results: In-Distribution and Generalization

Method Scoop Coffee (SR) Drawer (SR) Laundry

In-Dist. Obj. Gen. Scene+Obj Gen.|Total (Pts | SR) Place Toy Beh. Gen.|(Pts | SR)
Robot-only BC | 33% 40% 7% 3819% 28% 0% 38128%
Co-train 53% 46% 0% 55122% 42% 0% 41133%
EgoMimic [T]] 60% 53% 0% 491 14% 39% 0% 38133%
MimicPlay [23]]| 33% 27% 0% 33114% 22% 0% 32128%
ATM [19] 47% 33% 0% 56 1 6% 17% 8% 35128%
EgoBridge 67 % 60 % 27 % 77147 % 72 % 33% |48172%

circle pusher data. We evaluate the policy on 3 cases: Triangle in the standard setting, Triangle
with purple background, Triangle with purple background and Triangle with purple background and
flipped T. We evaluate a total of 100 fixed seeds across all the models and report the mean reward
(max IoU with goal) and the success rate (reward > 0.9).

Baselines. In the more controlled simulation settings, we choose to compare EgoBridge against
conventional domain adaptation baselines. We choose Maximum Mean Discrepancy (MMD) ([30]
as an alternative domain adaptation loss to joint-OT on the feature encoder. We also test Standard
OT, which performs marginal alignment instead of joint alignment. The Co-train baseline trains on
evenly-sampled data from both domains without an alignment loss. Finally, Target-only is a control
study which trains the policy only on the target (triangle) data.

5.2 Real World Evaluation

We evaluate EgoBridge on three challenging real-world manipulation tasks, as illustrated in Fig. {]

Drawer: The robot interacts with a 6x4 drawer array, tasked to pick a toy, place it into a pre-opened
drawer, and close it. Robot data (144 demonstrations) covers three of the four array quadrants,
each quadrant being a 3x2 arrangement. Human data (1 hour) covers all four quadrants, providing
demonstrations for motions into the fourth, robot-unseen quadrant. This setup specifically tests
behavior generalization to drawer locations only seen in human data. Points (Pts) are awarded for
successful completion of each stage and a trial is considered a success only if the robot completes all
actions. Evaluation uses 48 trials (2 rollouts for each of the 24 drawers).

Scoop Coffee: The robot uses its left arm to scoop coffee beans with a spoon and empty them into
a target. Robot data (50 demonstrations) involves a specific target (can) in one scene. Human data
(2 hours) includes demonstrations with both the can and a new target (grinder), across two distinct
scenes, one of which is novel to the robot. Target object positions are randomized (30x23 cm area).
We evaluated observation generalization for: (1) the new grinder target, and (2) the new scene with
the new target, that is, scooping to the grinder in the new scene, seen in human data only. Performance
is measured by success rate over 15 rollouts across 5 distinct target locations.

Laundry: This is a bimanual task where the robot needs to fold the shirt in 50 x 22 cm range with a
rotation range + 30 degrees. The robot uses both arms to fold the right sleeve, the left sleeve, and
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Figure 4: Training Data and Evaluation Settings. We show the distribution of human and robot
training data (top) and evaluation setting, where in-distribution scenarios are in both human and robot
data, while out-of-distribution (OOD) scenarios is seen only in human data.

then the final stage to fold the shirt in half. We award Pts for each successful stage and consider it
success if all the individual stages are successful. We collect 2 hours of robot data which include
300 demonstrations across 3 shirts, and 2 hours of human data comprising approximately 700
demonstrations. We conduct 18 evaluations with diverse shirt initial placement and colors.

Baselines. We adopt the following baselines for real-world tasks. Co-train: Direct co-training of
the robot and human data using BC loss, without any latent alignment. EgoMimic: [[l|] Co-training
with explicit vision and action-space alignment using masking, shared end-effector pose head (human
and robot) and a separate joint-space head for robot. Mimicplay: [25]] A hierarchial policy with a
latent high-level planner co-trained on human and robot data, and an action decoder fine-tuned on
robot data. Any-Point Trajectory Modeling (ATM): [19] A hierarchical policy where the high-level
planner is initially co-trained on 2D point tracks derived from both robot and human video data.
These point tracksare obtained via Co-tracker [35]]. Following this, high-level planner is frozen and
an action decoder is fine-tuned specifically on robot data. Target-only BC: Trained only on robot data.

5.3 Results

EgoBridge improves in-domain task performance (H1). Over our set of in-domain tasks, we
observed an improvement of 7-44% in absolute task success rate over both human-augmented
imitation learning baselines and robot-only behaviour cloning policies. While methods like naive
co-training, EgoMimic and ATM also improve in-domain performance across all tasks, EgoBridge
consistently outperforms them. We hypothesize that the strongly aligned latent representations
facilitate better cross-embodiment transfer.

EgoBridge enables generalization to objects and scenes only seen in human data (H2). While it
is difficult to collect robot data across diverse scenes and objects, it is trivial to do for human data,
so it’s critical that we can transfer this knowledge from human to robot, inspiring our experimental
setup. Specifically, in the Scoop Coffee task, our human data introduces a new coffee grinder, table,
lighting and height variations, completely unseen to the robot. We find EgoBridge outperforms all
baselines when tested on the new coffee grinder (7-33%). Further, most methods fail entirely when
tested on the new grinder + scene, but EgoBridge retains a performance of 27%. We observe similar
robustness trends in our simulated benchmark Fig. [3} where EgoBridge enables generalization in the
push-T task to a new background and starting configuration, outperforming all baselines.

EgoBridge enables generalization to new behaviors only seen in human data (H2). In our most
challenging setting, we seek to show that we can learn entirely new motions from human data alone.
In the drawer task, the robot data covers 3/4 drawer quadrants, whereas the human data covers all 4
quadrants. We evaluate our policy’s performance on these new drawers, and find that EgoBridge is
able to generalize to these locations with a success rate of 33%, whereas most methods fail entirely
(Tab.[T). While all the methods were exposed to the same human data, only EgoBridge was able
to effectively transfer the human motion to a novel robot action. We attribute this success to the
well aligned latent representations, which enables human to robot knowledge interpolation. We also
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Figure 5: Visualization of TSNE plots on encoded features for EgoBridge and baselines, with the
mean Wasserstein-2 distance and KNN pairs of aligned human-robot data visualized.

observed a similar trend in the simulated benchmark where EgoBridge faces the lowest performance
drop of 14% compared to all baselines in the mirrored-T + background colour reflected in Fig.[3]

EgoBridge learns a shared latent space that aligns human and robot data in a task relevant
manner (H3). We hypothesize that an ideal latent space for transfer would jointly embed human
and robot data into a space with high overlap and semantic interoperability. To probe this, we create
a TSNE visualization of the action tokens from our transformer backbone. EgoBridge not only
exhibits the highest latent overlap between human and robot as measured by Wasserstein distance as
seen in Fig.[5] but also upon inspecting K-nearest neighbor pairs in latent space, exhibits the most
semantically similar neighbors. For instance, we see the human and robot performing the same phase
of a given task, whereas in baselines like MimicPlay that aligns marginals with KL-div, the semantic
similarity is lacking. This result is highly correlated with the task success rates for in-distribution and
generalization where baselines with poor alignment perform lower consistently across all evaluations.

Ablation. We ablate three key components of our
method 1) replacing our DTW-based pairing metric to Table 2: Ablation Results (Drawer)
instead use simple MSE, 2) replacing the joint OT ob-
jective Lotjoine With standard marginal alignment, and  Method Drawer (SR) Beh. Gen. (SR)
3) removing any auxiliary alignment objectives (direct

co-training). We find that replacing the cost function f/{gsog ridge ‘:ZZZ 353;)
with MSE leads to the largest performance drop for in- ¢4 40T 33% 17%
distribution policy success rate from 47% to 17%, seen  ¢g_train 2% 0%

in Tab. 2] which emphasizes the importance of creating
semantically similar pseudo-pairs. Ablating Joint-OT
also shows a large performance drop in both in-distribution and generalization cases which empha-
sizes how naive marginal alignment cannot transfer knowledge from human data effectively. Ablating
an auxiliary alignment loss also shows a significant performance drop for in-distribution success rate
and leads to failure in generalization cases, emphasizing the need for joint distribution alignment.

6 Conclusion and Limitations

We presented EgoBridge, a novel co-training framework designed to enable robots to learn effectively
from egocentric human data by explicitly addressing domain gaps. By leveraging Optimal Transport
on joint policy latent feature-action distributions, guided by Dynamic Time Warping cost on action
trajectories, EgoBridge successfully aligns human and robot representations while preserving critical
action-relevant information. Our experiments demonstrated significant improvements in real-world
task success rates (up to 44% absolute gain) and, importantly, showed robust generalization to novel
objects, scenes, and even tasks observed only in human demonstrations, where baselines often failed.

While EgoBridge demonstrates promising single-task transfer, the DTW-based action alignment cost
may not be as informative in multi-task joint domain adaptation settings. In future works, we seek to
adopt more generalizable alignment cost such as natural language embedding distances [36] obtained
from Vision-Language models and visual features extracted from foundation models. Other avenues
for future work include extending the joint distribution adaptation to multiple embodiments and
leveraging Internet-sourced human data without action labels.
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A Algorithm Pseudocode

Overview. Algorithm [I]describes the joint policy co-training of the human and robot data with the
joint OT loss.

Mini-batch sampling. At each iteration we draw two size—B mini-batches, one from the human
dataset Dy and one from the robot dataset Dy (Lines 3-4).

Shared encoder. Both batches are fed through a shared encoder f, that maps raw observations o to a
latent embedding z € R¢ (Line 6).
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Algorithm 1 EgoBridge Co-Training for Human <+ Robot Imitation

Require: Human demos Dy, robot demos Dp, OT loss weight o, DTW discount A, Sinkhorn
regularization ¢, LR schedule n
Ensure: Encoder f,; and policy decoder 7y
1: Initialize network parameters ¢, 0
2: while training not converged do

3: By = {0;}), ag? B, < SAMPLEBATCH(Dy, B) > sample human data
4: Br = {o%)7 a%)}f;o < SAMPLEBATCH(Dg, B) > sample robot data
5: zi < folon), zr < fo(or) > encode raw observation batch into shared latent space
6: foralli € {0,...,|Bg|-1}, j €{0,...,|Br|—1} do
7: Ajj DTW(a%), a%)) > DTW distance between actions
8: end for
9: i*(j) < argmin; A;; V5 € {0,...,|Bgr|—1} © pick the most similar human traj. for each
robot traj.
10:  forallie€ {0,...,|By|—1}, j €{0,...,|Br|—1} do
11: D;; + Hzg) - z}(%) |2 > observation feature cost
12: ifi = i*(j) then
13: Cij < A Dy > discount cost if DTW says the pair matches
14: else
15: Cij — Dij
16: end if
17: end for
18: g ﬁ 1, pug ﬁ 1 > uniform probability mass on the minibatch supports
19: T* < SINKHORN(ug, g, C,¢) > compute differentiable OT loss with entropic reg.
20: Lotjoint < 224 5 175 Cij
21: g < m9(zH), ar < mo(2R) > predict actions for both domains
22: LBC-cotrain < LG, am) + Lac(dr,ar) > behaviour-cloning loss across domains
23: L < LBC-cotrain + & ['OT—joint

24; (¢,0) < OPTIMIZERSTEP(6,0, V4 0L, 1)
25: end while
26: return fy, Ty

Behavioural pairing via DTW. The Dynamic Time Warping (DTW) cost is applied on the action

sequences ag) and ag) from both domains. The assignment ¢*(j) (Line 11) identifies a single
pseudo-pair in Dy for each robot trajectory j which minimizes the DTW cost.

Sinkhorn. The Sinkhorn-Knopps algorithm is used to compute an entropy-regularized Optimal
Transport plan from the uniform probability mass on the minibatch supports.

Joint-OT. Latent distances D;; = ||zl(;,) - zg) ||% are discounted by A < 1 when (4, 5) is behaviourally

matched (Lines 12—-17), producing a shaped cost C' that biases the OT loss computed from the
Sinkhorn OT transport plan.

Behaviour cloning and objective. The decoder 7y produces domain-specific actions and is trained
with a supervised 10ss Lpc_cotrain (Lines 22—24). The overall objective (Line 26)

L = LpC-cotrain + EOT—joint

balances imitation fidelity with latent-space alignment, with an « balancing factor between the two
losses.

B Network Architecture

The following section describes how f, and 7y are parameterized in the simulation and real-world
experiments. All hyperparameters are summarized in Table [3| Table ] for real-world and in Table 3]
for simulation.
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B.1 Real World Experiments

Table 3: Hyperparameters for Real-World Experiments

Symbol Value
HxWxC 480 x 640 x 3
proj 256
Dstem 8
dan 64
L 16
dq(Robot) 7 or 14 (joint positions)
dq(Human) 6 or 12 (end effector pose as xyz + euler)
Dtrunk 8
Ntrunk 16
256
M 8
Dhead 8
Nhead 8
dhead 64
k 100
dg, 7 or 14 (xyz + euler angles + gripper position)
Lpc (Robot) SmoothL1(xyz) + SmoothL1(gripper) + 0.5 - M S E(euler)
Lpc (Human) SmoothL1(xyz)

L= ACBC—(:ot:rain + OZ‘COT—joint a=0.7

B.1.1 Observation Encoder: f

fo consists of two components, "stems” for each observation modality and a "trunk”. The stems are
shallow networks that encode heterogenous input spaces into a fixed representation to allow joint
learning between human and robot observations.

Vision Stem. Given an RGB frame I € R X" *3_we normalize using ImageNet normalization and
then pass it through a ResNet-18 encoder truncated before the global-pool layer to obtaina 7 x 7 x 512
feature map. The 49 spatial patches are flattened and projected with a single-layer MLP of hidden
dimension dpj, producing 49 tokens of size dpo; per image. A single multi-head cross-attention
block (Dg¢er, heads, per-head width d,,) employs L learnable query tokens of dimension d that
attend to these 49 patch tokens; the resulting L query outputs constitute the vision tokens passed to
the shared trunk.

Proprioceptive Stem. The proprioceptive observation vector q € R% (joint angles, end effector
pose etc.) is z-score normalized and passed through a single-layer MLP of hidden dimension dp;,
producing one token kproprio € Rdproi A single multi-head cross-attention block (D¢, heads, per-
head width d,,) uses the L learnable query tokens as in the vision branch to attend to this key/value
token; the resulting L query outputs constitute the proprioceptive tokens that are forwarded to the
shared trunk.

Trunk. The shared “trunk” is a standard multi-block transformer encoder, which consists of Dy, nk
heads, Ny.uni blocks, and an embedding dimension of d. Each head has an attention dimension of
d/D¢runk- A token sequence of length L - m by concatenating the token outputs of m observation
encoding stems. A set of M learnable context tokens are prepended to the the token sequence. The
new sequence of M + m - L are input into the trunk. The first M are extracted from the output
sequence and represent the feature output z of f,, and consequently where Lotjoint is applied.

B.1.2 Policy: my

mg is conditioned on the output z of f4 and is parameterized by a DETR-style multi-block transformer
decoder "head" [34].

Head. The head consists of Nj..,q blocks and Dj..q heads, a cross-attention dimension of
dhead - Dheaq and a self-attention dimension of dpeqd/ Dhead- This hybrid attention is designed to
promote increased conditioning from the latent z. k learnable tokens of dj..q are input into the
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model, where K corresponds to the action chunk length k. Each block in the decoder consists of
alternating self-attention on the k input tokens, and cross-attention with the context M tokens (z)
from the trunk. After the final block, a linear layer projects the output to d, corresponding to the
cartesian action dimension, which is described precisely in Section[D] Since the human data only
comprises of 3D position, the loss is a masked loss which is only calculated on the values in the
prediction corresponding to the 3D position for human data. The loss £z¢ on human data is Smooth
L1 loss on the 3D position, while the loss Lg¢ on robot data is Smooth L1 loss on the 3D position,
gripper value and MSE loss on the orientation.

Complete Architecture. The network consists of a shared vision stem processes main egocentric
RGB images (1.4, € RIXWx3) from both human and robot and produces L tokens. Followed by
this are individual embodiment-specific proprioceptive stems that map ¢ and ¢ proprioceptive
features to an additional L tokens. To the vision and proprioceptive tokens, left and right wrist
RGB images (I,is: € R7*W*3) are mapped to additional tokens by one additional wrist vision
stem for single-arm robot data and two additional wrist vision stems for bimanual robot data. M
learnable tokens are prepended to the token sequence and passed to the trunk. The OT-joint loss
is applied on the first M tokens of the output. The same tokens are decoded by the head into
as.t41 € SE(3) + gripper, where an action for a single arm € R**7 with the orientation expressed
as euler angles in the yaw-pitch-roll convention. For bimanual tasks, the action comprises of two
such action trajectories concatenated resulting in an output € R**14,

Training Details. We train the real world EgoBridge model on a single L40s gpu for 100000
iterations on the Drawer task, 110000 iterations on the Laundry task, and 120000 iterations on the
Scoop Coffee task, which takes about 24 hours. More details are in Table

Table 4: Training Details for Real World Experiments

Parameter Value

Optimizer AdamW

Learning Rate 5x107°

Weight Decay 0.0001

Scheduler Linear

Batch Size 32

Data Augmentations  ColorlJitter + ImageNet Normalization (ResNet)
OT Loss GeomLoss [37]

Blur 0.05

Distance Sinkhorn

B.2 Sim PushT

Data Processing. We follow the PushT environment setup introduced in the Diffusion Policy
benchmark suite [6]. Each demonstration comprises a sequence of RGB observations and associated
low-dimensional proprioception, along with corresponding action labels. The RGB observations
I; € R96%96%3 are normalized using ImageNet statistics. The proprioception consists of 2D end-
effector positions (z, y), which are min-max normalized per-dimension using statistics computed over
the entire dataset. The action at each timestep is defined as the target 2D position of the end-effector,
also normalized with per-dimension min-max normalization. Action chunks of length k& = 16 are
extracted from each demonstration trajectory. No observation history is used in the input, i.e., the
observation context window is 1.

Encoder (f3). We employ the same vision encoder architecture as in the original Diffusion Policy
paper [6], which uses a truncated ResNet-18 to extract spatial feature maps from 96 x 96 x 3 RGB
images. The proprioceptive input (normalized x, y position) is concatenated channel-wise to the
image feature maps before being passed as the global conditioning to the UNet-based diffusion
decoder. This architecture has been shown to effectively fuse visual and proprioceptive features for
policy learning in low-dimensional manipulation tasks like PushT. The Joint-OT loss is applied on
the image-proprio concatenated feature output.

Policy (7g). The policy architecture mirrors the conditional diffusion policy design [6]]. The output
is a denoising network trained to generate a trajectory segment of length k¥ = 16 for 2D end-
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effector coordinates in normalized space. During training, the policy receives a noisy version of the
ground-truth action chunk, and learns to iteratively denoise the sample using the concatenated latent
observations. The diffusion loss is the weighted MSE over all denoising steps in the sampling process.
During inference, the policy performs iterative denoising starting from Gaussian noise to generate 2D
trajectory samples conditioned on the current observation.

Training Details. We train the simulation EgoBridge model on a single A40 GPU for 130000
iterations, which corresponds to around 2 hours of training time. The hyperparameters and training
details are summarized in Table

Table 5: Training Details for Simulation Experiments (PushT)

Parameter Value
Optimizer AdamW
Learning Rate 1x 1074
Weight Decay 1x10°¢
Scheduler Cosine
Warmup Steps 500

Iterations 130,000

Batch Size 32

Exponential Moving Average (EMA) Power =0.75
Data Augmentations ImageNet Normalization (ResNet)
Lyc (Triangle & Circle) MSE(xy)

L= £BC—cotrain +a EUT—joint a=0.2

OT Loss GeomlLoss [37]
Blur 0.01

Distance Sinkhorn

C Baselines

C.1 Real World Experiments

All baselines instantiate the encoder f4 and decoder 7y architecture described in Section [B| and
Table [3| with modifications to input and output spaces.

Robot-only Behavioral Cloning (Robot-only BC). This baseline is trained only on robot observa-
tions. The encoder includes vision stems for egocentric and wrist camera inputs and a proprioceptive
stem for joint-space inputs. The resulting tokens and M context tokens are passed to the transformer
trunk. The decoder head uses K learnable tokens to produce future actions, where each action is
a 7-dimensional Cartesian command: 3D position, 3D orientation, and scalar gripper. The loss is
computed using Smooth L1 for position and gripper, and MSE for orientation.

Co-train. Co-train uses both human and robot demonstrations during training and represents an
ablated version of the EgoBridge model, where the joint-OT loss (Lorjoin) is not applied.

EgoMimic [[1]. EgoMimic follows the Co-train architecture but includes two modifications: (1) The
egocentric RGB input is masked with an overlay and red line augmentation, following [1] before it is
input into the encoder, and (2) The decoder uses two heads: one for robot joint-space commands € R”
and another for shared cartesian pose € SE(3) + gripper for human and robot data. The joint-space
predictions are supervised using a Smooth L1 loss on the entire prediction vector, while cartesian
pose predictions are supervised by the loss described in Section |B| During training, the appropriate
head is selected based on the data source, where robot data provides gradient updates through the
joint predictions and cartesian predictions, while the human data provides gradient updates for the
model through the cartesian predictions. The identical overlay is applied during evaluation.

ATM [19]. For fair comparisons, we implement ATM with an identical architecture as our method
and extend it with an additional head designed to predict future dense 2D motion trajectories in the
image plane, as described in the original ATM paper. The goal is to test whether access to pixel-
level dynamics improves downstream behavior cloning performance via improved latent structure.
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Ground-truth 2D pixel tracks are generated using CoTracker [35] and organized into a temporal stack
of length 10, covering 100 future frames. The action-track head outputs future 36 keypoints across
6 x 6 grid over the image plane. Training proceeds in two stages: first, the the trunk, stems, and the
2D track head are pre-trained for 500 epochs to jointly predict human and robot 2D action tracks;
second, the trunk and 2D head are frozen, and only the cartesian action head is fine-tuned on robot
data. We opt for stacked, non-autoregressive, predictions of the full temporal keypoint trajectory,
diverging from the sequential autoregressive formulation in the original ATM [19], in order to isolate
the representational benefits of point-track conditioning on downstream imitation performance.

MimicPlay [25]]. MimicPlay is implemented as a hierarchical policy which consists of a "high-level"
policy which is co-trained on both human and robot data and a "low-level" policy which is trained
only on robot data and is conditioned on the context output of the "high-level" policy.

High-level policy. We parameterize the high level policy of MimicPlay with a shared vision stem
for I.4, for both human and robot and a shallow "trunk" which consists where Nyyni, = 2, while
the other hyperparameters for the trunk remain the same to match the parameter size of the original
high-level in MimicPlay. 2 tokens corresponding to the high level context are prepended to the vision
tokens. The first 2 output tokens are the latent context zj;4y, that are passed to the low-level policy. A
KL-divergence loss is applied between the robot data sz; o, and the human data z{i gn- A Gaussian
Mixture Model decoder with identical parameters to the MimicPlay paper, takes z,igh and predicts
the mixing coefficient, mean, and the variance of GMM. With these predictions, a sequence of 100
3D positions are sampled from the GMM for a given input observation and supervised with the
ground-truth actions for the observation with a negative log likelihood loss. The high-level planner is
trained until convergence which is around 60000 iterations.

Low-level policy. The low level policy is parameterized the Robot-only BC model. The high-level
policy is frozen and the latent output 24, is concatenated to the M tokens produced by f4 which
are then decoded into cartesian actions supervised by £z on robot data.

C.2 Sim PushT

In the more controlled Sim PushT environment, we benchmark EgoBridge against standard domain
adaptation techniques commonly used in feature-level alignment. All baselines instantiate the same
encoder f4 and decoder 7y described in Section with differences only in the training objective
and data source used.

Maximum Mean Discrepancy [30]. We evaluate domain alignment using the MMD loss [30] as an
alternative to the Joint OT loss. This baseline uses the same training configuration as EgoBridge but
replaces the Joint-OT objective with the MMD loss applied on the latent embeddings from the shared
encoder. The overall training objective is:

L = Laccotrain + Ammp - Lmmvp,  where  Aymp = 1.0

The MMD loss is computed as:
Lo = & SR ) + L Y k) Skl )
n? 4= m? 4= nm 4~
where k(-,-) is a Gaussian RBF kernel:
|z — yll3
k(z,y) = exp <_M

and o is the kernel bandwidth hyperparameter.

Standard OT. This baseline implements marginal alignment using an unshaped Optimal Transport
cost matrix without any DTW-based behavioural pairing. It follows the same formulation as Ego-
Bridge (see Algorithm [I)) but removes the DTW pairing step (Lines 11-17), using direct squared
¢y distance C'ij = Dij for all (i, j) in the batch. This serves as an ablation that tests the benefit of
behaviourally guided pairings in EgoBridge.

Co-train. Similar to the real-world setting, the co-train baselines ablates the Joint OT loss from the
sim EgoBridge architecture to evaluate the baseline performance of training a shared policy on both
embodiments.
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Target-only BC. This baseline is trained using only robot demonstrations from the triangle pusher
in the white background with original T configuration (100 trajectories total). It uses the same
architecture as EgoBridge but is never exposed to data from the circle pusher (source domain).

D Robot Data

Bimanual Manipulator. To effectively utilize egocentric human data for manipulation, the robot
hardware platform must resemble human sizes and kinematic workspaces. Drawing inspiration from
the “Eve” robot platform introduced in EgoMimic [[1], we develop a custom mobile manipulator
that comprises of two 6-DoF ViperX 300s mounted in an identical inverted configuration on a
height-adjustable rig. Similar to Eve, we propose to leverage the Project Aria glasses [32]] as the
main egocentric perception sensor for the robot and mount it in a way that emulates the hand-eye
configuration of a human adult. This effectively mitigates the human-robot camera device gap and
reduces the sensor-manipulator kinematic gap. Each arm is equipped with an Intel Realsense D405
on its wrist to facilitate precise near-range manipulation. The raw RGB data from the aria glasses
is undistorted to a linear camera model, resized and reshaped to 480 x 640 x 3. Fig. E] shows an
annotated picture of the bimanual manipulator. The bimanual manipulator is teleoperated using
a leader-follower system similar to ALOHA [5], where two WidowX 6-DoF arms in an inverted
configuration as seen in Fig. [6]

Data Processing. Each robot demonstration comprises synchronized streams of joint-space pro-
prioception, RGB image observations, and action labels recorded at 50Hz. At each timestep ¢, we
collect the current joint configuration gf* € R, where d,, denotes the number of actuated joints
for one or two robot arms. RGB images are recorded from two sources: (1) an egocentric camera
(If;o’t € R480%640x3) mounted using Project Aria glasses in a head-like configuration, and (2)

wrist-mounted RGB cameras ([, grist,t € R180x640x3) placed near the end-effectors.

The raw action at each timestep is defined as the commanded joint position a,aw’* € R%/ represent-
ing the control input issued at time ¢. To obtain cartesian actions used for training, we use analytical
forward kinematics to compute the S E(3) cartesian pose. The cartesian pose is then projected into
the image frame via the Aria glasses extrinsics (T%"*®) obtained through hand-eye calibration, which
represent the transformation between the robot base frame and the Aria glasses camera frame. The
ground-truth actions af* € R% are obtained through

alt = (T%%) " . FK(a®, )

raw,t

E Embodied human data

We use the Project Aria [32] glasses to collect human embodied experience data. The glasses are
accompanied by the Aria Machine Perception Services (MPS). The raw data from the Aria glasses
consist of an RGB camera stream, SLAM cameras, IMU, eye cameras. This raw data is uploaded to a
cloud service provided by Project Aria, known as the MPS. The service returns device pose estimated
using the SLAM camera, hand tracking relative to the device frame, a semi-dense point-cloud of
the environment and eye gaze estimation. This processed data is obtained as CSV files with aligned
timestamps. The hand tracking is in the form of 3D positions p € SFE(3) x SE(3) for both hands in
device frame, while the head pose T € SFE(3) in world frame. Each hand position p! is in device
frame 72" for timestep t. The raw RGB data is undistorted to a linear camera model and reshaped
to 480 x 640 x 3. Constructing human actions. One challenge with unifying the reference frames
for joint policy learning is that robot actions are typically in a fixed reference frame (usually the
base frame), while human hand tracking is in the device frame, which moves. Following the idea
of predicting action chunks [6l 5], we aim to construct action chunks af,, . Taking the single-arm

case without loss of generality, the raw trajectory is SE(3) poses [ptH , pﬁ_l, pﬁ_z, pg_ ), where

each hand position p{ is in device frame T*"*®. We choose to create pseudo-reference frames taking
inspiration from [1]], where we construct an action all, 1, by projecting k future hand positions into
the device frame at timestep ¢. This allows the policy to predict trajectories with respect to a stable
reference at each timestep. As such, the trajectory is constructed by:

k
H _ aria\ ~1 praria | H
Apppk = [(Tt ) TV - iy i

18



-
v
_—

. ol .
ViperX WidowX
Followers
Leaders
) .

J . J

Figure 6: We employ the Aria glasses to capture Egocentric RGB images for both human and robot
embodiments. The Aria uses its side SLAM cameras to estimate device pose and hand tracking (left).
Ground truth (GT) cartesian actions for both embodiments are projected to pixel space using Aria
intrinsics and visualized on the images. Our robot system is a leader-follower system with two Viper
X arms as the followers and two Widow X arms as the leaders which are teleoperated by the human
demonstrator (right).

F Data processing and alignment.

Recent cross-embodiment works [} show that individually normalizing proprioception and
actions for both embodiments, helps co-training. Similarly, we employ z-score normalization by
subtracting the per-embodiment dataset mean and dividing by the standard deviation

norm(p) = (p = ip)/op
We normalize actions identically, using per-dimension mean and standard deviation.

For both human and robot, our action chunk size k¥ = 100. Human data sensor streams (RGB, hand
tracking and SLAM) are received at 30hz. We construct a human action chunk by taking 10 sample
pose values at an interval of 3 frames, and interpolating them to a trajectory of length 100. This
corresponds to a trajectory of length 100 to 0.9 seconds in real time. We construct a robot action
chunk by concatenating the ground-truth actions of 100 successive timesteps which correspond to 2
seconds in real time. The human and robot data sources are visualized in Fig.[6]

G Additional Task Details

G.1 Real World Experiments

Drawer. For this task, we collect one hour of human data and 30 minutes of robot data comprising
144 demonstrations. The human data was equally distributed across all four quadrants, while the
robot demonstrations were equally divided among three quadrants (excluding the top-right), with
each receiving 48 robot demonstrations (8 demonstrations per drawer). The main failure modes for
this task are the inability to correctly grasp the toy, taking the toy towards the incorrect drawer and
being unable to completely push the drawer shut.

Scoop Coffee. The scoop coffee task emphasizes observation generalization with novel objects and
scenes. To address this, we gathered 180 minutes of human data, equally split across three scenarios:
the base scene, a new target object (grinder), and a new target object (grinder) with a new scene. For
robot data, we collected 50 demonstrations with the original target object and scene configuration.
The two primary failure modes in this task is an inability to precisely grasp the scoop and imprecise
targeting of the target container.

Laundry. The laundry task demands precise bimanual coordination. We collected a similar amount
of human data (2 hours) as the scoop task, comprising 700 demonstrations, alongside two hours
of robot data (300 demonstrations). Common failure modes involve missing one or both sleeves
during any of the three sub-stages, leading to an imprecise or unsuccessful fold. The qualitative task
successes are visualized in Fig.[7]and common failure modes for each task are visualized in Fig.[§]
while the data mixture is shown in Table
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a) Drawer

Figure 7: Qualitative success of EgoBridge on each of our real world tasks.

a) Drawer - Failure Modes

Incomplete Grasp

Figure 8: Common failure modes for each of the real world evaluation tasks.
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Table 6: Data collection overview for both Human(H) and Robot(R) data. We report both the
number(#) of total task demonstrations and the time(min) took to collect them.

Task H H H R R R

# min #/min # min #/min
Drawer 360 60 6 144 29 5
Scoop Coffee 720 180 4 50 133 3.5
Laundry 700 120 5.8 300 120 2.5

G.2 Sim PushT

We collect a total of 350 demonstrations across 4 scenarios using the PyMunk simulator environment
published with Diffusion Policy [6]. We collect 100 demonstrations each for the circle pusher and
triangle pusher in the original T configuration with the white background. In addition, we collect
50 demonstrations each of the circle pusher with original T configuration on purple background,
mirrored T on purple background and mirrored T on white background. We apply a friction coefficient
multiplier of 0.7 on the triangle pusher to embody a kinematic gap like human and robot.

H Supplementary Simulation Results

We evaluate 3 settings : In distribution, which corresponds to the triangle pusher with the original T
configuration on a white background; Observation Generalization which corresponds to the previous
setting with a purple background; Observation and Behaviour Generalization which corresponds
to the triangle pusher with a mirrored T on a purple background. For evaluation, we select a total
of 100 seeds between 101 and 9999 using a deterministic random sampling with seed 42. The
complete results are summarized in Table[7} The Mean Reward is calculated using the average max
Intersection-over-Union with the goal across 100 seeds and Success Rate (SR) is computed using the
number of seeds with a reward of over 0.9.

Table 7: Sim PushT results across 3 evaluation settings

Method In-distribution Generalization
(Mean Reward | SR) Purple Bg Purple Bg + Mirrored T
(Mean Reward | SR) (Mean Reward | SR)

EgoBridge 0.7605 | 53.00% 0.7206 | 48.00% 0.6520 | 39.00%
Target Only 0.5555 ] 39.00% 0.0904 | 0.00% 0.0992 | 0.00%
Cotrain 0.7062 | 48.00% 0.6899 | 42.00% 0.6214 | 31.00%
Standard OT 0.7009 | 38.00% 0.5303 | 15.00% 0.5109 | 8.00%
MMD 0.6439 | 45.00% 0.4367 | 22.00% 0.5876 | 14.00%

I Pseudo-pair Visualisation

To show why Dynamic Time Warping (DTW) is an ideal cost function to identify behaviourally
similar trajectories to align, we visualize randomly sampled mini-batch pairs from the dataset for
each of the tasks and qualitatively compare them with the Mean Square Error (MSE) cost function
pairs used for the MSE ablation. A pair, as defined earlier, is the row-wise cost function minimum in
the cost matrix computed from a batch of human and robot data. Qualitatively, DTW is more robust
to temporal shifts, viewpoint shifts and is more spatially precise when compared to MSE. Specifically,
MSE often pairs the incorrect sub-task in tasks like Laundry, and loses precise spatial location of the
target container in tasks like Drawer and Scoop Coffee. The few failure modes of DTW are where the
trajectory overlaps a few different stages which leads to temporal misalignments and when locations
are spatially apart but visually close due to an extreme viewpoint shift. Despite this, DTW enables
pairings that are able to capture very fine-grained changes in trajectory to find the most behaviorally
similar between human and robot data. This is visualized in Fig. [9}
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Dynamic Time Warping Mean Squared Error

Mean Squared Error

Figure 9: Qualitative visualization of randomly sampled mini-batch pairing of MSE and DTW.
J Supplementary Real Results

In order to test EgoBridge’s ability to generalize to new appearances under a more challenging
real-world setting, we conduct two additional evaluation experiments on the Laundry task. The
first, Observation Generalization, introduces a new white table surface unseen in robot data, along
with 30 minutes of human data recorded on this new setup. The second, Combinatorial Observation
Generalization, evaluates a harder scenario where the robot must handle a new shirt color on the white
surface, with that shirt seen only in the human data and excluded entirely from robot demonstrations.
Both evaluations follow the same protocol as the main experiments, performing 20 rollouts across 5
randomly sampled workspace positions. As summarized in Table[8] EgoBridge achieves substantially
higher success rates and sub-task points than the Co-train baseline in both settings, demonstrat-
ing stronger robustness to visual appearance shifts and compositional variations in object—scene
configurations.

Table 8: Generalization experiments on Laundry. Evaluation of Co-train and EgoBridge under
two generalization settings. We report success rate (SR) and sub-task points.

Obs. Generalization Comb. Obs. Generalization

Model SR (%) Points SR (%) Points
Co-train 25 25 5 7
EgoBridge 50 43 30 35

22



Query Images Nearest Neighbours

EgoBridge
W2 Dist: 0.00
. Co-train
W2 Dist: 7.642
EgoBridge
W2 Dist: 0.00
:
Co-train 2
W2 Dist: 10.55 = ' n

10 % ] ) 110

Figure 10: Qualitative visualization of the learned latent space using T-SNE and K-Nearest Neighbors.
K Latent Space Visualisation

We visualize the learned latent feature outputs of f4 for the EgoBridge and Co-train models using
T-SNE for the Drawer and Scoop Coffee tasks. To evaluate EgoBridge’s ability to achieve joint
distribution alignment, we use K-Nearest Neighbors to identify the closest learned human feature
representations to a give robot feature representation. We plot the ground truth actions associated
with those observations onto the input images and visualize the nearest neighbors. In addition to
an overall lower Wasserstein-2 distance, which indicates global alignment, EgoBridge also aligns
observations that correspond to similar behaviors in the latent space. This is visualized in Fig[T0]
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The experiment section show real world and simulation evaluation settings
that support the claims made within the abstract and the introduction.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have described our limitations alongside the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The purposed method and corresponding optimal transport theory contains a
detailed proof and is included in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The EgoBridge framework details and hardware used in experiments are
discussed in the methods and experiments section.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: No. But we plan to release after acceptance.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed information regarding data collection, splits, hyperparameter tuning
and training details of EgoBridge is mentioned in our supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: In real-world robot learning experiments [1} 25, [19], conducting the numerous
repetitions on physical robots required for robust error bar computation is prohibitively
expensive and time-consuming, incurring significant hardware and human supervision costs.
Moreover, repeated trials can induce hardware wear, introducing uncontrolled variability
that hinders achieving consistent experimental setups. Consequently, reporting standard
error bars is often impractical. Our evaluation prioritizes full task and sub-task success and
qualitative results over statistical variance, aligning with standard evaluation methods in this
domain.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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10.

Answer: [Yes]

Justification: Detailed instructions of compute resources to reproduce our work are provided
in the supplementary material

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not conduct formal human study. Demonstration data (human and
robot) is collected by authors with explicit consent. We have reviewed the NeurIPS Code of
Ethics and ensured full compliance with its guidelines for this research.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work advances co-training methodologies for cross-embodied human and
robot datasets, representing a small increment in foundational robot learning research. As
such, it does not present direct societal impacts at this stage.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11.

12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We have not released our data or models and we believe our potential future
release of this paper does not pose any such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited all existing code package and datasets and mentioned
their licenses in the supplementary material.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This work does not release new assets.

Guidelines:

29


paperswithcode.com/datasets

14.

15.

16.

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human partici-
pants. All human demonstration data is collected by authors with explicit consent.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human partici-
pants. All human demonstration data is collected by authors with explicit consent.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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