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ABSTRACT

Integrating the 3D world into large language models (3D-based LLMs) has been
a promising research direction for 3D scene understanding. However, current 3D-
based LLMs fall short in situated understanding due to two key limitations: 1) ex-
isting 3D datasets are constructed from a global perspective of the 3D scenes and
lack situated context. 2) the architectures of existing 3D-based LLMs lack explicit
alignment between the spatial representations of 3D scenes and natural language,
limiting their performance in tasks requiring precise spatial reasoning. We address
these issues by introducing a scalable situated 3D dataset, named Spartun3D, that
incorporates various situated spatial reasoning tasks. Furthermore, we propose
Spartun3D-LLM, built on an existing 3D-based LLM but integrated with a novel
situated spatial alignment module, aiming to enhance the alignment between 3D
visual representations and their corresponding textual descriptions. Experimental
results demonstrate that both our proposed dataset and alignment module signifi-
cantly enhance the situated spatial understanding of 3D-based LLMs.

1 INTRODUCTION

Situation1: You are standing beside a 
trash bin while there is a toilet in front 
of you.

Question：what should you do to wash hands? 

3D LLMs: Scrub your hands with 
soap and water.

Spartun3D: You can use the sink on 
the right. 

Situation2: You are standing beside a 
trash bin while there is a toilet behind
 you.

3D LLMs: Go to the sink and wash 
your hands.

Spartun3D: You can use the sink on 
the left. 

Trash 
bin

Toilet

sink sink

Toilet

Trash 
bin

Figure 1: Illustration of situated scene understanding of
Spartun3D-LLM compared to other 3D-based LLMs.

Recent advances in large language models
(LLMs) have demonstrated their remark-
able reasoning and communication capa-
bilities across various tasks and modali-
ties (Achiam et al., 2023; Alayrac et al.,
2022; Zhang et al., 2023a; Rubenstein
et al., 2023). Building on these break-
throughs, there has been a growing interest
in extending LLMs to the 3D world (3D-
based LLMs) (Hong et al., 2023; Huang
et al., 2023; Chen et al., 2024; Zhen et al.,
2024; Wang et al., 2023). Existing stud-
ies mainly focus on integrating various
3D scene representations into LLMs, en-
abling the models to perform 3D ground-
ing and spatial reasoning through natural
language. For example, 3D-LLM (Hong
et al., 2023) utilizes multi-view images to
represent 3D scenes, pioneering a new direction in this field, while LEO (Huang et al., 2023) further
pushes the boundary by directly injecting 3D point clouds into LLMs, aiming to develop a generalist
embodied agent capable of 3D grounding, embodied reasoning, and action planning.

Despite the promising progress, current 3D-based LLMs still fall short in situated understanding, a
fundamental capability for completing embodied tasks, such as Embodied Question Answering (Das
et al., 2018), Vision and Language Navigation (Anderson et al., 2018; Zhang et al., 2024c), robotic
manipulation (Shridhar et al., 2022), and many others. Situated understanding refers to the ability to

∗Co-supervision.
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Q: Where is the desk located?
A: Behind you

Q: I need to check my appearance. Where should I 
go?
A: You should go to the mirror behind you.

Q: I want to make the room brighter and then sit 
down to relax. What should I do?
A: Turn to your left and head towards the 
window. Open the curtains to let in more natural 
light. After adjusting the curtains, head towards 
the sofa chair on your left side to sit and 
relax. You may need to pass other chairs and 
a desk in your path.

Situation: Standing beside blue 
octagon wide bed that is messy 
while there is a window on the left. Object Attribute and Relation

Object Affordance

Situated Planning

Situated Captioning

Q: Describe the scene from your current 
position.
A: In front, there's a rectangular box and 
a big picture that can be hung or moved. 
Nearby, there's a tall nightstand beside the 
bed. To the right, there's a tall pillow 
close to another pillow and a blanket. 
Behind, a polished mirror and a flexible 
bag are near a closed door with hanging 
clothes. On the left, there's an artificial 
lamp and a desk close to a sofa chair and 
trash bin, a curtain, another lamp, and a 
tall wardrobe near a cabinet.

Situated QA

Other Views

Figure 2: Examples of Spartun3D. Green box and arrow show the standing point and orientation.
interpret and reason about a 3D scene from a dynamic egocentric perspective, where the agent must
continuously adjust understanding based on its changing position and evolving environment around
it. This capability is crucial because an agent’s reasoning and response to the same question can vary
depending on its current situation. For example, as shown in Fig 1, given the same question “What
should you do to wash hands?”, the agent might need to answer “use the sink on the left/right”
based on the agent’s current perspective and location relative to the “sink”.

However, achieving such situated understanding remains challenging for current 3D-based LLMs,
and we identify two primary reasons. First, most existing 3D datasets (Chen et al., 2021; Azuma
et al., 2022; Zhu et al., 2023; Huang et al., 2023) are constructed from a global perspective of 3D
scenes, lacking the situated information necessary for training models to reason from an agent’s
perspective. As a result, models fine-tuned on these datasets struggle to develop situated reasoning
ability. While the introduction of SQA3D (Ma et al., 2022) has made progress by providing a
situated 3D dataset, the dataset is mainly human-annotated, making it expensive and difficult to
scale for the large-scale training needed by 3D-based LLMs. Second, existing 3D-based LLMs
inject 3D representations into LLMs by simply concatenating tokens from different modalities (e.g.,
text, images, 3D point clouds). While this allows for basic cross-modal interaction, it lacks an
explicit mechanism to align the situated spatial information from the 3D scene with natural language.
Therefore, the models struggle to capture the critical spatial relationships for situated understanding.

To address the aforementioned issues, we propose two key innovations: we first introduce a scal-
able, LLM-generated dataset named Spartun3D, consisting of approximately 133k examples. Dif-
ferent from datasets used by previous 3D-based LLMs (Zhu et al., 2023; Huang et al., 2023; Hong
et al., 2023), Spartun3D incorporates various situated spatial information conditioned on the agent’s
standing point and orientation within the environment, consisting of two situated tasks: situated
captioning and situated QA. Situated captioning is our newly proposed task that requires generating
descriptions of the surrounding objects and their spatial direction based on the agent’s situation. Sit-
uated QA is designed with different types of questions targeting various levels of spatial reasoning
ability for embodied agents. Furthermore, based on Spartun3D, we propose a new 3D-based LLM,
Spartun3D-LLM, which is built on the most recent state-of-the-art 3D-based LLM, LEO (Huang
et al., 2023), but integrated with a novel situated spatial alignment module that explicitly aligns
3D visual objects, their attributes and spatial relationship to surrounding objects with corresponding
textual descriptions, with the goal of better bridging the gap between the 3D and text spaces.

We conduct extensive experiments across a variety of tasks, including Spartun3D, SQA3D, and
MP3D Nav (Savva et al., 2019). Our results demonstrate that our model, trained on Spartun3D,
exhibits strong generalization to other tasks, specifically in zero-shot settings, highlighting the ef-
fectiveness of our proposed dataset. Additionally, Spartun3D-LLM outperforms the baseline on
nearly all tasks, indicating that incorporating direct text supervision improves the model’s spatial
understanding ability. This is further supported by our observation that the explicit alignment mod-
ule improves the generation of more fine-grained, context-aware spatial information.

2 RELATED WORK

Situated Scene Understanding is essential for various embodied tasks, including embodied
QA (Das et al., 2018; Wijmans et al., 2019), vision-and-language navigation (Anderson et al., 2018;
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Describe the objects on your 
[left/right/front/Backward] from the lowest 
to highest angle.

3D Scene a) Situation Design
Sofa

    Table

Cabinet

b) Situated Scene Graph e) Situated Tasks
Sofa: {
Attribute:{‘color’:‘yellow’}
Situation relation’:[
‘Backwards’:{‘cabinet’: 

‘Affordance’: store items.
                             ‘Attribute’:{‘size’:wide}
           ‘Angle’: 165 degree
                             ‘Distance’: 1.5 
                             ‘Passby’: table}}

● System Message
● Situated Scene Graph 
● Situation Tasks Instruction

On my right a wide table serves as a central 
piece, ideal for placing items, dining, or 
working. On my  backwards …

Situated Captioning 

Generate meaningful question-answer pairs 
based on the scene information. Ask questions 
about object types, counting, attributes, spatial 
relations, affordance and situated Planning.

Question: What is the object closest to my left?
Answer: A lamp

Situated QA

165 
degree

1.5

c) LLMs Prompting 

Situation: Standing beside a sofa while 
there is a table behind you.

Figure 3: Illustration of Spartun3D Dataset Construction Process. Given a 3D scene: a) we first
select a pivot object (e.g., sofa) and a referent object (e.g., table) to define the situation; b) we create
situated scene graph based on situation, incorporating various spatial relationships (See Fig. 5);
c) we use the scene graph to prompt GPT-4o (shown in gray box) to generate data; e) we utilize
different prompting strategies for generating situated captions and QA pairs.

Zhang et al., 2021; Zhang & Kordjamshidi, 2022a;b; 2024) and robotic manipulation (Shridhar
et al., 2022; Jiang et al., 2022; Driess et al., 2023). Recently, SQA3D (Ma et al., 2022) introduces
a human-annotated dataset where the model generates answers based on questions and given sit-
uations. SIG3D (Man et al., 2024) highlights the situated awareness via a situation-grounded 3D
VL reasoning architecture. While SQA3D is crucial in 3D vision-language learning (Zhu et al.,
2023; Huang et al., 2023), its reliance on human annotations makes it costly and difficult to scale
for the large-scale training required by 3D-based LLMs. In contrast, we use the LLM to design an
automated pipeline to generate situated questions and answers, enhancing both the scalability and
diversity in data collection procedure.

Grounded 3D Scene Understanding. Compared to 2D vision-language tasks (Song et al., 2024;
Antol et al., 2015; Zhang et al., 2024a; Guo et al., 2024a;b; Xu et al., 2024; Wang et al., 2024; Qi
et al., 2024; Guo et al., 2025), 3D scenes introduce additional dimensions of knowledge that is more
challenging to align with text modalities. Early studies in this area primarily focused on grounding
language to individual objects within 3D environments (Achlioptas et al., 2019; 2020; Chen et al.,
2020; 2019; 2021). Recently, 3D Vista (Zhu et al., 2023) proposes a pre-trained VL Transformer
for 3D vision and text alignment, and a few works utilize LLMs in understanding 3D scenes (Hong
et al., 2023; Huang et al., 2023; Chen et al., 2024; Zhen et al., 2024; Yang et al., 2024). How-
ever, these works are less effective in situated understanding tasks that require generating answers
from the agent’s dynamic perspectives. MSQA (Linghu et al., 2025) is a concurrent work that also
explore situated understanding of 3D-based LLMs. However, our approach differs in both dataset
construction and model design. While MSQA focuses on leveraging images to assist in describing
a situation, our method emphasizes directly understanding the situation from textual descriptions,
leading to distinct contributions in the field.

3 SPARTUN3D DATASET CONSTRUCTION

To better equip 3D-based LLMs with the capability of understanding situated 3D scenes, we intro-
duce Spartun3D, a diverse and scalable situated 3D dataset. To ensure the scalability of Spartun3D,
we carefully design an automatic pipeline that leverages the strong capabilities of GPT-4o (OpenAI,
2024), with three key stages as shown in Fig. 3: (1) Designing diverse situations that specify the
agent’s standing point and orientation given a 3D scene as input (Sec. 3.1); (2) Constructing situated
scene graphs to describe the spatial relationships between the agent and objects in the environment
conditioned on the agent’s situations (Sec. 3.2) ; and (3) Prompting LLMs to generate dataset based
on situated scene graphs (Sec. 3.3).

3.1 SITUATION DESIGN

The 3D scenes in Spartun3D are taken from 3RScan (Wu et al., 2021), which provides a diverse set
of realistic 3D environments. Given a particular 3D scene with all the objects labeled by humans
from 3RScan, such as the example shown in Fig. 3, our first step is to generate diverse situations for
the agent. To construct the situation, we begin by identifying the standing point and orientation and
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then complete a situation description accordingly using the following template: “You are standing
beside {pivot object name}, and there is {referent object name} on the {left/right/front/backward}.”
The elements within {} specify the key components that together define the situation. Below, we
define the agent’s standing point and orientation and explain how these elements are obtained to
construct diverse and reliable situations.

Front 
(315-360,0-45)

Right 
(45,135)

Back
(135,225)

Left 
(225,315)

(a) Standing Point and Orientation

X

Y
Pivot Object 

(b) Spatial Coordinates

θ=45

Scene 
Center Standing Points

S
ta

n
d

in
g

 P
oin

ts
orientation

orientation

Figure 4: Standing Point and
Orientation Selection.

Standing Point and Orientation. We begin with determining the
agent’s standing point and orientation within the 3D scene. Our
approach is to place the agent beside an object, ensuring a clear
reference for orientation when interacting with the environment.
Specifically, we project all objects from 3D space onto a 2D plane,
focusing only on the x and y coordinates to construct a bird-eye-
view of the scene. From this projected 2D scene, we randomly
select an object from the set of segmented objects within the 3D
scene. To ensure the constructed situation remains realistic, we
exclude objects that are positioned too high to avoid unnatural sit-
uations like “standing beside the lamp on the ceiling”. As a result,
we limit the selection to objects whose z-axis is below the average height of all objects in the scene.
Then, we choose a midpoint from two sides of the selected object’s bounding box that are closest
to the center of the scene, as shown in Fig. 4. By prioritizing the side closest to the center, we
minimize this risk and keep the agent within the scene’s boundaries. Finally, the selected midpoint
will be used as the agent’s standing point. In addition, we need to determine the agent’s orientation.
We assume the agent’s orientation is always facing forward to the center of the selected object. This
guarantees that the selected object remains within the agent’s field of view.

Pivot and Referent Object. Once the agent’s standing point and orientation are determined, we re-
fer to the object that the agent stands beside as the “pivot object”, and other objects surrounding the
pivot object are potential referent objects. A referent object is then randomly selected, and its rel-
ative position (left/right/front/backward), with respect to the agent’s standing point and orientation,
is used to generate the description of the situation.

3.2 SITUATED SCENE GRAPH CONSTRUCTION

Building on the agent’s situation, we further construct a situated scene graph that captures the com-
prehensive spatial relationships between the agent and its surrounding objects. Existing 3D-based
LLMs (Zhu et al., 2023; Huang et al., 2023) represent scenes in a structured manner using JSON-
formatted scene graphs, including detailed scene context of object attributes and relative spatial
relationships between objects. However, their spatial relations are based on a global view, such as
a bird-view-eye perspective (as shown in Fig. 5). To enable situated understanding, we introduce
a situated-scene-graph adapted from the original global scene graph to capture all relative spatial
relationships between the agent’s standing point and surrounding objects as follows:

• Rotation Angles. We calculate rotation angles that reorient the agent from its orientation to the sur-
rounding objects. Specifically, we first calculate the horizontal angle between the standing point
and the center of the pivot object. Next, we calculate the horizontal angle between the stand-
ing point and a surrounding object. The rotation angle is determined by the difference between
these two angles. We further normalize the rotation angles such that larger values correspond to a
greater degree of rightward rotation.

• Direction. We classify the object’s rotation angles to the agent into four directional categories
according to a predefined standard: [front, right, backward, left] (see Fig. 5 (b)). For instance, an
object is categorized as “right” if the turn angle falls within the range of [45-135] degrees relative
to the agent’s forward-facing orientation.

• Distance. We compute the Euclidean distance between the agent’s standing point and the center
of the bounding boxes of surrounding objects.

• Passby Objects. We assess whether the agent can move freely from its standing point to other
objects. We draw a straight line from the agent’s standing point to the center of the referenced
object. If this line intersects any other objects in the scene, those objects are considered “passby
objects”. For example, as illustrated in Fig 5 (d), the “table” is a passby object between the agent
and the “kitchen cabinet”. We explictly include the information of passby objects to help the
agent build awareness of objects that might influence its path while navigating.
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Global 3D Scene

     Sofa
TV

Cabinet
Kitchen 
Counter

RIGHT

a)Rotation Angle 

Cabinet

d)Passby Objects  

OursTraditional Method

Table Table

Cabinet

Table

Passby

c)Distance  

Cabinet

     Sofa

1.5m

1.2m

     Sofa

3D Scene

b)Direction

     Sofa

165  
degree

160 
degree

FRONT
(315-360,0-45)

RIGHT 
(45,135)

BACKWARD
(135,225)

LEFT 
(225,315)

θ=45

TV

RIGHT

     Sofa

Sofa: {
Backwards:
{cabinet’:                               
Angle: 165 degree
 Distance: 1.5 
 Passby: [table]}}

Situation: 
“Standing beside a 
{sofa} while there is 
{a tv} on your 
{right}.”

Table

e)Situated Scene 
Graph

Figure 5: Spatial information in Situated Scene Graph. The red dot and green arrow show the
standing point and orientation, respectively. In this example, the pivot object is the “sofa”, the
referent object is the “TV”, and the surrounding objects include the “table” and “cabinet”.

After gathering the spatial information described above, we organize it into a JSON format (shown
in Fig. 5 (e)), which is then used as input to prompt LLMs to generate our datasets.

3.3 LLMS PROMPTING

We design specific instructions to prompt GPT-4o (OpenAI, 2024) for two situated tasks: Situated
Captioning and Situated QA. For both tasks, we ask GPT-4o to provide responses considering
situated spatial information. Detailed prompts for each task are provided in Tab. 10 in the Appendix,
and examples of the generated dataset are shown in Fig. 2.

Situated Captioning is our newly introduced task, aiming to generate brief situated descriptions of
the surrounding objects as the agent performs a 360◦ clockwise rotation starting from its standing
point and orientation. The motivation for introducing this task stems from its crucial role in embod-
ied tasks, such as navigation, where the agent must interpret and reason about its environment from
360◦ panoramic views to make decisions about movement and interaction (Zhou et al., 2024; Zhang
& Kordjamshidi, 2023; Zhang et al., 2024b). Therefore, we guide GPT-4o to generate descriptions
progressively, starting from lower rotation angles and moving toward higher angles in each direction.

Situated QA. We design three types of questions for the Situated QA task, each targeting a differ-
ent aspect of spatial reasoning for embodied agents. Unlike previous works that rely on a single
generic prompt for all question types, we develop tailored prompting strategies for each question
type, encouraging LLM to generate QA pairs focusing on different levels of reasoning.

• Object Attribute and Relations include questions about objects attributes, such as color, shape,
and size, while also incorporating situated spatial information. For instance, the questions to
identify “the color of the table positioned to the left”, and determine “how many pictures are
hanging on the wall to the right”.

• Object Affordance focuses on the function utility of the objects, often based on common sense
knowledge about how objects are used. Similarly, we require situated spatial information to be
part of the answer. For example, when asked “Where can you check your appearance?”, the
correct answer should be “mirror on your left”, specifying both the object name (mirror) and its
spatial location from the agent.

• Situated Planning is the most challenging task, as it requires the agent to perform multi-hop
situated spatial reasoning. The agent must not only recognize its surroundings but also plan and
execute a series of actions across multiple steps, where each subsequent action depends on the
outcome of the previous one. In our dataset, we implement 2-hop reasoning, which requires the
agent to perform a sequence of two continuous actions. For example, given the example in Fig. 2,
“make the room brighter and then sit down to relax.”, the agent needs to first turn left from its
orientation to face and move toward the window, open it to brighten the room, then based on its
new position, the agent continues turning left toward the sofa chairs and sits down.
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Figure 6: Human Evaluation of Spartun3D.
3.4 DATASET STATISTICS AND QUALITY EVALUATION

In total, we collect approximately 10k situated captions and 123k QA pairs. For the tasks of object
attribute and relation and the tasks of affordance, we sampled around 10 situations per scene. For
captioning and planning tasks, we sample around 5 situations per scene due to the increasing cost
of longer token sequences required for these tasks. For each task, we split the data instances into a
training and test set. Table 1 shows the statistics of our dataset.

Table 1: Dataset statistics of Spartun3D and hu-
man validation results.

Tasks # of Examples Train/Test

Captioning ∼ 10K 8, 367/1, 350
Attr. & Rel. ∼ 62K 61, 254/8, 168
Affordance ∼ 40K 35, 070/5, 017
Planning ∼ 21K 19, 434/2, 819

We conduct human evaluation to assess the
quality of Spartun3D, introducing scores based
on two key criteria: language naturalness,
which evaluates whether the text reads as if it
were naturally written by a human, and spatial
fidelity, which ensures that the data accurately
reflects the 3D scene with correct spatial rela-
tionships. Detailed explanations of the criteria
are in Sec. A.1. Each criterion is rated on a
scale from 1 to 5, and the average of these two
scores is the overall human score. We randomly select 50 examples from each task and compute
human scores of situation, question, and answer, respectively. As shown in Fig. 6 (a), the average
scores align with the complexity of each task, with relatively lower scores for captioning and plan-
ning tasks. To evaluate how our generated data compares to human-annotated data, we sampled 50
examples from SQA3D and combined them with our dataset. Our data shows a similar trend in hu-
man evaluation results across different question types as observed in SQA3D (shown in Fig. 6 (b)).
We finally evaluate how different prompting strategies influence the quality of the data. We ex-
periment with two types of prompts for representing spatial information to prompt GPT-4o: Cord-
prompt, which consists of object center coordinates, standing point, orientation, and instructions
for calculating distances and rotation angles, and Spa-prompt, consisting of the calculated angles
and distance based on the approaches we described in Sec. 3.3. An example of each type of prompt
can be found in Tab. 11. Fig.6 (c) shows the percentage of examples with high human scores (≥ 4)
for each prompt across tasks. The results indicate that Cord-prompt yields unsatisfactory results,
revealing that LLMs lack strong 3D spatial reasoning when interpreting raw spatial coordinates,
which is consistent with their struggles in spatial reasoning across text and 2D images (Zhang et al.,
2024d; Premsri & Kordjamshidi, 2024; 2025). Our Spa-prompt significantly improves the quality
of the generated dataset by providing qualitative spatial relations (e.g. distance, direction).

4 MODEL ARCHITECTURE

In addition to enhancing the situated understanding of 3D-based LLMs with Spartun3D, we also
propose a new 3D-based LLM, named Spartun3D-LLM, which integrates a novel Situated Spatial
Alignment module to strengthen the alignment between the situated 3D visual features and their
corresponding textual descriptions. Spartun3D-LLM is built upon LEO (Huang et al., 2023), which
represents the most recent and state-of-the-art 3D-based LLM, and directly takes 3D point cloud
data as input, making it well-suited for spatial reasoning tasks in 3D environments. Fig. 7 illustrates
the overview architecture of Spartun3D-LLM.

4.1 BACKGROUND

Problem Formulation. We formally define the input as a triple < C,S,Q >, where C is the 3D
scene context, S is the situation, and Q is a question. The situation S can be further denoted as
S =< St, Sp, Sr >, where St is a textual situation description, and Sp and Sr are the standing
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points and orientation, respectively. Specifically, Sp is a 3D coordinate in the form < x, y, z >
and Sr is the quaternion < qx, qy, qz, w >, where < qx, qy, qz > is the rotation axis and w is the
rotation angle. For simplicity, we define z = 0 to calculate the rotation angle on a 2D plane. The
task is to generate a textual answer, denoted as A, given scene context C, situation S, and question
Q. During training, Sp and Sr are provided to the agent to rotate and translate the environment,
while during testing, only questions and situations are provided.
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Figure 7: Spartun3D-LLM Model Architecture.

Backbone. LEO takes text, 2D im-
age (optional), and 3D point clouds
as input and formulate comprehen-
sive 3D tasks as autoregressive se-
quence generation. Specifically, data
from different modalities are con-
verted into a sequence of tokens as
input to the LLM. The text tokens
include system messages (e.g., “You
are an AI visual assistant situated in
a 3D scene.”), situations, and ques-
tions. These tokens are then embed-
ded into vector representations using
an embedding look-up table. For 3D
point clouds, LEO first applies seg-
mentation masks to extract the point clouds of individual objects in the 3D scenes. Then, the sam-
pled points of each object are input into a object-centric point cloud encoder, PointNet++ (Qi et al.,
2017) pre-trained on ScanNet (Dai et al., 2017), to obtain the object-level representations.

Formally, we denote the representation of input text tokens as W = [w1,w2, ...,wM ] ∈ RM×D

, where M denotes the number of input tokens, and D represents the dimensionality of each to-
ken’s embedding. Additionally, the input object visual representations are expressed as O =
[o1,o2, ...,oK ] ∈ RK×D, where K is the number of extracted objects from the scene. Finally,
the output answer are represented as A = [a1,a2, ...,aN ], where N is the number of tokens in the
response. The model’s objective is to generate the answer given these combined inputs. The loss for
generating the i-th token of the output answer is formulated as follows:

LLM(θ) =
∑
i

logpθ(ai|ai−1,WS,o). (1)

LEO can integrate various LLM backbones, including OPT1.3B (Zhang et al., 2023b) and Vicuna-
7B (Chiang et al., 2023). In our experiments, we fine-tune LEO with different LLM backbones on
our proposed dataset via LoRA (Hu et al., 2021).

4.2 SITUATED SPATIAL ALIGNMENT MODULE

Situated tasks require robust spatial reasoning abilities to comprehend the position, orientation, and
spatial relationships of objects within a 3D environment. Existing 3D-based LLMs typically process
inputs by concatenating output representations from various modality encoders. While this method
facilitates the integration of data across different modalities, it does not inherently ensure that the
3D visual representations encode situated spatial information or effectively align with textual de-
scriptions, which potentially limits the model’s ability to perform tasks that require precise spatial
understanding. To tackle this challenge, we introduce a novel Situated Spatial Alignment Module to
improve the alignment between the object-centric 3D visual representations and their situated textual
descriptions. The process begins by generating detailed situated textual descriptions for each object.
Subsequently, an alignment loss is introduced, which directs the model in effectively learning the
3D visual representations based on these situated textual descriptions.

Situated Textual Descriptions. For each object, we construct a comprehensive situated textual
description based on a template that captures the object’s name, attributes, and spatial relations with
nearby objects, as “Stand besides {object name} and facing the center of the {object name}, in
front, there are {a list of nearby objects}; on the right, ...; behind ...; and on the left...”. The object’s
attributes are also considered (e.g., “white chair”). We consider up to five objects per direction. If
no object is present in a specific direction, the description explicitly states this, ensuring to provide
complete information about the 3D environment.

7
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Table 2: Experimental Results on Spartun3D Situated QA Tasks. ∗ represents the model initialized
with LEO instruction-tuned weights. [Keys: C: CIDER; B-4: BLEU-4; M: METEOR; R: ROUGE;
Sim: Sentence Similarity; EM: Exact Match; Bold: best results].

Models LLMs Attributes and Relations Affordance Situated Planning
C B-4 M R EM C B-4 M R S C B-4 M R S

LEO zero-shot 100.3 0.00 17.4 39.1 42.7 13.3 0.00 3.00 5.00 32.3 0.00 0.00 7.00 15.3 59.2

LEO+Spartun3D OPT1.3B 121.3 7.0 20.1 45.3 47.7 224.6 30.6 24.9 53.2 66.9 229.7 44.8 32.1 60.9 83.8
Vicuna7B 125.4 10.1 22.1 46.7 52.1 238.9 32.1 24.4 55.0 68.3 242.1 46.5 35.2 63.1 84.3

LEO*+Spartun3D Vicuna7B 129.2 10.4 23.0 48.1 53.2 211.3 32.1 24.6 55.0 67.8 247.1 47.5 36.2 65.1 85.8

Spartune3D-LLM OPT1.3B 124.1 9.2 21.0 47.3 49.4 227.2 31.4 26.3 54.1 68.2 232.3 45.2 33.2 62.1 85.4
Vicuna7B 131.2 10.3 24.3 48.8 53.7 240.4 32.1 25.0 55.3 68.7 244.0 47.1 36.4 64.0 86.8

Spartune3D-LLM* Vicuna7B 135.4 10.7 24.9 51.3 56.9 254.7 32.9 26.7 57.3 69.7 252.1 47.6 36.2 65.4 88.7

Table 3: Experimental Results on SQA3D given the 3D objects from Mask3D and Ground-truth.
# Methods Mask3D (Schult et al., 2023) GT

C M R EM C M R EM

Zero-shot 1 LEO (Huang et al., 2023) 14.2 6.4 8.2 12.4 15.3 6.7 8.6 13.9
2 LEO+Spartun3D 82.3 14.2 32.8 34.7 83.1 15.2 33.7 35.9
3 Spartun3D-LLM 83.5 15.7 34.7 36.2 85.6 16.6 35.8 37.1

Fine-tune

4 3D-Vista (Zhu et al., 2023) - - - 48.5 - - - -
5 3D-LLM (Hong et al., 2023) - - - 50.2 - - - -
6 LEO (Huang et al., 2023) 132.0 33.0 49.2 52.4 132.3 34.3 51.4 52.5
7 LEO*+Spartun3D 134.0 34.6 52.2 53.5 135.3 34.2 52.1 54.2
8 Spartun3D-LLM* 138.2 35.3 53.4 54.8 138.3 35.4 53.7 55.0

3D Object-Text Alignment. Inspired by the success of 2D Visual-Language models, which effec-
tively leverage semantically aligned text and visual features to excel in downstream tasks (Radford
et al., 2021; Li et al., 2022; 2023), we aim to enhance the 3D visual representations so that they
can better encode the situated spatial information and effectively align with the textual descriptions.
Specifically, we introduce a 3D object-text alignment loss to guide the learning process of point
cloud encoders within 3D-based LLMs, leveraging the robust language representations captured by
pre-trained text encoders. We experiment with various text encoders, and CLIP achieved the best
performance. For more details, please refer to the Sec. A.4 in the Appendix.

More formally, we obtain the text representations of situated textual description for each object
from pre-trained text encoders, denoted as W = [w1,w2, ...,wk] ∈ RK×D. For object visual
representations O, we employ spatial self-attention layers (Chen et al., 2022) to learn spatial-aware
object representations. Specifically, a pairwise spatial feature matrix F ∈ RK×K×5 is introduced
to represent relative spatial relations between objects. For example, for each object pairs oi and
oj , we construct pairwise spatial feature as fij = [dij , sin(θh), cos(θh), sin(θv), cos(θv)] ∈ R1×5,
where dij is Euclidean distance between two objects, and θh and θv are horizontal and vertical angles
connecting bounding box centers of oi and oj , respectively. Then, we inject F into the self-attention
of the object as,

O′ = softmax(
QKT

√
dh

+ MLP(F))V,where Q = WQO;K = WKO, V = WV O, (2)

where O′ ∈ RK×D denotes the spatial-aware object representation; Then we use a Mean Squared
Error (i.e., MSE) as the objective function to minimize the distance between the object representation
O′ and the corresponding situated textual embedding W, denoted as Lalign = MSE(o′,wt). The
model is trained to jointly optimize both the alignment loss and the language modeling loss (Eq. 1)
as L = LLM + Lalign.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

To demonstrate the effectiveness of our proposed Spartun3D-LLM, we conduct experiments on
two situated understanding datasets: Spartun3D1 and SQA3D. For SQA3D, we evaluate under two
conditions: object proposals in 3D are derived either from Mask3D (Schult et al., 2023) or ground-
truth annotations. Also, we assess the transferability of our method on the navigation task using
MP3D ObjNav (Savva et al., 2019). Following LEO (Huang et al., 2023), we report the performance

1https://github.com/zhangyuejoslin/Spartun3D
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using standard generation metrics, including CIDEr, METEOR, BLEU-4, and ROUGE L, sentence
similarity (Reimers, 2019) for captioning task. For SQA3D and situated QA tasks of questions
about attributes and relations, we also report an additional metric of exact-match accuracy. More
details about metrics are introduced in Appendix A.2.1. We also provide implementation details in
Sec. A.3. We leverage LEO as baseline. Since the training stage in LEO has covered most of the
evaluation tasks, we experiment with models initialized from scratch to ensure a fair comparison in
the zero-shot setting. For other settings, we report the performance of models initialized both from
scratch and from the instruction-tuned LEO. To distinguish between the two, models initialized from
the instruction-tuned LEO are marked with an asterisk (∗).

5.2 EXPERIMENTAL RESULTS

Spartun3D Benchmark. We evaluate the performance of both the LEO model and Spartun3D-LLM
after fine-tuning them on our proposed Spartun3D dataset. The fine-tuned LEO model is referred
to as LEO+Spartun3D. Table 2 and Table 4 show the experimental results on captioning and QA
tasks, respectively. We experiment with two different LLM backbones: Opt1.3B and Vicuna7B.
Our experiments show that Spartun3D-LLM consistently outperforms LEO+Spartun3D across all
question types (around 2%−3% across all metrics), regardless of the LLM backbone used, indicating
the effectiveness of our explicit alignment module. We observe that initializing our model with LEO
pre-trained weights improves performance. Notably, without fine-tuning, LEO performs reasonably
well on attribute and relation questions in a zero-shot setting but struggles with other situated tasks.

Table 4: Experimental Results on Spartun3D Situated
Captioning Task.

Models LLMs C B-4 M R S

LEO zero-shot 0.00 0.00 9.00 15.3 51.9

LEO+Spartun3D OPT1.3B 5.9 15.3 17.7 31.2 67.3
Vicuna7B 6.7 15.8 18.7 32.3 70.4

LEO+Spartun3D* Vicuna7B 14.1 17.2 22.6 32.1 76.3

Spartun3D-LLM OPT1.3B 6.4 15.7 18.5 31.2 68.6
Vicuna7B 8.5 16.4 19.6 32.5 72.5

Spartun3D-LLM* Vicuna7B 14.6 19.3 23.3 33.4 78.1

SQA3D Performance. We evaluate our
method on the SQA3D dataset, whose
scenes are derived from ScanNet (Dai
et al., 2017). Their scenes differ from
those in Spartun3D, which are sourced
from 3RScan. We experiment with two
settings: zero-shot and fine-tuning. In
the zero-shot setting, we re-trained LEO
on their dataset (row#1) only constructed
from 3RScan excluding all dataset con-
structed from ScanNet to ensure a fair
comparison with our method. As shown
in Table 3, LEO performs poorly on SQA3D in the zero-shot setting, suggesting its limitations
in learning situated understanding from its dataset. In contrast, LEO trained on Spartun3D (row#2)
shows significant improvement, demonstrating the effectiveness of our dataset. Further comparisons
of Spartun3D-LLM with LEO+Spartun3D demonstrate a better zero-shot learning (i.e., generaliza-
tion) capability of our model. In the fine-tuning setting, Spartun3D-LLM continues to outperform
LEO across all metrics. Table 8 in the Appendix provides a breakdown of the fine-tuned performance
across various question types, where Spartun3D-LLM shows consistent improvement.

Table 5: Performance on Nav-
igation. (Accuracy %)

LEO Spartun3D-LLM

Zero-shot 0 20.3

Navigation Performance. To demonstrate the effectiveness of our
approach on downstream embodied tasks, we evaluate it on the ob-
ject navigation tasks. Specifically, we randomly select 5 scenes that
contain around 1000 examples from the MP3D ObjNav dataset. In
this task, we additionally input 2D ego-centric images to both LEO
and Spartun3D-LLM for comparison. There are four types of nav-
igation actions: turn left, turn right, move forward, and stop. We evaluate whether the model gen-
erates correct action at each step. We conduct the experiment in a zero-shot setting, and Table 5
shows the accuracy of the model’s performance. The baseline model, LEO, struggles to generate
the required action-related text to guide navigation steps without fine-tuning specifically for navi-
gation tasks. In contrast, our model demonstrates strong transferability to generate correct actions.
Fig 8 (e) showcases a qualitative example, illustrating how our model effectively generates accurate
navigation actions without task-specific fine-tuning.

5.3 ABLATION STUDY AND EXTRA ANALYSIS

Explicit Alignment Enhances General Spatial Understanding. We evaluate the effectiveness
of our proposed situated spatial alignment module on general scene understanding tasks, such as
Scan2Cap (Chen et al., 2021) and ScanQA (Azuma et al., 2022). In line with our approach for
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LEO: In the laundry basket.

Situation: You are standing beside 
sink while there is a potted plant 
on your left.
Question: Where can you put your 
dirty laundry?

LEO: Two

Spa3D-LLM: Three, a door 
and two cabinets.

Situation: You are standing beside 
tv stand while there is a pillow on 
your left.
Question: how many objects are 
white to your right?

In front of me, there is no object. To 
my right, there is no object.  Behind 
me, there is a wardrobe, followed by a 
closed rectangular glass window for 
looking outside.  To my left, there's a 
desk  for placing items in or on.

Situation: You are standing beside 
toilet while there is a trash bin 
behind you.
Question: You need to clean the sink 
and then adjust the shower curtain. 
how should you proceed ?

Spa3D-LLM: In the laundry 
basket on your left.

Spa3D-LLM (w/o align.): Turn to your 
right and head towards the sink to 
clean it. After that, turn around and 
head towards the shower curtain to 
adjust it.

Spa3D-LLM: Turn to your right and 
head towards the sink to clean it. Then, 
turn slightly to your right and head 
towards the shower curtain to adjust it

Turn to your left, head 
towards the chest of 
drawer. You may pass 
chair on your way.

Turn to your left, head 
towards the chest of 
drawer.You may pass 
chair on your way.

Turn to your right, 
head towards the 
chest of drawer.

Situation: You ou are standing beside stool 
while there is a printer on your left.
Describe the scene from your position.

…
LEFT LEFT RIGHT

Target: Find the chest of drawer.

(a) (b)

(c)

(d) (e)
Figure 8: Qualitative Examples. (a), (c), (c) situated qa examples of object attribute and relation,
affordance, and planning, respectively. (d) situated captioning. (e) navigation in a zero-shot setting.
Our model generates both actions and descriptions of surrounding objects while navigating.

situated tasks, we construct textual descriptions for each object based on its attributes and spatial
relations to others from a top-view perspective. As shown in Tab. 6, by incorporating the explicit
spatial alignment module, our model shows better results, indicating that our proposed alignment
module not only improves situated understanding but also enhances general 3D scene understanding.

Table 6: Spatial Alignment Evaluation
on Other Benchmarks. The metric is
Sentence Similarity (%).

Methods Scan2Cap ScanQA

LEO + Spartun3D 54.2 46.3
Spartun3D-LLM 55.7 48.6

Improved Situated Understanding. To analyze the
model’s situated understanding ability further, we visu-
alize the distribution of model responses generated for
questions requiring strong spatial understanding from
SQA3D. Specifically, we extract questions starting with
“which direction”. Fig. 10 illustrates the distribution of
generated “directions”, including “left”, “right”, “for-
ward” and “backward”. We observe that LEO is biased
towards generating “left” 97% of the time. However, the
ground-truth distribution of “left” and “right” should be balanced, suggesting that LEO may have
a limited understanding of situated spatial relationships. The bias is significantly mitigated when
LEO is trained on our dataset (LEO+Spartun3D). While adding our alignment loss (Spartun3D-
LLM) helps futher, our dataset is the primary factor in addressing the bias.

Scaling Performance. We conduct scaling experiments to demonstrate how model performance
improves with the addition of Spartun3D datasets. As shown in Fig. 9, we evaluate performance
on SQA3D and observe consistent improvement as the dataset scales, highlighting the potential for
dataset expansion using our proposed method.

Qualitative Examples. In Fig. 8, we showcase several successful examples to demonstrate the
effectiveness of Spartun3D-LLM across various situated tasks. Notably, in Fig 8 (c), the model
without an explicit alignment module tends to generate more general or vague spatial descriptions,
such as “turn around”. In contrast, with the alignment module, the model produces more specific
details, including terms like “turn slightly right”. To verify this, we examine 30 examples from
both situated planning and situated captioning tasks and observe this phenomenon in 17 of them.
This highlights how the proposed spatial alignment module enhances the generation of fine-grained
spatial information, leading to more precise and contextually accurate outputs.

6 DISCUSSION AND CONCLUSION

In this work, our goal is to address the limitation of situated understanding of the 3D-based LLMs
from two perspectives. First, we propose a method to construct an LLM-generated dataset based on
our designed situated scene graph. Then, we propose an explicit situated spatial alignment on the
3D-LLM to encourage the model to learn alignment between 3D object and their textual representa-
tions directly. Finally, we provide comprehensive experiments to show our own benchmark improve
situated understanding of SQA3D and navigation. We also provide analysis to show our proposed
explicit alignment module helps spatial understanding.
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A APPENDIX SECTION

A.1 HUMAN EVALUATION

Human Scores. To evaluate the quality of Spartun3D based on human scores, we mainly consider
the following two aspects.

• Language Naturalness evaluates the flow and syntax of the language, ensuring it reads
naturally as if written by a human and adheres to common-sense knowledge in practical
scenarios. Examples of different scoring levels for situations, questions, and answers are
provided in Table 7. For instance, a score of 1 might be assigned to a scenario like “Stand-
ing beside a blanket while there is a toilet in the background,” which is uncommon in a
typical setting. Similarly, questions such as “Which is cleaner, the trash bin or the bed?”
are unlikely to be asked by humans, reflecting low language naturalness.

• Spatial Fidelity is critical to ensure that the generated data accurately represents the infor-
mation in 3D scenes and adheres to factual details. This includes verifying the presence
of objects within the scene and ensuring that spatial relationships between objects are cor-
rectly represented. Additionally, common sense knowledge must be considered, especially
when unusual objects or scenarios are mentioned in the questions or answers. For example,
as shown in Fig. 12, a score of 1 is assigned to the instance where “clothes are hung on a
mirror.” This error arises because the human-annotated data from 3RScan labeled the mir-
ror’s affordance as “hanging,” which misled the GPT model into generating an incorrect
dataset.

Error Analysis. We randomly sampled 50 examples from each task (200 in total) to validate the
quality of our automatically generated data and manually assess the quality from the aspects of
language naturalness and spatial fidelity. Language naturalness evaluates whether the generated
texts are natural or written by a human, while spatial fidelity ensures that data accurately reflects the
3D scene. We observe 26 errors in total and summarize them into the following categories.

• Semantic Errors: The generated sentences may contain semantic mistakes. For instance,
the answer “ You should go in front of you to water the potted plant.”.

• Common Sense Violations: The generated content may occasionally conflict with basic
common sense knowledge, such as producing unusual questions and answers. For example,
it might generate a question like “If I want to store items, which object is most accessible?”
with the answer being “trash bin.” This issue arises because the human-annotated data in-
cludes an affordance for trash bins as objects for storing items. Such annotations inadver-
tently influence GPT-4o to generate QA pairs that conflict with common sense knowledge.

• Spatial Inconsistencies: Errors in capturing or reasoning about spatial relationships in the
3D environment primarily occur in Situated Planning tasks, which demand complex two-
step spatial reasoning. These errors often arise because the second action depends on the
outcome of the first action, and inaccuracies sometimes occur during the generation of the
second action.

• Misalignment between visual context and textual descriptions. In some cases, the
agent’s view is obstructed due to the room layout or object size. For example, consider
the situation: “Standing beside the sofa, there is a closet on your left.” However, the closet
is actually located in another room and cannot be seen from the agent’s current standpoint.
To address this issue, we designed a scenario where the agent stands beside a pivot object
and consistently faces the center of the pivot object, rather than facing a random object that
could potentially be obstructed. Additionally, we incorporated pass-by spatial information
to enhance the agent’s awareness of surrounding objects, providing a more comprehensive
sense of the environment.
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Figure 9: Scaling Effect on SQA3D.

Ground-truth LEO LEO+Spartun3D Spartun3D-LLM

Figure 10: SQA3D Labels Distribution

Scores Situation Question Answer
5 You are standing beside the

nightstand while there is a
picture on your left.

How many sofa
chairs are to my left?

You can use the lamp behind
you, but be careful of the stools
you will pass by.

4 You are standing beside a
lamp while there is a box on
your left.

Is the bag closer to
me than the trash bin
behind me?

You can place items on the cab-
inet to your left, which is the
closest option. Alternatively,
you can place them on the bed
to your left.

3 You are standing beside the
radiator while there is a cur-
tain rod on your back.

I want to read a book.
Should I walk to the
window or sit in the
chair?

You can go to the clothing hang-
ing on the door behind you.

2 You are standing beside salt
while there is a kitchen cab-
inet on your left.

What are the charac-
teristics of the win-
dow to my left?

Turn slightly back to your right
and head towards the lamp to
move it closer to your bed. You
may pass by the curtain rod.

1 You are standing beside a
blanket while there is a toi-
let on your back.

Which is cleaner, the
trash bin behind me
or the bed to my left?

You should go in front of you to
water the potted plant.

Table 7: Examples to Evaluate Language Naturalness.

A.2 EXPERIMENTAL RESULTS

A.2.1 EVALUATION METRICS

• CIDEr (Consensus-based Image Description Evaluation): A metric that measures the sim-
ilarity between generated and reference descriptions by assessing n-gram overlap, tailored
for image captioning but applicable in NLP for structured comparisons.

• METEOR (Metric for Evaluation of Translation with Explicit ORdering): A metric that
evaluates machine translation and other language generation tasks, considering precision,
recall, and harmonic mean, while accounting for synonyms and stemming.

• ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation, Longest Common Subse-
quence): This metric focuses on the longest common subsequence between generated and
reference texts, providing insight into recall and precision in longer sequences.

• EM: An evaluation metric that checks whether the predicted output matches the reference
exactly, often used in tasks like question answering.

A.3 IMPLEMENTATION DETAILS.

The maximum context length and output length of LLM are both set to 256. For each 3D scene,
we sample up to 60 objects with 1024 points per object. During training, the pre-trained 3D point
cloud encoder and the LLM are frozen. We set rank and α in LoRA to be 16 and dropout rate to
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What Is How Can Which Others

CLIPBERT (Ma et al., 2022) 39.7 46.0 40.5 45.6 36.1 38.4
SQA3D (Ma et al., 2022) 31.6 63.8 46.0 69.5 43.9 45.3

3D-LLM (Hong et al., 2023) 35.0 66.0 47.0 69.0 48.0 46.0
3D-Vista (Zhu et al., 2023) 34.8 63.3 45.4 69.8 47.2 48.5

LEO (Huang et al., 2023) 46.8 64.1 47.0 60.8 44.2 54.3
Spartun3D-LLM 49.4 67.3 47.1 63.4 45.4 56.6

Table 8: Exact Match Performance on SQA3D Across
Various Question Types
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Figure 11: Spartun3D Word Distri-
bution.

Q: Can I wash the clothes hanging on 
the door without turning around?
A: No

Score5

Q: What is the object directly behind 
of me?
A: Mirror

Score3 Q: Can I move anything in front of me?
A: Yes, nightstand.

Q: Can I wash something on my left?
A: Yes, curtain.

Q: If I want to hang my clothes, where 
should I go?
A: You should go to the mirror on your 
left.

Score4

Score2

Score1

Situation: Standing beside blue 
octagon wide bed that is messy 
while there is a window on the left.

Figure 12: Examples to Evaluate Spatial Fidelity.

be 0. During inference, we employ beam search to generate the textual response, and the number
of beams is 5. The model is trained on a 6 NVIDIA RTX A6000 GPU for around 30 hours with 15
epochs. The learning rate is 3e− 5, and the batch size is 24.

A.4 EXTRA EXPERIMENTAL RESULTS

Text Encoder EM

BERT (Reimers, 2019) 53.5
BLIP (Li et al., 2022) 54.2

CLIP (Radford et al., 2021) 56.9

Table 9: Different Text En-
coder Evaluation.

Different Text Encoder. We conducted an ablation study to eval-
uate the impact of different text encoders on enhancing 3D visual
representations. Table 9 shows the results on object attribute and re-
lation tasks. Our results indicate that text encoders from VL models
outperform pure text encoders, highlighting the importance of mul-
timodal learning for 3D object understanding. Among the tested
encoders, the CLIP encoder yields the best results.
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Table 10: Prompts for Different Tasks.

Prompts for Situated Captioning: Provide a summary of a scene focusing on object types and
attributes ON MY LEFT/RIGHT/FRONT/BACK. Describe the scene also considering common
sense, such as how objects can be used by humans and human activities in the left part of the
scene.The description should conform to the given scene information. You don’t need to describe
each object in the scene, pick some objects of the scene for summary. You can also summarize
the room’s function, style, and comfort level based on the arrangement and color of objects within
the room. Your summary must be one paragraph, not exceeding 300 words. Don’t use IDs of the
objects in the summary. Don’t use turn degrees or distance meters in the summary.
Prompts for Object Attributes and Relations: Ask questions about object types, and counting.
The questions related to attributes are better be asked when multiple objects contain the same at-
tributes and the answer can be specified based on spatial relations. You can also ask about spatial
positions between me and other objects or spatial relations between objects by comparing the an-
gles. Based on ’relations’ in the scene graph, you can ask about other relations between objects.
Prompts for Object Affordance: Ask questions about object affordance and object utility based on
common sense. The answer should consider the best option that follows common sense knowledge
and is closer to me. If I plan to go to some objects, other objects are blocking my way; please
specify them. There are several examples:
Q: Where should I go to quickly put something down?A: You can use the chair in front of you.
Q: I want to read a book. Should I walk to the window or sit in the chair? A: Sit in the chair, which
is closer.
Q: If I want to reach the kitchen counter, what object will be passed by? Answer: tables with chairs.
Q: What should I do if I want to cook? A: You can go to the kitchen area, but be careful about the
tables and chairs you will pass by.
Prompts for Situated Planning: You need to generate 6 meaningful question-answer pairs that
require multi-hop reasoning and planning based on the scene information.Ask questions about ob-
ject affordance and object utility based on common sense and path planning. The question must be
answered based on my position. If I plan to go to some objects, other objects are blocking my way,
please specify them. The turn action should be considered based on angles if I plan to go to multiple
places. Do not use the number of turn degrees or distance meters in the question and answer. There
are several examples:
1. Question: I want to dim the lights and take a nap; What should I do? Answer: Turn to your right
and head towards the lamp. Dim the lights, then turn slightly to your left and head towards the sofa
to lie down.
2. Question: I want to light up the area near the kitchen counter to prepre some food. How should I
proceed? Answer: Turn slightly to your left and head towards the blinds on your left to adjust them.
Then, turn slightly back to your right and head towards the kitchen cabinet in front of you.
3. Question: I need to adjust the lighting to make the room brighter. What should I do? Answer:
Turn to your left and head towards the lamp. Adjust the lighting. Then, turn slightly back to your
right and ensure the curtains or blinds are open to let in more light.
4. Question: I need to adjust the lighting to make the room brighter and then prepare a snack on
the kitchen counter. How should I proceed? Answer: Turn to your left and head towards the lamp
to adjust the lighting. After adjusting the lighting, turn slightly back to your right and head towards
the kitchen counter. You may pass tables and chairs on your way.
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Table 11: Prompts used to Generate Situated QA related to Object Attribute and Relation.

General Prompts for Object Attribute and Relation: You need to generate at least 10 meaning-
ful question-answer pairs based on the scene information. Ask questions about object types, and
counting. The questions related to attributes are better be asked when multiple objects contain the
same attributes and the answer can be specified based on spatial relations. You can also ask about
spatial positions between me and other objects or spatial relations between objects by comparing the
angles. Based on ’relations’ in the scene graph, you can ask about other relations between objects.
You need to provide the queried object. Do not consider the object’s utility and affordance. Do not
use the number of turn degrees or distance meters in the question and answer. Do not use the IDs
of the objects in the question and answer. The question-answer pair should be following format:
Q: <question>T: <queried object id(s)>A: <Answer>. You can answer the question according
to the queried object(s). If there is no information about the question, the <Answer>should be
“unkown”. There are several examples:
Q: What is the object closest to the left of me? T:lamp 1 Answer: a lamp.
Q: How many stools are on my left? T:stool 3 A: One.
Q: There are multiple chairs, what is the size of the chair left of me? T:chair 1, chair 2 A: low chair.
Q: Is the cabinet far from me or the sofa far from me? A: sofa.
Q: How many black objects are to my right? A: Two, a towel and a toilet brush.
Q: Where is the trash bin? A: Behind you.
Q: What color is the trash bin in front of me? A: black (one white left of me and one black in front
of me)
Q: Is the mirror right of the shower curtain based on my standing position? A: Yes.
Q: Is the light on my right on or off?
Q: What is the object to the left of the white heater to my right?
Q: Is there a picture to my right?
Q: Is the door in front of me the same color as the cabinet to my right?
Q: The tv to your 11 o ’ clock direction on; true or false ?
Q: Can black objects are to my right be divided by three?
Coordinate prompt:
You are standing beside the white toilet 6,
and the initial 3d coordinate is [-1.15, 0.29,
0.48] toilet 6. You are facing the center of
the toilet 6, and the center coordinate of toi-
let 6 is [-1.36, 0.28, 0.48]. The scene con-
tains some objects, which compose a scene
graph in JSON format describing objects,
such as object coordinate, color, size, shape,
and state. You can calculate object distance
and rotation angle related to your stand-
ing point and orientation using coordinates.
If the rotation angle is in the range [315-
360,0-45] is defined as Front, [45-135] is
RIGHT, [135-225] is BACK, and [225-315]
is right.
For example, from the scene graph
"table 8": "coordinate":

[1,1,1], "affordances":
["placing items
on"], "attributes":
"color":"red", "relations":
["close by chair 36"].
We know that the coordinate of table 8 is
[1,1,1], there is a table 8 that is close by
chair 36. You can place items on this ta-
ble 8.

Spatial Prompt:
You are standing beside a white toilet 6. The
scene contains some objects, which compose a
scene graph in JSON format with four keys: “left”,
“right”, “front”, “backwards”, indicating objects in
the corresponding direction. Each entity in the
scene graph denotes an object instance with a class
label and an object ID. The “distance” indicates the
meters between you and the object. The “angle”
represents the degrees compared to your current di-
rection, where your direction in front is 0 degrees.
The larger angles are means further right. The “af-
fordance” is the motion activity related to this ob-
ject. The “attributes” describe the object’s charac-
teristics, such as ’color’ and “size”. The “relations”
describe the spatial relationships with other objects.
The “passby” indicates other objects in your path if
you walk toward it from your current position.
For example, from the scene graph
"Left":"table 8": "distance":

2.6, "passby": ["chair 21"],
"affordances": ["placing
items on"], "attributes":
"color":"red", "angle": 257.48,
"relations": ["close by
chair 36"].
We know that on my left 257.48 degrees and 2.6
meters, there is a table 8 that is close by chair 36.
You can place items on table 8. If you go to table 8,
you could pass by chair 21.
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