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Abstract

This paper introduces Decoder-Centric001
Regularisation in Encoder-Decoder (DeCRED)002
architecture for automatic speech recognition,003
where auxiliary classifier(s) are introduced004
in layers of the decoder module. Leveraging005
these classifiers, we propose two decoding006
strategies that re-estimate the next token007
probabilities. Pilot experiments conducted on008
the independent in-domain datasets identify009
the suitable placement and weighting of the010
auxiliary classifiers, resulting in a consistent011
word-error-rate (WER) reduction of up to 9%012
relative across different model sizes. Further013
experiments on a collection of multi-domain014
English datasets showed that DeCRED015
obtained competitive WERs as compared to016
Whisper-medium and outperformed OWSM017
v3; while relying only on a fraction of training018
data and model size. Finally, we also study019
the generalisation capabilities of DeCRED by020
evaluating on out-of-domain datasets, where021
we show an absoulte reduction of 2.7 and022
2.9 WERs on AMI and Gigaspeech datasets023
respectively.024

1 Introduction025

One of the key challenges in automatic speech026

recognition (ASR) is the ability of the models027

to generalise to new or previously unseen028

domains. Large-scale training on multiple029

domains (Narayanan et al., 2018; Chan et al., 2021),030

data augmentation (Park et al., 2019), architecture-031

specific regularisation (Lee and Watanabe, 2021)032

are some of the strategies for improving the033

robustness of ASR systems. In recent years,034

we have seen a shift towards large-scale training035

of speech models such as Whisper from036

OpenAI (Radford et al., 2023). Despite its037

impressive recognition accuracy on many research038

datasets, the lack of transparency about the training039

data has lead the scientific community to build040

an open-source equivalent of Whisper. One such041

effort, dubbed as OWSM1 (Peng et al., 2023) is 042

trained on publicly available speech datasets, using 043

an open source toolkit ESPnet (Watanabe et al., 044

2018). Training such models requires enormous 045

computational resources that are not available for 046

many academic and research organisations. 047

In this work, we primarily focus on studying 048

architecture-specific regularisation for improving 049

the robustness of ASR systems. More specifically, 050

we introduce auxiliary classifiers in the decoder 051

module of an encoder-decoder based neural 052

architecture for ASR. These auxiliary classifiers 053

not only help regularise the model during training, 054

but also assist during joint-decoding, and acts as 055

light-weight, rapid domain-adaptation modules. 056

This study is done in conjunction with large-scale 057

training2 of ASR models on multi-domain English 058

datasets. 059

1.1 Related works 060

The idea of auxiliary classifiers or intermediate 061

regularisers has been explored in ASR. More 062

specifically, Lee and Watanabe (2021) uses 063

intermediate CTC objectives in the encoder module 064

for ASR, whereas, Wang et al. (2021b) employs 065

similar scheme for training self-supervised speech 066

encoders. Zhang et al. (2022) regularises both 067

the encoder and decoder modules by passing 068

the intermediate representations from the encoder 069

directly to the intermediate layers in the decoder. 070

While these works have shown improvements over 071

their respective baselines, our proposed approach 072

differs in two aspects: 073

• We introduce auxiliary classifier(s) only 074

in the decoder module of the encoder- 075

decoder architecture, essentially regularising 076

the internal language model. 077

1Open Whisper-style Speech Model.
2To the extent supported by the computational budget

available for us.
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• We further use these auxiliary classifiers in078

the joint-decoding scheme.079

In case of large-scale training of end-to-end080

ASR models, we mainly take inspiration from081

prior works such as SpeechStew (Chan et al.,082

2021) and OWSM (Peng et al., 2023), where we083

simply mix mulitple publicly available datasets084

to train our models. It is important to note085

that simple aggregation from multiple sources086

(datasets) without text normalising can cause the087

models to memorise dataset-specific annotation088

styles (Peng et al., 2023); which is not desired for089

a general purpose ASR system. This also indicates090

a potential inefficiency, wherein model parameters091

are allocated towards recognising data sources092

rather than solving the intended task(s). As it is093

inevitable, we investigate and quantify the effect094

of text normalisation on the model’s recognition095

performance.096

1.2 Summary and contributions097

• The decoder-centric regularisation is formally098

introduced in Section 2, where we also099

describe the proposed decoding strategies100

that exploit the auxiliary classifiers for joint-101

decoding.102

• Experiment protocol is described in Section 3.103

Pilot experiments, studying DeCRED on104

single in-domain datasets is presented in105

Section 4.106

• Experiments on large-scale multi-domain107

training and the effect of text-normalisation108

are described in Section 5. We show that the109

proposed DeCRED performs competetively to110

Whisper medium and outperform OWSM v3111

on multiple datasets.112

• Experiments on out-of-domain generalisation113

are presented in Section 6, where we114

additionally present a lightweight rapid115

adaptation capability of the auxiliary116

classifiers.117

• Finally, our implementations3 are built on top118

of open-source transformers library (Wolf119

et al., 2020), facilitating easy replication120

of our results. We intent to release of all121

model checkpoints along with corresponding122

3[to ensure author anonymity, the link to the resource will
be added after the review process]
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Figure 1: Architecture of the proposed DeCRED. In
addition to the standard encoder-decoder framework for
ASR (LAttn

D ), with the auxiliary CTC objective (LCTC),
DeCRED uses – possibly multiple – auxiliary classifiers
(LAttn

d ) attached to the decoder. In the illustration, we
shown one auxiliary classifier attached to (D-2)-th
decoder block. The embedding and positional encoding
layers are not dpeicted for brevity.

test hypotheses. Our code also allows for 123

single-line inference within the HuggingFace 124

ecosystem. 125

2 Decoder-centric regularization 126

Formally, our approach extends the training 127

objective of encoder-decoder ASR by adding 128

auxiliary cross-entropy loss functions. We explore 129

two additional decoding methods that exploit these 130

auxiliary classifiers. 131

2.1 Training objective 132

We build upon the hybrid CTC-attention-based 133

training scheme proposed by Hori et al. (2017). 134

Our objective function L is defined as: 135
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L = λLCTC + (1− λ)LDeCRED, (1)136

where LCTC represents the standard CTC137

loss (Graves et al., 2006), λ is a hyper-parameter,138

and LDeCRED is defined as:139

LDeCRED =
D∑

d=1

βdLAttn
d , (2)140

where D represents the number of layers in the141

decoder, LAttn
d is the cross-entropy loss given a142

classifier layer (linear projection, followed by143

softmax function) attached to the d-th layer of the144

decoder, and βd is the weighting factor of d-th layer.145

We impose constraints such that
∑D

d=1 βd = 1146

and βd ≥ 0. In practise [β1 . . . βD] is a sparse147

vector. This definition allows us to explicitly148

regularise the decoder (internal language model)149

and force earlier layers to learn discriminative150

features suitable for the task. Figure 1 illustrates the151

proposed architecture, where an auxiliary classified152

is attached to output of (D-2)-th decoder block.153

2.2 Decoding154

The decoding follows a typical auto-regressive155

scheme observed in encoder-decoder ASR systems,156

where the posterior probability of an output token157

is obtained by conditioning on previously decoded158

tokens (partial hypothesis) and the input features.159

Formally, let x1:T be a sequence of input speech160

(filterbank) features, hd ∈ R1×dmodel denote the161

hidden representation obtained from the d-th layer162

of the decoder for a given time step, and Wd ∈163

Rdmodel×V represent linear projection from hidden164

dimension dmodel to vocabulary size V . Then, the165

posterior probability of an output token at a given166

time step is167

p(yn | y1:n−1,x1:T ) =168

λ pCTC(y1:n−1 | x1:T )×169

(1− λ) pDeCRED(yn | y1:n−1,W1:D,h1:D), (3)170

where λ is a hyper-parameter. We obtain the171

following variants by varying the definition of172

pDeCRED and using auxiliary classifiers:173

1. Vanilla joint CTC/attention decoding relying174

on representations only from the last layer hD:175

pDeCRED(·) = softmax(hDWD) (4)176

2. Sum of logits weighted by per-layer learnable 177

scalar βd: 178

pDeCRED(·) = softmax(
D∑

d=1

βdhdWd) (5) 179

3. Sum of logits weighted by per-layer learnable 180

vector vd ∈ R1×V : 181

pDeCRED(·) = softmax

(
D∑

d=1

vd ⊙ (hdWd)

)
(6)

182

Note that to obtain optimal results with 183

methods (5) and (6), an additional held-out set is 184

required for learning the parameters βd, vd. 185

The above schemes can be easily integrated into 186

any of the decoding search algorithms such as 187

greedy and beam-search. 188

3 Experimental setup 189

The experiments are organized into three parts. 190

The first one (Sec. 4) focuses on single in-domain 191

datasets, studying the effect of the position (d), 192

weight (βd) of the auxiliary classifiers, and also 193

their influence in decoding. The second part 194

(Sec. 5) presents the experiments and results on 195

scaling DeCRED to multi-domain English datasets. 196

The selection of datasets is inspired by the ones 197

used for evaluation in OWSM. This relatively larger 198

corpus allows us to fully exploit the proposed 199

decoding alternatives (5) and (6). The third part 200

(Sec. 6) presents the out-of-domain generalisability 201

of DeCRED by evaluating the trained models on 202

AMI, Gigaspeech and FLEURS corpora. We also 203

present a rapid, light-weight domain adaptation 204

technique on the out-of-domain datasets. 205

All our experiments are built on top of the 206

open-source transformers library, accompanied 207

by baseline models built using the ESPnet toolkit. 208

3.1 Baseline Encoder-Decoder (ED) model 209

Our baseline ED model employs a feature 210

extraction module consisting of two Conv2d layers 211

with 256 output channels, and a linear projection. 212

This is followed by a 12-layer E-Branchformer 213

encoder with relative positional embeddings (Dai 214

et al., 2019), Macaron-like forward modules, 215

dmodel = 256, dff = 4dmodel, four attention heads, 216

and a dropout probability of 0.1. Adhering to 217

the E-Branchformer architecture, we integrate a 218

3



Table 1: Effect of the position (d) and weight (βd)
of the auxiliary classifier in DeCRED on WERs of
TEDLIUM3 test set. Grey cells indicate configurations
deemed reasonable for exploration. Standard deviations
(σ) and best WER for the chosen configurations are
displayed. For reference, the baseline ED model has a
WER of 7.2 %.

Weight Position

1 2 3 4 5

0.1 7.5 6.8
0.2 7.0 7.2
0.3 7.0 7.0 7.0
0.4 7.8 7.5 7.1 6.8 [σ = 0.15] 6.9
0.5 7.2 7.1 6.7 [σ = 0.26] 7.1 6.9

merge block followed by depth-wise convolution219

with a kernel size of 31. Subsequently, the220

encoder is followed by a 6-layer decoder with221

sinusoidal positional embeddings, maintaining222

the same number of attention heads, dmodel, and223

dropout. The only difference is the fixed dff =224

2048 in the decoder.225

Throughout this paper, we will use the triplet226

(enc. layers, dec. layers, dmodel) to define the model227

architecture; the rest of the configuration is fixed228

unless explicitly stated otherwise. For example,229

small model (12, 6, 256) has 35.04M parameters.230

The model receives 80-dimensional filter-bank231

features as input. We used a sub-word tokeniser232

based on the unigram algorithm to build a233

vocabulary of size V = 500. This is our vanilla234

baseline ED model.235

3.2 Training details236

If not stated otherwise, models are trained on 4237

Nvidia A100 GPUs with bf16 precision using the238

AdamW optimiser (Loshchilov and Hutter, 2019)239

with a learning rate of 2× 10−3, weight decay of240

1× 10−6, linear decay scheduler and 15k warm-up241

steps. As an additional means of regularisation, we242

use a label smoothing weight of 0.1.243

Unlike ESPnet, where some augmentations are244

applied offline, we implement all augmentations245

online and allow for postponing some of them246

until later in the training, resulting in a more247

stable training process. For instance, while ESPnet248

adopts a training regime consisting of 50 epochs249

and three copies of the input data with speed250

perturbation factors 0.9, 1.0, and 1.1, we train our251

model for 150 epochs on the original data with252

speed perturbation factors {0.9, 1.0, 1.1} randomly253

sampled on the fly. After 5k update steps, we apply254

Table 2: The effect of incorporating an auxiliary
classifier with varied model sizes. The additional
classifier is applied with βD−2 = 0.4 to maintain
a consistent relative position wrt. the decoder output.
Evaluated on the TEDLIUM3 test set.

WER [%]
Configuration Size [M] ED(4) DeCRED(4)

(12, 6, 256) 35 7.2 6.8
(16, 8, 256) 56 7.0 6.8
(12, 6, 384) 73 7.2 7.0

SpecAug (Park et al., 2019) with two frequency- 255

masks of maximum size 27 and five time-masks 256

with maximum coverage of masked input of 5%. 257

For all experiments, we select the best-performing 258

model based on the development WER. To speed 259

up the training, samples longer than 20 seconds are 260

discarded from the training set. 261

4 Experiments on in-domain dataset 262

To analyse and understand the proposed 263

regularisation scheme, we select a relatively small 264

dataset, TEDLIUM3 (Hernandez et al., 2018), 265

which allows for faster experiment turnout. The 266

dataset comprises 452 hours of transcribed TED 267

talks, with a test set containing 1155 utterances, 268

roughly translating to 28k words. The size of 269

this dataset enables us to train an ED (12, 6, 270

256) baseline 35M model to full convergence 271

in approximately 70 A100 hours. An absolute 272

improvement of 0.3 % in WER corresponds to 273

around 100 additional correctly predicted words. 274

Since we build on top of transformers 275

library, to ensure a fair comparison, we adopt 276

hyperparameters and a training setup as close 277

as possible to the ESPnet baseline recipe4. For 278

evaluating the models on TEDLIUM3, unless 279

explicitly specified, we follow the ESPnet recipe 280

utilising joint CTC/attention decoding (4) with a 281

beam size of 40 and CTC decoding weight λ = 0.3. 282

4.1 Position and weight of auxiliary classifiers 283

The DeCRED has an identical configuration as 284

the baseline ED, except for the auxiliary classifier 285

attached to specific layers in the decoder. Even 286

with a model with as few as D = 6 decoder 287

layers, the definition of the DeCRED objective (2) 288

leaves us with a vast configuration space. We 289

explored this space from configurations with a 290

4https://github.com/espnet/espnet/tree/master/
egs2/tedlium3/asr1
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Table 3: Comparison of our implementation of ED
and proposed DeCRED with ESPnet’s baseline on the
TEDLIUM3 test split.

WER [%]
Model Size [M] greedy beam – width 40

ESPnet ED(4) 35.01 8.7 8.1
Our ED(4) 35.04 7.6 7.2
DeCRED(4) 35.20 7.0 6.8

single auxiliary classifier, changing its position291

and adjusting its weight in increments of 0.1. The292

additional parameters introduced (Wd ∈ R256×500)293

by a single auxiliary classifier do not significantly294

increase the model size.295

The results are summarised in Table 1.296

Compared to our baseline ED model with a WER297

of 7.2 %, we observe improvements with the298

additional classifier placed closer to the final layer.299

Further experiments with multiple auxiliary300

classifiers ({β3 = 0.2, β4 = 0.3, β6 = 0.5}301

and {β3 = 0.2, β5 = 0.3, β6 = 0.5}), did302

not yield significant improvements, discouraging303

experiments with more auxiliary classifiers. We304

avoided exploring very low weights (βd) in the305

early layers as gradual adjustments did not yield306

noticeable improvements. Given the computational307

resources required for each experiment run, we308

chose to run the two most promising configurations309

five times to determine the optimal one. Choosing310

between the two most promising configurations311

from Table 1, i. e., β3 = 0.5 and β4 = 0.4, we312

opted for the latter for all subsequent experiments.313

We believe other configurations (indicated with314

grey colour in the lower triangle of Table 1) could315

yield similar results.316

4.2 Scaling model size317

Table 2 compares the effect of regularisation318

with respect to the width (dmodel) or depth (D).319

Although wider baseline ED models have shown320

minor degradation, likely due to incomplete321

convergence, intermediate regularisation322

consistently improved performance.323

Finally, Table 3 compares our best-performing324

DeCRED and ED baseline models with the baseline325

model from ESPnet. DeCRED consistently326

outperforms both implementations of ED. The327

difference is better pronounced in greedy decoding,328

suggesting the effectiveness of DeCRED in329

decoding tasks where computational resources are330

limited.331

Table 4: The performance of different variants of
using auxiliary classifiers during decoding. All models
have configuration (12, 6, 256). Evaluated on the
CommonVoice 13.0 test set.

Model(decoding strategy) WER [%]

ED(4) 19.693
DeCRED(4) 19.467
DeCRED(5) 19.464
DeCRED(6) 19.444

4.3 Additional classifiers in decoding 332

Having observed that DeCRED leads to a better- 333

trained model, we move on to explore the effect of 334

the additional classifier heads in decoding. We 335

conduct this experiment on CommonVoice en 336

13.0 dataset (Ardila et al., 2020). It consists of 337

2.4k validated hours from 1.1k unique voices of 338

volunteer contributors. 339

To learn the mixing parameters β∗
d and v∗ of 340

the respective decoding methods (Section 2.2), we 341

split the original 10888 development utterances 342

into new training and development sets in ratio 343

70:30. Expect for the mixing parameters, the rest 344

of the model is frozen. This training or fine-tuning 345

is very light-weight and took about 30 minutes on a 346

single A100 GPU with a batch size of 512 samples 347

for 10 epochs. 348

We use the equation number in the superscript 349

of the model to denote the decoding objective, i.e. 350

DeCRED(4) indicates the vanilla decoding method 351

defined by (4), DeCRED(5) indicates mixing 352

the logits by learnable scalars, and DeCRED(6) 353

indicates mixing the logits by learnable vectors. 354

The comparison across the three variants, along 355

with the baseline ED is shown in Table 4. Overall, 356

using the additional classifiers during decoding 357

does no harm. A 0.25 % WER improvement 358

translates only to 350 additional correctly predicted 359

words. This experiment does not provide any 360

strong evidence in favour of using them. We 361

hypothesize that it could be due to a relatively 362

small model size (36M params with 1000 sub-word 363

vocabulary). 364

5 Scaling to multi-domain scenario 365

To fully investigate and leverage the power of 366

the auxiliary classifiers, we chose a mixture of 367

multi-domain datasets that allows for bigger 368

training, development and test sets. The 369

multi-domain dataset is comprised of Fisher 370
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Figure 2: Comparison of the proposed model against publicly available models on original and normalised
transcripts using greedy decoding (4) with λ = 0. DeCRED-base(6) indicates the model with the proposed
decoding technique (6), and the mixing parameters v tuned on development split. To compute confidence intervals,
we employed bootstrapping with α = 0.05 and B = 1000.

(SWITCHBOARD) (Godfrey et al., 1992),371

WSJ (Paul and Baker, 1992), Common Voice en372

13 (Ardila et al., 2020), LibriSpeech (Panayotov373

et al., 2015), VoxPopuli (Wang et al., 2021a), and374

TED-LIUM 3 (Hernandez et al., 2018), totalling375

6k hours of training data.376

5.1 Normalisation of multi-domain data377

These datasets have different annotation styles,378

making learning harder and introducing undesired379

behaviour in the models, such as memorising380

the dataset-specific annotations (Peng et al.,381

2023). We employed a practical approach, where382

we used the text normalisation scheme from383

Whisper5 to standardise the transcripts across all384

the datasets. We believe this approach allows385

the model to focus mainly on the recognition386

task. For practical applications, true casing and387

punctuation can be restored using a lightweight388

inverse text normalisation model. In addition389

to the Whisper text normaliser, we retained the390

text within parenthesis. Due to inconsistencies391

across datasets, we removed special tokens such as392

[breath], [vocalised noise], [pause], [sneeze].393

Nevertheless, to enable a fair comparison with394

prior works, we also report results using the395

original transcripts. This allows us to quantify the396

effect of text normalisation on the WER.397

5.2 Training setup398

We expanded the vocabulary size to V = 5000399

tokens and trained baseline ED and DeCRED400

models for 100 epochs with early stopping patience401

5https://github.com/huggingface/transformers/
blob/main/src/transformers/models/whisper/
english_normalizer.py

Table 5: Macro average of the WERs based on the
selected decoding strategy. By default, all auxiliary
classifier weights βd are set to 0. Parameters with an
asterisk (e.g., β∗

d , v∗) indicate tuning on a portion of the
development split.

DeCRED-base greedy beam – width 10
decoding strategy λ = 0 λ = 0.3 λ = 0 λ = 0.3

β6 = 1(5) 6.8 6.7 6.5 6.4
β8 = 1(4) 6.7 6.4 6.4 6.0

β6,8 = (0.40, 0.60)(5) 6.7 6.6 6.4 6.3
β∗
6,8 = (0.50, 0.47)(5) 6.7 6.6 6.5 6.3

v∗(6) 6.5 6.3 6.9 6.0

of 10 epochs and 40k warm-up steps with two 402

configurations: small (12, 6, 256) with 38.5M 403

parameters and base (16, 8, 512) with 172M 404

parameters. Small models were trained on 32 A100 405

GPUs6 maintaining an overall batch size of 2048 406

samples and base on 48 GPUs7 maintaining batch 407

size 3072. The rest of the settings are identical to 408

the previous setup described in Section 3.2. 409

Additionally, we introduced a mechanism to 410

mask special tokens, along with unfinished words8, 411

during error backpropagation. This strategy aimed 412

to prevent the model from being penalised for 413

unclear inputs. 414

5.3 Comparison with Whisper and OWSM 415

Figure 2 presents a comparative analysis of 416

our best-to-date model, DeCRED-base(4) (172M 417

parameters), and DeCRED-base(6), incorporating 418

additional 10k parameters in v∗, against the 419

6consuming approximately 840 A100 hours per run
7consuming approximately 2240 A100 hours per run
8e.g. transcript “[hesitation] to re- to re- renew" is

transformed into “[MASK] to [MASK] to [MASK] renew"

6
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https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/english_normalizer.py
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Figure 3: The impact of employment of the proposed training strategy, along with the enhanced decoding (6) on
small (12, 6, 256) and base (16, 8, 512) models using greedy and beam decoding.

Whisper-medium (Radford et al., 2023) (700M)420

and OWSM v3 (Peng et al., 2023) (889M) models.421

Although most of our models were trained on the422

normalised transcriptions, to highlight the effect of423

text normalisation, we also trained the DeCRED424

base (16, 8, 512) model on original transcriptions.425

When evaluating the Whisper and OWSM models426

in a normalized setup, we post-processed their427

hypotheses using the same text normalization as428

used in our training pipeline. This ensures the429

fairest comparison possible.430

5.4 Performance vs. speed431

Table 5 presents a comparison of different432

decoding methods in terms of macro WER433

over the aforementioned datasets. We observed434

that integrating intermediate representations435

with per-layer learnable weights (5) led436

to minor improvement only in the greedy437

decoding scenario without hybrid CTC decoding.438

Notable enhancements were observed with the439

incorporation of per-token-specific mixing (6),440

except for beam decoding on the SB eval2000441

dataset, where we observed a degradation of442

5.3% in WER, primarily attributed to insertions.443

Interestingly, we did not observe the same444

behaviour with the small model. For completeness,445

macro WERs are also provided for early-exiting446

(β6 = 1, i.e., decoding directly from 6-th layer,447

while the model has 8 layers), where only minor448

degradations were observed.449

Figure 3 showcases the improvements in macro450

WER achieved by DeCRED-small (12, 6, 256)451

and DeCRED-base (16, 8, 512) compared to the452

respective ED variants with different decoding453

methods.454

Figure 4 presents the relative WER reductions455

of our multi-domain models on TEDLIUM3456

in relation to the relative slowdown caused by457
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Figure 4: The impact of model size and decoding
approach on the average time needed to transcribe
an utterance (TEDLIUM3) and WER (macro average
across datasets).

additional decoding overhead. The slowdown 458

factor is measured relatively to our fastest model 459

ED small(4). It is calculated as an average time 460

over the TEDLIUM3 test set required to emit 20 461

tokens on an A100 GPU with maximum VRAM 462

memory consumption9. We fixed a number of 463

decoding steps to normalise different hypothesis 464

lengths across models. 465

In this setup, there is no speed difference 466

between ED(4) and DeCRED(4). However, 467

as shown in Figure 4, regularised models 468

significantly reduce the WER. When using 469

DeCRED(6), the only overhead is computing 470

softmax
(∑D

d=1 vd ⊙ (hdWd)
)

, where hDWD 471

is already computed. It is worth noting that 472

when using greedy decoding, DeCRED small 473

performs similarly to ED base, being much smaller, 474

thus consuming less computation resources and 475

speeding up decoding significantly. 476

9For example, with greedy decoding and ED small, we can
fit 240 samples in a batch. In contrast, with ED base and joint
CTC/attention decoding with a beam size of 10, we are only
able to fit 20 samples.
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Table 6: Unseen datasets used to evaluate the
generalization ability of our models.

Dataset Domain # test utterances

FLEURS Read speech 0.6k
AMI Conversational 12.6k
Gigapeech Mixture 25.3k

5.5 Effect of text normalisation477

To further understand the effect of text478

normalisation, we trained standalone models479

ED-small (12, 6, 256) on the TEDLIUM3 and480

Voxpopuli datasets with and without normalised481

transcripts. Notably, we observed an improvement482

from 9.8% to 9.0% WER on VoxPopuli and from483

7.2% to 6.7% on TEDLIUM3. The normalisation484

process effectively resolved contraction errors485

and also led to fewer errors in the most frequent486

confusion pairs (e.g., “the” vs “a”, “in” vs “on”,487

“in” vs “and”). By normalising, we reduced488

the number of words from 44.3k to 44.1k for489

Voxpopuli and increased this number from 27.5k490

to 28.2k for TEDLIUM3, which also influenced491

the WER.492

6 Out of domain performance493

To study the generalisation capabilities of our494

models, we evaluate our best-to-date ED and495

DeCRED models on three unseen datasets (Table496

6).497

The performances are summarized in Table 7.498

Overall, all our models outperform the much499

larger OWSMv3, which has also been trained500

on the corresponding training data, showing that501

our models do generalize to unseen domains well.502

With the exception of the FLEURS dataset, where503

the difference in WER is the smallest anyway,504

DeCRED models outperform the ED baseline505

significantly, suggesting that the decoder-centric506

regularisation enhances the generalisation ability507

of the model.508

Additionally, we take this as an opportunity to509

evaluate the effect of tuning the mixing weights510

v∗ on the corresponding domain. For this, we511

utilised FLEURS train split, and development512

splits of AMI and Gigaspeech, respectively,513

following the training protocol described in514

Section 4.3. In Table 7, these models are denoted515

as DeCRED base(6)†. In all cases, adapting v∗516

leads to decrease in WER, and with the exception517

Table 7: Comparison of ED and DeCRED models
on out-of-domain test sets. WERs are obtained using
greedy decoding with λ = 0. † denotes models where
v∗ was tuned on each of the datasets separately.

Model FLEURS AMI-ihm Gigaspeech

ED base(4) 6.4 24.8 19.8
DeCRED base(4) 6.7 22.1 16.9
DeCRED base(6) 6.9 21.9 17.0
DeCRED base(6)† 6.8 21.4 16.4

OWSM v3 8.6 35.8 34.1
Whisper medium 5.5 16.6 14.9

of FLEURS dataset, this decrease is considerable, 518

confirming that the mixing weight does do provide 519

a rapid adaptation capability. 520

7 Conclusion 521

We introduced the DeCRED regularization scheme, 522

which effectively integrates auxiliary classifiers 523

within the decoder of an encoder-decoder-based 524

architecture. We further proposed decoding 525

methods that exploit these auxiliary classifiers, 526

which led to a significant decrease in the word 527

error rates. We observed that DeCRED consistently 528

improves the results when employing simple 529

greedy decoding scheme as compared to the 530

baseline models. Our experiments on multi- 531

domain datasets show that DeCRED is scalable and 532

performs competetively to much larger Whisper 533

medium and outperform OWSM v3. Finally, we 534

show that DeCRED enhances the generalisation 535

to out-of-domain datasets, where we observed 536

a reduction of 2.7 and 2.9 WERs on AMI 537

and Gigaspeech respectively. Using a light- 538

weight rapid domain adaptation scheme enabled by 539

DeCRED, the out-of-domain WERs were further 540

reduced by 0.7 and 0.5 % absolute on the respective 541

datasets. In future, we intend to study DeCRED in 542

multilingual and multi-task scenario. 543

8 Limitations 544

We identify a few of limitations in our work. 545

Firstly, due to our computational budget, we 546

were only able to scale our setup to 6k hours 547

of training data and 172M model parameters. 548

Secondly, our models were trained on English 549

data only, which makes the comparison with 550

multilingual models tricky, as these models had 551

to invest a part of their capacity into modeling 552

other languages as well. Yet, due to the first 553

point, our models are exposed to one (OSWM) 554
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or even two (Whisper) orders of magnitude less555

English data, therefore we believe the comparison556

is not unfair. Also, our models use considerably557

smaller vocabulary; however, while this might558

limit model performance on domain-specific words559

present for example in the FLEURS dataset, we560

do not observe performance degradation there.561

Next, some of the improvements from introducing562

DeCRED diminish when employing beam-search563

decoding with a wider beam, which however comes564

at a computational cost at inference time. Finally,565

while the proposed decoder-centric regularization566

is independent of the backbone architecture, we567

have only analysed our approach using an E-568

branchformer speech encoder.569
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