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Abstract

This paper introduces Decoder-Centric
Regularisation in Encoder-Decoder (DeCRED)
architecture for automatic speech recognition,
where auxiliary classifier(s) are introduced
in layers of the decoder module. Leveraging
these classifiers, we propose two decoding
strategies that re-estimate the next token
probabilities. Pilot experiments conducted on
the independent in-domain datasets identify
the suitable placement and weighting of the
auxiliary classifiers, resulting in a consistent
word-error-rate (WER) reduction of up to 9 %
relative across different model sizes. Further
experiments on a collection of multi-domain
English datasets showed that DeCRED
obtained competitive WERs as compared to
Whisper-medium and outperformed OWSM
v3; while relying only on a fraction of training
data and model size. Finally, we also study
the generalisation capabilities of DeCRED by
evaluating on out-of-domain datasets, where
we show an absoulte reduction of 2.7 and
2.9 WERs on AMI and Gigaspeech datasets
respectively.

1 Introduction

One of the key challenges in automatic speech
recognition (ASR) is the ability of the models
to generalise to new or previously unseen
domains. Large-scale training on multiple
domains (Narayanan et al., 2018; Chan et al., 2021),
data augmentation (Park et al., 2019), architecture-
specific regularisation (Lee and Watanabe, 2021)
are some of the strategies for improving the
robustness of ASR systems. In recent years,
we have seen a shift towards large-scale training
of speech models such as Whisper from
OpenAl (Radford et al., 2023). Despite its
impressive recognition accuracy on many research
datasets, the lack of transparency about the training
data has lead the scientific community to build
an open-source equivalent of Whisper. One such

effort, dubbed as OWSM! (Peng et al., 2023) is
trained on publicly available speech datasets, using
an open source toolkit ESPnet (Watanabe et al.,
2018). Training such models requires enormous
computational resources that are not available for
many academic and research organisations.

In this work, we primarily focus on studying
architecture-specific regularisation for improving
the robustness of ASR systems. More specifically,
we introduce auxiliary classifiers in the decoder
module of an encoder-decoder based neural
architecture for ASR. These auxiliary classifiers
not only help regularise the model during training,
but also assist during joint-decoding, and acts as
light-weight, rapid domain-adaptation modules.
This study is done in conjunction with large-scale
training? of ASR models on multi-domain English
datasets.

1.1 Related works

The idea of auxiliary classifiers or intermediate
regularisers has been explored in ASR. More
specifically, Lee and Watanabe (2021) uses
intermediate CTC objectives in the encoder module
for ASR, whereas, Wang et al. (2021b) employs
similar scheme for training self-supervised speech
encoders. Zhang et al. (2022) regularises both
the encoder and decoder modules by passing
the intermediate representations from the encoder
directly to the intermediate layers in the decoder.
While these works have shown improvements over
their respective baselines, our proposed approach
differs in two aspects:

* We introduce auxiliary classifier(s) only
in the decoder module of the encoder-
decoder architecture, essentially regularising
the internal language model.

'Open Whisper-style Speech Model.
To the extent supported by the computational budget
available for us.



* We further use these auxiliary classifiers in
the joint-decoding scheme.

In case of large-scale training of end-to-end
ASR models, we mainly take inspiration from
prior works such as SpeechStew (Chan et al.,
2021) and OWSM (Peng et al., 2023), where we
simply mix mulitple publicly available datasets
to train our models. It is important to note
that simple aggregation from multiple sources
(datasets) without text normalising can cause the
models to memorise dataset-specific annotation
styles (Peng et al., 2023); which is not desired for
a general purpose ASR system. This also indicates
a potential inefficiency, wherein model parameters
are allocated towards recognising data sources
rather than solving the intended task(s). As it is
inevitable, we investigate and quantify the effect
of text normalisation on the model’s recognition
performance.

1.2 Summary and contributions

» The decoder-centric regularisation is formally
introduced in Section 2, where we also
describe the proposed decoding strategies
that exploit the auxiliary classifiers for joint-
decoding.

» Experiment protocol is described in Section 3.
Pilot experiments, studying DeCRED on
single in-domain datasets is presented in
Section 4.

* Experiments on large-scale multi-domain
training and the effect of text-normalisation
are described in Section 5. We show that the
proposed DeCRED performs competetively to
Whisper medium and outperform OWSM v3
on multiple datasets.

* Experiments on out-of-domain generalisation
are presented in Section 6, where we
additionally present a lightweight rapid
adaptation capability of the auxiliary
classifiers.

* Finally, our implementations? are built on top
of open-source transformers library (Wolf
et al.,, 2020), facilitating easy replication
of our results. We intent to release of all
model checkpoints along with corresponding

3[to ensure author anonymity, the link to the resource will
be added after the review process]
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Figure 1: Architecture of the proposed DeCRED. In
addition to the standard encoder-decoder framework for
ASR (L™, with the auxiliary CTC objective (L¢TC),
DeCRED uses — possibly multiple — auxiliary classifiers
(L£4"™) attached to the decoder. In the illustration, we
shown one auxiliary classifier attached to (D-2)-th
decoder block. The embedding and positional encoding
layers are not dpeicted for brevity.

test hypotheses. Our code also allows for
single-line inference within the HuggingFace
ecosystem.

2 Decoder-centric regularization

Formally, our approach extends the training
objective of encoder-decoder ASR by adding
auxiliary cross-entropy loss functions. We explore
two additional decoding methods that exploit these
auxiliary classifiers.

2.1 Training objective

We build upon the hybrid CTC-attention-based
training scheme proposed by Hori et al. (2017).
Our objective function L is defined as:



L= )\ﬁCTC + (1 _ )\)LDSCRED’ (1)

where Lcre represents the standard CTC
loss (Graves et al., 2006), A is a hyper-parameter,
and Lpecrep 1s defined as:

D

£DCCRED — Z /Bdﬁgttn’ (2)
d=1

where D represents the number of layers in the
decoder, £3"™ is the cross-entropy loss given a
classifier layer (linear projection, followed by
softmax function) attached to the d-th layer of the

decoder, and (3 is the weighting factor of d-th layer.

We impose constraints such that Zfl):l Ba = 1
and B4 > 0. In practise [ ...0p] is a sparse
vector. This definition allows us to explicitly
regularise the decoder (internal language model)
and force earlier layers to learn discriminative
features suitable for the task. Figure 1 illustrates the
proposed architecture, where an auxiliary classified
is attached to output of (D-2)-th decoder block.

2.2 Decoding

The decoding follows a typical auto-regressive
scheme observed in encoder-decoder ASR systems,
where the posterior probability of an output token
is obtained by conditioning on previously decoded
tokens (partial hypothesis) and the input features.

Formally, let x;.7 be a sequence of input speech
(filterbank) features, hy; € R1*dmuel denote the
hidden representation obtained from the d-th layer
of the decoder for a given time step, and W, €
Rmoser XV represent linear projection from hidden
dimension dp,eqe] to vocabulary size V. Then, the
posterior probability of an output token at a given
time step is

p(yn ‘ yl:n—hxl:T) =
Apcre(Yrn—1 | X11) X
(1 = A) ppecreD (Yn | Y1:n—1, W1i.p, h1.p), (3)
where A is a hyper-parameter. We obtain the
following variants by varying the definition of

PpecrED and using auxiliary classifiers:

1. Vanilla joint CTC/attention decoding relying
on representations only from the last layer hp:

ppecrep () = softmax(hpWp)  (4)

2. Sum of logits weighted by per-layer learnable
scalar By:

D

PpeCRED () = softmax(z BahgWg) (5)
d—1

3. Sum of logits weighted by per-layer learnable
vector vy € RV

D

PpecreD(+) = softmax (Z Va © (ded)>
d=1

(6)

Note that to obtain optimal results with
methods (5) and (6), an additional held-out set is
required for learning the parameters 54, vg.

The above schemes can be easily integrated into
any of the decoding search algorithms such as
greedy and beam-search.

3 Experimental setup

The experiments are organized into three parts.
The first one (Sec. 4) focuses on single in-domain
datasets, studying the effect of the position (d),
weight (84) of the auxiliary classifiers, and also
their influence in decoding. The second part
(Sec. 5) presents the experiments and results on
scaling DeCRED to multi-domain English datasets.
The selection of datasets is inspired by the ones
used for evaluation in OWSM. This relatively larger
corpus allows us to fully exploit the proposed
decoding alternatives (5) and (6). The third part
(Sec. 6) presents the out-of-domain generalisability
of DeCRED by evaluating the trained models on
AMI, Gigaspeech and FLEURS corpora. We also
present a rapid, light-weight domain adaptation
technique on the out-of-domain datasets.

All our experiments are built on top of the
open-source transformers library, accompanied
by baseline models built using the ESPnet toolkit.

3.1 Baseline Encoder-Decoder (ED) model

Our baseline ED model employs a feature
extraction module consisting of two Conv2d layers
with 256 output channels, and a linear projection.
This is followed by a 12-layer E-Branchformer
encoder with relative positional embeddings (Dai
et al., 2019), Macaron-like forward modules,
dmodel = 256, dif = 4dmodel, four attention heads,
and a dropout probability of 0.1. Adhering to
the E-Branchformer architecture, we integrate a



Table 1: Effect of the position (d) and weight (34)
of the auxiliary classifier in DeCRED on WERs of
TEDLIUM3 test set. Grey cells indicate configurations
deemed reasonable for exploration. Standard deviations
(o) and best WER for the chosen configurations are
displayed. For reference, the baseline ED model has a
WER of 7.2 %.

Weight Position
1 2 3 4 5
0.1 7.5 6.8
0.2 7.0 7.2
0.3 7.0 7.0 7.0
04 78 75 7.1 6.8 [c =0.15] 6.9
0.5 72 7.1 6.7[c=0.26] 7.1 6.9

merge block followed by depth-wise convolution
with a kernel size of 31. Subsequently, the
encoder is followed by a 6-layer decoder with
sinusoidal positional embeddings, maintaining
the same number of attention heads, dpoqel, and
dropout. The only difference is the fixed dg =
2048 in the decoder.

Throughout this paper, we will use the triplet
(enc. layers, dec. layers, dmodel) to define the model
architecture; the rest of the configuration is fixed
unless explicitly stated otherwise. For example,
small model (12, 6, 256) has 35.04M parameters.

The model receives 80-dimensional filter-bank
features as input. We used a sub-word tokeniser
based on the unigram algorithm to build a
vocabulary of size V' = 500. This is our vanilla
baseline ED model.

3.2 Training details

If not stated otherwise, models are trained on 4
Nvidia A100 GPUs with bf16 precision using the
AdamW optimiser (Loshchilov and Hutter, 2019)
with a learning rate of 2 x 1073, weight decay of
1 x 1075, linear decay scheduler and 15k warm-up
steps. As an additional means of regularisation, we
use a label smoothing weight of 0.1.

Unlike ESPnet, where some augmentations are
applied offline, we implement all augmentations
online and allow for postponing some of them
until later in the training, resulting in a more
stable training process. For instance, while ESPnet
adopts a training regime consisting of 50 epochs
and three copies of the input data with speed
perturbation factors 0.9, 1.0, and 1.1, we train our
model for 150 epochs on the original data with
speed perturbation factors {0.9, 1.0, 1.1} randomly
sampled on the fly. After 5k update steps, we apply

Table 2: The effect of incorporating an auxiliary
classifier with varied model sizes. The additional
classifier is applied with Sp_s = 0.4 to maintain
a consistent relative position wrt. the decoder output.
Evaluated on the TEDLIUMS3 test set.

WER [%]
Configuration ~ Size [M] ED®  DeCRED
(12, 6, 256) 35 7.2 6.8
(16, 8, 256) 56 7.0 6.8
(12, 6, 384) 73 7.2 7.0

SpecAug (Park et al., 2019) with two frequency-
masks of maximum size 27 and five time-masks
with maximum coverage of masked input of 5 %.
For all experiments, we select the best-performing
model based on the development WER. To speed
up the training, samples longer than 20 seconds are
discarded from the training set.

4 Experiments on in-domain dataset

To analyse and wunderstand the proposed
regularisation scheme, we select a relatively small
dataset, TEDLIUM3 (Hernandez et al., 2018),
which allows for faster experiment turnout. The
dataset comprises 452 hours of transcribed TED
talks, with a test set containing 1155 utterances,
roughly translating to 28k words. The size of
this dataset enables us to train an ED (12, 6,
256) baseline 35M model to full convergence
in approximately 70 A100 hours. An absolute
improvement of 0.3 % in WER corresponds to
around 100 additional correctly predicted words.
Since we build on top of transformers
library, to ensure a fair comparison, we adopt
hyperparameters and a training setup as close
as possible to the ESPnet baseline recipe*. For
evaluating the models on TEDLIUM3, unless
explicitly specified, we follow the ESPnet recipe
utilising joint CTC/attention decoding (4) with a
beam size of 40 and CTC decoding weight A = 0.3.

4.1 Position and weight of auxiliary classifiers

The DeCRED has an identical configuration as
the baseline ED, except for the auxiliary classifier
attached to specific layers in the decoder. Even
with a model with as few as D = 6 decoder
layers, the definition of the DeCRED objective (2)
leaves us with a vast configuration space. We
explored this space from configurations with a

4https: //github.com/espnet/espnet/tree/master/
egs2/tedlium3/asri
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Table 3: Comparison of our implementation of ED
and proposed DeCRED with ESPnet’s baseline on the
TEDLIUMS3 test split.

WER [%]
Model Size [M] greedy beam — width 40
ESPnet ED®  35.01 8.7 8.1
Our ED® 35.04 7.6 7.2
DeCRED¥ 35.20 7.0 6.8

single auxiliary classifier, changing its position
and adjusting its weight in increments of 0.1. The
additional parameters introduced (W, € [R256%500)
by a single auxiliary classifier do not significantly
increase the model size.

The results are summarised in Table 1.
Compared to our baseline ED model with a WER
of 7.2%, we observe improvements with the
additional classifier placed closer to the final layer.

Further experiments with multiple auxiliary
classifiers ({83 = 0.2,84 = 03,85 = 0.5}
and {3 = 0.2,85 = 0.3,65 = 0.5}), did
not yield significant improvements, discouraging
experiments with more auxiliary classifiers. We
avoided exploring very low weights (5;) in the
early layers as gradual adjustments did not yield
noticeable improvements. Given the computational
resources required for each experiment run, we
chose to run the two most promising configurations
five times to determine the optimal one. Choosing
between the two most promising configurations
from Table 1, i.e., 83 = 0.5 and 54 = 0.4, we

opted for the latter for all subsequent experiments.

We believe other configurations (indicated with
grey colour in the lower triangle of Table 1) could
yield similar results.

4.2 Scaling model size

Table 2 compares the effect of regularisation
with respect to the width (dmoger) or depth (D).
Although wider baseline ED models have shown
minor degradation, likely due to incomplete
convergence, intermediate regularisation
consistently improved performance.

Finally, Table 3 compares our best-performing
DeCRED and ED baseline models with the baseline
model from ESPnet. DeCRED consistently
outperforms both implementations of ED. The
difference is better pronounced in greedy decoding,
suggesting the effectiveness of DeCRED in
decoding tasks where computational resources are
limited.

Table 4: The performance of different variants of
using auxiliary classifiers during decoding. All models
have configuration (12, 6, 256). Evaluated on the
CommonVoice 13.0 test set.

Model(decoding strategy) WER [%]
ED® 19.693
DeCRED® 19.467
DeCRED® 19.464
DeCRED® 19.444

4.3 Additional classifiers in decoding

Having observed that DeCRED leads to a better-
trained model, we move on to explore the effect of
the additional classifier heads in decoding. We
conduct this experiment on CommonVoice en
13.0 dataset (Ardila et al., 2020). It consists of
2.4k validated hours from 1.1k unique voices of
volunteer contributors.

To learn the mixing parameters 37 and v* of
the respective decoding methods (Section 2.2), we
split the original 10888 development utterances
into new training and development sets in ratio
70:30. Expect for the mixing parameters, the rest
of the model is frozen. This training or fine-tuning
is very light-weight and took about 30 minutes on a
single A100 GPU with a batch size of 512 samples
for 10 epochs.

We use the equation number in the superscript
of the model to denote the decoding objective, i.e.
DeCRED® indicates the vanilla decoding method
defined by (4), DeCRED® indicates mixing
the logits by learnable scalars, and DeCRED(®
indicates mixing the logits by learnable vectors.

The comparison across the three variants, along
with the baseline ED is shown in Table 4. Overall,
using the additional classifiers during decoding
does no harm. A 0.25 % WER improvement
translates only to 350 additional correctly predicted
words. This experiment does not provide any
strong evidence in favour of using them. We
hypothesize that it could be due to a relatively
small model size (36M params with 1000 sub-word
vocabulary).

5 Scaling to multi-domain scenario

To fully investigate and leverage the power of
the auxiliary classifiers, we chose a mixture of
multi-domain datasets that allows for bigger
training, development and test sets. The
multi-domain dataset is comprised of Fisher



35 T T T T T T
BN DcCRED base®normalised
30F | B Whisper medium normalised -
OWSM v3 normalised
25 F EEE DeCRED base
‘Whisper medium
20L OWSM v3

WsJ

CV-13 LS clean LS other SB eval2000 TEDLIUM3 VoxPopuli macro avg.

Figure 2: Comparison of the proposed model against publicly available models on original and normalised
transcripts using greedy decoding (4) with A = 0. DeCRED-base(®) indicates the model with the proposed
decoding technique (6), and the mixing parameters v tuned on development split. To compute confidence intervals,
we employed bootstrapping with o = 0.05 and B = 1000.

(SWITCHBOARD) (Godfrey et al, 1992),
WSJ (Paul and Baker, 1992), Common Voice en
13 (Ardila et al., 2020), LibriSpeech (Panayotov
et al., 2015), VoxPopuli (Wang et al., 2021a), and
TED-LIUM 3 (Hernandez et al., 2018), totalling
6k hours of training data.

5.1 Normalisation of multi-domain data

These datasets have different annotation styles,
making learning harder and introducing undesired
behaviour in the models, such as memorising
the dataset-specific annotations (Peng et al.,
2023). We employed a practical approach, where
we used the text normalisation scheme from
Whisper® to standardise the transcripts across all
the datasets. We believe this approach allows
the model to focus mainly on the recognition
task. For practical applications, true casing and
punctuation can be restored using a lightweight
inverse text normalisation model. In addition
to the Whisper text normaliser, we retained the
text within parenthesis. Due to inconsistencies
across datasets, we removed special tokens such as
[breath], [vocalised noise], [pause], [sneeze].

Nevertheless, to enable a fair comparison with
prior works, we also report results using the
original transcripts. This allows us to quantify the
effect of text normalisation on the WER.

5.2 Training setup

We expanded the vocabulary size to V' = 5000
tokens and trained baseline ED and DeCRED
models for 100 epochs with early stopping patience

Shttps://github.com/huggingface/transformers/
blob/main/src/transformers/models/whisper/
english_normalizer.py

Table 5: Macro average of the WERs based on the
selected decoding strategy. By default, all auxiliary
classifier weights /3, are set to 0. Parameters with an
asterisk (e.g., 3, v*) indicate tuning on a portion of the
development split.

DeCRED-base greedy beam — width 10
decoding strategy A =0 A=03 A=0 A=0.3
Bs =1 6.8 6.7 6.5 6.4
Bs =1 6.7 6.4 6.4 6.0

Bs,s = (0.40,0.60)® 6.7 6.6 64 6.3
Bes = (0.50,0.47)) 6.7 6.6 6.5 6.3
v*© 6.5 6.3 6.9 6.0

of 10 epochs and 40k warm-up steps with two
configurations: small (12, 6, 256) with 38.5M
parameters and base (16, 8, 512) with 172M
parameters. Small models were trained on 32 A100
GPUs® maintaining an overall batch size of 2048
samples and base on 48 GPUs’ maintaining batch
size 3072. The rest of the settings are identical to
the previous setup described in Section 3.2.

Additionally, we introduced a mechanism to
mask special tokens, along with unfinished words®,
during error backpropagation. This strategy aimed
to prevent the model from being penalised for
unclear inputs.

5.3 Comparison with Whisper and OWSM

Figure 2 presents a comparative analysis of
our best-to-date model, DeCRED-base®) (172M
parameters), and DeCRED-base(%), incorporating
additional 10k parameters in v*, against the

®consuming approximately 840 A100 hours per run

"consuming approximately 2240 A100 hours per run

8¢.g. transcript “[hesitation] to re- to re- renew" is
transformed into “[MASK] to [MASK] to [MASK] renew"
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Figure 3: The impact of employment of the proposed training strategy, along with the enhanced decoding (6) on
small (12, 6, 256) and base (16, 8, 512) models using greedy and beam decoding.

Whisper-medium (Radford et al., 2023) (700M)
and OWSM v3 (Peng et al., 2023) (§889M) models.
Although most of our models were trained on the
normalised transcriptions, to highlight the effect of
text normalisation, we also trained the DeCRED
base (16, 8, 512) model on original transcriptions.
When evaluating the Whisper and OWSM models
in a normalized setup, we post-processed their
hypotheses using the same text normalization as
used in our training pipeline. This ensures the
fairest comparison possible.

5.4 Performance vs. speed

Table 5 presents a comparison of different
decoding methods in terms of macro WER
over the aforementioned datasets. We observed
that integrating intermediate representations
with per-layer learnable weights (5) led
to minor improvement only in the greedy
decoding scenario without hybrid CTC decoding.
Notable enhancements were observed with the
incorporation of per-token-specific mixing (6),
except for beam decoding on the SB eval2000
dataset, where we observed a degradation of
5.3 % in WER, primarily attributed to insertions.
Interestingly, we did not observe the same
behaviour with the small model. For completeness,
macro WERs are also provided for early-exiting
(Be = 1, i.e., decoding directly from 6-th layer,
while the model has 8 layers), where only minor
degradations were observed.

Figure 3 showcases the improvements in macro
WER achieved by DeCRED-small (12, 6, 256)
and DeCRED-base (16, 8, 512) compared to the
respective ED variants with different decoding
methods.

Figure 4 presents the relative WER reductions
of our multi-domain models on TEDLIUM3
in relation to the relative slowdown caused by

0.9

Relative WER

greedy (A =0)
greedy (A\=0.3) ©  ED®W

C I )

beam () = 0) e DeCRED®W -+ Small ]
beam (X = 0.3) DeCRED®) —8— Base
0.5k ]
1.0 1.2 1.4 1.6 1.8

Relative Decoding Time

Figure 4: The impact of model size and decoding
approach on the average time needed to transcribe
an utterance (TEDLIUM3) and WER (macro average
across datasets).

additional decoding overhead. The slowdown
factor is measured relatively to our fastest model
ED small®. It is calculated as an average time
over the TEDLIUM3 test set required to emit 20
tokens on an A100 GPU with maximum VRAM
memory consumption’. We fixed a number of
decoding steps to normalise different hypothesis
lengths across models.

In this setup, there is no speed difference
between ED® and DeCRED®. However,
as shown in Figure 4, regularised models
significantly reduce the WER. When using
DeCRED®) | the only overhead is computing
softmax (Z?Zl Vg ® (ded)>, where hpWp
is already computed. It is worth noting that
when using greedy decoding, DeCRED small
performs similarly to ED base, being much smaller,
thus consuming less computation resources and
speeding up decoding significantly.

°For example, with greedy decoding and ED small, we can
fit 240 samples in a batch. In contrast, with ED base and joint
CTCl/attention decoding with a beam size of 10, we are only
able to fit 20 samples.



Table 6: Unseen datasets used to evaluate the
generalization ability of our models.

Dataset Domain # test utterances
FLEURS  Read speech 0.6k
AMI Conversational 12.6k
Gigapeech Mixture 25.3k

5.5 Effect of text normalisation

To further wunderstand the effect of text
normalisation, we trained standalone models
ED-small (12, 6, 256) on the TEDLIUM3 and
Voxpopuli datasets with and without normalised
transcripts. Notably, we observed an improvement
from 9.8 % to 9.0 % WER on VoxPopuli and from
7.2 % to 6.7 % on TEDLIUM3. The normalisation
process effectively resolved contraction errors
and also led to fewer errors in the most frequent
confusion pairs (e.g., “the” vs “a”, “in” vs “on”,
“in” vs “and”). By normalising, we reduced
the number of words from 44.3k to 44.1k for
Voxpopuli and increased this number from 27.5k
to 28.2k for TEDLIUM3, which also influenced
the WER.

6 Out of domain performance

To study the generalisation capabilities of our
models, we evaluate our best-to-date ED and
DeCRED models on three unseen datasets (Table
6).

The performances are summarized in Table 7.
Overall, all our models outperform the much
larger OWSMv3, which has also been trained
on the corresponding training data, showing that
our models do generalize to unseen domains well.
With the exception of the FLEURS dataset, where
the difference in WER is the smallest anyway,
DeCRED models outperform the ED baseline
significantly, suggesting that the decoder-centric
regularisation enhances the generalisation ability
of the model.

Additionally, we take this as an opportunity to
evaluate the effect of tuning the mixing weights
v* on the corresponding domain. For this, we
utilised FLEURS train split, and development
splits of AMI and Gigaspeech, respectively,
following the training protocol described in
Section 4.3. In Table 7, these models are denoted
as DeCRED base®'. In all cases, adapting v*
leads to decrease in WER, and with the exception

Table 7: Comparison of ED and DeCRED models
on out-of-domain test sets. WERSs are obtained using
greedy decoding with A = 0. } denotes models where
v* was tuned on each of the datasets separately.

Model FLEURS AMI-ihm Gigaspeech
ED base® 6.4 24.8 19.8
DeCRED base™® 6.7 22.1 16.9
DeCRED base(® 6.9 21.9 17.0
DeCRED base(®f 6.8 21.4 16.4
OWSM v3 8.6 35.8 34.1
Whisper medium 5.5 16.6 149

of FLEURS dataset, this decrease is considerable,
confirming that the mixing weight does do provide
a rapid adaptation capability.

7 Conclusion

We introduced the DeCRED regularization scheme,
which effectively integrates auxiliary classifiers
within the decoder of an encoder-decoder-based
architecture. =~ We further proposed decoding
methods that exploit these auxiliary classifiers,
which led to a significant decrease in the word
error rates. We observed that DeCRED consistently
improves the results when employing simple
greedy decoding scheme as compared to the
baseline models. Our experiments on multi-
domain datasets show that DeCRED is scalable and
performs competetively to much larger Whisper
medium and outperform OWSM v3. Finally, we
show that DeCRED enhances the generalisation
to out-of-domain datasets, where we observed
a reduction of 2.7 and 2.9 WERs on AMI
and Gigaspeech respectively. Using a light-
weight rapid domain adaptation scheme enabled by
DeCRED, the out-of-domain WERs were further
reduced by 0.7 and 0.5 % absolute on the respective
datasets. In future, we intend to study DeCRED in
multilingual and multi-task scenario.

8 Limitations

We identify a few of limitations in our work.
Firstly, due to our computational budget, we
were only able to scale our setup to 6k hours
of training data and 172M model parameters.
Secondly, our models were trained on English
data only, which makes the comparison with
multilingual models tricky, as these models had
to invest a part of their capacity into modeling
other languages as well. Yet, due to the first
point, our models are exposed to one (OSWM)



or even two (Whisper) orders of magnitude less
English data, therefore we believe the comparison
is not unfair. Also, our models use considerably
smaller vocabulary; however, while this might
limit model performance on domain-specific words
present for example in the FLEURS dataset, we
do not observe performance degradation there.
Next, some of the improvements from introducing
DeCRED diminish when employing beam-search
decoding with a wider beam, which however comes
at a computational cost at inference time. Finally,
while the proposed decoder-centric regularization
is independent of the backbone architecture, we
have only analysed our approach using an E-
branchformer speech encoder.
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