

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CURING “MIRACLE STEPS” IN LLM MATHEMATICAL REASONING WITH RUBRIC REWARDS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models for mathematical reasoning are typically trained with outcome-based rewards, which credit only the final answer. In our experiments, we observe that this paradigm is highly susceptible to reward hacking, leading to a substantial overestimation of a model’s reasoning ability. This is evidenced by a high incidence of “false positives”—solutions that reach the correct final answer through an unsound reasoning process. Through a systematic analysis with human verification, we establish a taxonomy of these failure modes, identifying patterns like *Miracle Steps*—abrupt jumps to a correct output without a valid preceding derivation. Probing experiments suggest a strong association between these *Miracle Steps* and memorization, where the model appears to recall the answer directly rather than deriving it. To mitigate this systemic issue, we introduce the Rubric Reward Model (RRM), a process-oriented reward function that evaluates the entire reasoning trajectory against problem-specific rubrics. The generative RRM provides fine-grained, calibrated rewards (0–1) that explicitly penalize logical flaws and encourage rigorous deduction. When integrated into a reinforcement learning pipeline, RRM-based training consistently outperforms outcome-only supervision across four math benchmarks. Notably, it boosts *Verified Pass@1024* on AIME2024 from 26.7% to 62.6% and reduces the incidence of *Miracle Steps* by 71%. Our work demonstrates that rewarding the solution process is crucial for building models that are not only more accurate but also more reliable.¹

1 INTRODUCTION

Reinforcement learning with verifiable rewards (RLVR) has become a prominent approach in recent LLM research, primarily due to its effectiveness in improving performance on reasoning tasks that are easily verifiable (Schulman et al., 2017; Shao et al., 2024; OpenAI, 2024; Guo et al., 2025; Chen et al., 2025). Nevertheless, this paradigm is susceptible to reward hacking, leading to undesired behaviors like unfaithful chain-of-thought (CoT) (Amodei et al., 2016; Weng, 2024; Wen et al., 2025), and an overestimation of a model’s capabilities (Snell et al., 2025; Wang et al., 2025).

As depicted in Figure 1, the *Standard Pass@N* metric, which considers only the correctness of the final output, exhibits favorable scaling properties. Conversely, the *Verified Pass@N*, which scrutinizes both the reasoning process and the final answer, yields significantly lower scores and appears to plateau as N approaches 64. This significant gap between standard and verified performance motivates us to shift our focus beyond merely the errors in the reasoning process (Lightman et al., 2023; Zheng et al., 2025) to a different question:

Why are LLMs sometimes able to arrive at the correct answer through incorrect reasoning?

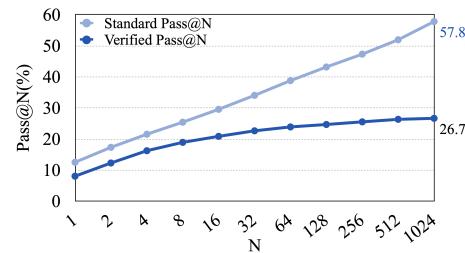


Figure 1: The *Standard Pass@N* and *Verified Pass@N* on AIME2024 for a Qwen3-4B-Base model trained with outcome-based reward (i.e. Qwen3-4B-Outcome).

¹We released our code and data at <https://anonymous.4open.science/r/Anonymous-4D6C>.

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Based on this question, we conducted a preliminary human evaluation and identified several recurring patterns that lead to the correct answer through incorrect reasoning. We illustrate some of these patterns below with a concrete example. Consider the following case:

Example: Question & Model's Solution & False Positive Analysis

Question

Determine all pairs (f, g) of functions from the set of positive integers to itself that satisfy

$$f^{g(n)+1}(n) + g^{f(n)}(n) = f(n+1) - g(n+1) + 1$$

for every positive integer n . Here, $f^k(n)$ means $\underbrace{f(f(\dots f(n) \dots))}_k$.

Groundtruth: $f(n) = n, g(n) = 1$.

Model's Solution

To determine all pairs (f, g) of functions from the set of positive integers to itself that satisfy the equation

$$f^{g(n)+1}(n) + g^{f(n)}(n) = f(n+1) - g(n+1) + 1$$

for every positive integer n , we will proceed step by step.

Step 1: Analyze the equation for small values of n

Let's start by checking the equation for $n = 1$:

$$f^{g(1)+1}(1) + g^{f(1)}(1) = f(2) - g(2) + 1$$

Step 2: Consider simple functions

Let's try some simple functions to see if they satisfy the equation. Suppose $f(n) = n$ and $g(n) = n$. Then the equation becomes:

$$\begin{aligned} f^{g(1)+1}(1) + g^{f(1)}(1) &= f(2) - g(2) + 1 \\ f^{1+1}(1) + g^1(1) &= f(2) - g(2) + 1 \\ f^2(1) + g(1) &= f(2) - g(2) + 1 \end{aligned}$$

Since $f(n) = n$ and $g(n) = n$, we have:

$$f^2(1) = f(1) = 1, \quad g(1) = 1, \quad f(2) = 2, \quad g(2) = 2$$

So the equation becomes:

$$1 + 1 = 2 - 1 + 1 \Rightarrow 2 = 2$$

which is a contradiction. Therefore, this (f, g) pair is not a solution.

Step 3: Try another simple function

Let's try $f(n) = n + 1$ and $g(n) = n$. Then the equation becomes:

$$f^{g(1)+1}(1) + g^{f(1)}(1) = f(2) - g(2) + 1$$

Substituting $f(n) = n + 1$ and $g(n) = n$, we get:

$$\begin{aligned} f^{1+1}(1) + g^{1+1}(1) &= f(2) - g(2) + 1 \\ f^2(1) + g^2(1) &= f(2) - g(2) + 1 \end{aligned}$$

Since $f(n) = n + 1$ and $g(n) = n$, we have:

$$\begin{aligned} f^2(1) &= f(f(1)) = f(2) = 3, \\ g^2(1) &= g(g(1)) = g(1) = 1, \\ f(2) &= 3, \quad g(2) = 2 \end{aligned}$$

So the equation becomes:

$$3 + 1 = 3 - 2 + 1 \Rightarrow 4 = 2$$

which is a contradiction. Therefore, this (f, g) pair is not a solution.

Step 4: Try a different approach

Let's try $f(n) = n$ and $g(n) = 1$.

Then the equation becomes:

$$f^{g(1)+1}(1) + g^{f(1)}(1) = f(2) - g(2) + 1$$

Substituting $f(n) = n$ and $g(n) = 1$, we get:

$$f^{1+1}(1) + g^1(1) = f(2) - g(2) + 1$$

$$f^2(1) + g(1) = f(2) - g(2) + 1$$

Since $f(n) = n$ and $g(n) = 1$, we have:

$$f^2(1) = f(f(1)) = f(1) = 1,$$

$$g(1) = 1, \quad f(2) = 2, \quad g(2) = 1$$

So the equation becomes:

$$1 + 1 = 2 - 1 + 1 \Rightarrow 2 = 2$$

which is true. Therefore, $f(n) = n$ and $g(n) = 1$ is a solution.

Step 5: Verify the solution

We need to verify that $f(n) = n$ and $g(n) = 1$ is the only solution. Suppose there is another solution (f, g) . Then for all n ,

$$f^{g(n)+1}(n) + g^{f(n)}(n) = f(n+1) - g(n+1) + 1$$

If $f(n) = 1$ for all n , then the equation becomes:

$$f^{1+1}(n) + 1^{f(n)}(n) = f(n+1) - 1 + 1$$

This simplifies to: $f^2(n) + 1 = f(n+1)$

If $f(n) = n$, then: $n^2 + 1 = n + 1$

This is not true for all n . Therefore, the only solution is $f(n) = n$ and $g(n) = 1$. The answer is:

$$(f(n) = n, g(n) = 1)$$

False Positive Analysis

Inductive Overgeneralization

- Model tests $n = 1$ (passes) then claims validity for all n .

Miracle Steps

- No progress made, the model suddenly arrives at the correct pair.

Outcome Irrelevance

- Model miscalculates $f^2(n)$ as n^2 (should be n), but error does not affect final answer.

As shown in the solution part, after two failed attempts, the model suddenly performs what we term *Miracle Steps*: in Step 4, it abruptly produces the correct solution, $f(n) = n$ and $g(n) = 1$, without any valid derivation. Lacking a valid justification for its solution, the model then exhibits what we call an *Inductive Overgeneralization*: it checks only the case $n = 1$ and then directly asserts that this is the solution for all n . Finally, in Step 5, the model makes a calculation error, computing $f^2(n)$ as n^2 instead of the correct n , though this mistake does not affect the final answer.

These logically unsound and spurious patterns are pervasive in the model's solutions. In many cases, such patterns even enable the model to bypass the challenging steps of proof or computation and arrive at the correct final answer through an unjustified reasoning process.

Motivated by these observations, we first conduct an in-depth study to create a taxonomy of false positives in mathematical reasoning. Through a manual analysis by four annotators on the outputs of Qwen3-4B-Outcome across four benchmarks (AIME2024 (AIME, 2024), MATH500 (Hendrycks et al., 2021), AMC2023 (AMC, 2023)), and OlympiadBench (He et al., 2024), we establish a taxonomy of six distinct failure modes and identify memorization as a potential driver. We then demonstrate that this is a widespread issue by showing the prevalence of these failure modes even in state-of-the-art models, such as GPT-5 (OpenAI, 2025a) and Gemini-2.5-Pro (Comanici et al., 2025). Building on this analysis, we introduce the Rubric Reward Model (RRM), a process-oriented generative reward function grounded in problem-specific rubrics. Instead of a blunt, binary outcome

108 signal, the RRM assigns a fine-grained reward to the entire reasoning trace, explicitly penalizing the
 109 failure modes above and promoting step-by-step logical soundness.
 110

111 We integrate this RRM into a standard reinforcement learning pipeline, training models to optimize not
 112 only for correctness but also for rigorous reasoning. Across four mathematical reasoning benchmarks,
 113 RRM-based training consistently surpasses outcome-only supervision, with especially large gains
 114 under verification metrics. For instance, on AIME2024, our method lifts *Verified Pass@1024* by
 115 35.9 points (from 26.7 to 62.6) and narrows the Pass–Verified gap by 9.9 points (from 31.2 to 21.3).
 116 Beyond aggregate metrics, rubric-driven learning shifts the error landscape itself, reducing extreme
 117 cases such as *Miracle Steps* by 71%, demonstrating that rewarding *how* a solution is reached leads to
 118 models that are not only more accurate, but also more trustworthy in their reasoning.
 119

2 RELATED WORK

121 **Faithful Chain-of-Thought.** LLMs can produce unfaithful CoT, misleading users (Wei et al., 2022;
 122 Anthropic, 2023a; Sharma et al., 2023; Lyu et al., 2023; Chen et al., 2024). When a model is biased
 123 towards a certain answer, it may even fabricate seemingly plausible justifications for it that are, in fact,
 124 contradictory to the facts (Turpin et al., 2023; Pacchiardi et al., 2024; Park et al., 2024; Anthropic,
 125 2025b; Barez et al., 2025; Lam et al., 2025). This tendency can be further amplified during the
 126 feedback loop (Pan et al., 2024) and the RL process (Wen et al., 2025). Inspired by these works,
 127 we systematically investigate the patterns of unfaithful CoT in mathematical reasoning and further
 128 explore the underlying causes of this phenomenon. Building on these insights, we propose a rubric
 129 reward model to alleviate this issue and demonstrate its effectiveness.
 130

131 **Rubric-Based Reward.** Rubrics have been used for reward modeling, primarily in open-ended
 132 domains lacking a single ground truth (Anthropic, 2023b; Su et al., 2025; Ma et al., 2025; Zhou et al.,
 133 2025). OpenAI utilizes specially designed rubrics to evaluate the model’s capability on health (Arora
 134 et al., 2025) and AI research replication (Starace et al., 2025). Concurrently, rubric-based rewards
 135 have been applied in RL for tasks that are difficult to verify automatically, like writing, instruction-
 136 following (Viswanathan et al., 2025; Huang et al., 2025; Gunjal et al., 2025). While we adopt a similar
 137 reward mechanism, our motivation is fundamentally different. Unlike prior work using rubrics for
 138 subjective tasks, we apply them to specifically combat false positives—correct answers from flawed
 139 logic. Our rubrics are diagnostic tools derived from our taxonomy of reasoning failures, designed to
 140 penalize specific fallacies like *Miracle Steps* and enforce logical rigor.
 141

142 **Outcome & Process Reward Models.** RL for mathematical reasoning typically employs Outcome
 143 Reward Models (ORMs) (Guo et al., 2025; Wei et al., 2025; Yu et al., 2025; Xu et al., 2025),
 144 which reward only the final answer, and Process Reward Models (PRMs) (Lightman et al., 2023;
 145 Wang et al., 2024; Zhang et al., 2024; He et al., 2025; Zhang et al., 2025; Zou et al., 2025), which
 146 provide step-level feedback. ORMs are a key contributor to the false positives we study, as they
 147 reward any path yielding the correct answer regardless of reasoning validity. While PRMs offer
 148 finer-grained supervision, they can be too generic to detect the subtle, high-impact fallacies prevalent
 149 in mathematical reasoning (refer to Figure 3(a)). We address this gap with the Rubric Reward Model,
 150 a problem-specific diagnostic scorer derived from our taxonomy of reasoning failures. Unlike PRMs,
 151 the RRM assigns fine-grained scores against targeted rubrics, directly penalizing patterns such as
 152 *Miracle Steps* and promoting solutions that are logically sound and verifiable.
 153

3 THE FALSE POSITIVE PHENOMENON IN MATHEMATICAL REASONING

154 In this section, we conduct an in-depth analysis of the false positive issue. We begin by manually
 155 inspecting the outputs of Qwen3-4B-Outcome, based on which we establish a taxonomy of the
 156 observed false positives (Section 3.1). Subsequently, we design a probing experiment that suggests
 157 data leakage as a potential contributing factor (Section 3.2). Finally, we demonstrate that this issue is
 158 prevalent among other state-of-the-art LLMs, highlighting its widespread nature (Section 3.3).
 159

3.1 CHARACTERIZING FALSE POSITIVES: AN EMPIRICAL TAXONOMY

160 To systematically characterize how models generate correct answers from flawed reasoning, we
 161 developed a taxonomy through a hybrid automated-human analysis (see Appendix C.1 for details).
 162

162 Table 1: Taxonomy and distribution of false positive issues observed in Qwen3-4B-Outcome.
163

164 Category	165 Description & Example	166 Count
165 Inductive Overgeneralization	166 The model infers a universal rule from testing a few cases (correct rule in this question), without rigorous proof. Tests $n = 1, 2, 3$ see pattern $n^2 + n$ is even, concludes “true for all n ” (right conclusion in this question).	167 21
168 Outcome Irrelevance	169 The reasoning contains errors that do not affect the final answer. Computes $x = -5$ (incorrect) instead of $x = 5$ (correct), but the question asks for $ x $, yielding correct value 5.	170 15
170 Neglected Operational Preconditions	171 The model applies algebraic or functional transformations without verifying their domains or constraints, yet the final answer remains valid coincidentally. Divides by x without checking $x \neq 0$, but true solution satisfies $x = 2$ so no division-by-zero occurs.	172 34
172 Unverified Assumptions	173 The model introduces unproven assumptions to simplify problem solving, which happen to align with the actual extremal or target case. Assumes a triangle is equilateral to compute its area; in the given task, the maximal area case indeed corresponds to an equilateral triangle.	174 18
174 Numerical Coincidence	175 The derivation is logically unsound, yet due to specific numeric coincidences, the method yields the correct final number. Compute $\frac{16}{64}$, cancels out the digit ‘6’ in the numerator and the denominator and directly arrives at $\frac{1}{4}$.	176 22
176 Miracle Steps	177 The solution path contains logically disconnected or invalid steps, followed unexpectedly by the correct intermediate or final expression without proper derivation. After going through some confusing steps, suddenly writes the correct $x = 1003$ with no justification.	178 21

- 179 We began by using Gemini-2.5-Pro to perform an initial analysis and categorization on 680
180 responses from 170 distinct questions, which produced a preliminary set of false positive categories.
181 All markdown and formulas have been converted into an easily readable format.
- 182 This automated taxonomy was then rigorously validated and refined by four expert human annota-
183 tors with advanced mathematics training. The resulting human-validated framework was used to
184 perform the quantitative analysis, revealing the model’s prevalent reasoning flaws.

185 During the human evaluation, we discarded several problems: (1) One problem requires an answer
186 to be derived from the provided diagrams (see Appendix C.2.) (2) Four problems are either beyond
187 the annotators’ abilities or involve uncertainty in understanding the solution.
188

189 Table 1 details the descriptions and distribution of these false positive types observed in Qwen3-4B-
190 Outcome’s output. Six types of false positive patterns exist systematically in the model’s behavior. The
191 *Miracle Steps* category is particularly noteworthy. In these instances, the model often successfully
192 completes a crucial step or arrives at the final answer through a process that appears logically
193 disconnected or incomprehensible to annotators, as if miraculously bypassing the required reasoning.
194

195 3.2 MEMORIZATION AS A POTENTIAL CONTRIBUTOR TO FALSE POSITIVES

196 The prevalence of the *Miracle Steps* category motivates a critical hypothesis: **these instances may**
197 **be correlated with memorization/shortcut** (Gururangan et al., 2018; Geirhos et al., 2020; Hu
198 et al., 2024; Ye et al., 2024; Berez et al., 2025). We posit that the model, having been exposed to
199 question-answer pairs in its training data, successfully recalls the final answer but fails to reconstruct
200 a coherent and valid reasoning path to justify it. This failure in post-hoc rationalization manifests as a
201 logical leap that appears miraculous to human evaluators.
202

202 To test this hypothesis, we designed a “direct answer probing” experiment. In this setup, we explicitly
203 constrain the model to output only the final answer, forbidding any intermediate steps (refer to Figure
204 2 (a)). Specifically, we employ a beam search strategy to generate the Top-k answer candidates
205 for each question and then check if the ground-truth answer is among them. The objective is to
206 assess the model’s ability to recall answers independently of its step-by-step reasoning capabilities. A
207 high success rate in this task, particularly for questions that previously yielded *Miracle Steps*, could
208 serve as a strong positive indicator for memorization, but it’s important to note that this primarily
209 demonstrates a correlation rather than a definitive causal relationship.
210

210 As shown in Figure 2(b), the results indicate that for a significant proportion of samples (ranging from
211 33% to 73% across datasets), the correct answer is found within the Top-64 candidates. These findings
212 strongly support our memorization hypothesis. The most direct evidence comes from comparing
213 *Miracle Steps* cases to other false positives, as shown in Figure 2(c). *Miracle Steps* problems exhibit
214 a remarkably high answer recall rate of 83%, substantially outperforming the 63% rate for other
215 false positive types. This disparity suggests that the “miracle” is not a leap of logic but an artifact of
memory: the model successfully recalls the correct answer but fails to generate a coherent rationale
for it, leading to a breakdown in the reasoning chain that is patched by the memorized result.
216

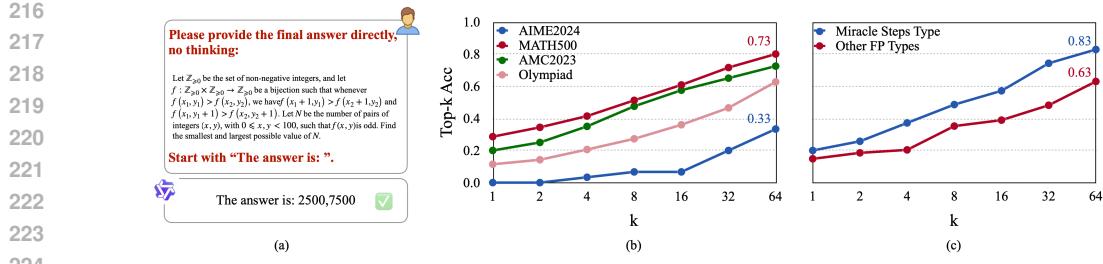


Figure 2: (a) Illustration of the direct answering setting. (b) In the direct answering setting, we report the proportion of samples from four mathematical reasoning datasets where Qwen3-4B-Outcome’s answers fall within the Top-k candidates (beam search). (c) Comparison between *Miracle Steps* false positive samples and other types of false positive samples.

Table 2: False positive errors generated by the leading models on our challenge set (32 questions).

Model	GPT-5-thinking	Gemini-2.5-Pro	Claude-4-Sonnet-thinking	o4-mini
FP Rate	4/29	8/27	11/26	12/25

3.3 PREVALENCE OF FALSE POSITIVES IN STATE-OF-THE-ART MODELS

Our analysis so far has focused on a single baseline model to establish a taxonomy and a potential cause for false positives. A crucial next question is:

Is this a systemic failure mode that affects even the most capable models?

To answer this, we now broaden our investigation to evaluate the prevalence of these false positive phenomena across a range of state-of-the-art mathematical reasoning models. To do so, we curate a challenge set of 32 questions. These questions are selected based on a stringent criterion: for each question, our baseline model produced a correct final answer at least once across 32 attempts, yet *all* of these instances were confirmed to be false positives.

As shown in Table 2, even powerful models exhibit a non-trivial false positive rate on this challenge set: 13.8% (GPT-5), 29.6% (Gemini-2.5-Pro), 42.3% (Claude-4-Sonnet (Anthropic, 2025a)), 48% (o4-mini (OpenAI, 2025b)). This indicates that the false positive phenomenon is a systemic issue, not yet solved by scaling model size and training data alone. Appendix C.3 presents further experimental details and several concrete examples, including the specific questions and corresponding analysis.

3.4 EVALUATION OF GEMINI-2.5-PRO AS AN AUTOMATIC FALSE POSITIVE JUDGE

While our initial analysis relied on expert human evaluation, scaling this process requires an automated approach. To scale false positive detection beyond the human-labeled subset, we employ Gemini-2.5-Pro-0605 as an automatic judge (using the Prompt 1 in Appendix). We acknowledge that relying on an LLM introduces noise. To quantify this, we performed extensive human evaluation to assess agreement between Gemini’s decisions and expert annotations.

The comprehensive evaluation results confirm Gemini’s reliability: it achieves high accuracy (F1 scores: 0.90, see Table 4, 5, 6), stable performance across datasets (refer to Table 5), and no preference bias toward our rubric-based training method (refer to Table 4). Given these strengths, we adopt Gemini as a scalable, automatic false positive judge for the rest of our analysis. For detailed metrics (e.g., precision/recall scores, cross-dataset F1 values), refer to the Appendix D.1.

4 METHOD: TRAINING WITH RUBRIC REWARDS

The preceding analysis highlights the inadequacy of outcome-based supervision, prompting a necessary shift toward a process-oriented training paradigm. To this end, we first conduct a comparative analysis of false positive detection capabilities across three models: a process reward model, a false positive verifier, and our proposed rubric reward model (Section 4.1). Subsequently, we detail the construction process of our rubric reward model in Section 4.2.

270 4.1 WHY RUBRIC REWARDS? A COMPARATIVE ANALYSIS
271

272 To effectively combat the false positive issue, a supervision
273 signal must be both accurate in identifying flawed
274 reasoning and informative enough to guide a model
275 toward improvement. We compared three potential
276 strategies for generating such a signal:

277 **(1) Process Reward Model:** This approach involves
278 training a model on human preferences at each rea-
279 soning step. It provides step-level and trajectory-level
280 rewards. We reuse the open-source code and model
281 from ReasonFlux-PRM-7B (Zou et al., 2025) to com-
282 pute the reward, as this model can handle responses
283 with self-reflection steps (e.g., $1+1=3$, *wait...*).

284 **(2) False Positive Verifier:** We explicitly state the false
285 positive categories in the prompt to Qwen3-4B (Yang
286 et al., 2025) and ask it to determine whether the current
287 solution has any false positive issues (see Prompt 1).

288 **(3) Rubric Reward Model (Ours):** The RRM receives
289 the question, the response, and a rubric list for this
290 question (more details about the RRM can be found in the next section). Given the rubric, the RRM
291 first generates an analysis process, then assigns an integer score $s \in \{0, 1, \dots, 10\}$ to each response.
292 In downstream applications, this score is typically normalized to a $[0, 1]$ range to serve as a reward.
293 The prompt is shown in Prompt 4.

294 For both PRM and RRM, we need to define a false positive threshold, where any score below this
295 value is classified as a false positive. In this experiment, the threshold is set to the value that yields
296 the best detection performance: 1.0 for both PRM and RRM.

297 The results in Figure 3 show that RRM outperforms both PRM and the Verifier in two aspects:

298

- *Accuracy:* RRM achieves an F1 of 0.693, surpassing PRM by +0.312 and the Verifier by +0.144.
- *Continuity:* Unlike the binary Verifier and saturation-prone PRM, RRM yields fine-grained, interpretable 0–10 scores that correlate strongly with false-positive rates (98.2% → 17.6% from score 0 to 10). This dense, calibrated signal rewards partially correct, fixable reasoning and penalizes errors proportionally, providing more informative gradients for training.

305 Overall, RRM offers both higher accuracy and richer, well-calibrated feedback, making it better
306 suited for reducing false positives and promoting robust reasoning than PRM or binary verification.

308 4.2 CONSTRUCTING THE RUBRIC REWARD MODEL
309

310 We build the Rubric Reward Model through a three-phase pipeline, illustrated in Figure 4. All
311 prompts used in the entire process can be found in the Appendix A (Prompt 2–4).

312 **Phase 1: Rubric Synthesis.** The first step is to construct a problem-specific rubric for each training
313 example. Our goal is to design evaluation criteria that are logically grounded and tailored to directly
314 counteract the failure modes identified in our taxonomy (refer to Table 1). To achieve this, we
315 prompt Gemini-2.5-Pro to generate rubrics that embody a set of core principles, thereby transforming
316 empirical findings into actionable evaluation guidelines.

317 *Principle 1: Targeted principles against specific failure modes.*

318

- Neglected Operational Preconditions & Unverified Assumptions: Each rubric must include ac-
319 tionable and specific criteria. For example, instead of a vague correctness check, the rubric
320 demands explicit verification of constraints, thereby penalizing solutions that work only coinci-
321 dentally while ignoring fundamental requirements.
- Inductive Overgeneralization: We enforce the principle of completeness of sufficient conditions.
322 The rubric must assess whether the presented evidence and reasoning are collectively sufficient

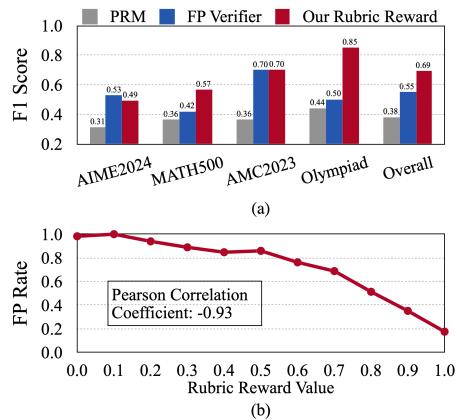


Figure 3: (a) Performance comparison of three methods for identifying false positive samples. (b) False positive rates across different rubric reward ranges.

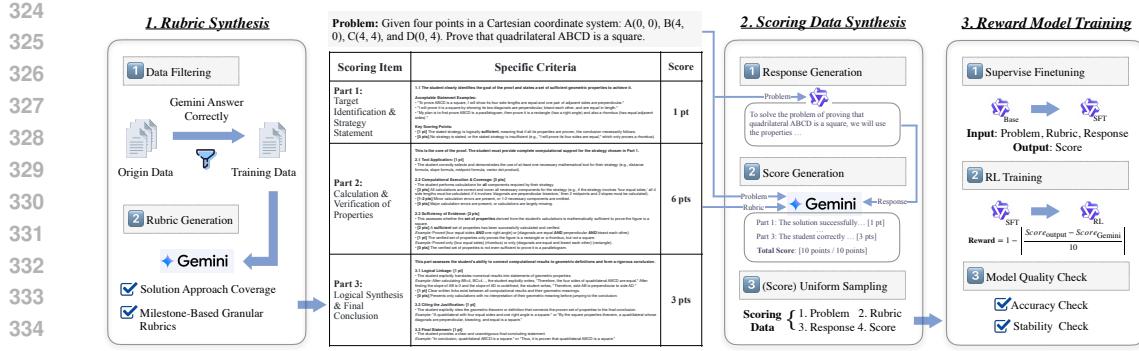


Figure 4: The pipeline of constructing our rubric reward model.

for a general proof, not merely consistent with a few examples. This shifts evaluation from pattern-matching toward requiring deductive rigor.

- Miracle Steps: The rubric mandates explicit logical linkage between steps. Any jump from confusion to an answer—without a valid derivation—fails this criterion. This ensures the reasoning chain is fully articulated, directly penalizing “miraculous” leaps symptomatic of memorization.

Principle 2: Structure-based scaffolding. These targeted criteria are embedded in a universal proof structure—covering strategy, computation/verification, synthesis, and conclusion. This holistic structure enables detection of broader logical flaws such as Outcome Irrelevance and Numerical Coincidence, by enforcing a coherent narrative of reasoning rather than allowing a collection of disjointed, potentially flawed calculations.

Principle 3: Method-agnostic fairness. All rubrics must be method-agnostic, capable of evaluating any valid solution path, not just one that matches a reference solution. This focuses the reward signal on the soundness of reasoning itself, regardless of strategy.

Based on the above principles, we carefully designed the prompt and included an illustrative, hand-crafted example in it to guide consistent generation. The detailed prompt refers to Prompt 2.

To further ensure rubric quality, we first filter out training problems for which Gemini-2.5-Pro’s own solution disagrees with the reference answer, thereby eliminating problems beyond the model’s capabilities and ensuring rubric feasibility. This procedure yields the dataset: $\mathcal{D}_1 = \{(\text{problem}_i, \text{rubric}_i)\}$.

Phase 2: Scoring Data Synthesis. Next, we generate annotated training examples for the reward model. For each $(\text{problem}_i, \text{rubric}_i)$, we produce multiple candidate responses using both the baseline model and Gemini-2.5-Pro (the latter increases the proportion of high-quality responses). We then feed the problem, rubric, and candidate response to Gemini-2.5-Pro to obtain an integer score from 0 to 10.² To reduce score imbalance and avoid over-representing mid- or low-quality reasoning, we apply weighted sampling across score intervals, ensuring a more uniform distribution. After this phase, we obtain $\mathcal{D}_2 = \{(\text{problem}_i, \text{rubric}_i, \text{response}_i, \text{score}_i)\}$.

²In Appendix C.5, we have manually assessed the accuracy of Gemini’s scoring. In the 1320 cases, 12 scores were higher than the actual level, and 7 scores were lower. Additionally, we have tested the stability of Gemini’s scores across 5 runs, which is presented in Figure 8.

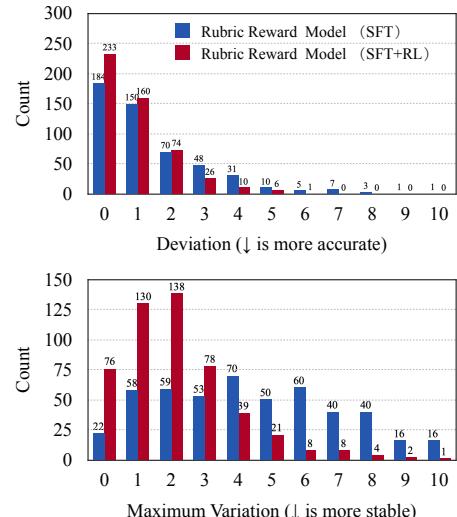


Figure 5: SFT vs. RL RRM. Accuracy: score deviation from Gemini’s score; Stability: maximum variation across 5 runs, temperature set to 1.0.

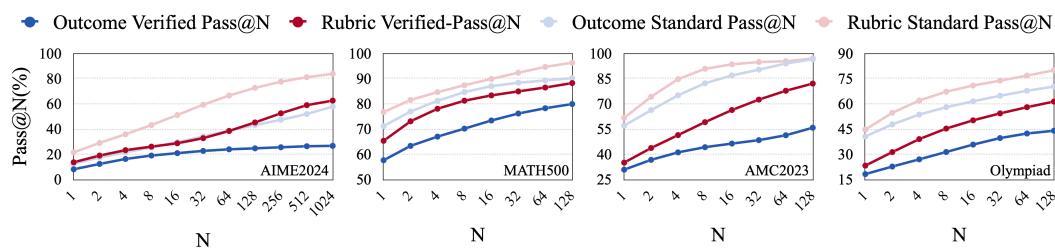


Figure 6: Performance of models trained with Outcome-Based and Rubric-Based Rewards.

Phase 3: Reward Model Training. We initialize our RRM from the Qwen3-4B-Base model and first perform supervised fine-tuning (SFT) on \mathcal{D}_2 , training it to take (problem, rubric, response) as input and output the corresponding analysis and final score. This yields an SFT-trained checkpoint RRM_{SFT} . We then further refine the model using proximal policy optimization (PPO). The reward function is defined as $\text{Reward} = 1 - \left| \frac{\text{Score}_{\text{pred}} - \text{Score}_{\text{target}}}{10} \right|$. The final result, RRM_{RL} , serves as our rubric-aware scoring function in downstream reinforcement learning. Our rubric reward models' accuracy and stability on the hold-out test set are shown in Figure 5. Compared with RRM_{SFT} , RRM_{RL} has significantly higher accuracy and stability. Training details refer to Appendix C.4.

5 EXPERIMENTS AND ANALYSIS

5.1 EXPERIMENTAL SETUP

Base Model & Dataset: We adopt Qwen3-4B-Base as the backbone model for both the baseline and our proposed approach. Training is conducted on a 9k subset of the Polaris dataset (An et al., 2025), obtained by randomly sampling 10k examples and removing examples where the provided final answer, generated by Gemini, was incorrect. We conduct evaluations on four widely used mathematical reasoning benchmarks, including AIME2024, MATH500, AMC2023, and OlympiadBench.

Baseline & Our Method: The baseline consists of Qwen3-4B-Base fine-tuned with PPO using a standard outcome-based reward: 1.0 for a correct final answer and 0 otherwise. The configuration is as follows: maximum sequence length of 4096 tokens, rollout size of 8, batch size of 512, learning rate of 5×10^{-7} , temperature of 1.0, and the Adam optimizer (Kingma & Ba, 2014). The training steps are set to 200 steps. We replace the outcome-based reward model in the baseline with a rubric-based reward model, while keeping all other configurations unchanged.

Evaluation Metrics: We use both *Standard Pass@N* and *Verified Pass@N*. For the latter, the correctness of each solution is further verified by Gemini-2.5-Pro.³ During evaluation, solutions are generated with a temperature of 1.0 and a maximum length of 16,000 tokens.

In the main text, we focus our analysis on the 4B model. The results for the 8B model, along with comprehensive experimental details, are provided in Figure 10 and Appendix C.6, respectively.

5.2 MAIN RESULTS

The results in Figure 6 yield three key takeaways.

Rubric-based rewards deliver consistent gains across datasets. Across evaluation datasets, the rubric-trained model (pink/red) outperforms the outcome-trained model (blue) for all N under both *Standard* and *Verified Pass@N*. This pattern indicates that rewarding reasoning quality—rather than final outcomes alone—induces more generalizable problem-solving behavior.

Gains are larger under *Verified Pass@N* and scale with N . The improvement is notably larger for *Verified Pass@N* than for *Standard Pass@N*, and the *Verified-Standard* gap widens as N increases. As the candidate budget grows, the baseline tends to inflate *Standard Pass@N* by sampling more trajectories that accidentally land on the correct answer despite flawed reasoning, whereas our model produces a higher proportion of logically sound solutions. Consequently, the probability that at least one verified-correct solution appears in the N candidates grows faster for our method.

³A manual analysis in Table 4 confirms that Gemini-2.5-Pro does not exhibit a preference for our model's outputs over those from the baseline model, ensuring fair verification.

432 **Rubric rewards shrink the Verified-Standard gap.** Across all datasets and N , there is a substantial
 433 discrepancy between *Standard* and *Verified Pass@N*, underscoring the prevalence of false positives in
 434 multi-step reasoning. The gap is consistently smaller for our approach, indicating that rubric guidance
 435 suppresses spurious correctness and better aligns generation with logically valid derivations.
 436

437 5.3 ERROR-TYPE DISTRIBUTION SHIFT AFTER RUBRIC-BASED RL

439 Figure 7(a) illustrates a qualitative shift: rubric-based
 440 training not only reduces the overall false positive rate
 441 but also transforms *what kinds* of false positives occur.

442 **Rubric rewards suppress critical errors.** The most
 443 notable effect is on the *Miracle Steps* category. Our
 444 method reduces such cases by 71% (from 175 to 50),
 445 indicating a substantial suppression of memorization-
 446 driven final-answer recalls without valid reasoning.
 447 Large reductions are also observed in other high-
 448 impact failure modes: *Neglected Operational Precon-
 449 ditions* (from 232 to 113) and *Unverified Assumptions*
 450 (from 213 to 167). These decreases confirm that the
 451 RRM is effective at detecting—and thereby discourag-
 452 ing—critical lapses in rigor.

453 **More detailed reasoning with minor flaws as a side
 454 effect.** Interestingly, some categories increase in fre-
 455 quency, notably *Outcome Irrelevance* (from 67 to 118).
 456 We view this not as regression, but as a side effect of a
 457 detailed reasoning process: by encouraging models to
 458 attempt complete, step-by-step derivations (including
 459 verification steps), we increase the chance of minor,
 460 localized mistakes arising inside an otherwise coherent
 461 reasoning chain. This effect aligns with Figure 7(b),
 462 which shows that rubric-based training encourages the
 463 model to generate more detailed and explicit reasoning
 464 steps, resulting in longer outputs. While not all added
 465 verbosity is productive, it reflects the model’s attempt to build a complete logical chain, a behavior
 466 directly incentivized by the rubric. In such cases, the final answer remains correct, and the error
 467 occurs in a secondary verification or auxiliary computation (see Appendix B for an example).

468 6 LIMITATIONS AND CONCLUSION

470 **Limitations.** There are several limitations in our work: (1) *Dependence on strong external models*.
 471 Rubric construction relies on high-capacity models and manual filtering, limiting scalability to tasks
 472 beyond current LLM capabilities. (2) *Static reward model during RL*. The RRM is fixed after offline
 473 training; as the policy improves, the static scorer may misalign and undervalue novel yet valid
 474 reasoning. (3) *Domain and causality limitations*. Experiments are limited to mathematics, and the
 475 link between *Miracle Steps* and memorization remains indirect without full training-data provenance.
 476 Future research could address these limitations by: automating rubric synthesis to reduce manual
 477 effort, for example, via multi-agent systems; developing adaptive reward models that co-evolve with
 478 the policy to maintain alignment; and extending our analysis to other domains, like coding.

479 **Conclusion.** This work systematically exposes the “false positive” phenomenon in mathematical
 480 LLMs, where outcome-based rewards mask flawed reasoning. We developed a taxonomy of these
 481 failures and introduced the Rubric Reward Model to address this systemic issue. The RRM is a
 482 process-oriented reward function that provides fine-grained, calibrated scores on entire reasoning
 483 traces, directly penalizing logical fallacies. When integrated into a reinforcement learning pipeline,
 484 RRM-based training consistently and substantially outperforms outcome-only supervision. Our
 485 results provide a clear mandate: to build genuinely reliable and accurate reasoning models, we must
 shift our focus from validating final answers to verifying the reasoning process itself.

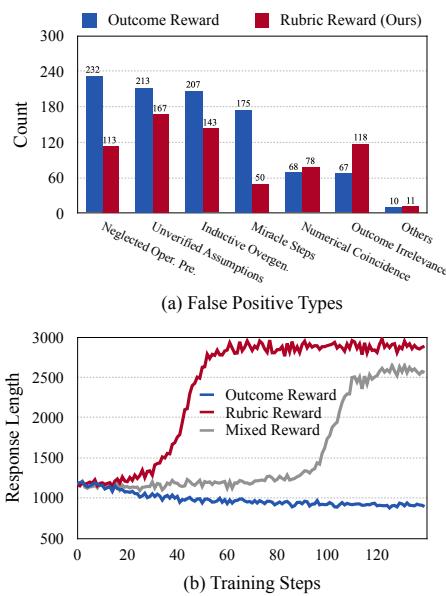


Figure 7: (a) False positive distribution of two models. (b) The change in response length during RL training. “Mixed reward” means $3/4$ of the rubric reward + $1/4$ of the outcome reward.

500 While not all added verbosity is productive, it reflects the model’s attempt to build a complete logical chain, a behavior
 501 directly incentivized by the rubric. In such cases, the final answer remains correct, and the error
 502 occurs in a secondary verification or auxiliary computation (see Appendix B for an example).

486 REPRODUCIBILITY STATEMENT
487488 To ensure the reproducibility of our findings, we provide a comprehensive description of our
489 methodology, datasets, models, and evaluation procedures. All code, data, and experimental scripts
490 have been made available at the anonymous repository: <https://anonymous.4open.science/r/Anonymous-4D6C>.
491492 Our training process utilizes a 9k subset of the public Polaris dataset. The base models for our
493 experiments, Qwen3-4B-Base and Qwen3-8B-Base, are publicly available open-source models.
494 Detailed hyperparameters for the PPO training of both the outcome-based baseline and our rubric-
495 based model are provided in Appendix C.6. This includes learning rates, batch sizes, and rollout
496 configurations. The hardware setup (8x NVIDIA A800-80G GPUs) is also specified. The generation
497 parameters for evaluation (e.g., temperature, max tokens) are documented in Section 5.
498499 REFERENCES
500501 AIME. American invitational mathematics examination (aime) 2024.
502 https://huggingface.co/datasets/Maxwell-Jia/AIME_2024, 2024.503 AMC. The american mathematics competitions. <https://huggingface.co/datasets/zwhe99/amc23>,
504 2023.505 Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
506 Concrete problems in ai safety. *arXiv preprint arXiv:1606.06565*, 2016.507 Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing Xu,
508 Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scaling
509 reinforcement learning on advanced reasoning models, 2025. URL [https://hkunlp.github.io/
510 blog/2025/Polaris](https://hkunlp.github.io/blog/2025/Polaris).511 Anthropic. Introducing claude 4. <https://www.anthropic.com/news/claude-4>, 2025a.512 Alignment Team Anthropic. Measuring faithfulness in chain-of-thought reasoning.
513 <https://www.anthropic.com/research/measuring-faithfulness-in-chain-of-thought-reasoning>,
514 2023a.515 Alignment Team Anthropic. Specific versus general principles for constitutional ai.
516 <https://www.anthropic.com/research/specific-versus-general-principles-for-constitutional-ai>, 2023b.517 Alignment Team Anthropic. Reasoning models don't always say what they think.
518 <https://www.anthropic.com/research/reasoning-models-dont-say-think>, 2025b.519 Rahul K Arora, Jason Wei, Rebecca Soskin Hicks, Preston Bowman, Joaquin Quiñonero-Candela,
520 Foivos Tsimpourlas, Michael Sharman, Meghan Shah, Andrea Vallone, Alex Beutel, et al. Health-
521 bench: Evaluating large language models towards improved human health. *arXiv preprint
522 arXiv:2505.08775*, 2025.523 Fazl Barez, Tung-Yu Wu, Iván Arcuschin, Michael Lan, Vincent Wang, Noah Siegel, Nicolas
524 Collignon, Clement Neo, Isabelle Lee, Alasdair Paren, Adel Bibi, Robert Trager, Damiano
525 Fornasiere, John Yan, Yanai Elazar, and Yoshua Bengio. Chain-of-thought is not explainability.
526 https://fbarez.github.io/assets/pdf/Cot_Is_Not_Explainability.pdf, 2025.527 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
528 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
529 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025.530 Yanda Chen, Ruiqi Zhong, Narutatsu Ri, Chen Zhao, He He, Jacob Steinhardt, Zhou Yu, and Kathleen
531 McKeown. Do models explain themselves? counterfactual simulatability of natural language
532 explanations. In *Proceedings of the 41st International Conference on Machine Learning*, pp.
533 7880–7904, 2024.

540 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 541 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
 542 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
 543 *arXiv preprint arXiv:2507.06261*, 2025.

544 Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
 545 Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature Machine
 546 Intelligence*, 2(11):665–673, 2020.

547 Anisha Gunjal, Anthony Wang, Elaine Lau, Vaskar Nath, Bing Liu, and Sean Hendryx. Rubrics as
 548 rewards: Reinforcement learning beyond verifiable domains. *arXiv preprint arXiv:2507.17746*,
 549 2025.

550 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 551 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 552 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

553 Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
 554 Noah A Smith. Annotation artifacts in natural language inference data. In *Proceedings of the
 555 2018 Conference of the North American Chapter of the Association for Computational Linguistics:
 556 Human Language Technologies, Volume 2 (Short Papers)*, pp. 107–112, 2018.

557 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
 558 Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting
 559 agi with olympiad-level bilingual multimodal scientific problems. In *Proceedings of the 62nd
 560 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 561 3828–3850, 2024.

562 Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
 563 Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. *arXiv preprint
 564 arXiv:2505.22312*, 2025.

565 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 566 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
 567 *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
 568 (Round 2)*, 2021.

569 Yi Hu, Xiaojuan Tang, Haotong Yang, and Muhan Zhang. Case-based or rule-based: How do
 570 transformers do the math? In *International Conference on Machine Learning*, pp. 19438–19474.
 571 PMLR, 2024.

572 Zenan Huang, Yihong Zhuang, Guoshan Lu, Zeyu Qin, Haokai Xu, Tianyu Zhao, Ru Peng, Jiaqi Hu,
 573 Zhanming Shen, Xiaomeng Hu, et al. Reinforcement learning with rubric anchors. *arXiv preprint
 574 arXiv:2508.12790*, 2025.

575 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 576 arXiv:1412.6980*, 2014.

577 Man Ho Lam, Chaozheng Wang, Jen-tse Huang, and Michael R Lyu. Codecrash: Stress testing llm
 578 reasoning under structural and semantic perturbations. *Advances in Neural Information Processing
 579 Systems*, 38, 2025.

580 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 581 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth
 582 International Conference on Learning Representations*, 2023.

583 Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
 584 and Chris Callison-Burch. Faithful chain-of-thought reasoning. In *The 13th International Joint
 585 Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter
 586 of the Association for Computational Linguistics (IJCNLP-AACL 2023)*, 2023.

587 Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhui Chen. General-reasoner:
 588 Advancing llm reasoning across all domains. *arXiv preprint arXiv:2505.14652*, 2025.

594 OpenAI. o1 system card. <https://openai.com/index/openai-o1-system-card/>, 2024.
 595

596 OpenAI. Introducing gpt-5. <https://openai.com/index/introducing-gpt-5/>, 2025a.
 597

598 OpenAI. Introducing openai o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>,
 599 2025b.

600 Lorenzo Pacchiardi, Alex James Chan, Sören Mindermann, Ilan Moscovitz, Alexa Yue Pan, Yarin
 601 Gal, Owain Evans, and Jan M Brauner. How to catch an ai liar: Lie detection in black-box llms by
 602 asking unrelated questions. In *The Twelfth International Conference on Learning Representations*,
 603 2024.

604 Alexander Pan, Erik Jones, Meena Jagadeesan, and Jacob Steinhardt. Feedback loops with language
 605 models drive in-context reward hacking. In *Proceedings of the 41st International Conference on*
 606 *Machine Learning*, pp. 39154–39200, 2024.
 607

608 Peter S Park, Simon Goldstein, Aidan O’Gara, Michael Chen, and Dan Hendrycks. Ai deception: A
 609 survey of examples, risks, and potential solutions. *Patterns*, 5(5), 2024.
 610

611 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 612 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

613 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 614 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 615 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
 616

617 Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R Bowman,
 618 Esin DURMUS, Zac Hatfield-Dodds, Scott R Johnston, Shauna M Kravec, et al. Towards
 619 understanding sycophancy in language models. In *The Twelfth International Conference on*
 620 *Learning Representations*, 2023.

621 Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
 622 mally can be more effective than scaling parameters for reasoning. In *The Thirteenth International*
 623 *Conference on Learning Representations*, 2025.
 624

625 Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
 626 Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
 627 to replicate ai research. In *Forty-second International Conference on Machine Learning*, 2025.

628 Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
 629 Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains. *arXiv*
 630 *preprint arXiv:2503.23829*, 2025.
 631

632 Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always
 633 say what they think: Unfaithful explanations in chain-of-thought prompting. *Advances in Neural*
 634 *Information Processing Systems*, 36:74952–74965, 2023.

635 Vijay Viswanathan, Yanchao Sun, Shuang Ma, Xiang Kong, Meng Cao, Graham Neubig, and
 636 Tongshuang Wu. Checklists are better than reward models for aligning language models. *arXiv*
 637 *preprint arXiv:2507.18624*, 2025.
 638

639 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
 640 Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In
 641 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume*
 642 *1: Long Papers)*, pp. 9426–9439, 2024.

643 Yu Wang, Nan Yang, Liang Wang, and Furu Wei. Examining false positives under inference scaling
 644 for mathematical reasoning. *arXiv preprint arXiv:2502.06217*, 2025.
 645

646 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 647 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 648 *neural information processing systems*, 35:24824–24837, 2022.

648 Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
 649 Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via
 650 reinforcement learning on open software evolution. *arXiv preprint arXiv:2502.18449*, 2025.

651 Jiaxin Wen, Ruiqi Zhong, Akbir Khan, Ethan Perez, Jacob Steinhardt, Minlie Huang, Samuel R
 652 Bowman, He He, and Shi Feng. Language models learn to mislead humans via rlhf. In *The*
 653 *Thirteenth International Conference on Learning Representations*, 2025.

654 Lilian Weng. Reward hacking in reinforcement learning. <https://lilianweng.github.io/posts/2024-11-28-reward-hacking/>, 2024.

655 Zhangchen Xu, Yuetai Li, Fengqing Jiang, Bhaskar Ramasubramanian, Luyao Niu, Bill Yuchen
 656 Lin, and Radha Poovendran. Tinyv: Reducing false negatives in verification improves rl for llm
 657 reasoning. *arXiv preprint arXiv:2505.14625*, 2025.

658 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 659 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 660 2025.

661 Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
 662 grade-school math and the hidden reasoning process. In *ICLR 2025: International Conference on*
 663 *Learning Representations*, 2024.

664 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 665 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
 666 scale. *arXiv preprint arXiv:2503.14476*, 2025.

667 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agar-
 668 wal. Generative verifiers: Reward modeling as next-token prediction. In *The 4th Workshop on*
 669 *Mathematical Reasoning and AI at NeurIPS'24*, 2024.

670 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
 671 Jingren Zhou, and Junyang Lin. The lessons of developing process reward mod-
 672 els in mathematical reasoning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
 673 Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguis-
 674 tics: ACL 2025*, pp. 10495–10516, Vienna, Austria, July 2025. Association for Compu-
 675 tational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.547. URL
 676 <https://aclanthology.org/2025.findings-acl.547/>.

677 Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu,
 678 Jingren Zhou, and Junyang Lin. ProcessBench: Identifying process errors in mathematical rea-
 679 soning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 680 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguis-
 681 tics (Volume 1: Long Papers)*, pp. 1009–1024, Vienna, Austria, July 2025. Association for Com-
 682 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.50. URL
 683 <https://aclanthology.org/2025.acl-long.50/>.

684 Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
 685 Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. *arXiv preprint*
 686 *arXiv:2505.21493*, 2025.

687 Jiaru Zou, Ling Yang, Jingwen Gu, Jiahao Qiu, Ke Shen, Jingrui He, and Mengdi Wang. Reasonflux-
 688 prm: Trajectory-aware prms for long chain-of-thought reasoning in llms. *arXiv preprint*
 689 *arXiv:2506.18896*, 2025.

690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 THE USE OF LARGE LANGUAGE MODELS
703704 LLMs were employed in a limited capacity for writing optimization. Specifically, the authors
705 provided their own draft text to the LLM, which in turn suggested improvements such as corrections
706 of grammatical errors, clearer phrasing, and removal of non-academic expressions. LLMs were also
707 used to inspire possible titles for the paper. While the system provided suggestions, the final title
708 was decided and refined by the authors and is not directly taken from any single LLM output. In
709 addition, LLMs were used as coding assistants during the implementation phase. They provided
710 code completion and debugging suggestions, but all final implementations, experimental design,
711 and validation were carried out and verified by the authors. Importantly, LLMs were **NOT** used
712 for generating research ideas, designing experiments, or searching and reviewing related work. All
713 conceptual contributions and experimental designs were fully conceived and executed by the authors.
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A PROMPTS**
757
758
759760 **Prompt 1: Gemini's False Positive Detection**
761

762 You will receive the following three items: (1) A math problem; (2) A standard answer; (3) A student's submitted answer (including their problem-solving
763 process and final answer).

764 Your task is: (1) Carefully review the student's problem-solving process; (2) Determine whether there are errors, logical flaws, or imprecise points in the
765 method used to arrive at the final answer; (3) If there are problems, explain the type of error and elaborate on why the correct answer was still obtained
766 under such circumstances; (4) The problem-solving process may contain some self-corrected errors, e.g., "1+1=3 wait, 1+1=2" – these are not considered
767 errors but rather the model's thinking process before finding the correct method and answer; (5) There are six types of errors in total. If there are any
768 beyond these six, please explain them additionally:

769 **1. Inductive Overgeneralization (overgeneralization/incomplete induction/insufficient enumeration)**

- 770 - Typical symptoms:
 - 771 - Asserting "unique solution/no solution/rule holds" after testing only a few small values;
 - 772 - Replacing strict elimination with intuition, such as "grows faster/unlikely";
 - 773 - Finding only partial solutions without proving there are no more.
- 774 - Why it might still be correct:
 - 775 - The actual solutions do fall within the tested small range or are indeed limited to those found; or although the pattern is wrong, the count within the given range happens to match the correct pattern (density/period coincidence).

776 **2. Outcome Irrelevance (rounding/missing multiplication/sign errors in irrelevant parts, or double errors canceling out)**

- 777 - Typical symptoms:
 - 778 - Rounding too early in the process, but the final result is only reported to the tenths place, so the error does not amplify;
 - 779 - Missing the imaginary part/coefficient/negative sign, but only taking the real part/absolute value or $m+n$ (order irrelevant in the end);
 - 780 - Introducing an extra denominator first, then "forgetting" it later, which happens to cancel the error; two miscalculated numbers add up to the correct value.
- 781 - Why it might still be correct:
 - 782 - The quantity sought in the problem is insensitive to the error (only depends on the real part/absolute value/last digit/modulus), or the error is swallowed by rounding in the end;
 - 783 - Two independent errors accidentally cancel each other out (negative times negative makes positive).

784 **3. Neglected Operational Preconditions (domain/reversibility conditions/boundary points, but coincidentally not affecting)**

- 785 - Typical symptoms:
 - 786 - Directly canceling/dividing by a variable without first stating that the variable is not zero;
 - 787 - Converting $\log(x^2)$ to $2\log x$ without first restricting $x \neq 0$;
 - 788 - Simplifying a fractional equation without first stating that the denominator is not zero; ignoring whether boundary points should be included.
- 789 - Why it might still be correct:
 - 790 - The calculated value happens to satisfy the (unwritten) domain or reversibility conditions, thus no extraneous or missing roots are produced;
 - 791 - Other terms in the problem automatically restrict the domain (e.g., the equation already contains $\log x$, implicitly requiring $x > 0$).

792 **4. Unverified Assumptions (unproven structural assumptions/misapplying theorems but hitting equality conditions or special cases)**

- 793 - Typical symptoms:
 - 794 - Directly assuming "the function must be linear", "extremum occurs when variables are equal", "a trapezoid has maximum area as a rectangle", "choosing a seemingly reasonable parameter value $r=7$ ", etc.;
 - 795 - Misapplying theorems (applying quadrilateral properties to hexagons, misusing properties like radical axes/exterior angles, etc.).
- 796 - Why it might still be correct:
 - 797 - The guessed structure happens to be the equality condition or a hidden special property in the problem (such as symmetry, equality condition of Cauchy's inequality, special cases in circle geometry), thus the conclusion is correct;
 - 798 - The misapplied theorem still holds as a "numerical equality" in this special case, or is equivalent to another correct property.

799 **5. Numerical Coincidence (the problem-solving process is completely different from the correct method and logically invalid, but the final answer is correct due to numerical coincidence)**

- 800 - Typical symptoms:
 - 801 - Using wrong logic and calculations to get an incorrect probability of $9/20$, while the correct probability is $7/22$. But the problem asks for $m+n$, and coincidentally $9+20=29$ and $7+22=29$, resulting in the same answer;
 - 802 - Constructing an incorrect list of numbers that completely fails to meet the problem's conditions, but the square sum of this wrong list happens to equal that of the correct list;
 - 803 - Deriving an incorrect pattern of winning/losing conditions based on wrong game analysis, but within the given numerical range, the number of numbers satisfying this wrong pattern is exactly the same as those satisfying the correct pattern.
- 804 - Why it might still be correct:
 - 805 - Coincidence.

806 **6. Miracle Steps (the model's solution contains invalid steps, but suddenly arrives at the correct answer)**

- 807 - Typical symptoms:
 - 808 - The model lists a completely wrong equation " $a + b + c + d - 437 - 2*234 - 3x = 3600$ ", solves $x=-827$ (wrong answer) according to this equation, but the next step directly gives $x=73$ (correct answer);
 - 809 - The model provides a series of wrong ideas and steps, but suddenly lists a correct equation/inequality in an incomprehensible way.

810 **7. Other**

811 Please use Chinese and output the results in the following format:

812 **Are there errors or imprecise points in the problem-solving process?**

813 Yes / No

814 **If there are problems, why the wrong process led to the correct answer?**

815 (This item can be omitted if there are no errors)

816 - Error type

817 - Explanation

818 - Final result: [1-7] (e.g., [1], [2,3])

Prompt 2: Rubric Generation

Role: You are an experienced math competition coach and problem-setter, an expert in the logical structure of mathematical proofs. Your task is not to solve math problems, but to design a rigorous, universal, and actionable scoring framework for evaluating solution processes.

- Your output should only be the Grading Rubric (i.e. Detailed Scoring Rubric & Coach's Guide), with no other content.
- The total score is 10 points.

Example Problem: Given four points in a Cartesian coordinate system: A(0, 0), B(4, 0), C(4, 4), and D(0, 4). Prove that quadrilateral ABCD is a square.

Guiding Principles:

1. **Method-Agnostic:** This rubric must be able to fairly evaluate all logically correct solution methods, whether they use side lengths, angles, or diagonals. **Strictly prohibit** creating separate criteria for specific methods (e.g., “side-length method,” “diagonal method”).
2. **Structure-Based:** The core of the scoring should be based on the universal structure of a proof, namely: “identifying key properties,” “calculation and derivation,” “logical linkage,” and “final conclusion.”
3. **Actionable Criteria:** The scoring criteria must be specific, observable actions, not abstract descriptions.
 - **Forbidden terms:** “accuracy,” “rigor,” “clear thinking,” “fluent expression.”
 - **Encouraged phrases:** “Correctly writes the distance formula,” “Explicitly states that the slopes of two segments are negative reciprocals,” “Concludes C based on previously proven properties A and B,” “Completely states the theorem for identifying a square.”

Rubric Framework:

Please break down the scoring rubric into the following sections and assign appropriate points to each (the total score is set to 10 points).

1. Target Identification & Strategy Statement - [e.g., 1 point]

- **Scoring Point:** The student clearly identifies the objective (to prove it's a square) and articulates the set of mathematical properties their chosen strategy relies on.
- **Example:** “To prove it's a square, I will show that all four sides are equal and one interior angle is a right angle.” or “I will prove it's a square by showing its diagonals are perpendicular, bisect each other, and are equal in length.”

2. Calculation & Verification of Properties - [e.g., 6 points]

- This is the core of the rubric. The student must use calculations to verify **all** key properties required by their chosen strategy. This section is scored based on “properties,” and regardless of the method, the student must prove a set of **sufficient conditions**.

• Scoring Points (detailed by property):

- **Proof of Property 1:** [e.g., Equal side lengths]
 - * Correctly applies the necessary formula (e.g., distance formula).
 - * Calculation is free of errors, and lengths of all sides are found.
 - * Reaches an intermediate conclusion of equal side lengths (e.g., $AB=BC=CD=DA=4$).
- **Proof of Property 2:** [e.g., Perpendicular adjacent sides or perpendicular diagonals]
 - * Correctly applies the necessary method (e.g., slope calculation, vector dot product).
 - * Calculation is free of errors, leading to the conclusion of perpendicularity.
- **Proof of Property 3:** [e.g., Equal diagonals or diagonals that bisect each other]
 - * ... (and so on)

- **Note:** When scoring, check if the student has completely proven a **full set** of sufficient conditions for their chosen strategy. For example, only proving four equal sides (which could be a rhombus) does not earn full points for this section.

3. Logical Synthesis & Final Conclusion - [e.g., 3 points]

- **Scoring Point 1 - Citing the Justification:** The student explicitly cites a definition or theorem that links the verified properties to the final conclusion. Example: “Because quadrilateral ABCD has four equal sides and one right angle, it is a square.”
- **Scoring Point 2 - Final Statement:** Provides a clear, conclusive statement. Example: “Therefore, quadrilateral ABCD is a square. Q.E.D.”
- **Scoring Point 3 - Logical Integrity:** The proof is free of logical gaps. For example, the student doesn't just calculate lengths and slopes and then jump to the conclusion without stating what those numbers mean (e.g., “sides are equal” or “sides are perpendicular”).

Output Format: Please present the final rubric in a clear table format, including “Scoring Item,” “Specific Criteria,” and “Score.” Here is an example:

Detailed Scoring Rubric		
Scoring Item	Specific Criteria	Score
Part 1: Target Identification & Strategy Statement	1.1 The student clearly identifies the goal of the proof and states a set of sufficient geometric properties to achieve it.	1 pt
Part 2: Calculation & Verification of Properties	<p>Assumption Statement: The student states the properties they are using to prove the quadrilateral is a square. For example, “I will prove it is a square by showing all four sides are equal and one interior angle is a right angle.”</p> <p>Calculation Path: The student shows the steps of their calculations. For example, “I will prove it is a square by showing all four sides are equal and one interior angle is a right angle.”</p> <p>Final Conclusion: The student provides a clear, conclusive statement. For example, “Therefore, quadrilateral ABCD is a square. Q.E.D.”</p>	6 pts
Part 3: Logical Synthesis & Final Conclusion	<p>Logical Synthesis: The student uses the calculated properties to draw a conclusion about the strategy chosen in Part 1.</p> <p>Final Conclusion: The student provides a clear, conclusive statement. For example, “Therefore, quadrilateral ABCD is a square. Q.E.D.”</p>	3 pts

Coach's Guide

- **Partial Credit:** In the “Computation & Evidence” section, the student may need to calculate some properties. For example, a student’s transcription says (e.g., writing “ $\sqrt{2^2 + 2^2} = \sqrt{8}$ ”) but using it correctly in subsequent logic might only take 1 point, whereas using the wrong formula should result in a larger deduction.
- **Nothing Scored:** For example, if a student says “ $\sqrt{2^2 + 2^2} = \sqrt{8}$ ” and then states “The slopes of quadrilaterals ABCD are equal.” After listing the slope of AB is 0 and the slope of AD is undefined, the student writes “Therefore, side AB is perpendicular to side AD.”
- **Partial Credit:** If a student writes “ $\sqrt{2^2 + 2^2} = \sqrt{8}$ ” and then states “The slopes of quadrilaterals ABCD are equal.” After listing the slope of AB is 0 and the slope of AD is undefined, the student writes “Therefore, side AB is perpendicular to side AD.”
- **Scored:** If a student writes “ $\sqrt{2^2 + 2^2} = \sqrt{8}$ ” and then states “The slopes of quadrilaterals ABCD are equal.” After listing the slope of AB is 0 and the slope of AD is undefined, the student writes “Therefore, side AB is perpendicular to side AD.”
- **Core Principle:** The core of this is to reward **structural integrity** of the argument while a clear logical flow by a student can earn much higher than a student who has a logical flow but a weaker conclusion or who scores much higher for a broken or missing logical chain. This better reflects the student’s level of mathematical thinking.

Core Task: Design a detailed Scoring Rubric for the following math problem. The total score is 10 points.
[Insert the specific math problem here]

864
865**Prompt 3: Scoring Data Generation**

866

For each Question and Answer pair, please evaluate according to the given scoring criteria.

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

- Your output must include two sections: Analysis and Summary.

- In your analysis, always place the score below your reasoning using the following format:

- Reason: [Insert your explanation here]
- Score: X

- In the summary, provide your assessment using the following format:

Final Scoring Summary:

Scoring Criterion 1 (Brief description of the criterion):

(Reason: ...) X points / Y points

Scoring Criterion 2 (Brief description of the criterion):

(Reason: ...) X points / Y points

...

Total Score: [N points / M points]

Question:

{INSERT QUESTION}

Scoring Criteria:

{INSERT CRITERIA}

Answer:

{INSERT MODEL_ANSWER}

897

898

Prompt 4: Rubric Model Scoring Template

899

900

901

You are a grade teacher. Based on the following information, please evaluate the student's submitted answer.

902

The total score is out of 10 points.

903

904

905

Carefully read the question, the scoring criteria, and the submitted answer. Then give a fair and reasonable score according to the grading criteria.

906

907

Here is the information:

908

909

910

Question:

{INSERT QUESTION}

911

912

913

Scoring Criteria:

{INSERT CRITERIA}

914

915

916

Student's Answer:

{INSERT MODEL_ANSWER}

917

918 B CASE STUDY
919920 **Question**
921922 We are told that the process \mathcal{P} consists of:
923924

1. Reflect the point in the x -axis.
2. Translate the resulting point 2 units upwards.
3. Reflect the resulting point in the y -axis.

925 We are given $S_6 = (-7, -1)$ and asked to find S_0 after reversing \mathcal{P} six times.
926927 **Baseline's Solution**
928929 **Solution**
930931 To determine the coordinates of the point S_0 , we need to reverse the steps of the process \mathcal{P} applied six
932 times to obtain the point $S_6(-7, -1)$. Let's break down the process step by step.
933934 **Step-by-Step Reasoning:**
935936

1. **Identify the final point S_6 :**

937 $S_6 = (-7, -1)$
938939

2. **Reverse the sixth application of \mathcal{P} :**

940

- S_6 is the result of applying \mathcal{P} to S_5 .
- To find S_5 , we need to reverse the steps of \mathcal{P} :

941

- (a) Step 3: Reflect S_6 in the y -axis. This means S_5 has the same y -coordinate as S_6 but the
942 opposite x -coordinate. $S_5 = (7, -1)$
- (b) Step 2: Translate S_5 2 units downwards. This means S_4 has the same x -coordinate as S_5 but
943 the y -coordinate is 2 units less. $S_4 = (7, -3)$
- (c) Step 1: Reflect S_4 in the x -axis. This means S_3 has the same x -coordinate as S_4 but the
944 opposite y -coordinate. $S_3 = (7, 3)$

945

3. **Reverse the fifth application of \mathcal{P} :**

946

- S_3 is the result of applying \mathcal{P} to S_2 .
- To find S_2 , we need to reverse the steps of \mathcal{P} :

947

- (a) Step 3: Reflect S_3 in the y -axis. This means S_2 has the same y -coordinate as S_3 but the
948 opposite x -coordinate. $S_2 = (-7, 3)$
- (b) Step 2: Translate S_2 2 units downwards. This means S_1 has the same x -coordinate as S_2 but
949 the y -coordinate is 2 units less. $S_1 = (-7, 1)$
- (c) Step 1: Reflect S_1 in the x -axis. This means S_0 has the same x -coordinate as S_1 but the
950 opposite y -coordinate. $S_0 = (-7, -1)$

951 Thus, the coordinates of the point S_0 are $(-7, -1)$.
952953 **False Positive Analysis**
954955 The student's problem-solving method contained a fundamental logical error. The student attempted to
956 deduce S_0 from S_6 by reversing the transformation process \mathcal{P} . A single inverse process \mathcal{P}^{-1} indeed
957 requires performing the opposite operations in reverse order (first reflect across the y -axis, then translate
958 downward by 2, and finally reflect across the x -axis). However, the student incorrectly assumed that
959 **each individual sub-step** in the inverse process corresponded to one backward step in the sequence. For
960 example, in the process of solving for S_5 from S_6 , the student recorded the result after the first inverse
961 operation (reflection across the y -axis) as S_5 , the result after the second inverse operation (translation
962 downward) as S_4 , and the result after the third inverse operation (reflection across the x -axis) as S_3 .
963 This is a serious logical flaw. The correct approach is to apply **all three inverse operations** to S_6 ; the
964 final result, after completing all steps, is S_5 . According to the student's erroneous logic, they actually
965 performed two complete inverse processes:966

1. In the first complete inverse operation, they believed they had derived S_3 from S_6 .
2. In the second complete inverse operation, they believed they had derived S_0 from S_3 .

967 Thus, the student effectively computed $(\mathcal{P}^{-1})^2(S_6)$, which is the coordinate of S_4 , but they labeled it
968 as S_0 .
969970 The fact that the final answer was correct is purely coincidental. The transformation \mathcal{P} has a special
971 property: it has a period of 2. That is, applying \mathcal{P} twice to any point returns the point to its original
972 position (i.e., $\mathcal{P}(\mathcal{P}(S)) = S$). This means the sequence $S_0, S_1, S_2, S_3, S_4, S_5, S_6, \dots$ is periodic with
973 period 2, specifically $S_0 = S_2 = S_4 = S_6$ and $S_1 = S_3 = S_5$.974 Due to this periodicity, the coordinates of S_4 are exactly the same as those of S_0 . The student mistakenly
975 computed the value of S_4 , but because $S_4 = S_0$, they arrived at the correct answer for S_0 purely by
976

972
973
974

coincidence. The student's problem-solving process showed no awareness of or reliance on this periodicity; the correctness of the final answer was entirely accidental.

975

976

Ours Solution

977

Solution

979

Alright, I have this problem about a point moving through a series of transformations, and I need to find the original point based on the final position after multiple applications of a process called \mathcal{P} . Let's break it down step by step.

981

982

Understanding the Problem

983

First, let's understand what's given:

984

1. **Initial Point:** $(3, 5)$

985

2. **Process \mathcal{P} :**

986

- **Step 1:** Reflect the point in the x -axis.
- **Step 2:** Translate the resulting point 2 units upwards.
- **Step 3:** Reflect the resulting point in the y -axis.

987

3. **Applications:**

988

- Start with point S_0 .
- Apply \mathcal{P} to S_0 to get S_1 .
- Continue applying \mathcal{P} four more times to get S_6 .

989

4. **Final Point:** $S_6(-7, -1)$

990

5. **Goal:** Find the coordinates of S_0 .

991

992

Breaking Down the Process \mathcal{P}

993

Let's understand each step of \mathcal{P} and how it transforms a point (x, y) .

994

1. **Step 1: Reflect in the x -axis**

995

- Reflecting a point in the x -axis changes the sign of the y -coordinate.
- So, (x, y) becomes $(x, -y)$.

996

2. **Step 2: Translate 2 units upwards**

997

- Translating a point upwards increases the y -coordinate by 2.
- So, $(x, -y)$ becomes $(x, -y + 2)$.

998

3. **Step 3: Reflect in the y -axis**

999

- Reflecting a point in the y -axis changes the sign of the x -coordinate.
- So, $(x, -y + 2)$ becomes $(-x, -y + 2)$.

1000

Therefore, the entire process \mathcal{P} transforms (x, y) to $(-x, -y + 2)$.

1001

Applying \mathcal{P} Multiple Times

1002

We start with S_0 and apply \mathcal{P} six times to get S_6 . Let's denote the transformation as T , so:

1003

$$T(x, y) = (-x, -y + 2)$$

1004

Applying T multiple times:

1005

$$T^n(x, y) = T(T^{n-1}(x, y))$$

1006

We need to find a pattern or a formula for $T^n(x, y)$. Let's compute the first few applications to see if a pattern emerges.

1007

1. $T^1(x, y)$:

1008

$$T^1(x, y) = (-x, -y + 2)$$

1009

2. $T^2(x, y)$:

1010

$$\begin{aligned} T^2(x, y) &= T(T^1(x, y)) \\ &= T(-x, -y + 2) \\ &= (-(-x), -(-y + 2) + 2) \\ &= (x, y - 2 + 2) \\ &= (x, y) \end{aligned}$$

1011

Wait, $T^2(x, y) = (x, y)$. That's interesting! Applying T twice brings us back to the original point.

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027 3. $T^3(x, y)$:

1028
$$T^3(x, y) = T(T^2(x, y)) = T(x, y) = (-x, -y + 2)$$

1029 So, $T^3(x, y) = T^1(x, y)$.1030 4. $T^4(x, y)$:

1031
$$T^4(x, y) = T(T^3(x, y)) = T(-x, -y + 2) = (x, y)$$

1032 Again, $T^4(x, y) = (x, y)$.1033 From these computations, it seems that applying T an even number of times returns the point to its
1034 original position, and applying T an odd number of times gives the same result as applying T once.
10351036 **Generalizing the Transformation**1037 Given that $T^2(x, y) = (x, y)$, we can see that:1038 • If n is even, $T^n(x, y) = (x, y)$.1039 • If n is odd, $T^n(x, y) = T^1(x, y) = (-x, -y + 2)$.1040 Since we're applying T six times ($n = 6$), which is even, we have:

1041
$$T^6(x, y) = (x, y)$$

1042 But we know that $T^6(S_0) = S_6 = (-7, -1)$. Therefore:

1043
$$(x, y) = (-7, -1)$$

1044 So, $S_0 = (-7, -1)$.1045 **Verification**1046 Let's verify this by applying \mathcal{P} six times starting with $S_0 = (-7, -1)$ and see if we get $S_6 = (-7, -1)$.

1047 1. $S_0 = (-7, -1)$

1048 2. $S_1 = T(S_0) = (-(-7), -(-1) + 2) = (7, 1 + 2) = (7, 3)$

1049 3. $S_2 = T(S_1) = (-7, -3 + 2) = (-7, -1)$

1050 4. $S_3 = T(S_2) = (7, 1)$

1051 5. $S_4 = T(S_3) = (-7, -1)$

1052 6. $S_5 = T(S_4) = (7, 3)$

1053 7. $S_6 = T(S_5) = (-7, -1)$

1054 Yes, after six applications, we indeed get $S_6 = (-7, -1)$. This confirms that our solution is correct.1055 **Final Answer**1056 The coordinates of the point S_0 are $\boxed{(-7, -1)}$.1057 **False Positive Analysis**1058 The student's overall problem-solving approach and core derivation process are completely correct. They
1059 correctly derived the algebraic expression for the single transformation \mathcal{P} as $T(x, y) = (-x, -y + 2)$,
1060 and found through calculation that the second iteration of the transformation, $T^2(x, y)$, is the identity
1061 transformation, i.e., $T^2(x, y) = (x, y)$. Based on this key discovery, they concluded that “applying the
1062 transformation an even number of times will return the point to its original position,” and therefore
1063 $S_6 = T^6(S_0) = S_0$. This chain of reasoning is rigorous and flawless, directly leading to the correct
1064 answer $S_0 = S_6 = (-7, -1)$.1065 The error occurred in the final “Verification” step, which was intended as a post-solution check. In
1066 computing the verification sequence, the student made a slip or calculation error:1067 • They correctly computed $S_2 = (-7, -1)$.
1068 • Next, when calculating S_3 , they wrote $S_3 = T(S_2) = (7, 1)$.
1069 • The correct computation should be $S_3 = T(-7, -1) = (-(-7), -(-1) + 2) = (7, 1 + 2) = (7, 3)$.
1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 C SUPPLEMENT
10811082 C.1 FALSE POSITIVE ANALYSIS PROCEDURE
1083

1084 There are four stages for analyzing false positive modes:

1085 *Stage 1: Data Preparation.* We assemble a dataset of 680 samples, comprising 170 distinct questions
1086 (30 from AIME2024 + 50 from MATH500 + 40 from AMC2023 + 50 from Olympiad), each with
1087 four unique model responses. All markdown and mathematical formulas have been converted into an
1088 easily readable format.1089 *Stage 2: Initial Mode Discovery.* We use Gemini-2.5-Pro for an automated review to generate a
1090 preliminary taxonomy of “false positive modes.” The model is prompted with each question, a
1091 reference solution, and the model’s response, and is instructed to report on (1) any reasoning errors
1092 and (2) how flawed reasoning can still yield a correct answer. These reports are then aggregated and
1093 synthesized by the model into the initial taxonomy.1094 *Stage 3: Expert Review.* In the third stage, we conduct a human validation of these modes. Four
1095 annotators, all holding undergraduate degrees with substantial training in advanced mathematics,
1096 evaluate each sample. They are equipped with tools like Google Search and large models and are
1097 instructed to discard any samples beyond their expertise. For each sample, they determine if it is
1098 a false positive and, if so, classify it using our preliminary taxonomy or label it as “Other” with a
1099 detailed explanation.1100 *Stage 4: Synthesis and Analysis.* In the final stage, we refine the taxonomy by incorporating the
1101 “Other” categories identified by human annotators. Using this final, human-validated framework, we
1102 perform a quantitative analysis to measure the frequency of each false positive mode, revealing the
1103 model’s prevalent reasoning flaws.1104
1105 C.2 DISCARDED QUESTION
11061107
1108 **Question**
1109 In the circle with center Q , radii AQ and BQ form a right angle. The two smaller regions are tangent
1110 to each other at point Q . The radius of the circle with center Q is 14 inches. What is the radius of the
1111 smaller semicircle? Express your answer as a common fraction.
11121113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135

C.3 EXPERIMENTAL DETAILS FOR STATE-OF-THE-ART MODEL EVALUATION

1136
1137
1138
1139
1140
1141

Models and Generation. We evaluated four leading models: GPT-5-thinking, o4-mini, Gemini-2.5-Pro, and Claude-4-Sonnet-thinking. We employ Gemini-2.5-Pro (version 0605). For the other models, namely o4-mini, GPT-5, and Claude-4-Sonnet, we utilize their latest versions available as of September 2025. For each question in the challenge set, we generated a single response from each model ($n = 1$). To encourage more detailed reasoning, we set the reasoning effort parameter to ‘high’ for both GPT-5-thinking and o4-mini.

1142

Evaluation Protocol. All generated responses were manually evaluated by human annotators.

1143

1144
1145
1146

Additional notes. During annotation, we noted that o4-mini exhibited a strong tendency to provide overly concise or truncated reasoning steps. This brevity sometimes made it challenging to fully assess the validity of its solution path and may contribute to its higher observed false positive rate, as critical (and potentially erroneous) intermediate steps might be omitted.

1147

1148
1149

Qualitative Examples. For qualitative insights, several examples of questions from our challenge set that frequently induced false positives across the evaluated models are presented below:

1150
1151
1152

Question 1. Rectangles $ABCD$ and $EFGH$ are drawn such that D, E, C, F are collinear. Also, A, D, H, G all lie on a circle. If $BC = 16, AB = 107, FG = 17$, and $EF = 184$, what is the length of CE ?

1153
1154

Failure: All models overlook the possible permutations of D, E, C, F .

1155
1156

Question 2. How many ordered pairs of positive real numbers (a, b) satisfy the equation

1157
1158

$$(1 + 2a)(2 + 2b)(2a + b) = 32ab?$$

1159
1160
1161
1162

Failure: Claude-4-Sonnet directly identified the correct (a, b) pair through trial, then reported unsuccessful attempts with alternative answers, and subsequently claimed that only one such pair satisfies the requirements. GPT-5 ignored the case of a zero denominator during its simplification process. o4-mini made an error in its variable substitution step.

1163

Question 3. Rows 1, 2, 3, 4, and 5 of a triangular array of integers are shown below.

1164
1165
1166
1167
1168

1
1 1
1 3 1
1 5 5 1
1 7 11 7 1

1169
1170
1171

Each row after the first row is formed by placing a 1 at each end of the row, and each interior entry is 1 greater than the sum of the two numbers diagonally above it in the previous row. What is the units digits of the sum of the 2023 numbers in the 2023rd row?

1172
1173
1174

Failure: Gemini-2.5-Pro and Claude-4-Sonnet, through enumeration, discovered an important function $U(\cdot)$ in solving the problem have: $U(21) = U(1)$. Without providing proof, they directly claimed the existence of periodicity.

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 C.4 RRM TRAINING DETAILS
1189

1190 We fine-tune the Qwen3-4B-Base model as our policy model using PPO. The training is guided by a
1191 reward function, which is calculated based on the L1 distance between the predicted score ($\text{Score}_{\text{pred}}$)
1192 from our reward model and the target score ($\text{Score}_{\text{target}}$):

$$1193 \text{Reward} = 1 - \left| \frac{\text{Score}_{\text{pred}} - \text{Score}_{\text{target}}}{10} \right|.$$

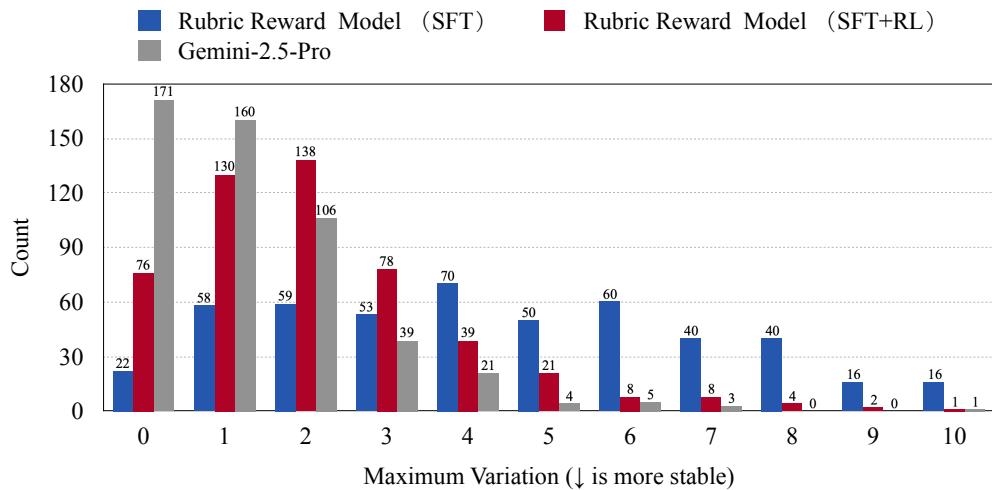
$$1194$$

$$1195$$

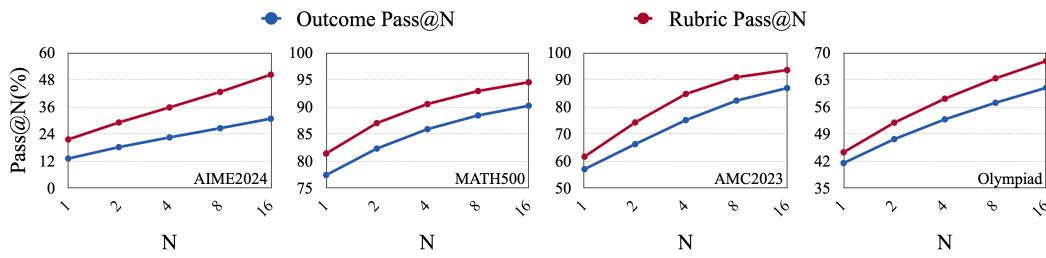
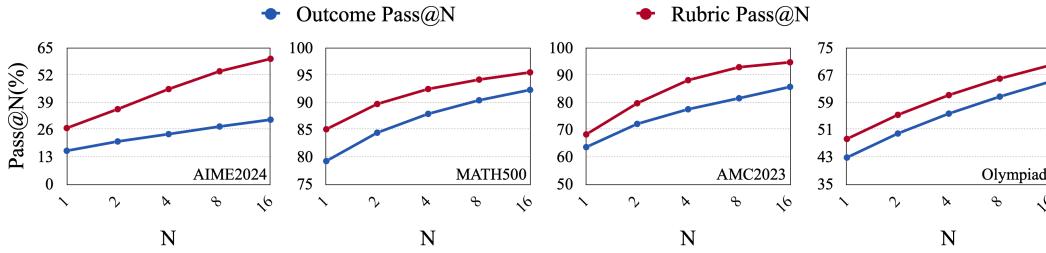
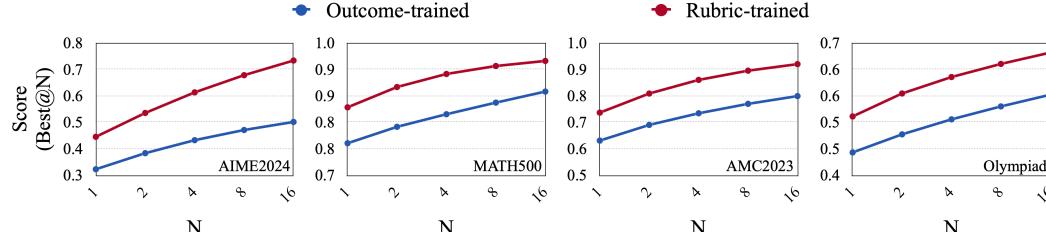
1196 The PPO training is configured with the following hyperparameters: a maximum prompt length of
1197 10000, a maximum sequence length of 2048, a batch size of 128, and a rollout size of 8. We use the
1198 Adam optimizer with a learning rate of 5×10^{-7} and a generation temperature of 1.0. The model is
1199 trained for 400 steps.
1200

1201 C.5 THE SCORING ACCURACY AND STABILITY OF GEMINI-2.5-PRO.
1202

1203 When using Gemini-2.5-Pro for scoring, we set the temperature to 1.0, perform repeated sampling
1204 five times, and calculate the difference between the highest score and the lowest score among these
1205 five runs. As can be seen from the Figure 8, Gemini-2.5-Pro demonstrates good stability despite
1206 minor fluctuations.

1224 Figure 8: The scoring stability of Gemini-2.5-Pro.
12251226 Table 3: Manual evaluation of the accuracy of Gemini’s scoring according to the rubric.
1227

Gemini Rubric Scoring	Too high	Too low	Accurate
Count	12	7	1301

1242 C.6 DETAILS FOR MAIN EXPERIMENTS
12431253 Figure 9: Qwen3-4B's Pass@N results on the full dataset.
12541264 Figure 10: Qwen-8B's Pass@N results on the full dataset.
12651275 Figure 11: Qwen3-4B's Gemini scoring results on the full dataset.
1276

1277 All our training and inference were conducted on a server with 8 NVIDIA A800-80G GPUs. During
1278 evaluation, we set the temperature to 1.0, the maximum generation length to 16,000 tokens, and used
1279 the prompt:

1280 *Please reason step by step, and put your final answer within \boxed{ }.*
1281

1282 To evaluate *Pass@N*, we generate $2N$ candidate solutions for each problem instance.
1283

1284 **Evaluation on full datasets and the Qwen3-8B.** In our main experiments, due to computational
1285 cost considerations, we randomly selected a subset of 50 samples from MATH500 (500 samples) and
1286 Olympiad (675 samples) for evaluation. We additionally conducted experiments on the full datasets
1287 (32 runs), and the results are presented in Figure 9 and 10. The overall trends and conclusions remain
1288 consistent with those observed on the subset.

1289 **Comparison of the scores assigned by Gemini-2.5-Pro to our model and the baseline models.**
1290 As a supplementary result, Figure 11 presents the outcomes of using Gemini-2.5-Pro to generate a
1291 rubric on the test set and to score the responses of both models.

1292 In our distributional analysis of error cases (Section 5.3), we focus on instances that were not assigned
1293 a perfect score by Gemini-2.5-Pro. The rationale is that false-positive samples with a perfect Gemini
1294 grade represent cases where the rubric reward is inherently unable to address the issue. In contrast,
1295 our error analysis aims to examine cases in which the rubric reward could potentially play a role.

1296 **D HUMAN EVALUATION**
12971298 **D.1 GEMINI-2.5-PRO AS A FALSE POSITIVE JUDGER: RELIABILITY ASSESSMENT**
12991300 Table 4: Confusion matrix comparing false positives identified by human and by Gemini.
1301

Samples		Gemini		Samples		Gemini		Samples		Gemini	
(Overall)		TP	FP	(Rubric)		TP	FP	(Outcome)		TP	FP
Human	TP	462	93	Human	TP	252	52	Human	TP	210	41
	FP	9	295		FP	1	152 <th></th> <th>FP</th> <td>8</td> <td>144</td>		FP	8	144

1307 Table 5: Confusion matrix on different datasets.
1308

Samples		Gemini		Samples		Gemini		Samples		Gemini		Samples		Gemini	
(AIME)		TP	FP	(AMC)		TP	FP	(MATH)		TP	FP	(Olympiad)		TP	FP
Human	TP	34	8	Human	TP	112	17	Human	TP	222	50	Human	TP	94	18
	FP	1	28		FP	2	105		FP	0	44		FP	6	118

1313 Table 6: The proportion of questions for which the model and human false positive evaluations are
1314 identical across all responses to that question.
1315

Human-Gemini Consistency	Qwen3-Outcome (4 resp. per query)	Qwen3-Rubric (4 resp. per query)	Overall (8 resp. per query)
Ratio	92/121	109/139	97/141

1320 **Agreement with human experts.** We quantify Gemini-2.5-Pro’s reliability by conducting extensive
1321 human evaluation. As shown in Table 4, Gemini attains high precision (98.1%) and reasonable recall
1322 (83.2%) against human labels, yielding an overall F1 score of 0.90 and an agreement rate of 88.1%.
1323 These results confirm that Gemini correctly flags almost all human-identified false positives and
1324 makes very few spurious accusations.
1325

1326 **No preference toward rubric/outcome-trained outputs.** Empirically, Gemini exhibits comparable
1327 behavior on rubric-trained and outcome-trained responses. From Table 4:

- 1328 • Rubric-trained subset: precision 99.6%, recall 82.9%, agreement 88.4%.
- 1329 • Outcome-trained subset: precision 96.3%, recall 83.6%, agreement 87.9%.

1330 The near-identical recalls (82.9% vs 83.6%) and close agreement rates (88.4% vs 87.9%) show no
1331 systematic advantage for rubric-trained outputs; if anything, the tiny precision difference reflects
1332 fewer false alarms on that subset, not preferential scoring.
1333

1334 **Consistency across datasets.** The performance is stable across datasets (Table 5): F1 ranges from
1335 0.88 (AIME) to 0.92 (AMC), with precision consistently ≥ 0.94 . This robustness suggests that
1336 Gemini’s accuracy is not confined to a particular problem source or difficulty level.
1337

1338 **Agreement at question level.** We also assess whether Gemini-2.5-Pro and human annotators agree
1339 across all responses to the same prompt. Complete question-level agreement holds for 76.0% of
1340 questions in the outcome-trained setting, 78.4% in the rubric-trained setting, and 68.8% overall
1341 (Table 6). The similar agreement rates for rubric- and outcome-trained models indicate that Gemini
1342 does not systematically favor one training method over the other.
1343

1344 Given its high precision, stable cross-dataset performance, and absence of bias toward our method,
1345 we use Gemini-2.5-Pro as a scalable, automatic false-positive judge for the remainder of our analysis.
1346
1347
1348
1349