
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CURING “MIRACLE STEPS” IN LLM MATHEMATICAL
REASONING WITH RUBRIC REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models for mathematical reasoning are typically trained with
outcome-based rewards, which credit only the final answer. In our experiments,
we observe that this paradigm is highly susceptible to reward hacking, leading
to a substantial overestimation of a model’s reasoning ability. This is evidenced
by a high incidence of “false positives”—solutions that reach the correct final
answer through an unsound reasoning process. Through a systematic analysis with
human verification, we establish a taxonomy of these failure modes, identifying
patterns like Miracle Steps—abrupt jumps to a correct output without a valid
preceding derivation. Probing experiments suggest a strong association between
these Miracle Steps and memorization, where the model appears to recall the answer
directly rather than deriving it. To mitigate this systemic issue, we introduce the
Rubric Reward Model (RRM), a process-oriented reward function that evaluates
the entire reasoning trajectory against problem-specific rubrics. The generative
RRM provides fine-grained, calibrated rewards (0–1) that explicitly penalize logical
flaws and encourage rigorous deduction. When integrated into a reinforcement
learning pipeline, RRM-based training consistently outperforms outcome-only
supervision across four math benchmarks. Notably, it boosts Verified Pass@1024
on AIME2024 from 26.7% to 62.6% and reduces the incidence of Miracle Steps
by 71%. Our work demonstrates that rewarding the solution process is crucial for
building models that are not only more accurate but also more reliable.1

1 INTRODUCTION

Figure 1: The Standard Pass@N and Veri-
fied Pass@N on AIME2024 for a Qwen3-
4B-Base model trained with outcome-based
reward (i.e. Qwen3-4B-Outcome).

Reinforcement learning with verifiable rewards (RLVR)
has become a prominent approach in recent LLM re-
search, primarily due to its effectiveness in improving
performance on reasoning tasks that are easily verifi-
able (Schulman et al., 2017; Shao et al., 2024; OpenAI,
2024; Guo et al., 2025; Chen et al., 2025). Neverthe-
less, this paradigm is susceptible to reward hacking,
leading to undesired behaviors like unfaithful chain-
of-thought (CoT) (Amodei et al., 2016; Weng, 2024;
Wen et al., 2025), and an overestimation of a model’s
capabilities (Snell et al., 2025; Wang et al., 2025).

As depicted in Figure 1, the Standard Pass@N metric,
which considers only the correctness of the final output,
exhibits favorable scaling properties. Conversely, the
Verified Pass@N, which scrutinizes both the reasoning process and the final answer, yields signifi-
cantly lower scores and appears to plateau as N approaches 64. This significant gap between standard
and verified performance motivates us to shift our focus beyond merely the errors in the reasoning
process (Lightman et al., 2023; Zheng et al., 2025) to a different question:

Why are LLMs sometimes able to arrive at the correct answer through incorrect reasoning?

1We released our code and data at https://anonymous.4open.science/r/Anonymous-4D6C.

1

https://anonymous.4open.science/r/Anonymous-4D6C

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Based on this question, we conducted a preliminary human evaluation and identified several recurring
patterns that lead to the correct answer through incorrect reasoning. We illustrate some of these
patterns below with a concrete example. Consider the following case:

Example: Question & Model’s Solution & False Positive Analysis

Question
—————————————————————————————-
Determine all pairs (f, g) of functions from the set of positive integers to
itself that satisfy

f
g(n)+1

(n) + g
f(n)

(n) = f(n + 1) − g(n + 1) + 1

for every positive integer n. Here, fk(n) means f(f(. . . f︸ ︷︷ ︸
k

(n) . . .)).

Groundtruth: f(n) = n, g(n) = 1 .

Model’s Solution
—————————————————————————————-
To determine all pairs (f, g) of functions from the set of positive integers
to itself that satisfy the equation

f
g(n)+1

(n) + g
f(n)

(n) = f(n + 1) − g(n + 1) + 1

for every positive integer n, we will proceed step by step.

Step 1: Analyze the equation for small values of n
Let’s start by checking the equation for n = 1:

f
g(1)+1

(1) + g
f(1)

(1) = f(2) − g(2) + 1

Step 2: Consider simple functions
Let’s try some simple functions to see if they satisfy the equation. Suppose
f(n) = n and g(n) = n. Then the equation becomes:

f
g(1)+1

(1) + g
f(1)

(1) = f(2) − g(2) + 1

f
1+1

(1) + g
1
(1) = f(2) − g(2) + 1

f
2
(1) + g(1) = f(2) − g(2) + 1

Since f(n) = n and g(n) = n, we have:

f
2
(1) = f(1) = 1, g(1) = 1, f(2) = 2, g(2) = 2

So the equation becomes:
1 + 1 = 2 − 2 + 1 ⇒ 2 = 1

which is a contradiction. Therefore, this (f, g) pair is not a solution.

Step 3: Try another simple function
Let’s try f(n) = n + 1 and g(n) = n. Then the equation becomes:

f
g(1)+1

(1) + g
f(1)

(1) = f(2) − g(2) + 1

Substituting f(n) = n + 1 and g(n) = n, we get:

f
1+1

(1) + g
1+1

(1) = f(2) − g(2) + 1

f
2
(1) + g

2
(1) = f(2) − g(2) + 1

Since f(n) = n + 1 and g(n) = n, we have:

f
2
(1) = f(f(1)) = f(2) = 3,

g
2
(1) = g(g(1)) = g(1) = 1,

f(2) = 3, g(2) = 2

So the equation becomes:
3 + 1 = 3 − 2 + 1 ⇒ 4 = 2

which is a contradiction. Therefore, this (f, g) pair is not a solution.

Step 4: Try a different approach
Let’s try f(n) = n and g(n) = 1.

Then the equation becomes:

f
g(1)+1

(1) + g
f(1)

(1) = f(2) − g(2) + 1

Substituting f(n) = n and g(n) = 1, we get:

f
1+1

(1) + g
1
(1) = f(2) − g(2) + 1

f
2
(1) + g(1) = f(2) − g(2) + 1

Since f(n) = n and g(n) = 1, we have:

f
2
(1) = f(f(1)) = f(1) = 1,

g(1) = 1, f(2) = 2, g(2) = 1

So the equation becomes:
1 + 1 = 2 − 1 + 1 ⇒ 2 = 2

which is true. Therefore, f(n) = n and g(n) = 1 is a solu-
tion.

Step 5: Verify the solution
We need to verify that f(n) = n and g(n) = 1 is the only solution.
Suppose there is another solution (f, g). Then for all n,

f
g(n)+1

(n) + g
f(n)

(n) = f(n + 1) − g(n + 1) + 1

If g(n) = 1 for all n, then the equation becomes:

f
1+1

(n) + 1
f(n)

(n) = f(n + 1) − 1 + 1

This simplifies to: f2(n) + 1 = f(n + 1)

If f(n) = n, then: n2 + 1 = n + 1

This is not true for all n. Therefore, the only solution is f(n) = n and
g(n) = 1. The answer is:

(f(n) = n, g(n) = 1)

False Positive Analysis
—————————————————————————————-
Inductive Overgeneralization
- Model tests n = 1 (passes) then claims validity for all n .

Miracle Steps
- No progress made, the model suddenly arrives at the correct pair.

Outcome Irrelevance
- Model miscalculates f2(n) as n2 (should be n), but error does not
affect final answer.

As shown in the solution part, after two failed attempts, the model suddenly performs what we term
Miracle Steps: in Step 4, it abruptly produces the correct solution, f(n) = n and g(n) = 1, without
any valid derivation. Lacking a valid justification for its solution, the model then exhibits what we
call an Inductive Overgeneralization: it checks only the case n = 1 and then directly asserts that this
is the solution for all n. Finally, in Step 5, the model makes a calculation error, computing f2(n) as
n2 instead of the correct n, though this mistake does not affect the final answer.

These logically unsound and spurious patterns are pervasive in the model’s solutions. In many cases,
such patterns even enable the model to bypass the challenging steps of proof or computation and
arrive at the correct final answer through an unjustified reasoning process.

Motivated by these observations, we first conduct an in-depth study to create a taxonomy of false
positives in mathematical reasoning. Through a manual analysis by four annotators on the outputs of
Qwen3-4B-Outcome across four benchmarks (AIME2024 (AIME, 2024), MATH500 (Hendrycks
et al., 2021), AMC2023 (AMC, 2023)), and OlympiadBench (He et al., 2024), we establish a
taxonomy of six distinct failure modes and identify memorization as a potential driver. We then
demonstrate that this is a widespread issue by showing the prevalence of these failure modes even
in state-of-the-art models, such as GPT-5 (OpenAI, 2025a) and Gemini-2.5-Pro (Comanici et al.,
2025). Building on this analysis, we introduce the Rubric Reward Model (RRM), a process-oriented
generative reward function grounded in problem-specific rubrics. Instead of a blunt, binary outcome

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

signal, the RRM assigns a fine-grained reward to the entire reasoning trace, explicitly penalizing the
failure modes above and promoting step-by-step logical soundness.

We integrate this RRM into a standard reinforcement learning pipeline, training models to optimize not
only for correctness but also for rigorous reasoning. Across four mathematical reasoning benchmarks,
RRM-based training consistently surpasses outcome-only supervision, with especially large gains
under verification metrics. For instance, on AIME2024, our method lifts Verified Pass@1024 by
35.9 points (from 26.7 to 62.6) and narrows the Pass–Verified gap by 9.9 points (from 31.2 to 21.3).
Beyond aggregate metrics, rubric-driven learning shifts the error landscape itself, reducing extreme
cases such as Miracle Steps by 71%, demonstrating that rewarding how a solution is reached leads to
models that are not only more accurate, but also more trustworthy in their reasoning.

2 RELATED WORK

Faithful Chain-of-Thought. LLMs can produce unfaithful CoT, misleading users (Wei et al., 2022;
Anthropic, 2023a; Sharma et al., 2023; Lyu et al., 2023; Chen et al., 2024). When a model is biased
towards a certain answer, it may even fabricate seemingly plausible justifications for it that are, in fact,
contradictory to the facts (Turpin et al., 2023; Pacchiardi et al., 2024; Park et al., 2024; Anthropic,
2025b; Barez et al., 2025; Lam et al., 2025). This tendency can be further amplified during the
feedback loop (Pan et al., 2024) and the RL process (Wen et al., 2025). Inspired by these works,
we systematically investigate the patterns of unfaithful CoT in mathematical reasoning and further
explore the underlying causes of this phenomenon. Building on these insights, we propose a rubric
reward model to alleviate this issue and demonstrate its effectiveness.

Rubric-Based Reward. Rubrics have been used for reward modeling, primarily in open-ended
domains lacking a single ground truth (Anthropic, 2023b; Su et al., 2025; Ma et al., 2025; Zhou et al.,
2025). OpenAI utilizes specially designed rubrics to evaluate the model’s capability on health (Arora
et al., 2025) and AI research replication (Starace et al., 2025). Concurrently, rubric-based rewards
have been applied in RL for tasks that are difficult to verify automatically, like writing, instruction-
following (Viswanathan et al., 2025; Huang et al., 2025; Gunjal et al., 2025). While we adopt a similar
reward mechanism, our motivation is fundamentally different. Unlike prior work using rubrics for
subjective tasks, we apply them to specifically combat false positives—correct answers from flawed
logic. Our rubrics are diagnostic tools derived from our taxonomy of reasoning failures, designed to
penalize specific fallacies like Miracle Steps and enforce logical rigor.

Outcome & Process Reward Models. RL for mathematical reasoning typically employs Outcome
Reward Models (ORMs) (Guo et al., 2025; Wei et al., 2025; Yu et al., 2025; Xu et al., 2025),
which reward only the final answer, and Process Reward Models (PRMs) (Lightman et al., 2023;
Wang et al., 2024; Zhang et al., 2024; He et al., 2025; Zhang et al., 2025; Zou et al., 2025), which
provide step-level feedback. ORMs are a key contributor to the false positives we study, as they
reward any path yielding the correct answer regardless of reasoning validity. While PRMs offer
finer-grained supervision, they can be too generic to detect the subtle, high-impact fallacies prevalent
in mathematical reasoning (refer to Figure 3(a)). We address this gap with the Rubric Reward Model,
a problem-specific diagnostic scorer derived from our taxonomy of reasoning failures. Unlike PRMs,
the RRM assigns fine-grained scores against targeted rubrics, directly penalizing patterns such as
Miracle Steps and promoting solutions that are logically sound and verifiable.

3 THE FALSE POSITIVE PHENOMENON IN MATHEMATICAL REASONING

In this section, we conduct an in-depth analysis of the false positive issue. We begin by manually
inspecting the outputs of Qwen3-4B-Outcome, based on which we establish a taxonomy of the
observed false positives (Section 3.1). Subsequently, we design a probing experiment that suggests
data leakage as a potential contributing factor (Section 3.2). Finally, we demonstrate that this issue is
prevalent among other state-of-the-art LLMs, highlighting its widespread nature (Section 3.3).

3.1 CHARACTERIZING FALSE POSITIVES: AN EMPIRICAL TAXONOMY

To systematically characterize how models generate correct answers from flawed reasoning, we
developed a taxonomy through a hybrid automated-human analysis (see Appendix C.1 for details).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Taxonomy and distribution of false positive issues observed in Qwen3-4B-Outcome.

Category Description & Example Count

Inductive Overgeneral-
ization

The model infers a universal rule from testing a few cases (correct rule in this question), without
rigorous proof. Tests n = 1, 2, 3 see pattern n2 + n is even, concludes “true for all n” (right
conclusion in this question).

21

Outcome Irrelevance The reasoning contains errors that do not affect the final answer. Computes x = −5 (incorrect)
instead of x = 5 (correct), but the question asks for |x|, yielding correct value 5. 15

Neglected Operational
Preconditions

The model applies algebraic or functional transformations without verifying their domains or
constraints, yet the final answer remains valid coincidentally. Divides by x without checking
x ̸= 0, but true solution satisfies x = 2 so no division-by-zero occurs.

34

Unverified Assumptions
The model introduces unproven assumptions to simplify problem solving, which happen to align
with the actual extremal or target case. Assumes a triangle is equilateral to compute its area; in
the given task, the maximal area case indeed corresponds to an equilateral triangle.

18

Numerical Coincidence
The derivation is logically unsound, yet due to specific numeric coincidences, the method yields the
correct final number. Compute 16

64 , cancels out the digit ‘6’ in the numerator and the denominator
and directly arrives at 1

4 .
22

Miracle Steps
The solution path contains logically disconnected or invalid steps, followed unexpectedly by the
correct intermediate or final expression without proper derivation. After going through some
confusing steps, suddenly writes the correct x = 1003 with no justification.

21

• We began by using Gemini-2.5-Pro to perform an initial analysis and categorization on 680
responses from 170 distinct questions, which produced a preliminary set of false positive categories.
All markdown and formulas have been converted into an easily readable format.

• This automated taxonomy was then rigorously validated and refined by four expert human annota-
tors with advanced mathematics training. The resulting human-validated framework was used to
perform the quantitative analysis, revealing the model’s prevalent reasoning flaws.

During the human evaluation, we discarded several problems: (1) One problem requires an answer
to be derived from the provided diagrams (see Appendix C.2.) (2) Four problems are either beyond
the annotators’ abilities or involve uncertainty in understanding the solution.

Table 1 details the descriptions and distribution of these false positive types observed in Qwen3-4B-
Outcome’s output. Six types of false positive patterns exist systematically in the model’s behavior. The
Miracle Steps category is particularly noteworthy. In these instances, the model often successfully
completes a crucial step or arrives at the final answer through a process that appears logically
disconnected or incomprehensible to annotators, as if miraculously bypassing the required reasoning.

3.2 MEMORIZATION AS A POTENTIAL CONTRIBUTOR TO FALSE POSITIVES

The prevalence of the Miracle Steps category motivates a critical hypothesis: these instances may
be correlated with memorization/shortcut (Gururangan et al., 2018; Geirhos et al., 2020; Hu
et al., 2024; Ye et al., 2024; Barez et al., 2025). We posit that the model, having been exposed to
question-answer pairs in its training data, successfully recalls the final answer but fails to reconstruct
a coherent and valid reasoning path to justify it. This failure in post-hoc rationalization manifests as a
logical leap that appears miraculous to human evaluators.
To test this hypothesis, we designed a “direct answer probing” experiment. In this setup, we explicitly
constrain the model to output only the final answer, forbidding any intermediate steps (refer to Figure
2 (a)). Specifically, we employ a beam search strategy to generate the Top-k answer candidates
for each question and then check if the ground-truth answer is among them. The objective is to
assess the model’s ability to recall answers independently of its step-by-step reasoning capabilities. A
high success rate in this task, particularly for questions that previously yielded Miracle Steps, could
serve as a strong positive indicator for memorization, but it’s important to note that this primarily
demonstrates a correlation rather than a definitive causal relationship.
As shown in Figure 2(b), the results indicate that for a significant proportion of samples (ranging from
33% to 73% across datasets), the correct answer is found within the Top-64 candidates. These findings
strongly support our memorization hypothesis. The most direct evidence comes from comparing
Miracle Steps cases to other false positives, as shown in Figure 2(c). Miracle Steps problems exhibit
a remarkably high answer recall rate of 83%, substantially outperforming the 63% rate for other
false positive types. This disparity suggests that the “miracle” is not a leap of logic but an artifact of
memory: the model successfully recalls the correct answer but fails to generate a coherent rationale
for it, leading to a breakdown in the reasoning chain that is patched by the memorized result.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: (a) Illustration of the direct answering setting. (b) In the direct answering setting, we report
the proportion of samples from four mathematical reasoning datasets where Qwen3-4B-Outcome’s
answers fall within the Top-k candidates (beam search). (c) Comparison between Miracle Steps false
positive samples and other types of false positive samples.

Table 2: False positive errors generated by the leading models on our challenge set (32 questions).

Model GPT-5-thinking Gemini-2.5-Pro Claude-4-Sonnet-thinking o4-mini
FP Rate 4/29 8/27 11/26 12/25

3.3 PREVALENCE OF FALSE POSITIVES IN STATE-OF-THE-ART MODELS

Our analysis so far has focused on a single baseline model to establish a taxonomy and a potential
cause for false positives. A crucial next question is:

Is this a systemic failure mode that affects even the most capable models?

To answer this, we now broaden our investigation to evaluate the prevalence of these false positive
phenomena across a range of state-of-the-art mathematical reasoning models. To do so, we curate a
challenge set of 32 questions. These questions are selected based on a stringent criterion: for each
question, our baseline model produced a correct final answer at least once across 32 attempts, yet all
of these instances were confirmed to be false positives.

As shown in Table 2, even powerful models exhibit a non-trivial false positive rate on this challenge
set: 13.8% (GPT-5), 29.6% (Gemini-2.5-Pro), 42.3% (Claude-4-Sonnet (Anthropic, 2025a)), 48%
(o4-mini (OpenAI, 2025b)). This indicates that the false positive phenomenon is a systemic issue, not
yet solved by scaling model size and training data alone. Appendix C.3 presents further experimental
details and several concrete examples, including the specific questions and corresponding analysis.

3.4 EVALUATION OF GEMINI-2.5-PRO AS AN AUTOMATIC FALSE POSITIVE JUDGE

While our initial analysis relied on expert human evaluation, scaling this process requires an au-
tomated approach. To scale false positive detection beyond the human-labeled subset, we employ
Gemini-2.5-Pro-0605 as an automatic judge (using the Prompt 1 in Appendix). We acknowledge that
relying on an LLM introduces noise. To quantify this, we performed extensive human evaluation to
assess agreement between Gemini’s decisions and expert annotations.

The comprehensive evaluation results confirm Gemini’s reliability: it achieves high accuracy (F1
scores: 0.90, see Table 4, 5, 6), stable performance across datasets (refer to Table 5), and no preference
bias toward our rubric-based training method (refer to Table 4). Given these strengths, we adopt
Gemini as a scalable, automatic false positive judge for the rest of our analysis. For detailed metrics
(e.g., precision/recall scores, cross-dataset F1 values), refer to the Appendix D.1.

4 METHOD: TRAINING WITH RUBRIC REWARDS

The preceding analysis highlights the inadequacy of outcome-based supervision, prompting a neces-
sary shift toward a process-oriented training paradigm. To this end, we first conduct a comparative
analysis of false positive detection capabilities across three models: a process reward model, a false
positive verifier, and our proposed rubric reward model (Section 4.1). Subsequently, we detail the
construction process of our rubric reward model in Section 4.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 WHY RUBRIC REWARDS? A COMPARATIVE ANALYSIS

Figure 3: (a) Performance comparison of
three methods for identifying false positive
samples. (b) False positive rates across dif-
ferent rubric reward ranges.

To effectively combat the false positive issue, a supervi-
sion signal must be both accurate in identifying flawed
reasoning and informative enough to guide a model
toward improvement. We compared three potential
strategies for generating such a signal:

(1) Process Reward Model: This approach involves
training a model on human preferences at each rea-
soning step. It provides step-level and trajectory-level
rewards. We reuse the open-source code and model
from ReasonFlux-PRM-7B (Zou et al., 2025) to com-
pute the reward, as this model can handle responses
with self-reflection steps (e.g., 1+1=3, wait...).

(2) False Positive Verifier: We explicitly state the false
positive categories in the prompt to Qwen3-4B (Yang
et al., 2025) and ask it to determine whether the current
solution has any false positive issues (see Prompt 1).

(3) Rubric Reward Model (Ours): The RRM receives
the question, the response, and a rubric list for this
question (more details about the RRM can be found in the next section). Given the rubric, the RRM
first generates an analysis process, then assigns an integer score s ∈ {0, 1, . . . , 10} to each response.
In downstream applications, this score is typically normalized to a [0, 1] range to serve as a reward.
The prompt is shown in Prompt 4.

For both PRM and RRM, we need to define a false positive threshold, where any score below this
value is classified as a false positive. In this experiment, the threshold is set to the value that yields
the best detection performance: 1.0 for both PRM and RRM.

The results in Figure 3 show that RRM outperforms both PRM and the Verifier in two aspects:

• Accuracy: RRM achieves an F1 of 0.693, surpassing PRM by +0.312 and the Verifier by +0.144.
• Continuity: Unlike the binary Verifier and saturation-prone PRM, RRM yields fine-grained,

interpretable 0–10 scores that correlate strongly with false-positive rates (98.2%→17.6% from
score 0 to 10). This dense, calibrated signal rewards partially correct, fixable reasoning and
penalizes errors proportionally, providing more informative gradients for training.

Overall, RRM offers both higher accuracy and richer, well-calibrated feedback, making it better
suited for reducing false positives and promoting robust reasoning than PRM or binary verification.

4.2 CONSTRUCTING THE RUBRIC REWARD MODEL

We build the Rubric Reward Model through a three-phase pipeline, illustrated in Figure 4. All
prompts used in the entire process can be found in the Appendix A (Prompt 2-4).

Phase 1: Rubric Synthesis. The first step is to construct a problem-specific rubric for each training
example. Our goal is to design evaluation criteria that are logically grounded and tailored to directly
counteract the failure modes identified in our taxonomy (refer to Table 1). To achieve this, we
prompt Gemini-2.5-Pro to generate rubrics that embody a set of core principles, thereby transforming
empirical findings into actionable evaluation guidelines.

Principle 1: Targeted principles against specific failure modes.

• Neglected Operational Preconditions & Unverified Assumptions: Each rubric must include ac-
tionable and specific criteria. For example, instead of a vague correctness check, the rubric
demands explicit verification of constraints, thereby penalizing solutions that work only coinci-
dentally while ignoring fundamental requirements.

• Inductive Overgeneralization: We enforce the principle of completeness of sufficient conditions.
The rubric must assess whether the presented evidence and reasoning are collectively sufficient

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

To solve the problem of proving that
quadrilateral ABCD is a square, we will use
the properties …

1. Rubric Synthesis

Origin Data

Gemini Answer
Correctly

Solution Approach Coverage

Milestone-Based Granular
Rubrics

1⃣ Data Filtering

2⃣ Rubric Generation

Training Data

Scoring Item Specific Criteria Score

Part 1:
Target
Identification &
Strategy
Statement

1.1 The student clearly identifies the goal of the proof and states a set of sufficient geometric properties to achieve it.

Acceptable Statement Examples:
• "To prove ABCD is a square, I will show its four side lengths are equal and one pair of adjacent sides are perpendicular."
• "I will prove it is a square by showing its two diagonals are perpendicular, bisect each other, and are equal in length."
• "My plan is to first prove ABCD is a parallelogram, then prove it is a rectangle (has a right angle) and also a rhombus (has equal adjacent
sides)."

Key Scoring Points:
• [1 pt] The stated strategy is logically sufficient, meaning that if all its properties are proven, the conclusion necessarily follows.
• [0 pts] No strategy is stated, or the stated strategy is insufficient (e.g., "I will prove its four sides are equal," which only proves a rhombus).

1 pt

Part 2:
Calculation &
Verification of
Properties

This is the core of the proof. The student must provide complete computational support for the strategy chosen in Part 1.

2.1 Tool Application: [1 pt]
• The student correctly selects and demonstrates the use of at least one necessary mathematical tool for their strategy (e.g., distance
formula, slope formula, midpoint formula, vector dot product).

2.2 Computational Execution & Coverage: [3 pts]
• The student performs calculations for all components required by their strategy.
• [3 pts] All calculations are correct and cover all necessary components for the strategy (e.g., if the strategy involves 'four equal sides,' all 4
side lengths must be calculated; if it involves 'diagonals are perpendicular bisectors,' then 2 midpoints and 2 slopes must be calculated).
• [1-2 pts] Minor calculation errors are present, or 1-2 necessary components are omitted.
• [0 pts] Major calculation errors are present, or calculations are largely missing.

2.3 Sufficiency of Evidence: [2 pts]
• This assesses whether the set of properties derived from the student's calculations is mathematically sufficient to prove the figure is a
square.
• [2 pts] A sufficient set of properties has been successfully calculated and verified.
Example: Proved {four equal sides AND one right angle} or {diagonals are equal AND perpendicular AND bisect each other}.
• [1 pt] The verified set of properties only proves the figure is a rectangle or a rhombus, but not a square.
Example: Proved only {four equal sides} (rhombus) or only {diagonals are equal and bisect each other} (rectangle).
• [0 pts] The verified set of properties is not even sufficient to prove it is a parallelogram.

6 pts

Part 3:
Logical Synthesis
& Final
Conclusion

This part assesses the student's ability to connect computational results to geometric definitions and form a rigorous conclusion.

3.1 Logical Linkage: [1 pt]
• The student explicitly translates numerical results into statements of geometric properties.
Example: After calculating AB=4, BC=4..., the student explicitly writes, "Therefore, the four sides of quadrilateral ABCD are equal." After
finding the slope of AB is 0 and the slope of AD is undefined, the student writes, "Therefore, side AB is perpendicular to side AD."
• [1 pt] Clear written links exist between all computational results and their geometric meanings.
• [0 pts] Presents only calculations with no interpretation of their geometric meaning before jumping to the conclusion.

3.2 Citing the Justification: [1 pt]
• The student explicitly cites the geometric theorem or definition that connects the proven set of properties to the final conclusion.
Example: "A quadrilateral with four equal sides and one right angle is a square." or "By the square properties theorem, a quadrilateral whose
diagonals are perpendicular, bisecting, and equal is a square."

3.3 Final Statement: [1 pt]
• The student provides a clear and unambiguous final concluding statement.
Example: "In conclusion, quadrilateral ABCD is a square." or "Thus, it is proven that quadrilateral ABCD is a square."

3 pts

Problem: Given four points in a Cartesian coordinate system: A(0, 0), B(4,
0), C(4, 4), and D(0, 4). Prove that quadrilateral ABCD is a square.

2. Scoring Data Synthesis

 Part 1: The solution successfully… [1 pt]
…

 Part 3: The student correctly … [3 pts]

 Total Score: [10 points / 10 points]

2⃣ Score Generation

1⃣ Response Generation

Problem
Rubric

Response

Problem

Scoring
Data

1. Problem 2. Rubric
3. Response 4. Score

3⃣ (Score) Uniform Sampling

{

3. Reward Model Training

1⃣ Supervise Finetuning

2⃣ RL Training

Base

Scoring
Data

SFT

SFT

RL

Reward = 1 − Scoreoutput − ScoreGemini
10

3⃣ Model Quality Check

Accuracy Check

 Stability Check

3. Reward Model Training

1⃣ Supervise Finetuning

2⃣ RL Training

Base

Scoring
Data

SFT

RL

Reward = 1 − Scoreoutput − Scoregemini

2⃣ Evaluation

Accuracy Check

 Stability Check

Input: Problem, Rubric, Response
Output: Score

SFT RL

Figure 4: The pipeline of constructing our rubric reward model.

for a general proof, not merely consistent with a few examples. This shifts evaluation from
pattern-matching toward requiring deductive rigor.

• Miracle Steps: The rubric mandates explicit logical linkage between steps. Any jump from
confusion to an answer—without a valid derivation—fails this criterion. This ensures the reasoning
chain is fully articulated, directly penalizing “miraculous” leaps symptomatic of memorization.

Principle 2: Structure-based scaffolding. These targeted criteria are embedded in a universal
proof structure—covering strategy, computation/verification, synthesis, and conclusion. This
holistic structure enables detection of broader logical flaws such as Outcome Irrelevance and
Numerical Coincidence, by enforcing a coherent narrative of reasoning rather than allowing a collec-
tion of disjointed, potentially flawed calculations.

C
ou

nt

0
25
50
75

100
125
150

Maximum Variation (↓ is more stable)
0 1 2 3 4 5 6 7 8 9 10

C
ou

nt

0
50

100
150
200
250
300

Deviation (↓ is more accurate)
0 1 2 3 4 5 6 7 8 9 10

Rubric Reward Model （SFT）
Rubric Reward Model （SFT+RL）

Figure 5: SFT vs. RL RRM. Accuracy:
score deviation from Gemini’s score; Sta-
bility: maximum variation across 5 runs,
temperature set to 1.0.

Principle 3: Method-agnostic fairness. All rubrics
must be method-agnostic, capable of evaluating any
valid solution path, not just one that matches a refer-
ence solution. This focuses the reward signal on the
soundness of reasoning itself, regardless of strategy.

Based on the above principles, we carefully designed
the prompt and included an illustrative, hand-crafted ex-
ample in it to guide consistent generation. The detailed
prompt refers to Prompt 2.

To further ensure rubric quality, we first filter out train-
ing problems for which Gemini-2.5-Pro’s own solution
disagrees with the reference answer, thereby eliminat-
ing problems beyond the model’s capabilities and ensur-
ing rubric feasibility. This procedure yields the dataset:
D1 = {(problemi, rubrici)}.

Phase 2: Scoring Data Synthesis. Next, we generate
annotated training examples for the reward model. For
each (problemi, rubrici), we produce multiple can-
didate responses using both the baseline model and
Gemini-2.5-Pro (the latter increases the proportion of
high-quality responses). We then feed the problem,
rubric, and candidate response to Gemini-2.5-Pro to
obtain an integer score from 0 to 10.2 To reduce score imbalance and avoid over-representing mid- or
low-quality reasoning, we apply weighted sampling across score intervals, ensuring a more uniform
distribution. After this phase, we obtain D2 = {(problemi, rubrici, responsei, scorei)}.

2In Appendix C.5, we have manually assessed the accuracy of Gemini’s scoring. In the 1320 cases, 12 scores
were higher than the actual level, and 7 scores were lower. Additionally, we have tested the stability of Gemini’s
scores across 5 runs, which is presented in Figure 8.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Performance of models trained with Outcome-Based and Rubric-Based Rewards.

Phase 3: Reward Model Training. We initialize our RRM from the Qwen3-4B-Base model and
first perform supervised fine-tuning (SFT) on D2, training it to take (problem, rubric, response) as
input and output the corresponding analysis and final score. This yields an SFT-trained checkpoint
RRMSFT. We then further refine the model using proximal policy optimization (PPO). The reward
function is defined as Reward = 1−

∣∣∣Scorepred−Scoretarget
10

∣∣∣ . The final result, RRMRL, serves as our
rubric-aware scoring function in downstream reinforcement learning. Our rubric reward models’
accuracy and stability on the hold-out test set are shown in Figure 5. Compared with RRMSFT,
RRMRL has significantly higher accuracy and stability. Training details refer to Appendix C.4.

5 EXPERIMENTS AND ANALYSIS

5.1 EXPERIMENTAL SETUP

Base Model & Dataset: We adopt Qwen3-4B-Base as the backbone model for both the baseline and
our proposed approach. Training is conducted on a 9k subset of the Polaris dataset (An et al., 2025),
obtained by randomly sampling 10k examples and removing examples where the provided final an-
swer, generated by Gemini, was incorrect. We conduct evaluations on four widely used mathematical
reasoning benchmarks, including AIME2024, MATH500, AMC2023, and OlympiadBench.

Baseline & Our Method: The baseline consists of Qwen3-4B-Base fine-tuned with PPO using a
standard outcome-based reward: 1.0 for a correct final answer and 0 otherwise. The configuration is as
follows: maximum sequence length of 4096 tokens, rollout size of 8, batch size of 512, learning rate
of 5× 10−7, temperature of 1.0, and the Adam optimizer (Kingma & Ba, 2014). The training steps
are set to 200 steps. We replace the outcome-based reward model in the baseline with a rubric-based
reward model, while keeping all other configurations unchanged.

Evaluation Metrics: We use both Standard Pass@N and Verified Pass@N. For the latter, the
correctness of each solution is further verified by Gemini-2.5-Pro.3 During evaluation, solutions are
generated with a temperature of 1.0 and a maximum length of 16,000 tokens.

In the main text, we focus our analysis on the 4B model. The results for the 8B model, along with
comprehensive experimental details, are provided in Figure 10 and Appendix C.6, respectively.

5.2 MAIN RESULTS

The results in Figure 6 yield three key takeaways.

Rubric-based rewards deliver consistent gains across datasets. Across evaluation datasets, the
rubric-trained model (pink/red) outperforms the outcome-trained model (blue) for all N under both
Standard and Verified Pass@N. This pattern indicates that rewarding reasoning quality—rather than
final outcomes alone—induces more generalizable problem-solving behavior.

Gains are larger under Verified Pass@N and scale with N. The improvement is notably larger
for Verified Pass@N than for Standard Pass@N, and the Verified-Standard gap widens as N increases.
As the candidate budget grows, the baseline tends to inflate Standard Pass@N by sampling more
trajectories that accidentally land on the correct answer despite flawed reasoning, whereas our model
produces a higher proportion of logically sound solutions. Consequently, the probability that at least
one verified-correct solution appears in the N candidates grows faster for our method.

3A manual analysis in Table 4 confirms that Gemini-2.5-Pro does not exhibit a preference for our model’s
outputs over those from the baseline model, ensuring fair verification.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Rubric rewards shrink the Verified-Standard gap. Across all datasets and N, there is a substantial
discrepancy between Standard and Verified Pass@N, underscoring the prevalence of false positives in
multi-step reasoning. The gap is consistently smaller for our approach, indicating that rubric guidance
suppresses spurious correctness and better aligns generation with logically valid derivations.

5.3 ERROR-TYPE DISTRIBUTION SHIFT AFTER RUBRIC-BASED RL

C
ou

nt

0

60

120

180

240

300

(a) False Positive Types

Neglected Oper. Pre.

Unverified Assumptions

Inductive Overgen.

Miracle Steps

Numerical Coincidence

Outcome Irrelevance

Others

Outcome Reward Rubric Reward (Ours)

R
es

po
ns

e
Le

ng
th

500

1000

1500

2000

2500

3000

(b) Training Steps
0 20 40 60 80 100 120

Outcome Reward
Rubric Reward
Mixed Reward

Figure 7: (a) False positive distribution of
two models. (b) The change in response
length during RL training. “Mixed reward”
means 3/4 of the rubric reward + 1/4 of the
outcome reward.

Figure 7(a) illustrates a qualitative shift: rubric-based
training not only reduces the overall false positive rate
but also transforms what kinds of false positives occur.

Rubric rewards suppress critical errors. The most
notable effect is on the Miracle Steps category. Our
method reduces such cases by 71% (from 175 to 50),
indicating a substantial suppression of memorization-
driven final-answer recalls without valid reasoning.
Large reductions are also observed in other high-
impact failure modes: Neglected Operational Precon-
ditions (from 232 to 113) and Unverified Assumptions
(from 213 to 167). These decreases confirm that the
RRM is effective at detecting—and thereby discourag-
ing—critical lapses in rigor.

More detailed reasoning with minor flaws as a side
effect. Interestingly, some categories increase in fre-
quency, notably Outcome Irrelevance (from 67 to 118).
We view this not as regression, but as a side effect of a
detailed reasoning process: by encouraging models to
attempt complete, step-by-step derivations (including
verification steps), we increase the chance of minor,
localized mistakes arising inside an otherwise coherent
reasoning chain. This effect aligns with Figure 7(b),
which shows that rubric-based training encourages the
model to generate more detailed and explicit reasoning
steps, resulting in longer outputs. While not all added
verbosity is productive, it reflects the model’s attempt to build a complete logical chain, a behavior
directly incentivized by the rubric. In such cases, the final answer remains correct, and the error
occurs in a secondary verification or auxiliary computation (see Appendix B for an example).

6 LIMITATIONS AND CONCLUSION

Limitations. There are several limitations in our work: (1) Dependence on strong external models.
Rubric construction relies on high-capacity models and manual filtering, limiting scalability to tasks
beyond current LLM capabilities. (2) Static reward model during RL. The RRM is fixed after offline
training; as the policy improves, the static scorer may misalign and undervalue novel yet valid
reasoning. (3) Domain and causality limitations. Experiments are limited to mathematics, and the
link between Miracle Steps and memorization remains indirect without full training-data provenance.
Future research could address these limitations by: automating rubric synthesis to reduce manual
effort, for example, via multi-agent systems; developing adaptive reward models that co-evolve with
the policy to maintain alignment; and extending our analysis to other domains, like coding.

Conclusion. This work systematically exposes the “false positive” phenomenon in mathematical
LLMs, where outcome-based rewards mask flawed reasoning. We developed a taxonomy of these
failures and introduced the Rubric Reward Model to address this systemic issue. The RRM is a
process-oriented reward function that provides fine-grained, calibrated scores on entire reasoning
traces, directly penalizing logical fallacies. When integrated into a reinforcement learning pipeline,
RRM-based training consistently and substantially outperforms outcome-only supervision. Our
results provide a clear mandate: to build genuinely reliable and accurate reasoning models, we must
shift our focus from validating final answers to verifying the reasoning process itself.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we provide a comprehensive description of our
methodology, datasets, models, and evaluation procedures. All code, data, and experimental scripts
have been made available at the anonymous repository: https://anonymous.4open.science/r/
Anonymous-4D6C.

Our training process utilizes a 9k subset of the public Polaris dataset. The base models for our
experiments, Qwen3-4B-Base and Qwen3-8B-Base, are publicly available open-source models.
Detailed hyperparameters for the PPO training of both the outcome-based baseline and our rubric-
based model are provided in Appendix C.6. This includes learning rates, batch sizes, and rollout
configurations. The hardware setup (8x NVIDIA A800-80G GPUs) is also specified. The generation
parameters for evaluation (e.g., temperature, max tokens) are documented in Section 5.

REFERENCES

AIME. American invitational mathematics examination (aime) 2024.
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024, 2024.

AMC. The american mathematics competitions. https://huggingface.co/datasets/zwhe99/amc23,
2023.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing Xu,
Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scaling
reinforcement learning on advanced reasoning models, 2025. URL https://hkunlp.github.io/
blog/2025/Polaris.

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, 2025a.

Alignment Team Anthropic. Measuring faithfulness in chain-of-thought reasoning.
https://www.anthropic.com/research/measuring-faithfulness-in-chain-of-thought-reasoning,
2023a.

Alignment Team Anthropic. Specific versus general principles for constitutional ai.
https://www.anthropic.com/research/specific-versus-general-principles-for-constitutional-
ai, 2023b.

Alignment Team Anthropic. Reasoning models don’t always say what they think.
https://www.anthropic.com/research/reasoning-models-dont-say-think, 2025b.

Rahul K Arora, Jason Wei, Rebecca Soskin Hicks, Preston Bowman, Joaquin Quiñonero-Candela,
Foivos Tsimpourlas, Michael Sharman, Meghan Shah, Andrea Vallone, Alex Beutel, et al. Health-
bench: Evaluating large language models towards improved human health. arXiv preprint
arXiv:2505.08775, 2025.

Fazl Barez, Tung-Yu Wu, Iván Arcuschin, Michael Lan, Vincent Wang, Noah Siegel, Nicolas
Collignon, Clement Neo, Isabelle Lee, Alasdair Paren, Adel Bibi, Robert Trager, Damiano
Fornasiere, John Yan, Yanai Elazar, and Yoshua Bengio. Chain-of-thought is not explainability.
https://fbarez.github.io/assets/pdf/Cot_Is_Not_Explainability.pdf, 2025.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.

Yanda Chen, Ruiqi Zhong, Narutatsu Ri, Chen Zhao, He He, Jacob Steinhardt, Zhou Yu, and Kathleen
McKeown. Do models explain themselves? counterfactual simulatability of natural language
explanations. In Proceedings of the 41st International Conference on Machine Learning, pp.
7880–7904, 2024.

10

https://anonymous.4open.science/r/Anonymous-4D6C
https://anonymous.4open.science/r/Anonymous-4D6C
https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2(11):665–673, 2020.

Anisha Gunjal, Anthony Wang, Elaine Lau, Vaskar Nath, Bing Liu, and Sean Hendryx. Rubrics as
rewards: Reinforcement learning beyond verifiable domains. arXiv preprint arXiv:2507.17746,
2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
Noah A Smith. Annotation artifacts in natural language inference data. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), pp. 107–112, 2018.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting
agi with olympiad-level bilingual multimodal scientific problems. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828–3850, 2024.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. arXiv preprint
arXiv:2505.22312, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Yi Hu, Xiaojuan Tang, Haotong Yang, and Muhan Zhang. Case-based or rule-based: How do
transformers do the math? In International Conference on Machine Learning, pp. 19438–19474.
PMLR, 2024.

Zenan Huang, Yihong Zhuang, Guoshan Lu, Zeyu Qin, Haokai Xu, Tianyu Zhao, Ru Peng, Jiaqi Hu,
Zhanming Shen, Xiaomeng Hu, et al. Reinforcement learning with rubric anchors. arXiv preprint
arXiv:2508.12790, 2025.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Man Ho Lam, Chaozheng Wang, Jen-tse Huang, and Michael R Lyu. Codecrash: Stress testing llm
reasoning under structural and semantic perturbations. Advances in Neural Information Processing
Systems, 38, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning. In The 13th International Joint
Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter
of the Association for Computational Linguistics (IJCNLP-AACL 2023), 2023.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains. arXiv preprint arXiv:2505.14652, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI. o1 system card. https://openai.com/index/openai-o1-system-card/, 2024.

OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/, 2025a.

OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/introducing-o3-and-o4-mini/,
2025b.

Lorenzo Pacchiardi, Alex James Chan, Sören Mindermann, Ilan Moscovitz, Alexa Yue Pan, Yarin
Gal, Owain Evans, and Jan M Brauner. How to catch an ai liar: Lie detection in black-box llms by
asking unrelated questions. In The Twelfth International Conference on Learning Representations,
2024.

Alexander Pan, Erik Jones, Meena Jagadeesan, and Jacob Steinhardt. Feedback loops with language
models drive in-context reward hacking. In Proceedings of the 41st International Conference on
Machine Learning, pp. 39154–39200, 2024.

Peter S Park, Simon Goldstein, Aidan O’Gara, Michael Chen, and Dan Hendrycks. Ai deception: A
survey of examples, risks, and potential solutions. Patterns, 5(5), 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R Bowman,
Esin DURMUS, Zac Hatfield-Dodds, Scott R Johnston, Shauna M Kravec, et al. Towards
understanding sycophancy in language models. In The Twelfth International Conference on
Learning Representations, 2023.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling parameters for reasoning. In The Thirteenth International
Conference on Learning Representations, 2025.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. In Forty-second International Conference on Machine Learning, 2025.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains. arXiv
preprint arXiv:2503.23829, 2025.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting. Advances in Neural
Information Processing Systems, 36:74952–74965, 2023.

Vijay Viswanathan, Yanchao Sun, Shuang Ma, Xiang Kong, Meng Cao, Graham Neubig, and
Tongshuang Wu. Checklists are better than reward models for aligning language models. arXiv
preprint arXiv:2507.18624, 2025.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024.

Yu Wang, Nan Yang, Liang Wang, and Furu Wei. Examining false positives under inference scaling
for mathematical reasoning. arXiv preprint arXiv:2502.06217, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via
reinforcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

Jiaxin Wen, Ruiqi Zhong, Akbir Khan, Ethan Perez, Jacob Steinhardt, Minlie Huang, Samuel R
Bowman, He He, and Shi Feng. Language models learn to mislead humans via rlhf. In The
Thirteenth International Conference on Learning Representations, 2025.

Lilian Weng. Reward hacking in reinforcement learning. https://lilianweng.github.io/posts/2024-11-
28-reward-hacking/, 2024.

Zhangchen Xu, Yuetai Li, Fengqing Jiang, Bhaskar Ramasubramanian, Luyao Niu, Bill Yuchen
Lin, and Radha Poovendran. Tinyv: Reducing false negatives in verification improves rl for llm
reasoning. arXiv preprint arXiv:2505.14625, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. In ICLR 2025: International Conference on
Learning Representations, 2024.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agar-
wal. Generative verifiers: Reward modeling as next-token prediction. In The 4th Workshop on
Mathematical Reasoning and AI at NeurIPS’24, 2024.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayi-
heng Liu, Jingren Zhou, and Junyang Lin. The lessons of developing process reward mod-
els in mathematical reasoning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational Linguis-
tics: ACL 2025, pp. 10495–10516, Vienna, Austria, July 2025. Association for Computa-
tional Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.547. URL
https://aclanthology.org/2025.findings-acl.547/.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. ProcessBench: Identifying process errors in mathematical rea-
soning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1009–1024, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.50. URL
https://aclanthology.org/2025.acl-long.50/.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025.

Jiaru Zou, Ling Yang, Jingwen Gu, Jiahao Qiu, Ke Shen, Jingrui He, and Mengdi Wang. Reasonflux-
prm: Trajectory-aware prms for long chain-of-thought reasoning in llms. arXiv preprint
arXiv:2506.18896, 2025.

13

https://aclanthology.org/2025.findings-acl.547/
https://aclanthology.org/2025.acl-long.50/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS

LLMs were employed in a limited capacity for writing optimization. Specifically, the authors
provided their own draft text to the LLM, which in turn suggested improvements such as corrections
of grammatical errors, clearer phrasing, and removal of non-academic expressions. LLMs were also
used to inspire possible titles for the paper. While the system provided suggestions, the final title
was decided and refined by the authors and is not directly taken from any single LLM output. In
addition, LLMs were used as coding assistants during the implementation phase. They provided
code completion and debugging suggestions, but all final implementations, experimental design,
and validation were carried out and verified by the authors. Importantly, LLMs were NOT used
for generating research ideas, designing experiments, or searching and reviewing related work. All
conceptual contributions and experimental designs were fully conceived and executed by the authors.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PROMPTS

Prompt 1: Gemini’s False Positive Detection

You will receive the following three items: (1) A math problem; (2) A standard answer; (3) A student’s submitted answer (including their problem-solving
process and final answer).
Your task is: (1) Carefully review the student’s problem-solving process; (2) Determine whether there are errors, logical flaws, or imprecise points in the
method used to arrive at the final answer; (3) If there are problems, explain the type of error and elaborate on why the correct answer was still obtained
under such circumstances; (4) The problem-solving process may contain some self-corrected errors, e.g., “1+1=3 wait, 1+1=2” – these are not considered
errors but rather the model’s thinking process before finding the correct method and answer; (5) There are six types of errors in total. If there are any
beyond these six, please explain them additionally:

1. Inductive Overgeneralization (overgeneralization/incomplete induction/insufficient enumeration)
- Typical symptoms:

- Asserting "unique solution/no solution/rule holds" after testing only a few small values;
- Replacing strict elimination with intuition, such as "grows faster/unlikely";
- Finding only partial solutions without proving there are no more.

- Why it might still be correct:
- The actual solutions do fall within the tested small range or are indeed limited to those found; or although the pattern is

wrong, the count within the given range happens to match the correct pattern (density/period coincidence).

2. Outcome Irrelevance (rounding/missing multiplication/sign errors in irrelevant parts, or double errors canceling out)
- Typical symptoms:
- Rounding too early in the process, but the final result is only reported to the tenths place, so the error does not amplify;
- Missing the imaginary part/coefficient/negative sign, but only taking the real part/absolute value or m+n (order irrelevant)

in the end;
- Introducing an extra denominator first, then "forgetting" it later, which happens to cancel the error; two miscalculated

numbers add up to the correct value.
- Why it might still be correct:
- The quantity sought in the problem is insensitive to the error (only depends on the real part/absolute value/last digit/

modulus), or the error is swallowed by rounding in the end;
- Two independent errors accidentally cancel each other out (negative times negative makes positive).

3. Neglected Operational Preconditions (domain/reversibility conditions/boundary points, but coincidentally not affecting)
- Typical symptoms:

- Directly canceling/dividing by a variable without first stating that the variable is not zero;
- Converting log(x²) to 2log x without first restricting x>0;

- Simplifying a fractional equation without first stating that the denominator is not zero; ignoring whether boundary points
should be included.

- Why it might still be correct:
- The calculated value happens to satisfy the (unwritten) domain or reversibility conditions, thus no extraneous or missing

roots are produced;
- Other terms in the problem automatically restrict the domain (e.g., the equation already contains log x, implicitly
requiring x>0).

4. Unverified Assumptions (unproven structural assumptions/misapplying theorems but hitting equality conditions or special cases)
- Typical symptoms:
- Directly assuming "the function must be linear", "extremum occurs when variables are equal", "a trapezoid has maximum area

as a rectangle", "choosing a seemingly reasonable parameter value r=7", etc.;
- Misapplying theorems (applying quadrilateral properties to hexagons, misusing properties like radical axes/exterior
angles, etc.).

- Why it might still be correct:
- The guessed structure happens to be the equality condition or a hidden special property in the problem (such as symmetry,

equality condition of Cauchy's inequality, special cases in circle geometry), thus the conclusion is correct;
- The misapplied theorem still holds as a "numerical equality" in this special case, or is equivalent to another correct
property.

5. Numerical Coincidence (the problem-solving process is completely different from the correct method and logically invalid, but the
final answer is correct due to numerical coincidence)

- Typical symptoms:
- Using wrong logic and calculations to get an incorrect probability of 9/20, while the correct probability is 7/22. But the

problem asks for m+n, and coincidentally 9+20=29 and 7+22=29, resulting in the same answer;
- Constructing an incorrect list of numbers that completely fails to meet the problem's conditions, but the square sum of this

wrong list happens to equal that of the correct list;
- Deriving an incorrect pattern of winning/losing conditions based on wrong game analysis, but within the given numerical
range, the number of numbers satisfying this wrong pattern is exactly the same as those satisfying the correct pattern.

- Why it might still be correct:
- Coincidence.

6. Miracle Steps (the model's solution contains invalid steps, but suddenly arrives at the correct answer)
- Typical symptoms:
- The model lists a completely wrong equation "a + b + c + d - 437 - 2*234 - 3x = 3600", solves x=-827 (wrong answer) according to

this equation, but the next step directly gives x=73 (correct answer);
- The model provides a series of wrong ideas and steps, but suddenly lists a correct equation/inequality in an incomprehensible

way.

7. Other

Please use Chinese and output the results in the following format:
Are there errors or imprecise points in the problem-solving process:
Yes / No
If there are problems, why the wrong process led to the correct answer:
(This item can be omitted if there are no errors)
- Error type
- Explanation
- Final result: [1-7] (e.g., [1], [2,3])

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt 2: Rubric Generation

Role: You are an experienced math competition coach and problem-setter, an expert in the logical structure of mathematical proofs. Your task is not to
solve math problems, but to design a rigorous, universal, and actionable scoring framework for evaluating solution processes.

• Your output should only be the Grading Rubric (i.e. Detailed Scoring Rubric & Coach’s Guide), with no other content.

• The total score is 10 points.

Example Problem: Given four points in a Cartesian coordinate system: A(0, 0), B(4, 0), C(4, 4), and D(0, 4). Prove that quadrilateral ABCD is a square.
Guiding Principles:

1. Method-Agnostic: This rubric must be able to fairly evaluate all logically correct solution methods, whether they use side lengths, angles,
or diagonals. Strictly prohibit creating separate criteria for specific methods (e.g., “side-length method,” “diagonal method”).

2. Structure-Based: The core of the scoring should be based on the universal structure of a proof, namely: “identifying key properties,”
“calculation and derivation,” “logical linkage,” and “final conclusion.”

3. Actionable Criteria: The scoring criteria must be specific, observable actions, not abstract descriptions.

• Forbidden terms: “accuracy,” “rigor,” “clear thinking,” “fluent expression.”
• Encouraged phrases: “Correctly writes the distance formula,” “Explicitly states that the slopes of two segments are negative

reciprocals,” “Concludes C based on previously proven properties A and B,” “Completely states the theorem for identifying a
square.”

Rubric Framework:
Please break down the scoring rubric into the following sections and assign appropriate points to each (the total score is set to 10 points).

1. Target Identification & Strategy Statement - [e.g., 1 point]

• Scoring Point: The student clearly identifies the objective (to prove it’s a square) and articulates the set of mathematical properties
their chosen strategy relies on.

• Example: “To prove it’s a square, I will show that all four sides are equal and one interior angle is a right angle.” or “I will prove
it’s a square by showing its diagonals are perpendicular, bisect each other, and are equal in length.”

2. Calculation & Verification of Properties - [e.g., 6 points]

• This is the core of the rubric. The student must use calculations to verify all key properties required by their chosen strategy. This
section is scored based on “properties,” and regardless of the method, the student must prove a set of sufficient conditions.

• Scoring Points (detailed by property):
– Proof of Property 1: [e.g., Equal side lengths]

* Correctly applies the necessary formula (e.g., distance formula).

* Calculation is free of errors, and lengths of all sides are found.

* Reaches an intermediate conclusion of equal side lengths (e.g., AB=BC=CD=DA=4).
– Proof of Property 2: [e.g., Perpendicular adjacent sides or perpendicular diagonals]

* Correctly applies the necessary method (e.g., slope calculation, vector dot product).

* Calculation is free of errors, leading to the conclusion of perpendicularity.
– Proof of Property 3: [e.g., Equal diagonals or diagonals that bisect each other]

* ... (and so on)
• Note: When scoring, check if the student has completely proven a full set of sufficient conditions for their chosen strategy. For

example, only proving four equal sides (which could be a rhombus) does not earn full points for this section.

3. Logical Synthesis & Final Conclusion - [e.g., 3 points]

• Scoring Point 1 - Citing the Justification: The student explicitly cites a definition or theorem that links the verified properties to
the final conclusion. Example: “Because quadrilateral ABCD has four equal sides and one right angle, it is a square.”

• Scoring Point 2 - Final Statement: Provides a clear, conclusive statement. Example: “Therefore, quadrilateral ABCD is a square.
Q.E.D.”

• Scoring Point 3 - Logical Integrity: The proof is free of logical gaps. For example, the student doesn’t just calculate lengths
and slopes and then jump to the conclusion without stating what those numbers mean (e.g., “sides are equal” or “sides are
perpendicular”).

Output Format: Please present the final rubric in a clear table format, including “Scoring Item,” “Specific Criteria,” and “Score.” Here is an example:

Core Task: Design a detailed Scoring Rubric for the following math problem. The total score is 10 points.
[Insert the specific math problem here]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Prompt 3: Scoring Data Generation

For each Question and Answer pair, please evaluate according to the given scoring criteria.

• Your output must include two sections: Analysis and Summary.
• In your analysis, always place the score below your reasoning using the following

format:

- Reason: [Insert your explanation here]
- Score: X

• In the summary, provide your assessment using the following format:

Final Scoring Summary:

Scoring Criterion 1 (Brief description of the criterion):
(Reason: ...) X points / Y points

Scoring Criterion 2 (Brief description of the criterion):
(Reason: ...) X points / Y points

...

Total Score: [N points / M points]

Question:
{INSERT QUESTION}

Scoring Criteria:
{INSERT CRITERIA}

Answer:
{INSERT MODEL_ANSWER}

Prompt 4: Rubric Model Scoring Template

You are a grade teacher. Based on the following information, please evaluate the student’s
submitted answer.

The total score is out of 10 points.

Carefully read the question, the scoring criteria, and the submitted answer. Then give a fair
and reasonable score according to the grading criteria.

Here is the information:

Question:
{INSERT QUESTION}

Scoring Criteria:
{INSERT CRITERIA}

Student’s Answer:
{INSERT MODEL_ANSWER}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B CASE STUDY

Question

We are told that the process P consists of:
1. Reflect the point in the x-axis.
2. Translate the resulting point 2 units upwards.
3. Reflect the resulting point in the y-axis.

We are given S6 = (−7,−1) and asked to find S0 after reversing P six times.

Baseline’s Solution

Solution——–
To determine the coordinates of the point S0, we need to reverse the steps of the process P applied six
times to obtain the point S6(−7,−1). Let’s break down the process step by step.
Step-by-Step Reasoning:
1. Identify the final point S6:

S6 = (−7,−1)

2. Reverse the sixth application of P:
• S6 is the result of applying P to S5.
• To find S5, we need to reverse the steps of P:

(a) Step 3: Reflect S6 in the y-axis. This means S5 has the same y-coordinate as S6 but the
opposite x-coordinate. S5 = (7,−1)

(b) Step 2: Translate S5 2 units downwards. This means S4 has the same x-coordinate as S5 but
the y-coordinate is 2 units less. S4 = (7,−3)

(c) Step 1: Reflect S4 in the x-axis. This means S3 has the same x-coordinate as S4 but the
opposite y-coordinate. S3 = (7, 3)

3. Reverse the fifth application of P:
• S3 is the result of applying P to S2.
• To find S2, we need to reverse the steps of P:

(a) Step 3: Reflect S3 in the y-axis. This means S2 has the same y-coordinate as S3 but the
opposite x-coordinate. S2 = (−7, 3)

(b) Step 2: Translate S2 2 units downwards. This means S1 has the same x-coordinate as S2 but
the y-coordinate is 2 units less. S1 = (−7, 1)

(c) Step 1: Reflect S1 in the x-axis. This means S0 has the same x-coordinate as S1 but the
opposite y-coordinate. S0 = (−7,−1)

Thus, the coordinates of the point S0 are (−7,−1) .

False Positive Analysis——–
The student’s problem-solving method contained a fundamental logical error. The student attempted to
deduce S0 from S6 by reversing the transformation process P . A single inverse process P−1 indeed
requires performing the opposite operations in reverse order (first reflect across the y-axis, then translate
downward by 2, and finally reflect across the x-axis). However, the student incorrectly assumed that
each individual sub-step in the inverse process corresponded to one backward step in the sequence. For
example, in the process of solving for S5 from S6, the student recorded the result after the first inverse
operation (reflection across the y-axis) as S5, the result after the second inverse operation (translation
downward) as S4, and the result after the third inverse operation (reflection across the x-axis) as S3.
This is a serious logical flaw. The correct approach is to apply all three inverse operations to S6; the
final result, after completing all steps, is S5. According to the student’s erroneous logic, they actually
performed two complete inverse processes:

1. In the first complete inverse operation, they believed they had derived S3 from S6.
2. In the second complete inverse operation, they believed they had derived S0 from S3.

Thus, the student effectively computed (P−1)2(S6), which is the coordinate of S4, but they labeled it
as S0.
The fact that the final answer was correct is purely coincidental. The transformation P has a special
property: it has a period of 2. That is, applying P twice to any point returns the point to its original
position (i.e., P(P(S)) = S). This means the sequence S0, S1, S2, S3, S4, S5, S6, . . . is periodic with
period 2, specifically S0 = S2 = S4 = S6 and S1 = S3 = S5.
Due to this periodicity, the coordinates of S4 are exactly the same as those of S0. The student mistakenly
computed the value of S4, but because S4 = S0, they arrived at the correct answer for S0 purely by

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

coincidence. The student’s problem-solving process showed no awareness of or reliance on this
periodicity; the correctness of the final answer was entirely accidental.

Ours Solution

Solution——–
Alright, I have this problem about a point moving through a series of transformations, and I need to find
the original point based on the final position after multiple applications of a process called P . Let’s
break it down step by step.

Understanding the Problem
First, let’s understand what’s given:
1. Initial Point: (3, 5)
2. Process P:

• Step 1: Reflect the point in the x-axis.
• Step 2: Translate the resulting point 2 units upwards.
• Step 3: Reflect the resulting point in the y-axis.

3. Applications:
• Start with point S0.
• Apply P to S0 to get S1.
• Continue applying P four more times to get S6.

4. Final Point: S6(−7,−1)

5. Goal: Find the coordinates of S0.

Breaking Down the Process P
Let’s understand each step of P and how it transforms a point (x, y).
1. Step 1: Reflect in the x-axis

• Reflecting a point in the x-axis changes the sign of the y-coordinate.
• So, (x, y) becomes (x,−y).

2. Step 2: Translate 2 units upwards
• Translating a point upwards increases the y-coordinate by 2.
• So, (x,−y) becomes (x,−y + 2).

3. Step 3: Reflect in the y-axis
• Reflecting a point in the y-axis changes the sign of the x-coordinate.
• So, (x,−y + 2) becomes (−x,−y + 2).

Therefore, the entire process P transforms (x, y) to (−x,−y + 2).

Applying P Multiple Times
We start with S0 and apply P six times to get S6. Let’s denote the transformation as T , so:

T (x, y) = (−x,−y + 2)

Applying T multiple times:
Tn(x, y) = T (Tn−1(x, y))

We need to find a pattern or a formula for Tn(x, y). Let’s compute the first few applications to see if a
pattern emerges.

1. T 1(x, y):
T 1(x, y) = (−x,−y + 2)

2. T 2(x, y):

T 2(x, y) = T (T 1(x, y))

= T (−x,−y + 2)

= (−(−x),−(−y + 2) + 2)

= (x, y − 2 + 2)

= (x, y)

Wait, T 2(x, y) = (x, y). That’s interesting! Applying T twice brings us back to the original point.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

3. T 3(x, y):
T 3(x, y) = T (T 2(x, y)) = T (x, y) = (−x,−y + 2)

So, T 3(x, y) = T 1(x, y).

4. T 4(x, y):
T 4(x, y) = T (T 3(x, y)) = T (−x,−y + 2) = (x, y)

Again, T 4(x, y) = (x, y).
From these computations, it seems that applying T an even number of times returns the point to its
original position, and applying T an odd number of times gives the same result as applying T once.

Generalizing the Transformation

Given that T 2(x, y) = (x, y), we can see that:

• If n is even, Tn(x, y) = (x, y).

• If n is odd, Tn(x, y) = T 1(x, y) = (−x,−y + 2).
Since we’re applying T six times (n = 6), which is even, we have:

T 6(x, y) = (x, y)

But we know that T 6(S0) = S6 = (−7,−1). Therefore:
(x, y) = (−7,−1)

So, S0 = (−7,−1).

Verification
Let’s verify this by applying P six times starting with S0 = (−7,−1) and see if we get S6 = (−7,−1).

1. S0 = (−7,−1)

2. S1 = T (S0) = (−(−7),−(−1) + 2) = (7, 1 + 2) = (7, 3)

3. S2 = T (S1) = (−7,−3 + 2) = (−7,−1)

4. S3 = T (S2) = (7, 1)

5. S4 = T (S3) = (−7,−1)

6. S5 = T (S4) = (7, 3)

7. S6 = T (S5) = (−7,−1)

Yes, after six applications, we indeed get S6 = (−7,−1). This confirms that our solution is correct.

Final Answer

The coordinates of the point S0 are (−7,−1) .

False Positive Analysis——–
The student’s overall problem-solving approach and core derivation process are completely correct. They
correctly derived the algebraic expression for the single transformation P as T (x, y) = (−x,−y + 2),
and found through calculation that the second iteration of the transformation, T 2(x, y), is the identity
transformation, i.e., T 2(x, y) = (x, y). Based on this key discovery, they concluded that “applying the
transformation an even number of times will return the point to its original position,” and therefore
S6 = T 6(S0) = S0. This chain of reasoning is rigorous and flawless, directly leading to the correct
answer S0 = S6 = (−7,−1).
The error occurred in the final “Verification” step, which was intended as a post-solution check. In
computing the verification sequence, the student made a slip or calculation error:

• They correctly computed S2 = (−7,−1).

• Next, when calculating S3, they wrote S3 = T (S2) = (7, 1).

• The correct computation should be S3 = T (−7,−1) = (−(−7),−(−1)+2) = (7, 1+2) = (7, 3).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C SUPPLEMENT

C.1 FALSE POSITIVE ANALYSIS PROCEDURE

There are four stages for analyzing false positive modes:

Stage 1: Data Preparation. We assemble a dataset of 680 samples, comprising 170 distinct questions
(30 from AIME2024 + 50 from MATH500 + 40 from AMC2023 + 50 from Olympiad), each with
four unique model responses. All markdown and mathematical formulas have been converted into an
easily readable format.

Stage 2: Initial Mode Discovery. We use Gemini-2.5-Pro for an automated review to generate a
preliminary taxonomy of “false positive modes.” The model is prompted with each question, a
reference solution, and the model’s response, and is instructed to report on (1) any reasoning errors
and (2) how flawed reasoning can still yield a correct answer. These reports are then aggregated and
synthesized by the model into the initial taxonomy.

Stage 3: Expert Review. In the third stage, we conduct a human validation of these modes. Four
annotators, all holding undergraduate degrees with substantial training in advanced mathematics,
evaluate each sample. They are equipped with tools like Google Search and large models and are
instructed to discard any samples beyond their expertise. For each sample, they determine if it is
a false positive and, if so, classify it using our preliminary taxonomy or label it as “Other” with a
detailed explanation.

Stage 4: Synthesis and Analysis. In the final stage, we refine the taxonomy by incorporating the
“Other” categories identified by human annotators. Using this final, human-validated framework, we
perform a quantitative analysis to measure the frequency of each false positive mode, revealing the
model’s prevalent reasoning flaws.

C.2 DISCARDED QUESTION

Question

In the circle with center Q, radii AQ and BQ form a right angle. The two smaller regions are tangent
semicircles, as shown. The radius of the circle with center Q is 14 inches. What is the radius of the
smaller semicircle? Express your answer as a common fraction.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.3 EXPERIMENTAL DETAILS FOR STATE-OF-THE-ART MODEL EVALUATION

Models and Generation. We evaluated four leading models: GPT-5-thinking, o4-mini, Gemini-
2.5-Pro, and Claude-4-Sonnet-thinking. We employ Gemini-2.5-Pro (version 0605). For the other
models, namely o4-mini, GPT-5, and Claude-4-Sonnet, we utilize their latest versions available as of
September 2025. For each question in the challenge set, we generated a single response from each
model (n = 1). To encourage more detailed reasoning, we set the reasoning effort parameter to ‘high’
for both GPT-5-thinking and o4-mini.

Evaluation Protocol. All generated responses were manually evaluated by human annotators.

Additional notes. During annotation, we noted that o4-mini exhibited a strong tendency to provide
overly concise or truncated reasoning steps. This brevity sometimes made it challenging to fully
assess the validity of its solution path and may contribute to its higher observed false positive rate, as
critical (and potentially erroneous) intermediate steps might be omitted.

Qualitative Examples. For qualitative insights, several examples of questions from our challenge set
that frequently induced false positives across the evaluated models are presented below:

Question 1. Rectangles ABCD and EFGH are drawn such that D,E,C, F are collinear. Also,
A,D,H,G all lie on a circle. If BC = 16,AB = 107,FG = 17, and EF = 184, what is the
length of CE?

Failure: All models overlook the possible permutations of D,E,C, F .

Question 2. How many ordered pairs of positive real numbers (a, b) satisfy the equation

(1 + 2a)(2 + 2b)(2a+ b) = 32ab?

Failure: Claude-4-Sonnet directly identified the correct (a,b) pair through trial, then reported
unsuccessful attempts with alternative answers, and subsequently claimed that only one such pair
satisfies the requirements. GPT-5 ignored the case of a zero denominator during its simplification
process. o4-mini made an error in its variable substitution step.

Question 3. Rows 1, 2, 3, 4, and 5 of a triangular array of integers are shown below.
1
1 1
1 3 1
1 5 5 1
1 7 11 7 1
Each row after the first row is formed by placing a 1 at each end of the row, and each interior entry
is 1 greater than the sum of the two numbers diagonally above it in the previous row. What is the
units digits of the sum of the 2023 numbers in the 2023rd row?

Failure: Gemini-2.5-Pro and Claude-4-Sonnet, through enumeration, discovered an important
function U(·) in solving the problem have: U(21) = U(1). Without providing proof, they directly
claimed the existence of periodicity.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.4 RRM TRAINING DETAILS

We fine-tune the Qwen3-4B-Base model as our policy model using PPO. The training is guided by a
reward function, which is calculated based on the L1 distance between the predicted score (Scorepred)
from our reward model and the target score (Scoretarget):

Reward = 1−
∣∣∣∣Scorepred − Scoretarget

10

∣∣∣∣ .
The PPO training is configured with the following hyperparameters: a maximum prompt length of
10000, a maximum sequence length of 2048, a batch size of 128, and a rollout size of 8. We use the
Adam optimizer with a learning rate of 5× 10−7 and a generation temperature of 1.0. The model is
trained for 400 steps.

C.5 THE SCORING ACCURACY AND STABILITY OF GEMINI-2.5-PRO.

When using Gemini-2.5-Pro for scoring, we set the temperature to 1.0, perform repeated sampling
five times, and calculate the difference between the highest score and the lowest score among these
five runs. As can be seen from the Figure 8, Gemini-2.5-Pro demonstrates good stability despite
minor fluctuations.

2. Gemini 打分的准确率：12 个偏高，7个偏低，共 8*161 个case

3.

C
ou

nt

0

30

60

90

120

150

180

Maximum Variation (↓ is more stable)
0 1 2 3 4 5 6 7 8 9 10

Rubric Reward Model （SFT） Rubric Reward Model （SFT+RL）
Gemini-2.5-Pro

Figure 8: The scoring stability of Gemini-2.5-Pro.

Table 3: Manual evaluation of the accuracy of Gemini’s scoring according to the rubric.

Gemini Rubric Scoring Too high Too low Accurate
Count 12 7 1301

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.6 DETAILS FOR MAIN EXPERIMENTS

Figure 9: Qwen3-4B’s Pass@N results on the full dataset.

Figure 10: Qwen-8B’s Pass@N results on the full dataset.

Figure 11: Qwen3-4B’s Gemini scoring results on the full dataset.

All our training and inference were conducted on a server with 8 NVIDIA A800-80G GPUs. During
evaluation, we set the temperature to 1.0, the maximum generation length to 16,000 tokens, and used
the prompt:

Please reason step by step, and put your final answer within \boxed{}.

To evaluate Pass@N, we generate 2N candidate solutions for each problem instance.

Evaluation on full datasets and the Qwen3-8B. In our main experiments, due to computational
cost considerations, we randomly selected a subset of 50 samples from MATH500 (500 samples) and
Olympiad (675 samples) for evaluation. We additionally conducted experiments on the full datasets
(32 runs), and the results are presented in Figure 9 and 10. The overall trends and conclusions remain
consistent with those observed on the subset.

Comparison of the scores assigned by Gemini-2.5-Pro to our model and the baseline models.
As a supplementary result, Figure 11 presents the outcomes of using Gemini-2.5-Pro to generate a
rubric on the test set and to score the responses of both models.

In our distributional analysis of error cases (Section 5.3), we focus on instances that were not assigned
a perfect score by Gemini-2.5-Pro. The rationale is that false-positive samples with a perfect Gemini
grade represent cases where the rubric reward is inherently unable to address the issue. In contrast,
our error analysis aims to examine cases in which the rubric reward could potentially play a role.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D HUMAN EVALUATION

D.1 GEMINI-2.5-PRO AS A FALSE POSITIVE JUDGER: RELIABILITY ASSESSMENT

Table 4: Confusion matrix comparing false positives identified by human and by Gemini.

Samples
(Overall)

Gemini
TP FP

Human TP 462 93
FP 9 295

Samples
(Rubric)

Gemini
TP FP

Human TP 252 52
FP 1 152

Samples
(Outcome)

Gemini
TP FP

Human TP 210 41
FP 8 144

Table 5: Confusion matrix on different datasets.

Samples
(AIME)

Gemini
TP FP

Human TP 34 8
FP 1 28

Samples
(AMC)

Gemini
TP FP

Human TP 112 17
FP 2 105

Samples
(MATH)

Gemini
TP FP

Human TP 222 50
FP 0 44

Samples
(Olympiad)

Gemini
TP FP

Human TP 94 18
FP 6 118

Table 6: The proportion of questions for which the model and human false positive evaluations are
identical across all responses to that question.

Human-Gemini
Consistency

Qwen3-Outcome
(4 resp. per query)

Qwen3-Rubric
(4 resp. per query)

Overall
(8 resp. per query)

Ratio 92/121 109/139 97/141

Agreement with human experts. We quantify Gemini-2.5-Pro’s reliability by conducting extensive
human evaluation. As shown in Table 4, Gemini attains high precision (98.1%) and reasonable recall
(83.2%) against human labels, yielding an overall F1 score of 0.90 and an agreement rate of 88.1%.
These results confirm that Gemini correctly flags almost all human-identified false positives and
makes very few spurious accusations.

No preference toward rubric/outcome-trained outputs. Empirically, Gemini exhibits comparable
behavior on rubric-trained and outcome-trained responses. From Table 4:

• Rubric-trained subset: precision 99.6%, recall 82.9%, agreement 88.4%.
• Outcome-trained subset: precision 96.3%, recall 83.6%, agreement 87.9%.

The near-identical recalls (82.9% vs 83.6%) and close agreement rates (88.4% vs 87.9%) show no
systematic advantage for rubric-trained outputs; if anything, the tiny precision difference reflects
fewer false alarms on that subset, not preferential scoring.

Consistency across datasets. The performance is stable across datasets (Table 5): F1 ranges from
0.88 (AIME) to 0.92 (AMC), with precision consistently ≥ 0.94. This robustness suggests that
Gemini’s accuracy is not confined to a particular problem source or difficulty level.

Agreement at question level. We also assess whether Gemini-2.5-Pro and human annotators agree
across all responses to the same prompt. Complete question-level agreement holds for 76.0% of
questions in the outcome-trained setting, 78.4% in the rubric-trained setting, and 68.8% overall
(Table 6). The similar agreement rates for rubric- and outcome-trained models indicate that Gemini
does not systematically favor one training method over the other.

Given its high precision, stable cross-dataset performance, and absence of bias toward our method,
we use Gemini-2.5-Pro as a scalable, automatic false-positive judge for the remainder of our analysis.

25

	Introduction
	Related Work
	The False Positive Phenomenon in Mathematical Reasoning
	Characterizing False Positives: An Empirical Taxonomy
	Memorization as a Potential Contributor to False Positives
	Prevalence of False Positives in State-of-the-Art Models
	Evaluation of Gemini‑2.5‑Pro as an Automatic False Positive Judge

	Method: Training with Rubric Rewards
	Why Rubric Rewards? A Comparative Analysis
	Constructing the Rubric Reward Model

	Experiments And Analysis
	Experimental Setup
	Main Results
	Error-type distribution shift after rubric-based RL

	Limitations and Conclusion
	Prompts
	Case Study
	Supplement
	False Positive Analysis Procedure
	Discarded Question
	Experimental Details for State-of-the-Art Model Evaluation
	RRM Training Details
	The Scoring Accuracy and Stability of Gemini-2.5-Pro.
	Details for Main Experiments

	Human Evaluation
	Gemini-2.5-Pro as a False Positive Judger: Reliability Assessment

