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ABSTRACT

To address the distribution shifts between training and test data, domain general-
ization (DG) leverages multiple source domains to learn a model that generalizes
well to unseen domains. However, existing DG methods generally suffer from
overfitting to the source domains, partly due to the limited coverage of the ex-
pected region in feature space. Motivated by this, we propose to perform mixup
with data interpolation and extrapolation to cover the potential unseen regions. To
prevent the detrimental effects of unconstrained extrapolation, we carefully design
a policy to generate the instance weights, named Flatness-aware Gradient-based
Mixup (FGMix). The policy employs a gradient-based similarity to assign greater
weights to instances that carry more invariant information, and learns the similar-
ity function towards flatter minima for better generalization. On the DomainBed
benchmark, we validate the efficacy of various designs of FGMix and demonstrate
its superiority over other DG algorithms.

1 INTRODUCTION

The success of machine learning systems relies on the assumption that the training and test data are
drawn from the same distribution. However, this i.i.d. assumption does not always hold in real-
world applications, e.g., when the training and test data are acquired with different devices or under
different conditions. When such distribution shifts occur, the systems may fail to generalize to test
data if they learn to rely on the spurious cues for prediction (e.g., texture or backgrounds).

Figure 1: Mixup via
interpolation or ex-
trapolation.

Domain generalization (DG) (Blanchard et al., 2011; Muandet et al., 2013;
Li et al., 2018b; 2017) addresses this problem by leveraging data from mul-
tiple source domains to train a model that generalizes well to unseen tar-
get domain. Existing methods mainly focus on extracting invariant features
from source domains or leveraging meta-learning approach to learn a trans-
ferable model (Muandet et al., 2013; Li et al., 2018b;a; Balaji et al., 2018;
Li et al., 2019). Nevertheless, most of the DG methods still suffer from the
problem of overfitting to the source domains. As illustrated in Figure 1, the
upper subfigure depicts some latent representations of data from multiple
domains. The classifier is trained to perform well on the source domains
(i.e., diamonds, circles and triangles). If the target domain (i.e., stars) is
located at a region that is not covered by the source domains, it is possible
that the learned classifier will perform poorly on it. Recently, mixup-based
methods are developed to address this issue (Zhang et al., 2018; Verma et al.,
2019; Mai et al., 2021; Zhou et al., 2020b; Wang et al., 2020). Generally,
interpolated data are used for model training such that the unseen regions
within the convex hull of the source domains will also be covered, as shown
by the solid arrows in the lower subfigure of Figure 1. But what if the target
domain is located outside of the convex hull? In that case, interpolated data are clearly not sufficient,
and one may need to consider data extrapolation, as shown by the dotted arrows.

Data extrapolation is rarely considered in the existing mixup-based methods, probably due to that
without proper mixup strategy, extrapolated data may deviate too much from the expected region
and become devastating to model training. Hence, unlike the existing methods which simply adopt
random weights for mixup, a carefully designed weight generation policy is required to produce
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meaningful extrapolated data. To begin with, the weight associated with each instance involved
in a linear combination should be based on its relations with other instances involved in the same
combination - an idea similar to context-aware attention. Inspired by the gradient-based approach for
DG (Li et al., 2018a; Parascandolo et al., 2020; Mansilla et al., 2021; Shi et al., 2021), which relies on
gradient alignment for domain-invariant learning, we propose to compute the relation or similarity
between instances based on gradients. Since the gradient similarity indicates how much information
are shared between two instances from the perspective of learning, instances with greater sum of
similarities with respect to all the other instances in the same combination can be considered as
carrying more invariant information, and hence should be assigned greater weights. As a result, the
mixup data will absorb a larger portion from the instances containing more invariant features.

To further encourage better generalization of the classifier learned with the mixup data, instead
of using a pre-defined similarity metric, we employ a learnable similarity function and optimize
it towards flatter minima of the classifier. A flat minimum is defined as a region in loss surface
where the loss varies slowly with changes in model parameters (Hochreiter et al., 1997). It has long
been established that the flatness of a model minimizer is strongly associated with its generalization
ability (Keskar et al., 2017; Garipov et al., 2018; Jiang et al., 2019). In the field of DG, Cha et al.
(2021); Arpit et al. (2021) recently demonstrate the importance of seeking flat minima, achieving
evident performance gains on the DomainBed benchmark (Gulrajani & Lopez-Paz, 2020).

Different from the existing flatness-aware optimization methods which are designed to search for
flat minima in a given loss surface (i.e., based on the original training data), we propose to flatten the
loss surface by generating new mixup data - an approach that is orthogonal to the existing flatness-
aware solvers. Specifically, we propose to learn the policy of generating instance weights such that
the resultant loss surface based on the mixture of original and generated data is flatter. This method
can be considered as providing a flatter loss surface for the optimizer to explore, increasing the
chance of covering the test optima. Using it jointly with a flatness-aware optimizer further enhances
performance, as will be illustrated later. In addition to the flatness-aware learning objective for the
generation policy, we further impose an auxiliary adversarial loss to constrain that the generated data
conform to a prior distribution for regularization purpose.

To summarize, we propose a Flatness-aware Gradient-based Mixup (FGMix) method which per-
forms mixup with instance weights based on gradient similarity. A learnable similarity function is
optimized towards generating a flatter loss surface for better generalization and encouraged to con-
form to a prior to avoid over-extrapolation. Through extensive experiments, we validate the efficacy
of various designs of FGMix quantitatively and qualitatively, and show that FGMix achieves the
state-of-the-art performance on the DomainBed benchmark.

2 RELATED WORK

Mixup-based Methods Mixup (Zhang et al., 2018) is a data augmentation method that extends
the training distribution by linearly interpolating random pairs of examples and labels. Incorporating
mixup data for training is equivalent to minimizing the vicinal risk (Chapelle et al., 2000) which
enables better generalization. Recently, different forms of mixup are developed. Cutmix (Yun et al.,
2019) cuts out a patch from an image and switch it with another image. Remix (Chou et al., 2020)
assigns greater weights to the minority class label to tackle the class imbalance issue. Manifold
Mixup (Verma et al., 2019) performs interpolations at the intermediate layers to enable smoothness
in higher-level semantics. Related to our work, MetaMixup (Mai et al., 2021) and AdaMixup (Guo
et al., 2019) learn the interpolation policy adaptively from data. The former learns by simulating
pseudo-target and pseudo-source from the actual source domains, while the latter learns to avoid
the “manifold intrusion” issue caused by the conflicts between mixup labels and original labels.
Focusing on DG, MixStyle (Zhou et al., 2020b) interpolates the feature statistics (known as styles)
to synthesize novel domains. Wang et al. (2020) adapt mixup to heterogeneous setting where the
label spaces are disjoint for source and target. Despite the effectiveness of various mixup methods,
they mainly perform interpolation, while our work further explores the potential of data extrapolation
to tackle the situation where the distribution shift between source and target is significant.

Gradient-based Methods Gradients as the update steps for SGD-based optimizers normally lie
at the heart of deep learning algorithms. However, learning a single model for multiple tasks or
distributions often runs into the problem of gradient interference which can lead to ineffective opti-
mization (Riemer et al., 2018). In the context of DG, conflicting gradients often correspond to spuri-
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ous domain-specific information which can be detrimental for learning an invariant model (Mansilla
et al., 2021). The first approach to solve gradient conflicts focuses on performing some gradient
surgery at each gradient step. PCGrad (Yu et al., 2020) for multi-task learning projects a task’s gra-
dient onto the normal plane of gradients of other tasks that it has conflicts with. For DG, Mansilla
et al. (2021); Parascandolo et al. (2020) propose to mask out gradient components that have conflict-
ing signs across domains. Shahtalebi et al. (2021) further develop a smoothed-out masking method
by promoting agreement among the gradient magnitudes as well. The second approach to tackle
gradient conflicts typically include gradient alignment in the learning objective. Fish (Shi et al.,
2021) explicitly optimizes the dot product between domain gradients with an efficient first-order al-
gorithm. Fishr (Rame et al., 2021) further enforces that the variances of gradients are matched across
domains. MLDG (Li et al., 2018a) employs a meta-learning approach where the meta-objective is
equivalent to aligning the gradients between pseudo-source and pseudo-target domains. Different
from the previous works, here we implicitly perform gradient alignment by assigning greater weights
to instances whose gradients have greater overall similarity to the others in the same combination.
As a result, the mixup data will contain more invariant information for learning the classifier.

Flatness-aware Optimization The connection between flatness of minima and generalization has
long been established through various theories (Keskar et al., 2017; Hochreiter et al., 1997; MacKay,
1992; Chaudhari et al., 2019). Intuitively, a flatter minimum is more robust against shifts in loss land-
scape between training and test data. In order to find model minimizer with better generalization,
algorithms that search for flat minima are developed, which either penalizing sharpness explicitly in
the objective function (Hochreiter et al., 1997; Chaudhari et al., 2019; Foret et al., 2020) or perform-
ing weight averaging to reach the flatter central region of the found minima (Izmailov et al., 2018;
Guo et al., 2022). The latter has recently been shown to deliver remarkable gains on DG tasks (Cha
et al., 2021; Arpit et al., 2021). Orthogonal to the existing methods that search for flat minima, we
propose to generate new data to flatten the loss surface, which allows for the optimizer to explore in
a wider region where the chance of covering the target domain is higher. We show that when used
jointly with weight averaging for variance reduction, our method achieves better results.

3 METHODOLOGY

In the DG setting, suppose there are k source domains S = {S1, ...,Sk} available for training, and
we have the training data Si = {(xi,j , yi,j)}|Si|

j=1 drawn from the i-th source domain Si. Our goal
is to learn a domain-invariant model f : x → y from S = {S1, ..., Sk}, which generalizes well
to an unseen target domain T . We assume the model is formed by two parts: a feature extractor
gθ and a classifier hφ, i.e., f(x) = hφ(gθ(x)). Following Berthelot et al. (2018), we refer to the
data instances projected onto the latent space through gθ as latent codes, i.e., the latent code of an
instance x is z = gθ(x). The classifier is learned on top of the latent codes. Here, we only consider
the homogeneous DG setting where the source and target domains share the same label space, i.e.,
YSi = YT , ∀i ∈ {1, ..., k}. In this case, a single classifier hφ is learned and shared across domains.

3.1 LATENT CODE AUGMENTATION

We follow the standard mixup implementation (Mai et al., 2021) to combine latent codes from mul-
tiple domains. Specifically, we sample k instances {x1, ...,xk}, each from one of the k source do-
mains, and feed them into the feature extractor gθ to obtain the respective k latent codes {z1, ..., zk}.
A mixup latent code is generated by linearly combining the k latent codes, and the classifier hφ is
learned to optimize the combined loss of the k labels {y1, ..., yk} associated with the k instances.
Formally, given the linear weights {a1, ..., ak} where

!k
i=1 ai = 1, the newly generated latent code

znew and the corresponding loss lnew are obtained by:

znew =

k"

i=1

aizi, lnew =

k"

i=1

ail(yi, hφ(znew)). (1)

To allow for both interpolation and extrapolation to occur, here we do not enforce positivity con-
straint on ai. Note that when 0 ≤ ai ≤ 1 for all i ∈ {1, ..., k}, the generated znew is an interpolation
(i.e., within the convex hull formed by {z1, ..., zk}), and when ai < 0 for any i ∈ {1, ..., k}, the
generated znew is an extrapolation (i.e., outside the convex hull formed by {z1, ..., zk}).

The generated latent codes are used together with the original latent codes to train the classifier hφ.
The feature extractor gθ is also trained jointly to learn the domain-invariant, discriminative latent
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Figure 2: Overview of the proposed FGMix. (a) Latent Code Augmentation: the mixup latent
codes Znew are used together with the original latent codes {Z1, Z2, Z3} to train the classifier hφ.
(b) Weight Generation Policy: the weight assigned to each latent code is based on the sum of its
gradient’s similarities w.r.t. other latent codes. A softmax and a shifting & scaling layers are applied
to enable extrapolation. The similarity function Aω is learned towards flatter minima (i.e., Lflat)
and matching the generated codes to a prior via adversarial training (i.e., Ladv).

representations. Formally, suppose n instances are generated from mixup, the model parameters
{θ,φ} are optimized by the following objective:

min
θ,φ

1

|S|+ n

#

$
k"

i=1

|Si|"

j=1

l(yi,j , hφ(zi,j)) +

n"

j=1

lnew,j

%

& . (2)

This strategy to train with the mixup data serves to promote better generalization of the learned
classifier. Figure 2(a) shows an overview of model training with the augmented data.

3.2 GRADIENT-BASED WEIGHT GENERATION

Unlike the previous methods which sample weights {ai}ki=1 from a pre-defined distribution (Zhang
et al., 2018; Verma et al., 2019; Zhou et al., 2020b; Wang et al., 2020), here we consider a context-
aware approach which assigns weight to an instance based on its relations with other instances in
the same combination. While the feature-based approach specifies similarity in the latent space, it
does not indicate what the classifier considers as similar. In order to promote invariant-learning of
the classifier, we propose to measure similarity between instances using gradients.

Figure 3: Gradients
w.r.t. the classifier φ
for 3 instances.

Gradient similarity indicates the level of information sharing between in-
stances in terms of model learning. To illustrate this, let gi denote the
gradient of the i-th instance loss l(yi, hφ(zi)) w.r.t. the classifier φ, i.e.,
gi =

∂l(yi,hφ(zi))
∂φ . We consider 3 gradients {g1,g2,g3} of instances

{z1, z2, z3} from 3 different domains as shown in Figure 3. Since g2 and
g3 are pointing towards similar directions (i.e., cosψ2,3 > 0, where ψ2,3

is the angle between g2 and g3), taking a step along g2 or g3 will im-
prove the classifier’s performance on both z2 and z3. This implies that z2 and z3 contain some
shared/invariant information as recognized by the classifier. Conversely, for g1 and g3, since they
are pointing towards different directions (i.e., cosψ1,3 < 0), gradient update on one will degrade
the classifier’s performance on the other, as the level of information sharing between z1 and z3 is
low. In this specific example, following the direction of g2 seems to be the best option as it helps
classify z3 well while will not jeopardize too much the performance on z1. That is, it contains the
most invariant information among the 3 candidate instances. This amount of invariant information
an instance carries can be quantified by the sum of similarities of the instance’s gradient w.r.t. all
the other instances, e.g., si =

!
j ∕=i cosψi,j , which can be used as a criterion to assign weights.

To endow the weight generation policy with some flexibility to learn towards generating a desired
distribution, we employ a learnable similarity function Aω(·, ·) (instead of a pre-defined similar-
ity function like cosine similarity) to measure the similarity between gradients. Specifically, we
compute the sum of gradient similarities si (also referred to as score) for the i-th latent code zi as:

si =
"

j ∕=i,j∈{1,...,k}

Aω(gi,gj). (3)
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In practice, we use a neural network (i.e., 2-layer MLP) to model Aω , where the two gradients gi

and gj are concatenated in order (i.e., gi followed by gj) and fed into the network. Note that this
similarity function is asymmetric, i.e., Aω(a, b) ∕= Aω(b, a). Hence, even when we only have 2
source domains, it is possible that the 2 latent codes will be assigned with different weights.

To ensure that the weights sum to 1, we apply a softmax layer on top of the score si:

ai =
exp(si)!k

i′=1 exp(si′)
. (4)

Since the softmax normalization produces ai ∈ (0, 1), this corresponds to generating znew as an
interpolation of {z1, ..., zk}. To enable extrapolation, we further introduce a scaling and shifting
operation to be applied on ai, which lifts off the positivity constraint and allows for weight value to
be greater than 1. Generally, it serves to reduce the uncertainty in the weight distribution. Specifi-
cally, we introduce a scaling factor λ and a shifting factor λ−1

k to process the weight ai by:

ãi = λai −
λ− 1

k
, (5)

where the constraint
!k

i=1 ãi = 1 is still fulfilled after the processing. The generated znew is now
computed by znew =

!k
i=1 ãizi. Note that for the mixup loss lnew in equation 1, we do not apply

the scaling and shifting process on the weights as negative loss values are prohibited. Figure 2(b)
depicts the proposed weight generation policy.

3.3 LEARNING THE WEIGHT GENERATION POLICY

As mentioned before, a learnable function Aω is employed to compute the similarity between gradi-
ents and to generate the instance weights. To encourage better generalization ability of the classifier
learned with the augmented latent codes, we propose to optimize ω towards generating a flatter loss
surface in the neighbourhoods of the classifier φ. Generally, the flatness can be measured using
Hessian-based quantities (Keskar et al., 2017; Chaudhari et al., 2019; Petzka et al., 2021) or Monte-
Carlo approximations of the loss value in the model’s neighbourhoods (Foret et al., 2020; Cha et al.,
2021). For computational efficiency, we adopt the Monte-Carlo approach and measure flatness by
the loss difference between the current classifier φ and its neighbourhoods φ′ within γ distance.
Formally, we optimize ω with the objective:

min
ω

E‖φ−φ′‖≤γ [△L2
new], (6)

where △Lnew = 1
n

!n
j=1 l(ynew,j , hφ(znew,j))− l(ynew,j , hφ′(znew,j)). In practice, we approxi-

mate the expectation by sampling 100 directions from a unit sphere1.

To prevent the undesirable effects of over-extrapolation, we further impose an auxiliary adversarial
loss to constrain that the generated latent codes conform to a prior distribution. Similar to Li et al.
(2018b), we match the generated distribution to a prior via adversarial training. Specifically, a
discriminator d(·) is introduced to distinguish the generated latent codes from the ones sampled
from the prior distribution. Our weight generation policy will learn to fool the discriminator to
believe that the generated codes are from the prior. The minimax objective is formulated as:

min
ω

max
d

Eẑnew∼p(ẑnew)[log d(ẑnew)] + E(z1,...,zk)∼psource(z)[log(1− d(

k"

i=1

ãizi))], (7)

where p(ẑnew) is a pre-defined prior distribution. In theory, we can use any arbitrary distribution
for the prior. Here, we employ a Gaussian whose mean µ and variance σ2 are computed from the
source domains, i.e., µ = 1

|S|
!|S|

i=1 zi and σ2 = 1
|S|

!|S|
i=1(zi − µ) ◦ (zi − µ), where ◦ denotes the

Hadamard product (i.e., only the diagonal entries of the covariance matrix are used). In practice,
since the feature extractor (and hence the latent distribution) evolves over the course of training, we
compute moving averages of the mean and variance of the mini-batch to approximate the Gaussian.

The weight generation policy ω is jointly learned with the base model f , i.e., we optimize equation 6
and equation 7 simultaneously with equation 2. To ensure that the feature extractor is well-trained
and produces meaningful latent codes for mixup, learning of ω (as well as the addition of generated
latent codes for classifier training) will only commence at the later stage of training (i.e., starting
from the τ -th iteration). The overall training procedure is summarized in Algorithm 1.

1Appendix A.5 includes experiments to test the effects of varying the Monte-Carlo sample size.
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Algorithm 1: Training Procedure of FGMix
Required: Source data S = {S1, ..., Sk}; Total number of iterations T ; Iteration to start training and applying the weight generation

policy τ ; Number of mixup instances generated in each iteration n; Learning rate of base model α; Learning rate of weight
generation policy β; Scaling factor λ; Neighbourhood size γ.

Output: Learned feature extractor gθ(·) and classifier hφ(·).
1 Randomly initialize all learnable parameters.
2 for t ∈ {1, ..., T} do
3 Sample a mini-batch B = {B1, ..., Bk} from k source datasets {S1, ..., Sk}.
4 if t ≥ τ then
5 for j ∈ 1, ..., n do
6 Sample (xi, yi) ∈ Bi for i = 1, ..., k.
7 Obtain latent code zi = gθ(xi) for i = 1, ..., k.
8 Compute linear weights {ãi}k

i=1 by equation 3-equation 5.
9 Compute znew,j and its loss lnew,j by equation 1.

10 Compute weight generation policy loss Lω = E‖φ−φ′‖≤γ [△L2
new] + 1

n

!n
j=1 log(1 − d(znew,j)).

11 Compute discriminator loss Ld = − 1
n

!n
j=1(log d(ẑnew,j) + log(1 − d(znew,j))).

12 Update policy and discriminator ω ← ω − β∇ωLω , d ← d − β∇dLd.

13 Compute base model loss Lbase = 1
|B|+n

"!k
i=1

!|Bi|
j=1 l(yi,j , hφ(gθ(xi,j))) +

!n
j=1 lnew,j

#
.

14 else
15 Compute base model loss Lbase = 1

|B|
!k

i=1

!|Bi|
j=1 l(yi,j , hφ(gθ(xi,j))).

16 Update base model θ ← θ − α∇θLbase, φ ← φ − α∇φLbase.

4 EXPERIMENTS

Dataset Details We conduct experiments mainly on DomainBed (Gulrajani & Lopez-Paz, 2020),
a recently introduced testbed that provides a unified evaluation procedure for DG algorithms. Fol-
lowing the previous DG studies (Arpit et al., 2021; Cha et al., 2021), we focus on five real-world
benchmark datasets available on DomainBed: PACS (Li et al., 2017) (4 domains, 7 classes, and
9,991 images), VLCS (Fang et al., 2013) (4 domains, 5 classes, and 10,729 images), OfficeHome
(Venkateswara et al., 2017) (4 domains, 65 classes, and 15,588 images), TerraIncognita (Beery
et al., 2018) (4 domains, 10 classes, and 24,788 images) and DomainNet (Peng et al., 2019) (6 do-
mains, 345 classes, and 586,575 images).

Implementation Details For a fair comparison, we follow the experimental settings by Gulrajani
& Lopez-Paz (2020), including data splits (20% data are reserved for validation for each training
domain), hyper-parameter search (a search distribution is pre-defined for each hyper-parameter),
number of iterations (default to be 5,000), image augmentation (cropping, resizing, horizontal
ips, color jitter, grayscaling, normalization, etc.) and the base model backbone (ResNet-50 (He
et al., 2016) pre-trained on ImageNet as initialization). For our proposed FGMix, we set the iter-
ation τ to start training and applying weight generation as 3,000, and the learning rate of weight
generation policy β as 1e-3. We perform model selection by tuning the scaling factor λ from
RandomChoice([1, 3, 5, 10, 20])2 and the neighbourhood size γ from 10Uniform(0,2) on the training
domain validation sets. All experiments are repeated for 5 trials with different random seeds3.

4.1 OVERALL COMPARISON

We select several baselines related to our method for overall comparison on DomainBed: (1) naive
baseline without any DG strategy: ERM (Vapnick, 1998) (empirical risk minimization); (2) mixup-
based methods: Mixup (Wang et al., 2020) (mixup at the input level), Manifold Mixup (Verma
et al., 2019) (mixup at the feature level), MixStyle (Zhou et al., 2020b) (mixup of feature statis-
tics) and MetaMixup (Mai et al., 2021) (meta-learn the interpolation policy); (3) gradient-based
methods: PCGrad (Yu et al., 2020) (project gradients onto the normal plane of conflicting gradi-
ents), AND-Mask (Parascandolo et al., 2020) (mask out conflicting gradient components), Fish (Shi
et al., 2021) (gradient alignment) and Fishr (Rame et al., 2021) (gradient covariance alignment); (4)
augmentation methods: L2A-OT (Zhou et al., 2020a) (generate pseudo-source by enlarging diver-
gence to the source domains), CNSN (Tang et al., 2021) (exchange and normalize instances’ styles),
DDG (Zhang et al., 2022) (disentangle and swap instances’ variation factors) (5) current SOTA
on DomainBed: SagNet (Nam et al., 2021) (reduce style bias), SelfReg (Kim et al., 2021) (self-
supervised contrastive regularization) and CORAL (Sun & Saenko, 2016) (correlation alignment).
Hyper-parameters settings of the baselines reproduced by us can be found in Appendix B.

2Note that λ = 1 is equivalent to having no scaling & shifting effect.
3Experiments are conducted on NVIDIA A100 with 40GB memory.
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Table 1: Overall comparison of selected algorithms on five datasets. Model selection is based on
training domain validation. The result reported for each dataset is the average performance over
all the test domains for that dataset. Most of the results are obtained directly from the literature,
except for those denoted with †, which are from our reproduction on DomainBed.

Algorithm PACS VLCS OfficeHome TerraInc DomainNet Avg.

ERM (Vapnick, 1998) 85.5±0.2 77.5±0.4 66.5±0.3 46.1±1.8 40.9±0.1 63.3

Mixup-based
Methods

Mixup (Wang et al., 2020) 84.6±0.6 77.4±0.6 68.1±0.3 47.9±0.8 39.2±0.1 63.4
Manifold Mixup† (Verma et al., 2019) 86.2±0.6 76.7±1.1 67.3±1.0 48.8±2.1 41.2±0.3 64.0
MixStyle† (Zhou et al., 2020b) 85.3±1.9 77.4±0.8 67.3±0.9 46.8±1.1 40.9±0.2 63.5
MetaMixup† (Mai et al., 2021) 85.2±1.2 77.9±0.8 68.2±0.7 47.1±1.8 41.8±0.3 64.0

Gradient-based
Methods

PCGrad† (Yu et al., 2020) 85.0±0.9 77.5±0.8 65.5±0.9 48.3±2.3 41.1±0.2 63.5
AND-Mask (Parascandolo et al., 2020) 84.4±0.9 78.1±0.9 65.6±0.4 44.6±0.3 37.2±0.6 62.0
Fish (Shi et al., 2021) 85.5±0.3 77.8±0.3 68.6±0.4 45.1±1.3 42.7±0.2 63.9
Fishr (Rame et al., 2021) 85.5±0.4 77.8±0.1 67.8±0.1 47.4±1.6 41.7±0.0 64.0

Augmentation
Methods

L2A-OT† (Zhou et al., 2020a) 85.8±1.9 77.4±0.9 68.1±1.6 48.6±2.1 40.2±0.5 64.0
CNSN† (Tang et al., 2021) 85.6±0.9 77.1±1.0 67.3±1.2 48.4±1.6 40.7±0.4 63.8
DDG† (Zhang et al., 2022) 85.3±1.6 76.8±1.2 68.1±1.0 47.7±2.1 40.0±0.5 63.6

DomainBed
SOTA

SelfReg (Kim et al., 2021) 85.6±0.4 77.8±0.9 67.9±0.7 47.0±0.3 41.5±0.2 64.0
SagNet (Nam et al., 2021) 86.3±0.2 77.8±0.5 68.1±0.1 48.6±1.0 40.3±0.1 64.2
CORAL (Sun & Saenko, 2016) 86.2±0.3 78.8±0.6 68.7±0.3 47.6±1.0 41.5±0.1 64.6

FGMix (ours) 86.6±1.1 77.9±0.7 68.9±1.2 49.0±1.6 42.0±0.4 64.9

Combined with flatness-aware solver SWA (Izmailov et al., 2018; Arpit et al., 2021)

ERM + SWA† 87.0±0.5 77.2±0.6 69.5±0.4 50.1±0.7 44.0±0.2 65.6
SelfReg + SWA 86.5±0.3 77.5±0.0 69.4±0.2 51.0±0.4 44.6±0.1 65.8
CORAL + SWA† 87.5±0.5 78.2±0.4 70.7±0.1 51.1±0.6 44.6±0.4 66.4
FGMix + SWA (ours) 88.5±0.7 78.8±0.6 71.4±0.3 52.2±0.9 45.1±0.3 67.2

Table 2: Ablation study on PACS and TerraInc. From A to FGMix we add one component at a
time, where A is simply interpolation with random weights. We test for both w/o and w/ SWA.

Variant
Components w/o SWA w/ SWA

similarity-
based weights

gradient-
based similarity

scaling
& shifting Lflat Ladv PACS TerraInc PACS TerraInc Avg.

A (baseline) 84.3±0.8 48.1±0.9 86.7±0.8 50.2±0.8 67.4

B ! 85.4±0.7 48.0±0.7 87.4±0.5 50.9±1.2 67.9
C ! ! 85.5±0.2 48.0±1.4 87.9±0.3 51.4±0.7 68.2
D ! ! ! 85.8±0.9 48.8±1.5 87.7±0.9 51.5±1.1 68.5
E ! ! ! ! 86.5±1.6 49.1±2.1 88.2±1.2 52.0±1.5 69.0

FGMix (ours) ! ! ! ! ! 86.6±1.1 49.0±1.6 88.5±0.7 52.2±0.9 69.1

The results on 5 datasets are presented in Table 1 (see Appendix A.1 for results on each test do-
main). We observe that most of the DG algorithms outperform ERM in terms of average accuracy
(except for AND-Mask). Our proposed FGMix achieves consistent performance gains over ERM
for all the 5 datasets: +1.1pp for PACS, +0.4pp for VLCS, +2.4pp for OfficeHome, +2.9pp for
TerraInc and +1.1pp for DomainNet. We notice that FGMix performs exceptionally well on the
more challenging datasets where the distribution shifts between source and target domains might be
significant, i.e., the gains are most significant for OfficeHome and TerraInc whose test accura-
cies are relatively low as compared to other datasets. Overall, our FGMix tops in 3 out of 5 datasets,
achieving the best average accuracy with 0.3pp higher than the previous SOTA (CORAL), and 0.9pp
higher than the strongest related baselines (Manifold Mixup, MetaMixup, Fishr and L2A-OT).

We further conduct experiments to combine FGMix with the flatness-aware solver SWA (Stochastic
Weight Averaging) (Izmailov et al., 2018; Arpit et al., 2021). SWA simply performs weight averag-
ing which yields minimizer at the flatter central region of the minimum. A recent study by Arpit et al.
(2021) found that SWA not only boosts performance of DG algorithms, but also ensures better cor-
relation between in-domain validation and out-domain test results, facilitating more reliable model
selection. We combine SWA with FGMix and 3 other strong and representative DG algorithms (i.e.,
ERM, SelfReg and CORAL) for comparison. From Table 1, we see that FGMix + SWA achieves
the best results for all 5 datasets. Notably, the average gain of FGMix over CORAL increases from
0.3pp to 0.8pp after combining with SWA. This shows that FGMix is more orthogonal to SWA, as
its benefits still persist after combining with SWA. To understand the reason behind, recall that FG-
Mix serves to widen the loss surface for the optimizer to explore. While this increases the chance of
covering the target area, it also enlarges the reachable off-target area. SWA with weight averaging
along the training helps mitigate the risk of optimizer running into undesirable region.
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Figure 4: t-SNE visualization of the latent distributions of PACS trained by using “Art”,
“Cartoon”, “Photo” as the source domains and “Sketch” as the target domain. We plot the
mixup distribution generated by random interpolation and by our FGMix which involves extrapola-
tion. For clearer visualization, the mixup is generated using same-class examples.

4.2 ABLATION STUDY

We test the efficacy of various components of FGMix by introducing 5 variants, each includes one
more component at a time: A is a simple interpolation baseline with random instance weights drawn
from Dirichlet distribution; B employs cosine similarity to compute the weights based on instances’
feature vectors; C computes similarity based on instances’ gradients w.r.t. the classifier; D further
includes the scaling & shifting process to enable extrapolation; E replaces the cosine similarity
with a learnable similarity function and optimizes it towards the flatness-aware loss Lflat. Further
including the adversarial training for prior matching results in our proposed FGMix.

Table 2 presents the results (see Appendix A.2 for results on each test domain). Based on the av-
erage results, from A to FGMix we obtain the incremental gains: +0.5pp, +0.3pp, +0.3pp, +0.5pp,
+0.1pp. Firstly, similarity-based weights with attention to the other instances involved in the same
combination give better performance than the random weights. Replacing feature-based similarity
with gradient-based similarity further improves the performance, as gradients indicate what the clas-
sifier considers as invariant information. Enabling data extrapolation (i.e., scaling & shifting) and
learning towards flatter loss surface (i.e., Lflat) both serve to increase the chance of covering the
target domain. Last but not least, though matching the generated distribution to a prior (i.e., Ladv)
may seem to have minor effects on the mean accuracies, it helps reduce the variance significantly
from E to FGMix, demonstrating its regularization effects to prevent over-extrapolation.

4.3 QUALITATIVE ANALYSIS

4.3.1 MIXUP DISTRIBUTION VISUALIZATION

To understand how the generated distribution facilitates the learning of classifier, we visualize the
latent codes of PACS in 2D space using t-SNE. For this visualization, we train a model (i.e., feature
extractor + classifier) with FGMix and obtain the latent codes from the feature extractor. To compare
different mixup methods, we plot the mixup distribution generated by random interpolation (i.e.,
variant A) and by our FGMix which involves extrapolation. For clearer visualization, the mixup is
generated using same-class examples. In this experiment, we use “Sketch” as the target domain,
as it is the most difficult domain when training with the other 3 domains.

Figure 4 shows the distributions of the original latent codes (4a) and the mixup latent codes generated
by random interpolation (4b) and by FGMix (4c) respectively. Firstly, we see that by training with
FGMix, 7 clusters corresponding to 7 class labels are clearly separated in the learned latent space. In
4a, we observe that the latent codes of the target domain “Sketch” (i.e., the pink dots) are located
near the decision boundary, especially for the “dog” and “elephant” categories which are inseparable
at the central region. In 4b, the mixup codes generated by random interpolation mostly lie within
the convex hull formed by the source latent codes in the respective cluster, leaving the target region
uncovered. Our FGMix with extrapolation, on the other hand, is able to generate codes outside of
the convex hull (as shown in 4c), resulting in better coverage of the target region and hence better
generalization of the classifier learned from the mixup latent codes.

4.3.2 LOSS LANDSCAPE VISUALIZATION

In this section, we verify that FGMix indeed generates a flatter loss surface. We also observe how
the change in loss landscape affects the optimization process. The experiments are conducted on
TerraInc dataset using “L100”, “L43”, “L45” as the source domains and “L38” as the target
domain. Additional visualization on other target domains can be found in Appendix A.3.
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(a) ERM Train Loss Surface (b) FGMix Train Loss Surface (c) Test Accuracy Surface

Figure 6: 2D loss and accuracy surfaces generated using 3 models at the initialization, the end of
ERM + SWA, and the end of FGMix + SWA respectively. Note that only these 3 models are actually
on the 2D plane. Also note that since (b) is the loss surface including the mixup data, while the
mixup data is only added for FGMix training from the 3,000-th iteration onwards, the loss values
indicated for the optimization path before the 3,000-th iteration in (b) do not reflect the actual loss
during training. For direct comparison of the flatness, we use the same scale interval for (a) and (b).

Figure 5: We plot for 4 methods
the square loss difference between
the minimizer and its neighbour-
hoods at distance γ = 1, ..., 10.
The value is averaged over 50 ran-
dom directions.

Flatness Analysis We compare the flatness of FGMix min-
imizer with that of ERM, random mixup (i.e., variant A) and
gradient-based similarity mixup (i.e., variant C), for both w/o
and w/ SWA. Following Izmailov et al. (2018); Cha et al.
(2021), for each method, we plot the square loss difference be-
tween the minimizer φ∗ and its neighbourhoods φ′ at distance
γ, i.e., E‖φ∗−φ′‖=γ [L(φ∗) − L(φ′)]2, for γ = 1, ..., 10. The
expectation is approximated by averaging over 50 randomly
sampled directions. Note that for ERM, the loss is based on
the original training data, while for variant A, variant C and
FGMix, the loss is based on the mixture of original and mixup
data. Figure 5 shows the plots for w/o and w/ SWA. We see that
applying SWA results in flatter minima for all methods. Com-
paring ERM with variant A and C, we see that simply adding
mixup data yields flatter loss surface. Our FGMix explicitly
optimized for smaller loss difference further flattens the min-
ima compared to its variants.

Loss Surface & Optimization Path To observe how the generated data affects the optimization,
we plot the 2D loss surface of the original training data (i.e., ERM) as well as the one after adding
the generated data4 (i.e., FGMix). We also plot the accuracy surface of the test data to visualize
the distribution shifts from the training domains. Note that we include the generated data for model
training only from the 3,000-th iteration onwards, hence ERM and FGMix will have the exact same
path for the first 2,999 steps, and start to diverge from the 3,000-th step. We consider the original
optimization paths of ERM and FGMix and the ones with SWA, as weight averaging helps stablize
the optimization paths and converge to better minima. To generate the 2D loss surface, we follow
Izmailov et al. (2018) by choosing 3 models to compute the orthonormal basis of the 2D plane (more
details included in Appendix A.4). For better span of the 2D perspective, the 3 models selected are
1) at the initialization, 2) at the end of ERM + SWA, and 3) at the end of FGMix + SWA.

Figure 6 shows the train loss surfaces of ERM and FGMix and the respective optimization paths
(14a & 14b), and the test accuracy surface with both paths on it (14c). Firstly, we observe that
the loss surface of FGMix is wider and flatter. Comparing the loss surface of ERM with the test
accuracy surface, we see that there is a clear shift in optimum. With wider minimum in the FGMix
loss surface, the test maximum is better covered, and the optimization converges to a point with
higher test accuracy (i.e., in 14c, FGMix + SWA terminates at a darker region than ERM + SWA).

5 CONCLUSION AND DISCUSSION

In this work, we explore a mixup method with data extrapolation. We propose a weight genera-
tion policy named FGMix, which computes instance weights based on gradients and learns towards
flatter minima. We also employ an adversarial loss for regularization. Extensive experiments on
the DomainBed benchmark demonstrates FGMix’s effectiveness. Perhaps the major limitation of
FGMix is the large variance caused by data extrapolation, as we lack strategies to direct the extrap-
olation towards the expected region. In the future, we will consider exploiting the domain-specific
information as well as the source domain relations to design a more effective extrapolation strategy.

4The mixup data used here is generated by a well-trained Aω (i.e., the model at the last iteration).
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6 REPRODUCIBILITY STATEMENT

Our code can be accessed at:

https://anonymous.4open.science/r/FGMix-C701

Some general dataset and implementation information can be found immediately under Section 4.
Detailed descriptions of the hyper-parameters settings of our method and the reproduced baselines
are included in Appendix B.

7 ETHICS STATEMENT

Since the proposed algorithm addresses a general domain generalization problem, we do not foresee
any potential ethic issue that may be caused by the algorithm itself. Regarding the public assets
used in this study (e.g., codes and datasets), we include their licenses in Appendix C. In addition,
we notice that the PACS dataset used in our experiments contains some individual photographs
under the “human” category, which may be regarded as sensitive personal information.
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 FULL RESULTS FOR OVERALL COMPARISON

Table 3: Overall comparison of selected algorithms on PACS.

Algorithm A C P S Avg.

ERM (Vapnick, 1998) 84.7±0.4 80.8±0.6 97.2±0.3 79.3±1.0 85.5

Mixup-based
Methods

Mixup (Wang et al., 2020) 86.1±0.5 78.9±0.8 97.6±0.1 75.8±1.8 84.6
Manifold Mixup† (Verma et al., 2019) 88.8±0.6 80.9±0.9 95.8±0.7 79.8±0.1 86.2
MixStyle† (Zhou et al., 2020b) 83.7±0.1 80.7±3.7 95.5±1.2 81.4±2.6 85.3
MetaMixup† (Mai et al., 2021) 84.9±1.5 79.6±0.6 96.3±0.9 80.1±1.4 85.2

Gradient-based
Methods

PCGrad† (Yu et al., 2020) 85.9±1.0 80.4±0.1 95.5±0.1 78.2±2.2 85.0
AND-Mask (Parascandolo et al., 2020) 85.3±1.4 79.2±2.0 96.9±0.4 76.2±1.4 84.4
Fish (Shi et al., 2021) - - - - 85.5
Fishr (Rame et al., 2021) 88.4±0.2 78.7±0.7 97.0±0.1 77.8±2.0 85.5

Augmentation
Methods

L2A-OT† (Zhou et al., 2020a) 87.9±1.5 81.4±2.3 96.7±1.3 77.2±2.4 85.8
CNSN† (Tang et al., 2021) 86.7±0.2 80.2±1.1 96.2±0.7 79.2±1.5 85.6
DDG† (Zhang et al., 2022) 87.4±1.2 79.2±1.8 97.4±1.2 77.3±2.1 85.3

DomainBed
SOTA

SelfReg (Kim et al., 2021) 87.9±1.0 79.4±1.4 96.8±0.7 78.3±1.2 85.6
SagNet (Nam et al., 2021) 87.4±1.0 80.7±0.6 97.1±0.1 80.0±0.4 86.3
CORAL (Sun & Saenko, 2016) 88.3±0.2 80.0±0.5 97.5±0.3 78.8±1.3 86.2

FGMix (ours) 87.2±1.0 81.2±1.0 97.9±0.8 80.2±1.4 86.6

Combined with flatness-aware solver SWA (Izmailov et al., 2018; Arpit et al., 2021)

ERM + SWA† 88.1±0.6 82.0±0.6 96.9±0.5 80.8±0.2 87.0
SelfReg + SWA 85.9±0.6 81.9±0.4 96.8±0.1 81.4±0.6 86.5
CORAL + SWA† 87.6±0.3 83.1±0.7 97.5±0.2 81.6±0.8 87.5
FGMix + SWA (ours) 90.4±0.9 83.0±0.7 97.8±0.4 82.8±0.6 88.5

Table 4: Overall comparison of selected algorithms on VLCS.

Algorithm C L S V Avg.

ERM (Vapnick, 1998) 97.7±0.4 64.3±0.9 73.4±0.5 74.6±1.3 77.5

Mixup-based
Methods

Mixup (Wang et al., 2020) 98.3±0.6 64.8±1.0 72.1±0.5 74.3±0.8 77.4
Manifold Mixup† (Verma et al., 2019) 97.4±1.3 63.8±1.9 73.7±0.0 72.0±1.3 76.7
MixStyle† (Zhou et al., 2020b) 97.9±0.7 63.3±1.7 70.7±0.2 77.5±0.4 77.4
MetaMixup† (Mai et al., 2021) 98.6±1.2 63.4±0.8 72.8±0.1 76.7±1.1 77.9

Gradient-based
Methods

PCGrad† (Yu et al., 2020) 98.1±0.1 66.2±0.1 70.1±1.1 75.7±1.9 77.5
AND-Mask (Parascandolo et al., 2020) 97.8±0.4 64.3±1.2 73.5±0.7 76.8±2.6 78.1
Fish (Shi et al., 2021) - - - - 77.8
Fishr (Rame et al., 2021) 98.9±0.3 64.0±0.5 71.5±0.2 76.8±0.7 77.8

Augmentation
Methods

L2A-OT† (Zhou et al., 2020a) 98.2±0.8 64.1±0.4 71.6±1.5 75.5±0.8 77.4
CNSN† (Tang et al., 2021) 97.9±0.4 65.2±1.3 69.8±1.4 75.6±0.7 77.1
DDG† (Zhang et al., 2022) 98.5±0.9 64.2±1.7 70.2±0.8 74.3±1.4 76.8

DomainBed
SOTA

SelfReg (Kim et al., 2021) 96.7±0.4 65.2±1.2 73.1±1.3 76.2±0.7 77.8
SagNet (Nam et al., 2021) 97.9±0.4 64.5±0.5 71.4±1.3 77.5±0.5 77.8
CORAL (Sun & Saenko, 2016) 98.3±0.1 66.1±1.2 73.4±0.3 77.5±1.2 78.8

FGMix (ours) 97.4±0.6 64.3±1.1 72.7±0.8 77.3±0.5 77.9

Combined with flatness-aware solver SWA (Izmailov et al., 2018; Arpit et al., 2021)

ERM + SWA† 97.0±0.9 64.3±0.8 72.4±0.6 75.2±0.1 77.2
SelfReg + SWA 97.4±0.4 63.5±0.3 72.6±0.1 76.7±0.7 77.5
CORAL + SWA† 98.6±0.3 63.2±0.2 72.8±0.2 78.2±1.1 78.2
FGMix + SWA (ours) 98.2±0.6 63.3±0.1 75.1±0.4 78.6±1.6 78.8
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Table 5: Overall comparison of selected algorithms on OfficeHome.

Algorithm A C P R Avg.

ERM (Vapnick, 1998) 61.3±0.7 52.4±0.3 75.8±0.1 76.6±0.3 66.5

Mixup-based
Methods

Mixup (Wang et al., 2020) 62.4±0.8 54.8±0.6 76.9±0.3 78.3±0.2 68.1
Manifold Mixup† (Verma et al., 2019) 61.6±0.8 55.1±3.1 75.6±0.2 77.0±0.0 67.3
MixStyle† (Zhou et al., 2020b) 61.7±0.6 53.3±1.6 76.3±1.0 77.8±0.5 67.3
MetaMixup† (Mai et al., 2021) 63.5±1.1 54.6±0.4 75.9±0.9 78.7±0.4 68.2

Gradient-based
Methods

PCGrad† (Yu et al., 2020) 60.6±1.1 52.1±1.7 74.4±0.6 74.0±0.3 65.5
AND-Mask (Parascandolo et al., 2020) 59.5±1.2 51.7±0.2 73.9±0.4 77.1±0.2 65.6
Fish (Shi et al., 2021) - - - - 68.6
Fishr (Rame et al., 2021) 62.4±0.5 54.4±0.4 76.2±0.5 78.3±0.1 67.8

Augmentation
Methods

L2A-OT† (Zhou et al., 2020a) 64.5±1.0 53.8±2.8 76.2±1.3 77.9±1.1 68.1
CNSN† (Tang et al., 2021) 63.1±0.7 53.2±2.1 74.1±1.3 78.6±0.6 67.3
DDG† (Zhang et al., 2022) 63.7±0.8 54.5±1.2 75.9±1.0 78.2±0.9 68.1

DomainBed
SOTA

SelfReg (Kim et al., 2021) 63.6±1.4 53.1±1.0 76.9±0.4 78.1±0.4 67.9
SagNet (Nam et al., 2021) 63.4±0.2 54.8±0.4 75.8±0.4 78.3±0.3 68.1
CORAL (Sun & Saenko, 2016) 65.3±0.4 54.4±0.5 76.5±0.1 78.4±0.5 68.7

FGMix (ours) 64.2±1.9 55.3±1.7 77.1±0.5 79.1±0.8 68.9

Combined with flatness-aware solver SWA (Izmailov et al., 2018; Arpit et al., 2021)

ERM + SWA† 65.7±1.1 56.2±0.4 77.3±0.1 78.9±0.6 69.5
SelfReg + SWA 64.9±0.8 55.4±0.6 78.4±0.2 78.8±0.1 69.4
CORAL + SWA† 68.3±0.2 57.0±0.0 77.9±0.3 79.7±0.0 70.7
FGMix + SWA (ours) 67.9±0.6 58.1±0.5 78.9±0.2 80.6±0.1 71.4

Table 6: Overall comparison of selected algorithms on TerraIncognita.

Algorithm L100 L38 L43 L46 Avg.

ERM (Vapnick, 1998) 49.8±4.4 42.1±1.4 56.9±1.8 35.7±3.9 46.1

Mixup-based
Methods

Mixup (Wang et al., 2020) 59.6±2.0 42.2±1.4 55.9±0.8 33.9±1.4 47.9
Manifold Mixup† (Verma et al., 2019) 57.7±2.9 42.4±3.0 55.8±0.4 39.2±1.9 48.8
MixStyle† (Zhou et al., 2020b) 53.9±0.6 42.3±0.9 53.2±2.7 37.6±0.1 46.8
MetaMixup† (Mai et al., 2021) 53.2±1.7 43.7±2.6 54.5±1.9 36.9±1.1 47.1

Gradient-based
Methods

PCGrad† (Yu et al., 2020) 55.9±2.0 43.2±3.8 56.4±2.5 37.7±1.0 48.3
AND-Mask (Parascandolo et al., 2020) 50.0±2.9 40.2±0.8 53.3±0.7 34.8±1.9 44.6
Fish (Shi et al., 2021) - - - - 45.1
Fishr (Rame et al., 2021) 50.2±3.9 43.9±0.8 55.7±2.2 39.8±1.0 47.4

Augmentation
Methods

L2A-OT† (Zhou et al., 2020a) 58.7±2.0 43.5±2.7 54.8±1.9 37.4±1.8 48.6
CNSN† (Tang et al., 2021) 58.2±1.9 43.2±2.1 57.1±1.3 35.2±1.1 48.4
DDG† (Zhang et al., 2022) 59.6±3.0 41.2±2.4 56.0±1.8 33.9±1.2 47.7

DomainBed
SOTA

SelfReg (Kim et al., 2021) 48.8±0.9 41.3±1.8 57.3±0.7 40.6±0.9 47.0
SagNet (Nam et al., 2021) 53.0±2.9 43.0±2.5 57.9±0.6 40.4±1.3 48.6
CORAL (Sun & Saenko, 2016) 51.6±2.4 42.2±1.0 57.0±1.0 39.8±2.9 47.6

FGMix (ours) 53.7±3.7 45.0±0.7 56.9±0.9 40.6±1.1 49.0

Combined with flatness-aware solver SWA (Izmailov et al., 2018; Arpit et al., 2021)

ERM + SWA† 53.5±0.9 47.6±0.8 58.2±0.4 41.0±0.8 50.1
SelfReg + SWA 56.8±0.9 44.7±0.6 59.6±0.3 42.9±0.8 51.0
CORAL + SWA† 55.6±0.5 48.1±0.7 58.5±0.1 42.2±1.0 51.1
FGMix + SWA (ours) 55.7±1.5 49.4±1.0 60.6±0.4 43.2±0.8 52.2
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Table 7: Overall comparison of selected algorithms on DomainNet.

Algorithm clip info paint quick real sketch Avg.

ERM (Vapnick, 1998) 58.1±0.3 18.8±0.3 46.7±0.3 12.2±0.4 59.6±0.1 49.8±0.4 40.9

Mixup-based
Methods

Mixup (Wang et al., 2020) 55.7±0.3 18.5±0.5 44.3±0.5 12.5±0.4 55.8±0.3 48.2±0.5 39.2
Manifold Mixup† (Verma et al., 2019) 60.7±0.4 19.4±0.1 47.1±0.3 11.4±0.2 59.6±0.6 48.7±0.2 41.2
MixStyle† (Zhou et al., 2020b) 59.9±0.2 19.0±0.3 47.0±0.1 11.5±0.1 58.9±0.4 48.8±0.0 40.9
MetaMixup† (Mai et al., 2021) 60.7±0.3 20.0±0.5 47.1±0.4 12.8±0.1 60.1±0.1 50.1±0.3 41.8

Gradient-based
Methods

PCGrad† (Yu et al., 2020) 60.3±0.2 18.1±0.4 47.0±0.4 12.9±0.1 59.8±0.0 48.4±0.3 41.1
AND-Mask (Parascandolo et al., 2020) 52.3±0.8 16.6±0.3 41.6±1.1 11.3±0.1 55.8±0.4 45.4±0.9 37.2
Fish (Shi et al., 2021) - - - - - - 42.7
Fishr (Rame et al., 2021) 58.2±0.5 20.2±0.2 47.7±0.3 12.7±0.2 60.3±0.2 50.8±0.1 41.7

Augmentation
Methods

L2A-OT† (Zhou et al., 2020a) 58.7±0.3 18.5±0.4 46.2±0.5 11.3±0.7 57.6±0.8 48.9±0.2 40.2
CNSN† (Tang et al., 2021) 60.2±0.2 19.0±0.1 46.3±0.5 11.6±0.3 58.2±0.6 48.7±0.4 40.7
DDG† (Zhang et al., 2022) 59.7±0.5 18.7±0.2 45.1±0.9 12.1±0.4 56.8±0.3 47.5±0.7 40.0

DomainBed
SOTA

SelfReg (Kim et al., 2021) 58.5±0.1 20.7±0.1 47.3±0.3 13.1±0.3 58.2±0.2 51.1±0.3 41.5
SagNet (Nam et al., 2021) 57.7±0.3 19.0±0.2 45.3±0.3 12.7±0.5 58.1±0.5 48.8±0.2 40.3
CORAL (Sun & Saenko, 2016) 59.2±0.1 19.7±0.2 46.6±0.3 13.4±0.4 59.8±0.2 50.1±0.6 41.5

FGMix (ours) 61.7±0.2 19.8±0.6 46.5±0.4 12.9±0.1 61.1±0.4 50.2±0.9 42.0

Combined with flatness-aware solver SWA (Izmailov et al., 2018; Arpit et al., 2021)

ERM + SWA† 62.0±0.1 21.0±0.0 50.8±0.2 13.6±0.3 62.7±0.1 54.0±0.2 44.0
SelfReg + SWA 62.4±0.1 22.6±0.1 51.8±0.1 14.3±0.1 62.5±0.2 53.8±0.3 44.6
CORAL + SWA† 63.0±0.3 22.1±0.5 51.7±0.4 14.9±0.5 63.0±0.3 53.1±0.1 44.6
FGMix + SWA (ours) 63.8±0.3 21.1±0.6 52.5±0.2 15.0±0.1 64.0±0.2 54.4±0.2 45.1
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A.2 FULL RESULTS FOR ABLATION STUDY

Table 8: Ablation study of FGMix on PACS w/o SWA.

Variant
Components w/o SWA

similarity-
based weights

gradient-
based similarity

scaling
& shifting Lflat Ladv A C P S Avg.

A (baseline) 85.2±1.0 80.0±0.1 95.4±0.1 79.7±2.0 84.3

B ! 84.8±0.4 80.7±1.2 95.9±0.4 80.0±0.8 85.4
C ! ! 86.9±0.1 79.8±0.3 96.0±0.0 79.3±0.5 85.5
D ! ! ! 88.0±1.2 80.2±1.6 95.3±0.5 79.7±0.3 85.8
E ! ! ! ! 88.2±0.1 81.6±3.1 96.3±1.2 79.8±2.0 86.5

FGMix (ours) ! ! ! ! ! 87.2±1.0 81.2±1.0 97.9±0.8 80.2±1.4 86.6

Table 9: Ablation study of FGMix on TerraIncognita w/o SWA.

Variant
Components w/o SWA

similarity-
based weights

gradient-
based similarity

scaling
& shifting Lflat Ladv L100 L38 L43 L46 Avg.

A (baseline) 52.0±1.0 43.1±1.5 57.8±0.8 39.5±0.4 48.1

B ! 50.0±0.7 44.8±0.4 57.3±1.2 39.8±0.5 48.0
C ! ! 50.3±1.3 44.9±2.1 57.9±1.4 38.8±0.8 48.0
D ! ! ! 52.5±2.1 44.6±1.4 56.8±0.8 41.4±1.6 48.8
E ! ! ! ! 52.5±3.1 43.7±1.8 58.3±2.1 41.7±1.5 49.1

FGMix (ours) ! ! ! ! ! 53.7±3.7 45.0±0.7 56.9±0.9 40.6±1.1 49.0

Table 10: Ablation study of FGMix on PACS w/ SWA.

Variant
Components w/ SWA

similarity-
based weights

gradient-
based similarity

scaling
& shifting Lflat Ladv A C P S Avg.

A (baseline) 87.4±0.8 81.3±1.2 96.7±0.4 81.3±0.9 86.7

B ! 88.1±0.6 82.6±1.1 97.2±0.3 81.5±0.1 87.4
C ! ! 86.9±0.4 82.7±0.5 97.4±0.1 81.9±0.3 87.9
D ! ! ! 88.5±0.7 81.6±0.6 97.2±1.0 83.5±1.4 87.7
E ! ! ! ! 89.9±1.2 81.7±1.5 96.9±0.5 84.2±1.7 88.2

FGMix (ours) ! ! ! ! ! 90.4±0.9 83.0±0.7 97.8±0.4 82.8±0.6 88.5

Table 11: Ablation study of FGMix on TerraIncognita w/ SWA.

Variant
Components w/ SWA

similarity-
based weights

gradient-
based similarity

scaling
& shifting Lflat Ladv L100 L38 L43 L46 Avg.

A (baseline) 52.6±1.2 46.6±0.7 59.7±0.6 42.0±0.8 50.2

B ! 53.9±0.8 47.3±1.4 60.0±0.9 42.5±1.6 50.9
C ! ! 53.8±0.5 48.4±0.9 60.0±1.0 43.2±0.4 51.4
D ! ! ! 54.5±1.3 48.7±0.7 60.1±0.9 42.7±1.4 51.5
E ! ! ! ! 54.4±1.9 49.2±2.1 60.4±1.2 44.0±0.9 52.0

FGMix (ours) ! ! ! ! ! 55.7±1.5 49.4±1.0 60.6±0.4 43.2±0.8 52.2
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A.3 ADDITIONAL LOSS LANDSCAPE VISUALIZATION

A.3.1 FLATNESS ANALYSIS

On TerraIncognita dataset, we compare the flatness of FGMix minimizer with that of ERM,
random mixup (i.e., variant A) and gradient-based similarity mixup (i.e., variant C) for both w/
and w/o SWA. We measure flatness by the square loss difference between the minimizer φ∗ and
its neighbourhoods φ′ at distance γ, i.e., E‖φ∗−φ′‖=γ [L(φ∗) − L(φ′)]2, for γ = 1, ..., 10. The
expectation is approximated by Monte-Carlo sampling of 50 random directions from a unit sphere.

Figures 7-10 show the results when the test domain is L100, L38, L43 and L46 respectively. In
each figure, the first row shows the results without SWA and the second row shows the results with
SWA. For each compared method, we also plot the 50 curves corresponding to the 50 sampled
directions (shown in grey colour). From the plots, we see that SWA generally leads to flatter loss
surface for all methods. Mixup methods with augmented data innately have flatter minima than
ERM, and FGMix further flatten the minima by learning the weight generation policy for mixup.
By plotting the curves for individual directions, we see that FGMix generally produces flatter loss
surface in all directions, i.e., both the mean and variance of the square loss difference are low.

Figure 7: Target: L100; Source: L38, L43, L46.

Figure 8: Target: L38; Source: L100, L43, L46.
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Figure 9: Target: L43; Source: L100, L38, L46.

Figure 10: Target: L46; Source: L100, L38, L43.
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A.3.2 LOSS SURFACE & OPTIMIZATION PATH

To observe how the generated data affects the optimization process, we plot the 2D loss surface
of the original training data (i.e., ERM) and the one after adding the generated mixup data (i.e.,
FGMix). We also plot the accuracy surface of the test data to visualize the distribution shift from
the training domains. Since we include the mixup data for training only at the later stage of training,
ERM and FGMix share the same optimization path at the beginning.

Figures 11-14 show the results when the test domain is L100, L38, L43 and L46 respectively. For
test domain L100 and L38 (shown by Figure 11 and 12), we observe clear shift in optimum between
the ERM train loss surface and the test accuracy surface. In this case, the narrow minima of ERM
train loss surface is unable to cover the maxima of test accuracy surface. On the other hand, FGMix
train loss surface yields wider and flatter minima, which better cover the test maxima. As a result,
FGMix + SWA converges to a region with better test performance than ERM + SWA. Even for the
case where the distribution shift is not significant (for test domain L43 and L46 shown by Figure
13 and 14 respectively), we observe that widening of the loss minima with FGMix will not cause
harm to the optimization results, as both ERM + SWA and FGMix + SWA converge to a region with
high test performance.

(a) ERM Train Loss Surface (b) FGMix Train Loss Surface (c) Test Accuracy Surface

Figure 11: Target: L100; Source: L38, L43, L46.

(a) ERM Train Loss Surface (b) FGMix Train Loss Surface (c) Test Accuracy Surface

Figure 12: Target: L38; Source: L100, L43, L46.

(a) ERM Train Loss Surface (b) FGMix Train Loss Surface (c) Test Accuracy Surface

Figure 13: Target: L43; Source: L100, L38, L46.

(a) ERM Train Loss Surface (b) FGMix Train Loss Surface (c) Test Accuracy Surface

Figure 14: Target: L46; Source: L100, L38, L43.
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A.4 2D LOSS/ACCURACY SURFACE CONSTRUCTION

Following Izmailov et al. (2018); Cha et al. (2021), we select 3 model weights {w1, w2, w3} at the
initialization, the end of ERM + SWA optimization path, and the end of FGMix + SWA optimization
path, respectively. Note that wi is the concatenation of vectorized θi and φi for the i-th selected
model. We define the orthogonal basis {u, v} of the 2D plane as:

u = w2 − w1, v =
(w3 − w1)− 〈w3 − w1, w2 − w1〉

‖w2 − w1‖2 · (w2 − w1)
.

The orthonormal basis of the 2D plane is û = u/‖u‖ and v̂ = v/‖v‖.

We project the optimization path onto the 2D plane by computing the coordinates of each point
on the path. That is, for the point at the j-th step, its u- and v-coordinates are 〈(wj − w1), û〉
and 〈(wj − w1), v̂〉 respectively. To plot the loss surface, we define ranges on u- and v-axes that
fully contain the optimization paths, say [u1, u2] for u-axis and [v1, v2] for v-axis. We then obtain
the model weight corresponding to each grid point in the defined range, i.e., w = w1 + aû + bv̂,
∀a ∈ [u1, u2], b ∈ [v1, v2], and compute the loss/accuracy of the entire training/test dataset using the
model weight. The loss/accuracy values are visualized with a contour plot. For direct comparison,
we use the same u, v ranges for all three plots (ERM & FGMix train loss plots and test accuracy
plot), and set the scale interval to be the same for the two train loss plots for flatness comparison.

A.5 EXPERIMENTS ON THE MONTE-CARLO SAMPLE SIZE FOR THE FLATNESS-AWARE
OBJECTIVE

To optimize the flatness-aware objective, we propose to sample 100 directions to approximately
measure the flatness in the model’s neighbourhoods. This involves computing the forward pass to
the final classification layer for 100 times at each iteration, which contributes to the bulk of the
computational cost of FGMix. To investigate whether this number can be further reduced to save
cost, we vary the sample size in {10, 30, 50, 80, 100, 150, 200} and test the performance of FGMix
(w/o SWA) on PACS. We conduct 5 trials for each case and report the mean values. The results are
shown in Table 12.

Table 12: Effects of varying the sample size for FGMix on PACS (w/o SWA).

Sample Size A C P S Avg.

10 86.3±0.8 79.7±1.0 97.6±1.1 80.2±1.0 86.0
30 87.0±1.1 79.2±1.3 97.7±0.9 80.1±1.2 86.0
50 87.2±1.3 80.4±1.3 97.8±0.6 80.5±1.1 86.5
80 86.9±1.3 81.7±0.9 97.8±0.7 80.4±1.2 86.7

100 87.2±1.0 81.2±1.0 97.9±0.8 80.2±1.4 86.6
150 87.3±0.8 80.6±1.1 97.6±1.0 81.0±0.8 86.6
200 87.2±0.7 81.4±0.8 97.8±0.6 80.7±0.9 86.8

From the results, we can see that the performance improvements from 10 to 150 are +0.0pp, +0.5pp,
+0.2pp, -0.1pp, +0.0pp, +0.2pp respectively. The largest performance gain is from 30 to 50, after
that the improvements seem to be minor. Hence, to save computational cost, we may consider reduce
the sample size from 100 to 50 without serious compromise on the performance. Nevertheless, in
this specific case, the best trade-off between efficiency and performance is to have a sample size of
80.
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B HYPER-PARAMETERS SETTINGS

For our FGMix and all the reproduced algorithms (except for DDG, which will be detailed later),
we set the batch size as 32 (due to constraint in computational resources), and tune dropout rate in
{0, 0.1, 0.5}, learning rate in {1e-5, 3e-5, 5e-5} and weight decay in {1e-4, 1e-6}, following Cha
et al. (2021).

We reproduced 7 baselines (i.e., Manifold Mixup (Verma et al., 2019), MixStyle (Zhou et al., 2020b),
MetaMixup (Mai et al., 2021), PCGrad (Yu et al., 2020), L2A-OT (Zhou et al., 2020a), CNSN (Tang
et al., 2021) and DDG (Zhang et al., 2022)) due to their lack of results on DomainBed benchmark
(Gulrajani & Lopez-Paz, 2020). We directly adopt the official implementations released by the
respective authors into the DomainBed environment (refer to appendix of Gulrajani & Lopez-Paz
(2020) for how to incorporate new algorithms into DomainBed).

For Manifold Mixup, we set α = 0.2 for beta distribution from which the interpolation constant
is sampled. For MixStyle, we set α = 0.1 for beta distribution and p = 0.5 for the probability of
applying MixStyle. As recommended, we insert the MixStyle layer after the 1st and 2nd residual
blocks. For MetaMixup, we set the learning rate for the interpolation constant to 1e-3 (similar to
our weight generation policy). PCGrad is free of additional hyper-parameters. For L2A-OT, we
adopt ResNet-50 for both the classifier and the domain discriminator used to compute the domain
divergence. Following the suggestions by the authors, we search λDomain in {0.5, 1, 2}, λCycle in {10,
20} and λCE in {1}. For CNSN, we apply both CrossNorm (2-instance mode) and SelfNorm and
insert them at the end of each residual block of ResNet-50. Following the suggestions, we set the
number of active CrossNorm layers to 1 and the probability to apply CrossNorm to 0.5 to avoid over
data augmentation. For DDG, a 2-stage procedure is adopted, where the generator is pre-trained as
a part of GANs in the first stage, and applied (and further updated) in the second stage. Following
the official implementation, the batch size is set to 2 and the number of training steps is enlarged
to 25,000 for the first stage and 10,000 for the second stage. Due to the 2-stage training and larger
number of training steps, DDG takes a much longer time to train as compared to other baselines,
making it less superior.

For our proposed FGMix, we set the iteration τ to start training and applying weight generation as
3,000, and the learning rate for weight generation policy β as 1e-3. We tune the scaling factor λ
from {1, 3, 5, 10, 20}, the neighbourhood size γ from 10Uniform(0,2) and the size of generated mixup
data as a multiple of the batch size from {1, 3, 5}. Regarding the network architecture, we use a
2-layer MLP for the similarity function Aω accompanied with tanh activation. The hidden sizes
for both layers are set to 64. The discriminator d is also a 2-layer MLP with hidden size 64. To
apply SWA, we follow Arpit et al. (2021) which suggests skipping the first few iterations and start
applying weight averaging from the 100-th iteration.
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C ASSETS

C.1 CODES

Our work mainly built upon the DomainBed code5 (Gulrajani & Lopez-Paz, 2020), which is released
under the MIT license. Our reproductions of Manifold Mixup6, MixStyle7, PCGrad8, CNSN9 and
DDG10 are modified based on the official codes released by the respective authors, which are re-
leased under MIT, BSD 3-Clause or Apache 2.0 license. For L2A-OT, we borrowed code from an
unofficial implementation11. For MetaMixup, we implemented the algorithm on our own based on
the methodology described in the paper.

C.2 DATASETS

For DomainNet (Peng et al., 2019) and OfficeHome (Venkateswara et al., 2017), we fol-
low their Fair Use Notice to conduct only non-commercial research with the datasets. For
TerraIncognita (Beery et al., 2018), it is constructed from the Caltech Camera Traps (CCT)
which is distributed under the Community Data License Agreement (CDLA) license. For VLCS
(Fang et al., 2013), we have problem finding any statements about the license or the way to obtain
consent. Though we found that it is constructed from four publicly available sources: Caltech10112,
PASCAL VOC13, LabelMe14 and SUN0915. For PACS (Li et al., 2017), we also cannot find the li-
cense or obtain the consent. It is constructed from Caltech25616, Sketchy17, TU-Berlin18 and Google
Images. We notice that PACS contains some individual photographs for the “human” category which
may be considered as personally identifiable information.

5https://github.com/facebookresearch/DomainBed
6https://github.com/vikasverma1077/manifold_mixup
7https://github.com/KaiyangZhou/mixstyle-release
8https://github.com/lucasmansilla/DGvGS
9https://github.com/amazon-research/crossnorm-selfnorm

10https://github.com/hlzhang109/DDG
11https://github.com/mousecpn/L2A-OT
12http://www.vision.caltech.edu/datasets/
13http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
14http://labelme.csail.mit.edu/Release3.0/
15http://people.csail.mit.edu/myungjin/HContext.html
16http://www.vision.caltech.edu/datasets/
17https://sketchy.eye.gatech.edu/
18https://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
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