
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Beyond the Crawl: Unmasking Browser Fingerprinting in
Real User Interactions

Anonymous Author(s)

Abstract
Browser fingerprinting is a pervasive online tracking technique
increasingly used for profiling and targeted advertising. Existing
research on fingerprinting prevalence relies heavily on automated
web crawls, which inherently struggle to replicate the nuances
of human-computer interaction. This raises concerns about the
accuracy of current understandings of real-world fingerprinting
deployments. To that end, this paper presents a user study involving
30 participants over a 10-week period, capturing telemetry data
from real browsing sessions across 3,000 top-ranked websites.

Our findings reveal that automated crawls miss nearly half
(47.8%) of the fingerprinting websites encountered by real users.
This discrepancy mainly stems from crawlers’ inability to access
authentication-protected pages, circumvent bot detection mecha-
nisms, and trigger fingerprinting scripts activated by specific user
interactions. We also identify potential new fingerprinting vectors
present in real user data but absent from automated crawls. Finally,
we evaluate the effectiveness of federated learning for training
browser fingerprinting detection models on real user data, demon-
strating superior performance to models trained solely on auto-
mated crawl data.

CCS Concepts
• Security and privacy→ Privacy-preserving protocols; Pri-
vacy protections; • Networks →Web protocol security.

Keywords
Browser Fingerprinting; Differential Privacy; Federated Learning
ACM Reference Format:
Anonymous Author(s). 2024. Beyond the Crawl: Unmasking Browser Fin-
gerprinting in Real User Interactions. In Submission to The Web Conference
(TheWebConf’25), April 28–May 2, 2025,Sydney, Australia. ACM, New York,
NY, USA, 12 pages.

1 Introduction
Browser fingerprinting is an invasive online tracking technique
widely considered a significant threat to users’ privacy [9, 26, 55].
Generally, it involves trackers using client-side device information
(e.g., hardware specifications or browser configurations) to derive
unique device identifiers and track users across multiple visits
and websites. Unlike third-party cookies, browser fingerprinting
is stateless and thus less visible to users, who have limited control
and few tools to defend against it.

Worse yet, browser fingerprinting is highly intrusive, as the
identifiers remain stable over long periods of time [48] and can
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be effective even when using incognito mode [4]. Countermea-
sures can be tricky to deploy after detection, as they often lead to
significant website breakage and affect user experience [17, 31],
not to mention that the unique identifier may have already been
revealed at that point. With the increasing prevalence of finger-
printing [31] and the phasing out of third-party cookies by major
browsers, countering invasive browser fingerprinting has become
crucial to protecting user privacy on the modern Web.

Detecting fingerprinting attempts, often implemented through
JavaScript scripts, is a prerequisite for effective mitigation. Ini-
tially, these scripts were mainly identified through simple heuris-
tics [1, 27] and manually curated blocklists [20, 23, 25]; however,
these are hard to maintain and often narrowly defined to reduce
false positives, thus missing many fingerprinting scripts in prac-
tice. Consequently, machine learning (ML) based detectors have
become increasingly popular [18, 29, 31] and can detect significantly
more fingerprinting scripts with comparable false positive rates to
heuristics. Overall, these techniques generally rely on centralized,
automated crawlers instructed to visit a large number of websites
to collect scripts for analysis and fingerprinting detection.

One major limitation of automated crawlers is their limited
ability to faithfully replicate genuine user behaviors and interac-
tions. Although recent work has made progress toward emulating
some degree of user interactions (such as accepting cookie ban-
ners [34, 51] and emulating user interests in browsing patterns [34]),
many key actions remain firmly outside of the reach of automated
crawlers. For instance, these often fail to reliably solve CAPTCHAs,
evade bot detectors, login, access websites behind paywalls, etc.
This leads to incomplete website coverage and potentially missed
fingerprinting scripts. For example, Iqbal et al. [31]’s automated
crawl failed to visit 11.9% of top-ranked websites.

To address this limitation, prior work has investigated the feasi-
bility of training ML models on real-user browsing sessions. Evi-
dently, this needs to be done in a privacy-preserving way to avoid
exposing users’ browsing histories, etc. Annamalai et al. [8] recently
proposed FP-Fed, a system relying on differentially private feder-
ated learning (DP-FL) to collaboratively train ML models on the
combined browsing sessions of many users while providing strong
formal privacy guarantees. Although FP-Fed can train models that
achieve good performance even at moderate levels of privacy, the
authors only tested it on a dataset derived from an automated crawl,
with unclear implications for its performance in the real world.

Technical Roadmap. In this paper, we investigate the prevalence
and distribution of browser fingerprinting in real-user browsing
sessions, as opposed to automated crawls used in prior work [8, 27,
31]. Specifically, we collect real-world data from a 10-week study
(June-August 2024) involving 30 participants who browsed the
Web with their own devices and reported telemetry via a Chrome
extension. This enabled us to collect browser fingerprinting signals
from real browsing sessions across 3,000 top-ranked websites.

1
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This study allows us to shed light on two distinct aspects of
fingerprinting. First, we compare the prevalence and distribution
of browser fingerprinting in a real-world dataset to an equivalent
automated crawl of the same 3,000 websites. Second, we conduct a
comparative analysis of the ML performance of browser fingerprint-
ing detectors trained on the automated crawl and the real-world
dataset in a distributed and privacy-preserving way.
Main Findings. Overall, our study and experimental analysis yield
three interesting findings:
• Surprisingly, almost half (47.8%) of fingerprinting websites iden-

tified from real-user browsing sessions aremissed by automated
crawls. This is due to three main reasons: (1) authentication
pages that are typically not crawled by automated crawlers,
(2) bot detection scripts that track real user interaction before
browser fingerprinting is triggered, and (3) cookie banners that
require user consent before performing fingerprinting.

• We discover potential new fingerprinting vectors from the real-
user browsing sessions that were not previously found in the
automated crawls.

• We show that ML models trained privately on real-user brows-
ing sessions can achieve comparable or even better performance
than non-private models trained on automated crawls alone
while providing privacy and learning the behaviors of many
more fingerprinting scripts. Specifically, in our experiments,
the former achieves an Area Under the Precision-Recall Curve
(AUPRC) of 0.982 at a privacy level of 𝜀 = 5, compared to an
AUPRC of 0.971 for the latter.

Overall, our work paves the way for large-scale deployment
of more effective, dynamic, and robust browser fingerprinting de-
tection relying on a scalable, distributed, and privacy-preserving
infrastructure geared to be readily integrated into modern browsers.

2 Background & Related Work
In this section, we review browser fingerprinting and differentially
private federated learning, along with relevant prior work.

2.1 Browser Fingerprinting
Browser fingerprinting is a tracking technique usually deployed
through Javascript running on a user’s browser to build a unique
user identifier. This user identifier typically consists of high-entropy
device information (e.g., screen size, GPU model) used to produce
highly unique and stable user identifiers. Unlike third-party cookies,
browser fingerprinting is stateless, i.e., no data is stored on the
user’s device and, therefore, cannot be easily detected or mitigated.
Although browser fingerprinting has been known to be used for
legitimate purposes, e.g., Web authentication [5, 33, 51] or fraud
detection [30, 35], it is often used for online tracking and to serve
targeted ads [34]. As a result, browser fingerprinting is widely
considered a significant threat to user privacy [55], thus prompting
many browser vendors to deploy countermeasures [9, 12, 26].

Although there are well-documented cases of fingerprinting in
the wild, we are not aware of a widely accepted formal definition
of fingerprinting [31]. Mayer [36] was the first to observe that the
uniqueness and customization of browsing environments (which
they called “quirkiness”) can be abused to identify users. The large-
scale Panopticlick experiment later conducted by the late Peter

Eckersley [24] showed that most browsing sessions (83.6%) have
unique fingerprints. While these results are concerning on their
own, the fingerprinting surface considered by this early work was
relatively limited to information collected from simple Javascript
APIs like the Screen and NavigatorAPIs and HTTP headers. More
recently, as more features and APIs were added to the Javascript
specification, fingerprinting has begun to include Canvas [40], Au-
dio [27], WebRTC [27], WebGL [13], Battery Status [45], Mobile
Sensor [11], and even the Web Bluetooth APIs [10]. With such a
large fingerprinting surface, it is often difficult to pinpoint the intent
behind the use of these various APIs in arbitrary Javascript scripts,
thus making it challenging to specify a single comprehensive defi-
nition of fingerprinting.

Nevertheless, we follow prior work by Iqbal et al. [31] and
take a conservative approach to defining fingerprinting based on
a well-known high precision (low false positive rate) heuristic.
Specifically, we exclude the simple curation of properties from the
Navigator and Screen APIs and focus on the four most obvious
forms of fingerprinting (Canvas, Canvas Font, Audio, andWebRTC).
This definition not only minimizes the probability of flagging non-
fingerprinting scripts but is also helpful in training ML models that
generalize well to other forms of fingerprinting as well [8].

Next, we briefly describe the four main types of fingerprinting
identified by the heuristics [27] and their associated criteria.
Canvas. Scripts exploit differences in how fonts are rendered across
devices. Criteria:

(1) text is written to the canvas element using the fillText
or strokeText method;

(2) style is applied with fillStyle or strokeStyle method;
(3) toDataURL is called to extract the image from the canvas;

and
(4) save, restore or addEventListenermethods are not called.

Canvas Font. Scripts access the list of fonts installed on a device.
Criteria:

(1) font property of canvas element is set to more than 20
different fonts; and

(2) measureText is called more than 20 times.
WebRTC. Scripts rely on the uniqueness of peers in the WebRTC
protocol [41]. Criteria:

(1) createDataChannel or createOffer method is called on
a WebRTC peer connection; and

(2) onicecandidate or localDescription method is called.
AudioContext. Scripts exploit differences in the different hardware
processing audio. Criteria:

(1) either createOscillator, createDynamicsCompressor,
destination, startRendering, or oncomplete are called.

2.2 Detecting Browser Fingerprinting
Early research on browser fingerprinting detection has mainly re-
lied on manually curated blocklists, e.g., EasyPrivacy [23], Privacy
Badger [25], and Disconnect [20]. However, as fingerprinting ven-
dors and scripts constantly evolve, it can be challenging to maintain
these lists continuously.
Heuristics-based detection. Manual analysis of fingerprinting
scripts by Acar et al. [2] and Roesner et al. [49] paved the way

2
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for the first heuristic that detected canvas fingerprinting automat-
ically [1]. More precisely, Acar et al. [2] monitored and analyzed
the arguments and return values of the fillText, strokeText,
and toDataURL methods exposed by the Canvas API. Three addi-
tional types of fingerprinting (Canvas Font, WebRTC, and Audio)
were later added by Englehardt and Narayanan [27]. This combined
heuristic is now widely used as a prominent indicator of finger-
printing [8, 18, 31, 51] as it is known to produce very few false
positives, which is an important consideration to prevent falsely
flagging fingerprinting scripts. However, as noted by Iqbal et al.
[31], it might miss many fingerprinting scripts in practice since it
is defined very narrowly to achieve high precision. Furthermore,
keeping the heuristic up-to-date with the latest Javascript APIs and
fingerprinting vectors can be challenging.
ML-based detection.Methods based on machine learning solve
the problem of manually maintaining blocklists and heuristics by
learning fingerprinting behaviors in the wild. Ikram et al. [29]
trained a one-class SVM on static features directly extracted from
scripts’ source code. However, Iqbal et al. [31] observed that code is
often obfuscated, making it difficult to reliably learn fingerprinting
behaviors from static features alone; therefore, they additionally
trained a Decision Tree classifier on dynamic features extracted
from the execution trace of a given script. By monitoring and ana-
lyzing the number of times a script calls each Javascript API, along
with the associated arguments and return values, Iqbal et al. [31]
trained a robust browser fingerprinting detector that achieves both
high precision and high recall.

Recently, Annamalai et al. [8] proposed going beyond centralized
models that rely on a large automated crawl, which cannot replicate
human interaction and, therefore, might miss fingerprinting scripts
in thewild. They proposed FPFed, a system geared to train a browser
fingerprint detection model collaboratively on real users’ browsing
sessions while preserving privacy using the federated learning
paradigm [37] (see below). However, Annamalai et al. [8] did not
actually evaluate their system on real-world user behavior but opted
to test their system by simulating real-world users on an automated
crawl. Our work aims to fill this research gap by collecting browsing
data from real users and evaluating the FP-Fed system on a real-
world dataset instead.

2.3 Differentially Private Federated Learning
The standard way to train models collaboratively on multiple users’
data while providing formal privacy guarantees is through differ-
entially private federated learning (DP-FL). More precisely, DP-FL
combines Federated Learning (FL) and Differential Privacy (DP).
Federated Learning. Typically, centralized ML models are trained
on datasets stored at a single entity. However, in many scenarios,
gathering data from multiple users may not be possible due to pri-
vacy, security, and/or efficiency concerns. To this end, Federated
Learning (FL) [37] introduces a distributed learning approach allow-
ing users to train an ML model collaboratively without disclosing
their (potentially sensitive) training data.

In FL, users train local models on their individual training data,
sharing only their model updates (and not the raw training data)
with a server. The server aggregates the model updates to build
a global model, which is then propagated back to the users. This

process then repeats until the global model converges. Although
FL ensures that the server never sees the raw training data, prior
work has shown that the model updates can still leak sensitive
information about users’ training data [39]. Therefore, recent work
has focused on providing formal privacy guarantees.
Differential Privacy (DP). DP is the standard framework for
defining algorithms that provide theoretical upper bounds on the
loss of privacy incurred by data subjects due to the output of an
algorithm [22].

Definition 2.1 (Differential Privacy (DP)). A randomized mech-
anism M : D → R is (𝜀, 𝛿)-differentially private if for any two
neighboring datasets 𝐷, 𝐷′ ∈ D and 𝑆 ⊆ R

Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 Pr[M(𝐷′) ∈ 𝑆] + 𝛿

The privacy guarantees provided by a differentially private al-
gorithm are characterized by the parameters 𝜀 and 𝛿 . The privacy
parameter, 𝜀, is often referred to as the privacy budget and ranges
from 0 to∞, with lower values denoting better privacy. Whereas
𝛿 quantifies the probability that the mechanism fails to deliver
any guarantees; typically, 𝛿 is fixed to some asymptotically small
number (e.g., 10−5).
DP-FL. DP can be combined with FL in many ways to provide
strong, formal privacy guarantees in the FL setting. One way is by
adding statistical noise when the server aggregates the model up-
dates, aka Central DP (CDP). Under this regime, the model is trusted
with the aggregated model updates but not the raw sensitive data.
CDP guarantees that it is impossible (up to the privacy parameter
𝜀) to infer whether or not data from a user was used to train the
global model based on the aggregated and noised model updates.
Examples of CDP instantiations for DP-FL include next-word pre-
diction [38], medical image analysis [3], and network analysis [42].
Other approaches use Local DP [52, 54] or Distributed DP [32] to
minimize trust assumptions in the server.

In this work, we consider the FP-Fed [8] setting, which uses
CDP, as it provides a good trade-off between utility, convergence
speed, and the amount of noise required for the desired level of
privacy. (A detailed overview of the FP-Fed system can be found in
Appendix A.)

3 Methodology
Next, we discuss our methodology to collect browser fingerprinting
scripts from real users’ browsing sessions. We describe the websites
we collect data from and howwe recruit participants, collect website
telemetry, and detect fingerprinting.We also discuss relevant ethical
considerations with respect to collecting and analyzing the data.

3.1 Websites of Interest
Ideally, to capture real user interactions, we would want to collect
and analyze telemetry data from all websites visited by participants.
However, browsing histories are highly sensitive, and collecting
them might violate participants’ privacy, discourage them from
contributing to the study, or even introduce biases in the data col-
lection. (Note that while FL-based detection would ensure that raw
telemetries are not disclosed, we do need them for our experiments
when measuring accuracy and finding discrepancies).
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As a result, we opt to collect telemetry from a selected set of
websites–more specifically, the top-ranked websites according to
the Chrome User Experience Report (CrUX) from April 2024 [14].
Overall, we collect data from 3K websites sampled from the top
5K ranked websites in the CrUX report: specifically, we take the
top 1K ranked websites and a random 2K sample of top 1K to 5K
ranked websites. To further limit the amount of sensitive informa-
tion collected, we use Cloudflare’s Domain Intelligence API [15] to
detect and filter out websites containing adult or potentially harm-
ful content. Specifically, we exclude websites from the following
categories (as defined by the Domain Intelligence API): 1) Adult
Themes, 2) Gambling, 3) Questionable Content, 4) Security Threats,
5) Violence, and 6) Security Risks. Out of the top 5K ranked websites
from the CrUX ranking, we excluded 948 such websites, before
sampling the 3K websites that we use in our study.

3.2 Participant Recruitment
We recruited 30 participants (aged 18 to 60) who used the Chrome
browser through theAmazonMechanical Turk (MTurk) platform [6].
The “Human Intelligence Task” (HIT), i.e., the ad used to recruit
users on MTurk, can be found in Appendix B.

Each participant was instructed to download a Chrome extension
we developed and given a password to authenticate on the extension.
As mentioned above, for privacy purposes, each participant was
provided with a pre-defined set of 100 websites to visit instead of
collecting data from their “natural” browsing sessions. (Note that
the extension only collects data from this list.)

For each website, the participants were instructed to visit at least
ten sub-pages (including login pages), accept cookie banners, and
solve CAPTCHAs when presented to simulate realistic browsing
sessions. The extension collected the telemetry from the websites
in the background and transmitted it to our server. Other than
the website telemetry required for the purpose of fingerprinting
detection, no other data (e.g., demographics, name, email) was
collected. Upon successfully visiting all of the given websites, the
participants were given a “Task Completion Code” by the extension,
which was then used to compensate them through MTurk. In total,
the participants received an average of USD 20.33 (excluding taxes
and fees), which exceeds the federal minimum wage.

Although only a relatively small number of participants were
recruited, we emphasize that the focus of this study is not to draw
conclusions about the distribution or popularity of websites as vis-
ited by real users in their natural browsing behaviors. Specifically,
the intent of this study is to investigate to what extent automated
crawlersmiss fingerprinting scripts due to their inability to replicate
real human interactions in practice. To that end, this study could
have been equivalently performed by a single participant crawl-
ing all 3K websites, but this would have made it hard to recruit a
participant to complete the task successfully.

Data Quality. Overall, the participants visited a total of 14,895
unique URLs. In Figure 1, we plot the distribution of unique URLs
visited by each participant. While the extension verified that each
participant visited all of the websites assigned to them before pro-
viding the “Task Completion Code,” we did not verify if each partic-
ipant did visit at least ten sub-pages on each website as this would
have been difficult to do so in general (e.g., single page applications
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Figure 1: Distribution of unique URLs visited by each study
participant.

may not redirect to different URLs). On average, each participant
visited 506 unique URLs. This is five times the number of unique
URLs visited by automated crawlers in prior work [27, 31].

3.3 Collecting Scripts and Extracting Features
Key to identifying browser fingerprinting is dynamically analyzing
scripts that are loaded by the websites [31, 43]. To collect this
data, as mentioned, we built a Chrome extension that monitors
and records the Javascript APIs accessed by each script loaded
on a website, along with the associated arguments and processed
return values. Our extension then processes the collected data and
sends telemetry to our server, where we then analyze it and detect
fingerprinting scripts. The extension only collects data from the
domains corresponding to the list of websites assigned to each
participant, i.e., it does not gather data from other websites, which
the participant might visit in other browsing sessions.

We built our extension based on the instrumentation developed
by Iqbal et al. [31] for automated crawls with the Mozilla Firefox
browser. We adapted the instrumentation to work with the Google
Chrome browser instead, extending it to monitor Chrome-specific
APIs as well, and injected the instrumentation using a Chrome
extension that participants can easily install.

Additionally, to reduce storage and data transmission costs, our
extension first pre-processes the raw data and extracts only the
features necessary to detect fingerprinting. These features consist
of API call counts (i.e., how many times each Javascript API is
called) and “custom” features processed from the arguments and
return values (e.g., length of string argument, number of elements
in returned list value). This pre-processing step not only reduces
the data transmission costs but also ensures that the collected data
is more private, as the exact arguments and return values are not
sent to the server. In summary, our extension processes the web-
sites visited by the participant, the scripts loaded by each website,
extracts features from each script’s execution trace, and sends this
data to our server for analysis.

3.4 Fingerprinting Detection
We follow prior work on browser fingerprinting detection [8, 27, 31]
and use high-precision heuristics to label scripts as fingerprinting.
Specifically, we use the heuristic developed by [27] and later mod-
ified by [31]. We follow this conservative approach to labeling
fingerprinting scripts over machine learning classifiers [31] to en-
sure low false positive rates and have good confidence that the
labeled scripts are, in fact, fingerprinting. The heuristics we use
identify four main types of fingerprinting – namely, Canvas, Canvas
Font, WebRTC, and Audio Context (see Section 2.1 – and does not
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consider simple accesses to device information as fingerprinting to
minimize false positives.

3.5 Ethics
Our study was reviewed and approved by our Institutional Review
Board (details are omitted to preserve submission anonymity). As
part of the process, we submitted the full documentation detail-
ing our approach to recruiting and compensating participants, the
types of data that will be collected, along with data access poli-
cies, potential ethical issues, mitigation strategies, as well as the
information sheet and consent form provided to participants.

All participants were recruited and compensated entirely anony-
mously through the Amazon MTurk platform. Specifically, each
participant received an average of USD 20.33 and was conserva-
tively expected to take at most an hour to complete visiting all 100
websites assigned to them. Therefore, the compensation was well
above minimum wages both in California [44] (USD 16/hour) and
the United Kingdom [16] (GBP 11.44/hour).

In line with data minimization principles, we only collected pre-
processed and extracted features from the scripts’ execution traces.
Specifically, we did not collect the raw return values and arguments
of the Javascript APIs and did not collect any other user data or
metadata, e.g., IP address, device, or network information.

As mentioned, we provided participants with a list of websites to
visit instead of monitoring their “natural” browsing sessions, and de-
signed our Chrome extension to only collect data from this list. That
is, on all other websites, the extension does not inject the instru-
mentation script and does not monitor or record any information
from these websites. By doing so, we can filter out potentially em-
barrassing or dangerous websites (e.g., adult entertainment, spam)
and prevent accidentally collecting data from participants’ visits to
such websites.

Additionally, the exact types of data collected along with the
purpose of the data collection, potential privacy implications of tak-
ing part in the study, and participants’ data rights (e.g., withdrawal
from data collection) were explained in layman terms through a
participant information sheet which they could download. Further-
more, explicit user consent was obtained through a consent form,
which reiterated their rights and privacy implications of taking part.
Overall, we abided by a strict code of ethics (i.e., RESPECT [28]). In
line with our institution’s data retention policies, we will delete all
data within ten years of the publication of our results.

4 Results
In this section, we present the results of our study. We begin by
comparing the prevalence of browser fingerprinting found in real
user browsing sessions with that observed in an automated crawl of
the same 3K top-ranked websites. Next, we shed light on why some
fingerprinting websites are missed by automated crawlers, focusing
on user interactions and website categories. Finally, we compare
the prevalence of Javascript APIs in fingerprinting scripts collected
from real user browsing sessions with that of the automated crawl
and discover potential new fingerprinting vectors.

Scripts
(FP / Total)

Websites
(FP / Total)

Real Users 695 / 80,969 471 / 3,000
Automated Crawl 210 / 32,823 363 / 3,000

Table 1: Number of scripts and websites detected as finger-
printing by real user browsing session vs automated crawl

4.1 Prevalence of Fingerprinting
To compare against an automated crawl, we follow the same strat-
egy as Annamalai et al. [8], using an instrumented Chrome browser
along with Puppeteer to visit the same 3K top-ranked websites
provided to the participants of our study. We also try to simulate
some degree of user interaction (i.e., scrolling and taking a full-page
screenshot) in the automated crawl, but the crawler does not visit
any subpage linked from the main website.

In Table 1, we report the number of fingerprinting scripts col-
lected during the study with real users vs. the automated crawl,
along with the number of websites that load these fingerprinting
scripts. We also defer a more comprehensive breakdown of the
fingerprinting scripts identified to Appendix C.

First, we detect 2.3x more fingerprinting scripts through real-
user browsing sessions than through the automated crawl. This
suggests the latter may indeed miss many fingerprinting scripts
in practice, corroborating preliminary findings by Annamalai et al.
[8], who show similar results from a small set of websites. However,
this increase may be due to the overall increase in the number
of scripts collected from real-user browsing sessions on the same
set of websites; specifically, we observe a 146% increase in the
number of scripts (80.9k vs. 32.8k) compared to a 34% increase in
the number of scripts that are fingerprinting (i.e., 0.86% vs. 0.64%).
Nevertheless, we observe a significant increase in the percentage
of fingerprinting websites; specifically, out of the same 3K websites,
we identify 108 more fingerprinting websites (a 30% increase) from
real-user browsing sessions than from automated crawlers.

We also find that real-user browsing sessions missed 117 fin-
gerprinting websites that were instead detected from automated
crawls. However, this was due to a bug in the implementation of
our Chrome extension that prevented the instrumentation script
from being injected into iframes, which are often used for browser
fingerprinting. In other words, this was an isolated bug and not
an inherent limitation of distributing the deployment of browser
fingerprinting detection to end users.

Taking the bug into account, the automated crawl missed 225
fingerprinting websites that were identified from real user browsing
sessions. This confirms that automated crawlers cannot replicate
real user interactions, which can result in the prevalence of finger-
printing being potentially underestimated in practice.

4.2 Undetected Fingerprinting on Websites (by
Sub-Pages)

Next, we take a closer look at the user interactions that specifically
trigger fingerprinting scripts on websites. To that end, we group the
225 fingerprinting websites undetected by the automated crawler
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Failed Auth Content Home Total

30 15 63 117 225

Table 2: Number of fingerprinting websites undetected with
automated crawl broken down by reason.

by the specific sub-pages that loaded fingerprinting scripts and
report this in Table 2.

Failed Visits. First, we find that the automated crawler failed to
visit 30 out of the 3K websites (1%). We believe this is due to bot
detectors running before the page is loaded; in fact, the majority
of these websites (66.7%) return 4XX errors that can be associated
with bot detection scripts [8].

Authentication & Content Pages. We find that a non-negligible
number of fingerprinting scripts appear on authentication pages
(e.g., login, account, and sign-up pages), and the automated crawler
only visited 17 such pages as opposed to the 240 visited by real
users. As a result, the automated crawler missed 15 websites that
were deploying fingerprinting scripts on the authentication page.

Similarly, as the automated crawler did not visit any inner con-
tent pages, it missed another 63 websites that were fingerprinting
on the content page. While recent work [51] shows that it is pos-
sible for automated crawlers to infer whether a visited page is an
authentication page using ML-based methods, we note that such
pages might themselves deploy bot detection scripts preventing
automated crawlers from successfully visiting them. In fact, our au-
tomated crawler failed to visit 6 such authentication pages (26.1%).

Home Pages. The automated crawl also missed fingerprinting
scripts on 117 home pages. This is surprising as these scripts were
not triggered even though the automated crawler successfully vis-
ited these pages. This indicates that in some cases, even if the web-
site is loaded successfully, specific user interactions are required to
trigger fingerprinting scripts. To investigate this more deeply, we
manually visited 11 of these websites (a 10% sample) to observe the
specific user interactions that triggered the fingerprinting scripts.
We found that 5 out of the 11 websites deployed bot detection scripts
after the websites were loaded (as opposed to before, which we pre-
viously categorized as a “failed visit”). Popular vendors for this kind
of script include PerimeterX1 (now called Human) and SiftScience2.
Therefore, the fingerprinting scripts were no longer triggered be-
cause the automated crawlers were detected as bots. Also note that
four websites only start fingerprinting after user consent is received
from a cookie consent banner, consistent with findings from prior
work [46]. For the remaining two pages, we were unable to pinpoint
the exact user interaction that triggered browser fingerprinting, as
we could not consistently get the fingerprinting script to load.

In summary, even if automated crawlers could crawl the Web
more deeply and mimic certain user interactions, they are often
caught out by advanced bot detectors and may not be able to trigger
fingerprinting scripts that require specific user interactions.

1https://www.humansecurity.com/
2https://sift.com/
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Figure 2: Percentage of fingerprinting websites for each web-
site category.

4.3 Undetected Fingerprinting on Websites (by
Category)

Next, we analyze the prevalence of fingerprinting websites by cate-
gory3 in real-user browsing sessions, as presented in Figure 2. We
also quantify the prevalence of fingerprinting by website category
in the automated crawl; however, due to space limitations, we omit
the results here, as we observe no significant difference between the
general prevalence of fingerprinting in real-user browsing sessions
and the automated crawl. As opposed to prior work [27, 31], we find
that E-Commerce, Shopping, and Society (& Lifestyle) categories
have much higher rates of fingerprinting than News websites. We
believe one of the main reasons for this discrepancy is that previous
studies used the discontinued Amazon Alexa ranking [7], whereas
we use the CrUX ranking, which is maintained and known to reflect
real-user browsing patterns more accurately [50]. Additionally, as
no significant difference was observed in the prevalence of finger-
printing by website category between our automated crawl and the
real-user browsing sessions, we do not believe this discrepancy was
due to real user behaviors. Note that other categories (e.g., adult
content) are also not represented in our results, as we had filtered
out these websites for privacy reasons.

Finally, we observe that fingerprinting is more likely to be un-
detected by the automated crawler for a few specific categories of
websites than others. To measure this, we introduce the notion of
Miss Percentage, defined as the percentage of websites detected as
fingerprinting by the real-user browsing sessions but undetected
by the automated crawl. Figure 3 shows that Technology and Video
Streaming fingerprinting websites are the most likely to be missed
by automated crawlers than by real-user browsing sessions. This is
expected as Technology and Video Streaming websites might re-
quire user interaction or user login before entering the “main page”
of the application, where fingerprinting is expected to happen.

4.4 Comparison of Fingerprinting APIs
Next, we investigate the differences in the Javascript APIs used
frequently by the fingerprinting scripts captured from real-user
browsing sessions, as compared to those captured from automated
crawls. To do so, we quantify the relative prevalence of APIs used for
fingerprinting following prior work by Iqbal et al. [31] and compute
the Call Ratio for each API found in the real-user browsing sessions,
i.e., the ratio between the number of times a given API is called by

3We categorize the websites using the Cloudflare Domain Intelligence API [15].
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Figure 3: Percentage of fingerprinting websites undetected
by the automated crawler in each website category.

Javascript API Call Ratio

audiocontext.sinkid ∞
audiocontext.onsinkchange ∞
rtcpeerconnection.getconfiguration ∞
rtcpeerconnection.sctp ∞
svgtextcontentelement.getextentofchar ∞
rtcpeerconnection.tostring ∞
window.navigator.plugins[chrome pdf plugin] 7.50
window.navigator.plugins[webkit built-in pdf] 6.77
window.navigator.plugins[microsoft edge pdf viewer] 6.77
window.navigator.plugins[chrome pdf viewer] 6.77
window.navigator.plugins[chromium pdf viewer] 6.77
window.navigator.plugins[pdf viewer] 5.65
offlineaudiocontext.hasownproperty 3.62

Table 3: Call Ratio of a sample of Javascript APIs predomi-
nantly used by fingerprinting scripts in real-world browsing
sessions.

fingerprinting scripts and by non-fingerprinting scripts. The Call
Ratio is high (above 1) when a given API keyword is used more
prevalently in fingerprinting than non-fingerprinting scripts.

Specifically, we use it to identify potential fingerprinting vectors
from real-user browsing sessions that automated crawlers might
otherwise miss. In Table 3, we report the APIs with high Call Ratios
in the real-user browsing sessions that were simultaneously not
used by any fingerprinting scripts captured in the automated crawl
(i.e., the API would have been missed by the automated crawl). The
call Ratio is∞ when no non-fingerprinting scripts use the keyword.

We observe that audio and WebRTC fingerprinting are more
prevalent in real-user browsing sessions than automated crawls.
Specifically, we observe that multiple Audio APIs (i.e., audiocon-
text.sinkid, audiocontext.onsinkchange) and WebRTC APIs (i.e.,
rtcpeerconnection.getconfiguration, rtcpeerconnection.sctp, rtcpeer-
connection.tostring) are exclusively used by fingerprinting scripts
in real-user browsing sessions (Call Ratio =∞). At the same time,
these APIs did not appear to be used by any fingerprinting script in
the automated crawl. This is probably due to these fingerprinting
techniques only occurring if audio devices or peers are present in
the network and triggered, which requires real-user devices with
an audio interface or a crawler setup that simulates them effectively.
Nevertheless, prior work [27] has identified the AudioContext and
RTCPeerConnection APIs as prominent fingerprinting vectors.

On the other hand, accesses to the Navigator API has previously
not been considered a robust signal to detect fingerprinting [27,
31] as they are often used by non-fingerprinting scripts as well.
Conversely, our analysis of real-user browsing sessions shows that
specific attributes of the Navigator API can, in fact, be used as
reliable signals. Specifically, from Table 3, we note that the PDF
viewer plugin is used predominantly by fingerprinting scripts to
identify the specific browser being used. Upon closer inspection, we
observe that fingerprinting scripts use the “length” and “description”
attributes of these plugins to identify which PDF viewer is being
used by the browser. Although this API is now deprecated, it is
still available in all modern browsers [21], and we believe that the
differences in how the specification is implemented across different
versions of browsers (e.g., returning a hard-coded list) might be a
useful fingerprinting vector.

Overall, this confirms that real-user browsing sessions shed bet-
ter light on fingerprinting vectors used in the wild compared to
automated crawlers.

5 Privacy-Preserving Federated Browser
Fingerprinting Detection

In the previous section, we showed that automated crawls might
indeed miss fingerprinting scripts that are instead captured by
real-user browsing sessions. This sheds light on the benefits of
training fingerprinting detection models on telemetry from real-
user browsing sessions. However, having users share this data
with a third party would be both inefficient and extremely privacy-
invasive. On the other hand, only training locally (i.e., each user
trains their own local model) would yield low accuracy and result
in losing crucial knowledge about new fingerprinting behavior.

Recently, Annamalai et al. [8] introduced FP-Fed, a system allow-
ing participants to collaboratively build a browser fingerprinting
detection model while keeping their data private, but only shar-
ing model updates using the Federated Learning paradigm [37].
However, they ultimately only tested it on an automated crawl (i.e.,
they did not capture real user interactions). In the rest of this sec-
tion, we investigate whether FP-Fed is effective at training browser
fingerprinting detectors on real-user datasets.

5.1 Overview of FP-Fed [8]
In a nutshell, FP-Fed works as follows. First, participants train
local models to detect browser fingerprinting based on the data
collected from their individual browsing sessions. The participants
then share the model updates (but not the raw collected data) with
a central server, which aggregates the model updates and adds
noise to satisfy differential privacy and protect participants’ privacy.
This differentially private “global” model is then shared with the
participants, and the process repeats over multiple rounds until the
global model converges. Please see Appendix A for more details.
Improvements. In our work, we do not only deploy FP-Fed but
also modify it to improve model performance. Specifically, instead
of training the local models from scratch, as done in [8], we first
pre-train the local models, non-privately, on public data and then
fine-tune them on the private local training datasets. This is a
popular approach used to privately train ML models that yields
significantly better model performance [19, 53].
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FP-Fed on Real-User Sessions Automated
𝜀 = 1 𝜀 = 5 𝜀 = 10 (Centralized)

0.979 ± 0.013 0.982 ± 0.013 0.983 ± 0.011 0.971 ± 0.021

Table 4: AUPRC of Fed-FP [8] at various levels of privacy (𝜀)
on real-user browsing sessions vs. a centralized model built
on the automated crawl.

In our experimental evaluation, we first pre-train the local mod-
els on an equivalent automated crawl of the 3K top-ranked websites.
As this is public data, pre-training local models on this data can
be done non-privately without degrading the privacy guarantees
provided by differential privacy. Furthermore, by combining the
automated crawl and real-user browser sessions, we argue that the
model can achieve precision that is close to models built only on
the automated crawl from prior work [31], while learning from
many more fingerprinting scripts present in the real-user brows-
ing sessions thus improving the model’s recall. We test this claim
empirically next.

5.2 Evaluation
We now analyze the feasibility and effectiveness of training de-
tection models for browser fingerprinting using FP-Fed [8]. To do
so, we first partition the scripts from real-user browsing sessions
into 80% for training (64,776 scripts, 556 fingerprinting) and 20%
for testing (16,193 scripts, 139 fingerprinting). Next, we re-sample
the training data using the fine-grained Tranco [47] ranking as
done in [8] to simulate 1 million users participating in FP-Fed, as
expected in a real-world scenario. Finally, we train a Logistic Re-
gression classifier using FP-Fed at various privacy levels and test
the model performance on the test set. As mentioned above, recall
that we first pre-train the local models of participants with the
scripts collected from the automated crawl.

In Table 4, we report the Area Under Precision-Recall Curve
(AUPRC) statistic along with the standard deviation over 5-fold
stratified cross-validation to assess model performance. We choose
AUPRC as it summarizes the model performance over many possi-
ble thresholds that can be tuned to achieve a desired precision/recall
trade-off. Furthermore, to assess the robustness of the model in a
potential real-world deployment scenario, we compare its perfor-
mance in two distinct cases. In the first one, we start by training
a base model (centrally, no federation) with data from the auto-
mated crawl and then fine-tune it with FP-Fed on actual data from
real-user browsing sessions. In the second case, which corresponds
to the traditional approach commonly used in the literature, we
train the central model with data from the automated crawl alone.
To provide a realistic performance assessment on real-world data,
we evaluate both models on the 20% testing set of the real-user
browsing sessions.

Our results show that even in high privacy settings (𝜀 = 1.0), the
model trained on real-user browsing sessions reaches an AUPRC =
0.979, with performance slightly exceeding the centralized model
trainedwith no privacy on the automated crawl only, which achieves
AUPRC = 0.971. This is notable considering that the noise intro-
duced by DP makes it challenging for private classifiers to achieve

even comparable performance to their non-private counterparts [19].
In fact, even at a moderate privacy level (𝜀 = 5.0), the model trained
on real-user browsing sessions outperforms the automated crawl
by more than one percentage point.

This confirms that the federated model can leverage the finger-
printing behaviors of the scripts present in the combined browsing
sessions from real users that are otherwise unavailable to models
trained on the automated crawls alone. While this result is promis-
ing, we note that the standard deviations we observe are relatively
large, which calls for further research covering a larger number of
websites and users.

6 Conclusion
This paper presented the design and execution of a user study
geared to investigate the differences in the prevalence and distri-
bution of browser fingerprinting in real-user browsing sessions as
opposed to automated crawlers predominantly used by prior work
in browser fingerprinting [27, 31]. To do so, we built a Chrome
extension and collected fingerprinting scripts from 30 participants
as they browsed 3,000 top-ranked websites. We compared the result-
ing differences by simultaneously performing an automated crawl
of the same websites. Additionally, we evaluated the feasibility and
effectiveness of collaboratively and privately training a distributed
browser fingerprinting detection model using federated learning.

Our analysis showed not only that automated crawls missed
a non-negligible amount of fingerprinting scripts but that they
also heavily underestimated the prevalence of browser fingerprint-
ing in top-ranked websites. Specifically, we observed that 47.8%
of websites identified as fingerprinting from real-user browsing
sessions were undetected by the automated crawl. Our findings
empirically validate existing hypotheses that discrepancies arise
because automated crawlers lack the behavioral nuances of human
users. Consequently, bot detection scripts often block them or fail
to trigger website fingerprinting mechanisms. Finally, we showed
that ML models trained on a combination of crawled data and sub-
sequently fine-tuned in a privacy-preserving way with data from
real browsing sessions on-device likely yield better performance
on real-world datasets than models trained purely on crawled data.
Limitations. Naturally, our work is not without limitations. For in-
stance, the scope of website coverage in our study is limited. While
our analysis encompasses an order of magnitude more websites
than previous research [8], it represents a subset of the websites vis-
ited daily by users. This limited scope was deliberate and focused on
protecting the privacy of our participants, as ultimately, the study’s
primary objective was to investigate discrepancies in fingerprinting
prevalence and distribution between real-user browsing sessions
and automated crawls.

Having established a demonstrable difference, future research
should prioritize expanding the study’s reach by increasing both the
number of websites analyzed and the participant pool. Crucially,
this expansion will necessitate further development of privacy-
preserving data collection and analysis techniques, a direction we
intend to explore in future work.
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A FP-Fed [8]
FP-Fed [8] is a privacy-preserving distributed system for detect-
ing browser fingerprinting in the wild. Using Differentially Private
Federated Learning (DP-FL) [37], FP-Fed enables learning the finger-
printing behaviors of scripts from the combined browsing sessions
of many users while providing strong formal guarantees of privacy.
There are five main steps to FP-Fed, also depicted in Figure 4:

(1) Participants run an instrumented browser (e.g., with a Chrome
extension installed) and naturally browse websites.

(2) The instrumented browser / extension collects script ex-
ecution data and performs the following actions before
federated training begins:
(a) Collects number of times specific (often high-entropy)

monitored APIs are called, along with associated re-
turn values and arguments;
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Figure 4: An overview of FP-Fed [8]: (1) Participants browse websites and collect script execution data. (2) For each round
of training, the server sends the previous round’s global model parameters to a few selected participants. (3) These selected
participants train a local model based on the collected local script execution data, and (4) send the local model updates to the
server, (5) which aggregates them and adds differentially private noise to the aggregate to form the global model of the current
round. Steps (2) to (5) are then repeated until the model converges.

(b) Extracts high-level features for each script loaded on
any visited website (e.g., length of string argument,
number of values in list returned, etc.);

(c) Assigns seed ground truth labels (fingerprinting/non-
fingerprinting) to each script, according to a high-
precision heuristic;

(d) Participates in a differentially private federated feature
pre-processing phase that normalizes extracted high-
level features in a privacy-preserving way.

(3) At each round, the server sends the previous round’s global
model parameters to a subset of participants selected.

(4) Participants initialize a localmodel with the previous round’s
global model parameters and train their local model with
their locally collected data.

(5) Participants send the model updates to the server.
(6) The server aggregates the model updates, adds statistical

noise, and computes the global model parameters for the
next round.

(7) Steps 2) to 5) are repeated over multiple rounds until model
convergence;

Once the global model converges in FP-Fed, training stops, and
all participants can use the trained global model for on-device
browser fingerprinting detection by all participants. FP-Fed can be
run regularly (e.g., once every few weeks) so that the model can be
updated to learn the latest fingerprinting behaviors.

Type of FP Real User Automated

Canvas 629 177
Canvas Font 40 24

Audio 215 107
WebRTC 85 35

Total 695 210

Table 5: Number of fingerprinting scripts captured by real
user browsing session vs. automated crawls. NB: The same
script can perform multiple types of fingerprinting.

B Human Intelligence Task (HIT)
In Figure 5, we display the Human Intelligence Task (HIT), i.e., the
ad, used to recruit participants from the Amazon mTurk platform.
Specifically, prospective participants were provided with some task
instructions, an information sheet describing in layman terms the
purpose of the data collection and the types of data being collected
and a consent form to ensure they have read and understood their
data rights and task requirements. They were given a password
to authenticate themselves with the Chrome extension used for
data collection and were told to enter the “Task Completion Code”,
which was provided to them by the extension once they completed
browsing the assigned websites. For brevity, a significant portion
of the consent form has been left out from Figure 5.
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C Prevalence of Types of Fingerprinting
In Table 5, we report the number of each type of fingerprinting
script captured by real user browsing sessions and compare it with
the scripts collected from the automated crawl.

Overall, similar to the general prevalence of fingerprinting scripts,
we note no major difference between the presence of each type of
fingerprinting. Specifically, in both the real user browsing sessions
and the automated crawl, Canvas FP is observed to be the most
popular form of fingerprinting, followed by Audio, WebRTC, and
Canvas Font.
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Task Instructions (Click to collapse)

We are conducting a study on browser fingerprinting (https://developer.mozilla.org/en-US/docs/Glossary/Fingerprinting), which is an advanced
online tracking technique on the web. We want to understand how prevalent this technique is on various popular websites. To that end, we are
conducting this user study, which you have volunteered to participate in. Please first read the Participation Information Sheet

 then fill in the Consent Form below. Next, proceed to install the chrome
extension from the link provided below. Enter the password you find below into the extension and a file named sites_to_browse.txt will be
automatically downloaded. Next, open that file and you will see a list of websites. Your task is to visit and interact with each website in that list,
by clicking on at least 10 links or buttons you find on each website. Wherever possible, visit login pages (but do not login), accept cookie
consents, and solve CAPTCHAs when browsing the websites. After visiting all of the websites, click on the Done browsing all websites button
and you will receive a task completion code to paste into the box below. Lastly, you can proceed to uninstall the extension and you will receive
credit for completing the task. If necessary, please find more detailed instructions here

Consent Form

Please complete this form after you have read the Information Sheet and/or listened to an explanation about the research.

Title of Study: Collecting Real World Website Data for Browser Fingerprinting Detection

Thank you for considering taking part in this research.  The person organising the research must explain the project to you before you agree to
take part.  If you have any questions arising from the Information Sheet or explanation already given to you, please ask the researcher before you
decide whether to join in.  You will be given a copy of this Consent Form to keep and refer to at any time.

I confirm that I understand that by ticking/initialling each box below I am consenting to this element of the study.  I understand that it
will be assumed that unticked/initialled boxes means that I DO NOT consent to that part of the study.  I understand that by not giving
consent for any one element that I may be deemed ineligible for the study.

   
Tick
Box

1.  

I confirm that I have read and understood the Information Sheet for the
above study.  I have had an opportunity to consider the information and
what will be expected of me.  I have also had the opportunity to ask
questions which have been answered to my satisfaction and would like
to take part in the above data collection project.

2.  

I consent to participate in the study. I understand that my personal
information, namely the websites I visit (restricted to websites in the list
provided to me), and the data from the websites (code executed by
websites and browser features accessed by the website restricted to
the list provided) will be used for the purposes explained to me.  I
understand that according to data protection legislation, ‘performance
of a task in the public interest’ will be the lawful basis for processing.

3.  

Use of the information for this project only
I understand that all personal information will remain confidential and
that all efforts will be made to ensure I cannot be identified.
I understand that my data gathered in this study will be pseudonymized
and stored securely. It will not be possible to identify me in any
publications.

4.  
I understand that my information may be subject to review by
responsible individuals from for monitoring and audit
purposes.

5.  

I understand that my participation is voluntary and that I am free to
withdraw at any time within 2 weeks of the task deadline as detailed in
the MTurk platform without giving a reason.
I understand that if I decide to withdraw, any personal data I have
provided up to that point will be deleted unless I agree otherwise.
After 2 weeks, I understand that it will no longer be possible to remove
my data as it will have been pseudonymized and the data analysis will
already have been conducted.

6.  
I understand the potential risks of participating and the support that will
be available to me should I become distressed during the course of the
research.

7.   I understand the direct/indirect benefits of participating.

8.  
I understand that the data will not be made available to any commercial
organisations but is solely the responsibility of the researcher(s)
undertaking this study.

9.   I understand that I will be compensated for the portion of time spent in
the study (if applicable) or fully compensated if I choose to withdraw.

10.   I understand that the information I have submitted will be published as a
research paper but it will not be possible to identify me in the paper.

11.   I hereby confirm that I understand the inclusion criteria as detailed in the
Information Sheet.

12.  

I hereby confirm that:
a. I understand the exclusion criteria as detailed in the Information

Sheet; and
b. I do not fall under the exclusion criteria.

13.   I am aware of who I should contact if I wish to lodge a complaint.

14.  

I am aware of the use of information for this project and beyond for
research purposes.
I would be happy for the data I provide to be archived at a 
server for 10 years from the publication of a paper.

 

15.   I voluntarily agree to take part in this study.

Chrome
extension
link:

Password:

Provide the task completion code here:

e.g. 123456

You must ACCEPT the HIT before you can submit the results.

Figure 5: HIT uploaded to MTurk (redacted).
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