
Instance-Adaptive Inference-Time Scaling with
Calibrated Process Reward Models

Young-Jin Park1, Kristjan Greenewald2, Kaveh Alim1, Hao Wang2,3, Navid Azizan1

1Massachusetts Institute of Technology
2MIT-IBM Watson AI Lab

3Red Hat AI Innovation

Project Page: http://young-j-park.github.io/know-what-you-dont-know

Abstract

Process reward models (PRMs) play a central role in guiding inference-time scaling
algorithms for large language models (LLMs). However, we observe that even state-
of-the-art PRMs can be poorly calibrated. Specifically, they tend to overestimate the
success probability that a partial reasoning step will lead to a correct final answer,
particularly when smaller LLMs are used to complete the reasoning trajectory. To
address this, we present a calibration approach—performed via quantile regression—
that adjusts PRM outputs to better align with true success probabilities. Leveraging
these calibrated success estimates and their associated confidence bounds, we
introduce an instance-adaptive scaling (IAS) framework that dynamically adjusts
the compute budget based on the estimated likelihood that a partial reasoning
trajectory will yield a correct final answer. Unlike conventional methods that
allocate a fixed number of reasoning trajectories per query, this approach adapts to
each instance and reasoning step when using our calibrated PRMs. Experiments
on mathematical reasoning benchmarks show that (i) our PRM calibration method
achieves small calibration error, outperforming the baseline methods, (ii) calibration
is crucial for enabling effective IAS, and (iii) the proposed IAS strategy reduces
inference costs while maintaining final answer accuracy, utilizing less compute on
more confident problems as desired.

1 Introduction

Inference-time scaling is an emerging paradigm that improves the output quality of LLMs by trading
off inference speed. Just as humans approach complex problems by breaking them down, reasoning
through each step, and revising their thoughts, LLMs can also benefit from being given more time
to “think” during inference [1]. While a myriad of inference-time scaling approaches have emerged,
they often involve prompting the model with explicit reasoning instructions to encourage a structured
thought process [51, 24]. Recent studies extend this idea by generating multiple candidate reasoning
paths or answers and aggregating them to improve robustness [43]. Such strategies allow small-
sized LLMs to achieve comparable (or even better) performance with large models when tackling
challenging tasks, such as advanced mathematics or complex coding [20, 31].

An important component in many inference-time scaling algorithms is the chosen process re-
ward model (PRM). PRMs are trained to quantify, as a reward, how good or desirable a model’s
intermediate-step outputs are with respect to a given task and/or to alignment with human preferences
[6, 48, 30]. When normalized, reward scores are often interpreted as the probability that continuing
from the current output will lead to a desirable outcome (e.g., producing a correct final answer in a
math problem) [28]. In our experiments, we find, however, that even state-of-the-art PRMs can be

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

http://young-j-park.github.io/know-what-you-dont-know

Figure 1: Why should problem-solving strate-
gies adapt to task difficulty? Simple problems
can often be solved through quick, intuitive so-
lutions, whereas harder ones require extended,
deliberate reasoning steps. Accordingly, it is de-
sirable for LLMs to adjust their compute usage
adaptively. Fixed-budget methods like best-of-
N are inefficient in this context: they either
waste computation on easy tasks or fail to al-
locate sufficient resources to solve harder ones
accurately.

miscalibrated, assigning overly optimistic scores—particularly on challenging, out-of-distribution
problems. This is perhaps unsurprising since the probability of success depends on factors such as
choice of model and inference method, which are not input into the PRM.

Miscalibration and overconfidence of PRMs can limit their utility beyond simply ranking partial
reasoning steps. We highlight three important applications where calibrated PRMs are desirable:
(1) providing interpretable uncertainty estimates to monitor LLM outputs during generation [58],
(2) identifying when to say “I don’t know” [see, e.g., 46, 7] or backtrack based on a low predicted
probability of success, and (3) assessing the current problem difficulty or likelihood of success to
adaptively adjust the inference-time compute budget. These applications motivate a fundamental
question: Can we calibrate off-the-shelf PRMs and leverage them to enhance inference-time
scaling methods?

In this paper, we introduce a pipeline for improving the calibration of any off-the-shelf PRMs,
allowing their scores to more accurately reflect the uncertainty that a given LLM will reach the
correct answer. We begin by showing that standard calibration techniques, such as temperature scaling
[16], are inadequate for calibrating PRMs. To address this, we introduce a quantile regression [22]
based scheme that reduces the calibration error of PRM scores. The resulting model predicts success
probabilities, together with confidence bounds, for every query and intermediate reasoning step. Our
method collects intermediate reasoning steps generated by a given LLM and completes them by
independently rolling out full responses. This Monte Carlo rollout provides an empirical estimate of
the true success probability for each prefix trajectory. Given this data, we fine-tune the PRM after
replacing its prediction head with a quantile regression model. The resulting model produces reliable
success probability estimates when evaluating intermediate steps in multi-step reasoning tasks.

We use these now-calibrated PRMs to enable instance-adaptive scaling (IAS), a framework where test-
time compute is adaptively scaled based on the calibrated PRM’s assessment of difficulty/likelihood
of success. Beyond saving compute, this concept has the potential to reduce overall latency for the
user waiting for a response. The intuition mirrors how humans solve problems: we spend more time
on difficult questions and allocate more effort to promising solution paths (see Figure 1). Similarly,
IAS guides LLMs to invest more computation in challenging or high-potential reasoning paths. We
focus on two widely used inference-time scaling methods: best-of-N (BoN) and beam search (BS).
We prove that, for any given query and reasoning trajectory, the calibrated reward score can estimate
the minimum number of additional trajectories required to produce at least one correct answer. In
short, our key contributions are:

• We address the overestimation of success probabilities in existing PRMs by introducing a calibration
approach using quantile regression.

• We propose an instance-adaptive inference-time scaling strategy that dynamically allocates compute
budgets by leveraging calibrated PRMs.

• We empirically validate our methods by: 1) demonstrating low calibration error, and 2) enhancing
best-of-N and beam search through instance-adaptive scaling, leading to improved efficiency.

1.1 Related Work

Inference-time scaling. LLM performance can be improved through multi-stage reasoning, which
breaks problems into simpler subtasks [51, 24, 1]. Although more computationally expensive, tech-
niques such as sampling multiple outputs and aggregating them substantially improve performance

2

and robustness [57, 43]. Methods such as majority voting, verifier-based selection [6, 30, 4], and
reward-based Monte Carlo search [48, 50, 15] show strong gains in complex reasoning tasks. Yet,
most focus on performance gains, with limited attention to its reliability and cost-effective utilization
of computational resources.

Process reward models. Process reward models are specialized tools used in inference-time scaling
that provide a step-by-step verification of LLMs’ reasoning process, rather than evaluating only
the final outcome [62]. Typically, PRMs are trained on datasets labeled at each reasoning step,
either by humans or automated approaches like Monte Carlo rollouts and LLM-based judges. For
example, Qwen-PRM [55] utilizes consensus-filtered labels from combined human and automated
sources, achieving state-of-the-art accuracy [44], while Shepherd-PRM [50] effectively relies on
purely automated labeling despite lower precision in detecting errors.

Adaptive sampling for efficient state estimation. Puri et al. [37] propose viewing LLM reasoning as
a probabilistic state estimation problem. Note that the classical state estimation literature has explored
methods for dynamically adjusting sample sizes based on state uncertainty [12, 13, 45, 10]. Similarly,
information-driven adaptive strategies have been studied in the context of planning algorithms
[18, 5, 29]. However, to the best of our knowledge, prior work has not proposed instance-adaptive
sampling strategies within the context of LLM inference-time scaling.

For an extended discussion of related work, see Appendix A.

2 Preliminaries and Notation: Inference-Time Scaling with PRMs

We recall how reward models are used by standard inference-time scaling methods. Let LLM denote
a language model that generates responses, and let PRM denote a process reward model used to
evaluate the quality of the outputs produced by LLM. Given a query q, LLM generates a multi-step
reasoning trajectory x = (x1, x2, . . . , xT), where xi represents the i-th reasoning step and T is the
total length of the trajectory. We denote the prefix of the trajectory up to step t as x0:t (in particular,
x0 :=“ ” and x0:0 is an empty reasoning sequence). Below, we recap two standard PRM-based
inference-time scaling methods.

Best-of-N (BoN) [4]: Given a query q, we first use LLM to generate N complete trajectories

x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)

T (i)) ∼ LLM(q), for i = 1, . . . , N.

Then we apply PRM to assign a score to each trajectory: r(i) = PRM
(
q,x(i)

)
. The final output is

the trajectory with the highest reward x(i∗) where i∗ = argmaxi r
(i).

Beam Search (BS) [43]: BS iteratively builds reasoning trajectories by alternating between generation
and evaluation, rather than generating full sequences in a single pass. At step t, each of the K surviving
partial trajectories x(i)

0:t−1 is extended by one reasoning step. Specifically, for each trajectory, LLM

generates M candidate next steps: x(i,j)
t ∼ LLM

(
q,x

(i)
0:t−1

)
where j = 1, . . . ,M denotes different

continuations for the i-th trajectory. Then PRM evaluates each of the N = K × M extended
trajectories: r

(i,j)
t = PRM

(
q,x

(i,j)
0:t

)
. Finally, among all N candidates, only the top K partial

trajectories with the highest scores are kept for the next step. This pruning step ensures the search
remains computationally tractable while focusing on promising reasoning paths.

3 Calibration and Process Rewards

PRMs are typically trained to quantify the quality of (partial) model outputs, i.e., their correctness,
how well they advance the reasoning towards the solution to the query, and/or how well they align
with human preferences. We highlight an additional, underexplored perspective: when normalized,
PRM scores can be interpreted as an estimate of the probability that continuing from the current
output will ultimately lead to a desirable outcome, such as producing a correct final answer in a
multi-step reasoning task [50]. We observe that state-of-the-art PRMs often overestimate the chance
of eventual success when interpreted in this way. We define the success probability as follows.
Definition 1. Given a query q and a partial trajectory x0:t generated so far, the success probability p
is the probability that autoregressively continuing this trajectory with a stochastic language model

3

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

2

4

6

D
en

si
ty

QwenPRM-7B (Uncalibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(a) Qwen-PRM (MATH500)

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

1

2

3

4

D
en

si
ty

QwenPRM-7B (Uncalibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(b) Qwen-PRM (AIMEs)

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

1

2

3

D
en

si
ty

Shepherd-7B (Uncalibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(c) Shepherd (MATH500)

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Shepherd-7B (Uncalibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(d) Shepherd (AIMEs)

Figure 2: Histogram of signed deviations between PRM rewards (i.e., estimated success probabilities)
and ground-truth success probabilities. Ground truth is estimated via Monte Carlo sampling: for each
question and partial reasoning step prefix, we use a given LLM to generate multiple completions
and compute the empirical success rate. We evaluate Qwen-PRM-7B and Shepherd-PRM-7B on
the MATH500 (in-distribution) and AIME24-25 (out-of-distribution) datasets. Positive deviations
indicate overestimation. PRMs consistently overestimate success probabilities, as evidenced by the
distribution skewing right and/or peaking near 1.0. This miscalibration is particularly pronounced for
weaker completion models and more challenging, out-of-distribution problems.

(i.e., non-zero temperature), LLM, will ultimately yield a correct final answer.

p ≜ Pr
(
xt+1:T generated by LLM yields a correct answer

∣∣ q,x0:t

)
Here, we denote the index of a reasoning step by t and the partial reasoning trajectory x0:t is the
sequence of outputs generated by the model from step 1 to step t ≤ T .

For the base case at t = 0, the partial trajectory x0:0 is an empty sequence, representing the state
before any reasoning steps have been generated, where only the query q is given. In this case, p
essentially estimates the difficulty of the query for LLM.

Since we have partial outputs, there is inherent uncertainty of future success (i.e., p ∈ (0, 1)), unlike
single-turn settings where an output can definitively be evaluated for correctness. Note that this is a
significant difference between our work and typical prior work on calibrated certainty estimates for
LLMs, and is crucial to our quantile-based approach being feasible. That said, calibration metrics
like Brier score and expected calibration error (ECE) still apply.

The inherent calibration challenge of off-the-shelf PRMs. Off-the-shelf PRMs lack a guarantee
of calibration because their training is inherently dependent on a specific policy model. They
learn a reward function from reasoning paths (rollouts) generated by one particular model (e.g.,
Qwen-Math-Instruct), tying their accuracy to that model’s unique generative process and capabilities.

The problem originates from the autoregressive nature of language models, where sequence generation
is policy-dependent. The probability of future tokens, πθ(xt+1:T |x0:t), is conditioned on the model’s
parameters, θ. Consequently, a PRM is only calibrated to the statistical patterns of the policy it was
trained with. Using it with a different policy introduces a distributional mismatch, breaking any
calibration guarantee.

For instance, a PRM trained on a highly capable 72B model will overestimate the success probability
when paired with a weaker 1B model. The PRM is calibrated to the stronger model’s performance
and cannot account for the weaker model’s higher tendency to make errors on complex logical steps.
This mismatch results in inflated and unreliable confidence scores, as presented in Figure 2.

Why calibrate PRMs? While we will show that a well-calibrated PRM is desirable for several
important tasks, calibration is not required for the canonical task of ranking for BoN or BS, since
relative ordering is all that matters. Specifically, any monotonic transformation of the true success
probability preserves the ranking but changes calibration. As noted in the introduction, however,
calibrated probabilities are essential for interpretability, systematic safety monitoring, and efficient
budget allocation. In particular, calibration enables instance-adaptive scaling (IAS; discussed further
in Section 4), where we dynamically adjust the number of trajectories to keep based on the estimated
likelihood of success. In this setting, accurate probability estimates are essential for balancing
efficiency and performance: a well-calibrated PRM allows us to reduce computations and maintain
output quality. Furthermore, using a PRM rather than an outcome reward model is critical here, as we

4

need to estimate success probabilities before complete solutions exist. For beam search, we evaluate
each partial reasoning prefix to guide search decisions. For best-of-N , we evaluate only the question
itself (with no prefix) to determine the optimal sampling budget.

3.1 Calibration Data Collection Methodology

Now, we present a calibration-via-finetuning approach to mitigate the aforementioned issues. To
calibrate a PRM for a given LLM, we construct a validation dataset through a systematic multi-stage
generation and evaluation process. Please see details in Appendix C.1.

Our validation set is defined as∪q∈Qval
{x(q,1),x(q,2), . . . ,x(q,Nval)}, whereQval represents a curated

set of validation questions; in our experiments, we sample 500 random questions from MATH training
split. For notational simplicity, we omit the superscript q in the subsequent discussion, with the
understanding that all operations are performed independently for each question in Qval.

Stage 1: Initial Trajectory Generation. For each validation question q ∈ Qval, we generate
Nval = 8 independent reasoning trajectories using the target LLM. This yields a set of complete
reasoning chains: {x(1),x(2), . . . ,x(Nval)}. These trajectories represent diverse solution paths the
model naturally explores for the given question.

Stage 2: Prefix Extraction and Monte Carlo Rollouts. For each reasoning trajectory x(i) = x
(i)

0:T (i)

generated in Stage 1, we consider all possible prefix trajectories x
(i)
0:t, where t ∈ {0, 1, . . . , T (i)}

ranges from the initial step to the final step of the trajectory. For each prefix x
(i)
0:t, we perform a

Monte Carlo estimation by generating NMC = 8 additional follow-up trajectories. These follow-up
trajectories are conditioned on both the original question q and the specific prefix x

(i)
0:t, allowing us to

estimate the probability of eventual success from that intermediate reasoning state.

Stage 3: Success Probability Estimation. For each prefix trajectory x
(i)
0:t, we evaluate all NMC

follow-up trajectories to determine correctness. Let Z(i,t) denote the count of correct completions
among these follow-ups. We then compute the empirical success probability: p̃(i,t) = Z(i,t)/NMC,
which serves as our ground-truth label for calibrating the PRM’s predicted rewards.

Our calibration datasets, consisting of
(
q, x

(q,i)
0:t , p̃(q,i,t)

)
triplets (question, prefix, and empirical

success probability), are publicly available for various reasoning LLMs.1

3.2 Uncertainty-Aware Calibration through Quantile Regression

We seek to fine-tune PRMs to align their predictions with success rates p(i,t) given the input q
and generated steps so far x(i)

0:t. However, predicting success probabilities is inherently uncertain:
calibration data is non-exhaustive and model capacity is finite. As with any machine learning
model trained via empirical risk minimization (ERM), PRMs make loss-minimizing predictions that
approximate the conditional mean of the success probability.2

While the conditional mean is a reasonable point estimate, it presents a critical problem: for any given
test case, there is roughly a 50% chance the true success probability falls below this estimate. This
means standard PRM architectures will systematically overestimate success probability for half of
all instances. For applications requiring conservative estimation—such as instance-adaptive scaling
(IAS), where we allocate computational budget based on estimated difficulty—overestimation is
particularly problematic. If we overestimate p(i,t), we allocate insufficient samples, leading to high
failure rates on problems that genuinely require more computation.

Instead of predicting the conditional mean, we propose predicting a lower quantile of the posterior
distribution over p(i,t). By targeting, say, the 10th percentile, we ensure that for at least 90% of test
cases, our estimate is below or equal to the true success probability. This provides a conservative
lower bound that protects against underallocation of compute while still enabling meaningful instance-
adaptive decisions.

1https://huggingface.co/datasets/young-j-park/prm_calibration
2Exactly the conditional mean for MSE loss and approximately so for cross-entropy loss when uncertainty is

narrow.

5

https://huggingface.co/datasets/young-j-park/prm_calibration

To achieve this, we modify the PRM architecture to perform quantile regression. Specifically, we
expand the output dimension of the prediction head to generate multiple predictions—one for each
target quantile level βn (e.g., 10%, 50%, and 90%)—rather than a single reward value. Details of this
architectural modification and initialization are in Appendix C.5.

We then fine-tune the model using a weighted quantile loss (wQL) [23]:

wQL(r̂, p̃) ≜
1

Nq

Nq∑
n=1

[
βn ·max

(
0, p̃− r̂(βn)

)
+ (1− βn) ·max

(
0, r̂(βn) − p̃

)]
,

where Nq is the number of quantiles, r̂(βn) is the modified PRM’s prediction for the βn-quantile,
and p̃ is the empirical success rate. This asymmetric loss penalizes overestimation more heavily for
lower quantiles and underestimation more heavily for higher quantiles, encouraging the model to
learn the distinct quantile levels. Importantly, training requires only point estimates p̃ from Monte
Carlo sampling—we do not need to estimate the full distribution of p.

4 Instance-Adaptive Inference-Time Scaling

Existing inference-time scaling methods typically allocate a fixed sampling budget N—for example,
by generating N complete reasoning trajectories in BoN. However, this approach can be inefficient:
for challenging tasks, N samples may be insufficient to produce a correct answer, while for easier
ones, it may waste computation. Just as humans allocate more effort to harder problems and less
to simpler ones, it is desirable for LLMs to adjust their compute usage adaptively. Note that in the
present work, we (perhaps erring on the side of optimism) assign the maximum budget to the hardest
problems, but in principle, we could also choose to say “I don’t know” or route to a more capable
model if the probability of success is too low (difficulty too high).

In this section, we explore how to allocate the sampling budget dynamically based on the likelihood
that an intermediate reasoning path will ultimately yield the correct answer, which we use as a proxy
for the difficulty of the query. We begin with the following proposition, which characterizes the
theoretical minimum number of samples needed on a per-instance basis:
Definition 2. Fix a question–prefix pair and let p ∈ [0, 1] be the success probability (see Defini-
tion 1), conditioned on the current generation, that a single continued trajectory sampled from the
language model is correct. For a target probability C ∈ (0, 1) we define the independent-sampling
sample-complexity

N⋆(p, C) ≜ min
{
n ∈ N : Pr

(
at least one out of n trajectories is correct

)
≥ C

}
.

Proposition 1. For every p ∈ (0, 1) and C ∈ (0, 1),

set NIAS(p, C) ≜
log(1− C)

log(1− p)
, then

⌈
NIAS(p, C)

⌉
≥ N⋆(p, C).

In other words, if PRM could perfectly distinguish correct from incorrect reasoning, then selecting the
best trajectory among NIAS(p, C) samples (i.e., “best-of-NIAS”) guarantees an average accuracy of
(at least) C for questions whose per-trajectory success probability is p.

See Appendix B.1 for a proof. The key takeaway is that the required sample size NIAS scales inversely
with log(1 − p). Intuitively, for a fixed target accuracy, “easier” questions (with larger p) require
significantly fewer trajectories, offering compute savings. Thus, a well-calibrated PRM enables
adaptive sampling by estimating p and then using it to guide how many trajectories to generate.

As noted previously, PRMs frequently overestimate LLMs’ success probabilities—particularly for
weaker models or on hard, out-of-distribution queries (Figure 2). Relying on these inflated scores
leads to suboptimal inference-time scaling by selecting an excessively small NIAS, whereas calibration
mitigates these pitfalls and enables principled, cost-effective decision making.

4.1 IAS: Calibrated Reward-based Instance-Adaptive Scaling

Now, we propose a framework that can dynamically scale inference-time computes using an instance-
adaptive scaling (IAS) strategy with calibrated PRMs. Theoretical justifications are in Appendix B.2.

6

BoN+IAS. Rather than drawing a fixed sample size N for best-of-N decoding, our IAS framework
adaptively determines the number of trajectories to generate based on the estimated difficulty of each
problem. Specifically, we compute the minimum number of samples NIAS needed to achieve the
target correctness level C given the PRM’s estimated success probability r̂(β):

NIAS ≜ min{⌈NIAS(r̂
(β), C)⌉ , Nmax},

where Nmax is the maximum budget constraint. For problems with high estimated success probability,
NIAS will be small, while challenging problems receive larger budgets up to Nmax.

BS+IAS-of-M (with fixed K). In beam search with a fixed beam width K, we can adaptively
determine how many continuations to sample per prefix at each step. Suppose at a given beam-search
step we have K candidate prefixes. Let r̂(β)min denote the minimum calibrated success probability
among these K prefixes. To ensure at least one correct completion across all K prefixes with
confidence level C, IAS computes the number of samples per prefix as:

MIAS ≜ min
{⌈

NIAS

(
r̂
(β)
min,C

)
K

⌉
, Mmax

}
.

where Mmax is the maximum number of expansions allowed per prefix. By using the most pessimistic
estimate r̂

(β)
min, we ensure sufficient sampling even for the most challenging prefix in the beam.

BS+IAS-of-K (with fixed M). Conversely, when the number of expansions per prefix M is fixed,
we can adaptively determine the beam width itself. After generating M continuations for each of
K candidate prefixes and ranking them by their calibrated rewards r̂(β), IAS determines how many
top-ranked prefixes to retain:

KIAS ≜ min
(
{Kmax} ∪ {k | NIAS(r̂

(β)
k , C) ≤ k ×M, 1 ≤ k ≤ Kmax}

)
where r̂

(β)
k is the calibrated reward of the k-th best prefix and Kmax is the maximum allowed beam

width. This ensures that the total budget KIAS ×M ≥ NIAS

(
r̂
(β)
KIAS

, C
)
, maintaining the target

confidence level C that at least one prefix will lead to a correct answer.

Selecting β involves a trade-off: prioritizing efficiency could suggest using the median or a higher
quantile, whereas selecting a lower quantile (e.g., 10%) follows our motivation of ensuring that a
specified probability of success is achieved. We can formalize this latter point as follows, using the
framework of conformal prediction as applied to quantile regression in [38].

Theorem 1. Set N =∞. Let r̂(β) be the prediction of the βth quantile, and suppose we have held
out an n-sample validation set Vn. Then, on test input Xn+1,

P (success best-of-NIAS(r̂
(β), C)|Xn+1) ≥ C(1− β̃)

where β̃ ≥ β depends on Vn (see Appendix B.2.1 for its specification).

5 Numerical Experiments

We evaluate our method on two mathematical-reasoning benchmarks—MATH500 [17] and AIME24-25
(i.e., AIME2024 and AIME2025)—using six LLMs: Llama-3.2-1B & 3.1-8B-Instruct [47], Qwen2.5-
Math-1.5B & 7B-Instruct [55], DeepSeek-R1-Distill-Llama & Qwen-8B [9].

We use Qwen2.5-Math-PRM-7B [62] as the primary PRM throughout the main manuscript, unless
otherwise specified, as it was the top-performing open-source small-sized PRM in PRMBench [44].
We present experimental details and additional results for ReasonEval-7B [52] and Math-Shepherd-
Mistral-7B [50] PRMs, along with comprehensive analyses in Appendices D and E, respectively.

5.1 Fine-Tuning PRMs for Better Calibration

We evaluate calibration errors of off-the-shelf PRMs and then show how our fine-tuning strategy
reduces these errors. To start with, we construct a calibration dataset by randomly sampling 500
questions from the MATH training set. We assess calibration performance using standard metrics:
Brier score [3], positive Brier score (i.e., the mean square of overestimation error, max{ŷ − y, 0}),

7

Table 1: Calibration error before and after applying our calibration-via-finetuning method. We
evaluate on the MATH500 (in-distribution) and AIME24-25 (out-of-distribution) datasets, using various
LLMs to generate responses. Four calibration error metrics are reported (lower is better); the worst
and best values for each dataset are highlighted in red and blue, respectively. Results show that our
method consistently improves PRM calibration across different models and datasets.

Dataset Model Brier PosBrier AdaptiveCE ECE AverageCE
Uncal. Calib. Uncal. Calib. Uncal. Calib. Uncal. Calib. Uncal. Calib.

MATH500

Llama-3.2-1B 0.2414 0.0692 0.2226 0.0472 0.2830 0.0811 0.2791 0.0942 0.3130 0.1840
Llama-3.1-8B 0.2045 0.1210 0.1771 0.0994 0.2625 0.1674 0.2368 0.1515 0.2048 0.1876
Qwen-2.5-1.5B 0.1541 0.1271 0.1305 0.1072 0.2176 0.1545 0.1554 0.1414 0.1229 0.1462
Qwen-2.5-7B 0.1008 0.0818 0.0846 0.0527 0.1459 0.0999 0.0981 0.0864 0.0920 0.1227
R1-Llama-8B 0.1614 0.0888 0.1140 0.0546 0.2505 0.1128 0.1311 0.0905 0.1517 0.1094
R1-Qwen-7B 0.1480 0.0828 0.1056 0.0578 0.2413 0.1066 0.1095 0.0857 0.1957 0.1130

AIME24-25

Llama-3.2-1B 0.1936 0.0029 0.1918 0.0005 0.2364 0.0108 0.2364 0.0041 0.4921 0.1306
Llama-3.1-8B 0.2274 0.0414 0.2227 0.0354 0.2839 0.0862 0.2839 0.0782 0.4580 0.3988
Qwen-2.5-1.5B 0.3302 0.0727 0.3220 0.0528 0.4007 0.1054 0.4007 0.0865 0.3936 0.2889
Qwen-2.5-7B 0.2894 0.0721 0.2820 0.0657 0.3547 0.0982 0.3547 0.0982 0.3892 0.2829
R1-Llama-8B 0.3846 0.0782 0.3712 0.0296 0.5259 0.1275 0.4764 0.0761 0.3614 0.1566
R1-Qwen-7B 0.4144 0.0694 0.4018 0.0338 0.5575 0.0898 0.5078 0.0689 0.3680 0.1261

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

Llama-3.2-1B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

Llama-3.1-8B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

Qwen2.5-Math-7B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

DeepSeek-R1-Distill-Qwen-7B

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

Figure 3: Comparison of our calibration method with popular techniques—temperature scaling,
isotonic regression, and histogram binning—on MATH500 and AIME24-25. As shown, our quantile
regression (QR) method reduces calibration error more effectively than these baselines.

AdaptiveCE [34], ECE [32], and AverageCE [33] between ground-truth Monte Carlo success rates
and the PRMs’ (median) predictions.

Off-the-shelf PRMs are overconfident. We examine the histogram of the deviations of the estimated
reward from the true success probability (r̂(i,t) − p̃(i,t)). As shown in Figure 2, the error densities are
skewed to the right, with minimal mass on the left, indicating consistent overestimation. This effect
is further amplified when weaker LLMs are used to generate responses, or when evaluated on more
challenging datasets such as AIME24-25.

Significance of calibration. Table 1 presents numerical evidence supporting our earlier claim that
PRMs frequently suffer from poor calibration and tend to overestimate. In contrast, our proposed
calibration approach effectively mitigates these calibration issues. Additionally, the approach substan-
tially improves results on out-of-distribution datasets, underscoring its effectiveness across diverse
conditions. This finding further indicates that calibrated PRMs are better at differentiating more
challenging questions or reasoning tasks from those with higher certainty.

Calibration baselines. We evaluate several standard calibration methods for calibrating PRMs,
including temperature scaling [16], isotonic regression [61], and histogram binning [60]. Detailed
descriptions of these methods are provided in the Appendix C.4. Figure 3 compares our calibration-
via-finetuning method with these baseline techniques. Since baseline methods correct calibration by
uniformly shifting or rescaling the output probabilities (or logits) of PRMs, they are effective only
when every instance’s prediction is consistently overestimated or underestimated. For instance, weaker
models like Llama-3.2-1B often benefit from simple methods that reduce overall overconfidence.
However, these techniques typically fail to calibrate well on out-of-distribution tasks, such as the
AIME24-25 dataset. In contrast, our method leverages contextual information—such as question
categories and the position of the current reasoning step—to achieve robust calibration across diverse
models and dataset distributions.

5.2 Calibrated Reward Enables Instance-Adaptive Scaling

We demonstrate IAS by applying it to two simple yet widely used inference scaling techniques:
best-of-N and N -beam search on steps.

8

Table 2: Comparison between the best-of-N method using a fixed-N strategy (BoN) and our proposed
instance-adaptive sampling strategy (BoN+IAS). We report both accuracy and relative computational
cost (budget), measured by the average number of samples per question normalized by N = 64:
Budget = NIAS/N . Relative improvements over Pass@1 accuracy are highlighted in light blue. Our
IAS with calibrated PRMs achieves substantial compute savings without significant performance
loss. Crucially, the effectiveness of IAS depends strongly on PRM calibration quality: uncalibrated
PRMs tend to overestimate success probabilities, causing overly optimistic downsampling. Moreover,
uncalibrated PRM’s model-independent design prevents it from offering adaptive strategies for
different LLMs, resulting in further degradation for weaker Llama models.

Baselines w/ Uncal. PRM w/ Calib. PRM
Dataset Model Pass@1 BoN BoN+IAS Budget Ratio BoN+IAS Budget Ratio

MATH500

Llama-3.2-1B 0.2255 0.4760 0.2278 0.0162 0.4623 0.6381
Llama-3.1-8B 0.4659 0.6440 0.4674 0.0162 0.6223 0.3631
Qwen-2.5-1.5B 0.6970 0.7660 0.6973 0.0162 0.7537 0.2461
Qwen-2.5-7B 0.7994 0.8540 0.7993 0.0162 0.8368 0.2342
R1-Llama-8B 0.6734 0.8240 0.6729 0.0162 0.8042 0.3439
R1-Qwen-7B 0.7556 0.8640 0.7569 0.0162 0.8568 0.3133

AIME24-25

Llama-3.2-1B 0.0042 0.0000 0.0040 0.0195 0.0167 1.0000
Llama-3.1-8B 0.0268 0.0500 0.0273 0.0195 0.0333 0.9685
Qwen-2.5-1.5B 0.0932 0.1500 0.0962 0.0195 0.1522 0.9372
Qwen-2.5-7B 0.0885 0.1167 0.0920 0.0195 0.1885 0.9099
R1-Llama-8B 0.0784 0.1833 0.0838 0.0195 0.1217 0.9661
R1-Qwen-7B 0.1411 0.2667 0.1425 0.0195 0.1795 0.9635

Instance-adaptive BoN. We evaluate the BoN framework (Nmax = 64) using both the uncalibrated
and calibrated PRMs, comparing their performance against our proposed IAS strategy (BoN+IAS).
We adopt a conservative setting with C = 0.99 and β = 0.1 (see Appendix E.5 for an ablation study).
For a fair comparison, we use the calibrated PRM to determine NIAS and the original PRM for ranking
after adaptive sampling. We report the accuracy of each method and the relative computational cost
associated with IAS, the average number of samples per question normalized by Nmax.

Table 2 shows IAS, when combined with calibrated PRMs, achieves significant computational
savings while maintaining performance close to fixed-N strategies. More importantly, as previously
discussed, the original PRMs often severely overestimate success probabilities, especially for smaller
models (e.g., Llama-3.2-1B) or challenging tasks (e.g., AIME24-25). As a result, IAS reduces budgets
too aggressively, leading to performance sacrifice. In contrast, our calibrated PRMs allow IAS to
reduce compute more conservatively, preserving accuracy while saving computational cost.

Our findings also show that to effectively reduce computational cost, adaptive sampling requires a
well-calibrated PRM. Uncalibrated PRMs, which often overestimate success, lead the BoN+IAS
framework to reduce computational budgets too aggressively, resulting in degraded performance.

Instance-adaptive Beam Search. To further verify the efficacy of the IAS for intermediate reasoning
steps in addition to the initial stage, we test IAS-of-K (IASoK) and IAS-of-M (IASoM), with a beam
search setup (N = 64, M = 8, K = 8). We use the same setting of C = 0.99 and β = 0.1.

As shown in Table 3, our IAS strategy maintains accuracy while reducing the budget up to about 75%.
The IASoM variant tends to be more conservative than ISAoK, yet often achieves higher accuracy
with a comparable budget usage.

Why do we need an instance-adaptive scaling? Recall that our goal is not to introduce a new
inference-time scaling method that universally outperforms existing approaches. Instead, we aim to
enable inference-time scaling to allocate compute budgets dynamically based on a model’s estimated
likelihood of answering correctly. To this end, IAS adaptively determines, on a per-instance basis,
the number of samples that best balance accuracy and computational cost.

Figure 4 reports the performance plot across varying question difficulty levels for different values of
N , along with the resulting accuracy and cost of the proposed IAS strategy (see Appendix E.4 for full
results). As expected, enlarging N improves accuracy in a nearly monotonic fashion; nevertheless,
the absence of a “sweet spot” renders the selection of a single budget inherently difficult. Furthermore,
accuracy declines with increasing question difficulty, implying that the sample budget required to
attain a target accuracy should be uncertainty-dependent. Consequently, choosing a fixed N on a

9

Table 3: Comparison between the beam search (BS) method using a fixed-N /M , and our proposed
adaptive sampling strategy (IASoK and IASoM) using calibrated PRMs. We report both accuracy
and relative computational cost (budget) to the baseline, measured by the average number of LLM
generations per question normalized by that of a fixed-budget BS baseline. Relative improvements
over the Pass@1 accuracy are highlighted in light blue. The proposed IAS strategy yields substantial
computational savings without significant performance loss.

Baselines IAS w/ Calibrated PRM
Dataset Model Pass@1 BS BS+IASoK Budget Ratio BS+IASoM Budget Ratio

MATH500

Llama-3.2-1B 0.2255 0.5360 0.5180 0.8996 0.5320 0.9891
Llama-3.1-8B 0.4659 0.6640 0.6500 0.5309 0.6740 0.6686
Qwen-2.5-1.5B 0.6970 0.8060 0.7840 0.5528 0.8100 0.5993
Qwen-2.5-7B 0.7994 0.8680 0.8540 0.5332 0.8560 0.5757
R1-Llama-8B 0.6734 0.8140 0.8320 0.3581 0.8540 0.3962
R1-Qwen-7B 0.7556 0.8280 0.8460 0.3345 0.8740 0.3652

AIME24-25

Llama-3.2-1B 0.0042 0.0167 0.0167 1.0364 0.0167 1.0619
Llama-3.1-8B 0.0268 0.0333 0.0667 0.2620 0.0500 0.5243
Qwen-2.5-1.5B 0.0932 0.1333 0.1333 0.5027 0.1667 0.6097
Qwen-2.5-7B 0.0885 0.2167 0.1500 0.6499 0.1833 0.7399
R1-Llama-8B 0.0784 0.1333 0.2000 0.4210 0.3000 0.5209
R1-Qwen-7B 0.1411 0.1333 0.2000 0.3640 0.3167 0.4464

convenient validation set may lead to pronounced performance deficits under distributional shift. For
instance, tuning on Level 1 of the MATH500 benchmark would suggest a small N regime, but this
could be highly suboptimal for harder datasets.

IAS addresses this mismatch by adapting its budget to instance success probability: it expends roughly
four times fewer samples on Level 1 items than on Level 5, while allocating additional samples where
they are most needed. In doing so, IAS aligns computational expenditure with uncertainty, yielding
superior cost-effectiveness without pre-defining a universally optimal N .

21 23 25

The Number of Samples (N)

0.2

0.4

0.6

0.8

Av
er

ag
e

Ac
cu

ra
cy

Llama-3.2-1B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.2

0.4

0.6

0.8

Av
er

ag
e

Ac
cu

ra
cy

Llama-3.1-8B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.6

0.7

0.8

0.9

Av
er

ag
e

Ac
cu

ra
cy

Qwen2.5-Math-7B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.5

0.6

0.7

0.8

0.9
Av

er
ag

e
Ac

cu
ra

cy

DeepSeek-R1-Distill-Qwen-7B

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

Figure 4: We illustrate average accuracy across test points of varying difficulty levels (1: easy to
5: hard). Results from the fixed-N baseline and our instance-adaptive sampling (IAS) method are
shown as dashed lines and stars, respectively. As shown, IAS dynamically adjusts sampling based on
problem difficulty in MATH500, allocating more samples to harder tasks.

6 Conclusion and Limitations

This paper introduces a calibration strategy that enables PRMs to produce more reliable estimates
of success probability: the likelihood that a partial reasoning step (or initial question) will lead to
a correct final answer when completed by a given policy LLM. Through quantile regression, our
approach provides conservative lower bounds rather than overoptimistic point estimates, addressing a
key limitation of standard PRMs.

We demonstrate a practical application of well-calibrated PRMs in instance-adaptive inference-time
scaling (IAS), where computational budget is allocated based on estimated success probability. By
providing reliable estimates, our calibrated PRMs enable more efficient resource allocation, investing
more computation on challenging problems while avoiding waste on easier ones.

Future work could explore fine-tuning strategies for better generalization across datasets and quantile
levels, extend this approach beyond mathematical reasoning to domains like code generation and
LLM agents, and investigate IAS in settings beyond best-of-N and beam search. We hope this work
establishes a foundation for more reliable reward models and cost-effective adaptive scaling.

10

Acknowledgments and Disclosure of Funding

This work was supported in part by the MIT-IBM Watson AI Lab, the MIT-Amazon Science Hub, the
MIT-Google Program for Computing Innovation, and MathWorks.

References
[1] Abbe, E., Bengio, S., Lotfi, A., Sandon, C., and Saremi, O. (2025). How far can transformers

reason? the globality barrier and inductive scratchpad. Advances in Neural Information Processing
Systems, 37:27850–27895.

[2] Beeching, E., Tunstall, L., and Rush, S. (2024). Scaling test-time compute with open models.

[3] Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly weather
review, 78(1):1–3.

[4] Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V., Ré, C., and Mirhoseini, A. (2024).
Large language monkeys: Scaling inference compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

[5] Choi, H.-L. and Lee, S.-J. (2015). A potential-game approach for information-maximizing
cooperative planning of sensor networks. IEEE Transactions on Control Systems Technology,
23(6):2326–2335.

[6] Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek,
J., Hilton, J., Nakano, R., et al. (2021). Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168.

[7] Cohen, R., Dobler, K., Biran, E., and de Melo, G. (2024). I don’t know: Explicit modeling of
uncertainty with an [idk] token. Advances in Neural Information Processing Systems, 37:10935–
10958.

[8] De Leeuw, J., Hornik, K., and Mair, P. (2010). Isotone optimization in r: pool-adjacent-violators
algorithm (pava) and active set methods. Journal of statistical software, 32:1–24.

[9] DeepSeek-AI (2025). Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning.

[10] Elvira, V., Míguez, J., and Djurić, P. M. (2016). Adapting the number of particles in sequential
monte carlo methods through an online scheme for convergence assessment. IEEE Transactions
on Signal Processing, 65(7):1781–1794.

[11] Farquhar, S., Kossen, J., Kuhn, L., and Gal, Y. (2024). Detecting hallucinations in large language
models using semantic entropy. Nature, 630(8017):625–630.

[12] Fox, D. (2001). Kld-sampling: Adaptive particle filters. Advances in neural information
processing systems, 14.

[13] Fox, D. (2003). Adapting the sample size in particle filters through kld-sampling. The interna-
tional Journal of robotics research, 22(12):985–1003.

[14] Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR.

[15] Guan, X., Zhang, L. L., Liu, Y., Shang, N., Sun, Y., Zhu, Y., Yang, F., and Yang, M. (2025).
rstar-math: Small llms can master math reasoning with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519.

[16] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of modern neural
networks. In International conference on machine learning, pages 1321–1330. PMLR.

[17] Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt,
J. (2021). Measuring mathematical problem solving with the math dataset. NeurIPS.

11

[18] Hollinger, G. A. and Sukhatme, G. S. (2014). Sampling-based robotic information gathering
algorithms. The International Journal of Robotics Research, 33(9):1271–1287.

[19] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2021).
Lora: Low-rank adaptation of large language models.

[20] Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky, A., Low, A., Helyar, A., Madry, A.,
Beutel, A., Carney, A., et al. (2024). Openai o1 system card. arXiv preprint arXiv:2412.16720.

[21] Johnson, D. D., Tarlow, D., Duvenaud, D., and Maddison, C. J. (2024). Experts don’t cheat:
Learning what you don’t know by predicting pairs. arXiv preprint arXiv:2402.08733.

[22] Koenker, R. (2005). Quantile regression, volume 38. Cambridge university press.

[23] Koenker, R. and Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the
Econometric Society, pages 33–50.

[24] Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. (2022). Large language models
are zero-shot reasoners. Advances in neural information processing systems, 35:22199–22213.

[25] Kuhn, L., Gal, Y., and Farquhar, S. (2023). Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664.

[26] Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez, J. E., Zhang, H.,
and Stoica, I. (2023). Efficient memory management for large language model serving with
pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems
Principles.

[27] Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30.

[28] Lambert, N. (2024). Reinforcement Learning from Human Feedback. Online.

[29] Lee, S.-J., Park, Y.-J., and Choi, H.-L. (2018). Efficient sensor network planning based
on approximate potential games. International Journal of Distributed Sensor Networks,
14(6):1550147718781454.

[30] Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B., Lee, T., Leike, J., Schulman,
J., Sutskever, I., and Cobbe, K. (2024). Let’s verify step by step. In The Twelfth International
Conference on Learning Representations.

[31] Liu, R., Gao, J., Zhao, J., Zhang, K., Li, X., Qi, B., Ouyang, W., and Zhou, B. (2025). Can 1b llm
surpass 405b llm? rethinking compute-optimal test-time scaling. arXiv preprint arXiv:2502.06703.

[32] Naeini, M. P., Cooper, G., and Hauskrecht, M. (2015). Obtaining well calibrated probabilities
using bayesian binning. In Proceedings of the AAAI conference on artificial intelligence.

[33] Neumann, L., Zisserman, A., and Vedaldi, A. (2018). Relaxed softmax: efficient confidence
auto-calibration for safe pedestrian detection. OpenReview.

[34] Nixon, J., Dusenberry, M. W., Zhang, L., Jerfel, G., and Tran, D. (2019). Measuring calibration
in deep learning. In CVPR workshops, volume 2.

[35] Park, Y.-J., Sobolewski, C., and Azizan, N. (2024a). Quantifying the reliability of predictions
in detection transformers: Object-level calibration and image-level uncertainty. arXiv preprint
arXiv:2412.01782.

[36] Park, Y.-J., Wang, H., Ardeshir, S., and Azizan, N. (2024b). Quantifying representation
reliability in self-supervised learning models. In Uncertainty in Artificial Intelligence, pages
2835–2860. PMLR.

[37] Puri, I., Sudalairaj, S., Xu, G., Xu, K., and Srivastava, A. (2025). A probabilistic inference
approach to inference-time scaling of llms using particle-based monte carlo methods. arXiv
preprint arXiv:2502.01618.

12

[38] Romano, Y., Patterson, E., and Candes, E. (2019). Conformalized quantile regression. Advances
in neural information processing systems, 32.

[39] Schaeffer, R., Kazdan, J., Hughes, J., Juravsky, J., Price, S., Lynch, A., Jones, E., Kirk, R.,
Mirhoseini, A., and Koyejo, S. (2025). How do large language monkeys get their power (laws)?
arXiv preprint arXiv:2502.17578.

[40] Sharma, A., Azizan, N., and Pavone, M. (2021). Sketching curvature for efficient out-of-
distribution detection for deep neural networks. In Uncertainty in artificial intelligence, pages
1958–1967. PMLR.

[41] Shelmanov, A., Tsymbalov, E., Puzyrev, D., Fedyanin, K., Panchenko, A., and Panov, M. (2021).
How certain is your transformer? In Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, pages 1833–1840.

[42] Shen, M., Das, S., Greenewald, K., Sattigeri, P., Wornell, G., and Ghosh, S. (2024). Thermome-
ter: Towards universal calibration for large language models. arXiv preprint arXiv:2403.08819.

[43] Snell, C., Lee, J., Xu, K., and Kumar, A. (2024). Scaling llm test-time compute optimally can
be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314.

[44] Song, M., Su, Z., Qu, X., Zhou, J., and Cheng, Y. (2025). Prmbench: A fine-grained and
challenging benchmark for process-level reward models. arXiv preprint arXiv:2501.03124.

[45] Soto, A. (2005). Self adaptive particle filter. In IJCAI, pages 1398–1406. Citeseer.

[46] Tian, K., Mitchell, E., Zhou, A., Sharma, A., Rafailov, R., Yao, H., Finn, C., and Manning, C. D.
(2023). Just ask for calibration: Strategies for eliciting calibrated confidence scores from language
models fine-tuned with human feedback. arXiv preprint arXiv:2305.14975.

[47] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., et al. (2023). Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971.

[48] Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N., Wang, L., Creswell, A., Irving, G.,
and Higgins, I. (2022). Solving math word problems with process-and outcome-based feedback.
arXiv preprint arXiv:2211.14275.

[49] von Werra, L., Belkada, Y., Tunstall, L., Beeching, E., Thrush, T., Lambert, N., Huang,
S., Rasul, K., and Gallouédec, Q. (2020). Trl: Transformer reinforcement learning. https:
//github.com/huggingface/trl.

[50] Wang, P., Li, L., Shao, Z., Xu, R. X., Dai, D., Li, Y., Chen, D., Wu, Y., and Sui, Z. (2023).
Math-shepherd: Verify and reinforce llms step-by-step without human annotations. CoRR,
abs/2312.08935.

[51] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al.
(2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837.

[52] Xia, S., Li, X., Liu, Y., Wu, T., and Liu, P. (2024). Evaluating mathematical reasoning beyond
accuracy. arXiv preprint arXiv:2404.05692.

[53] Xie, J., Chen, A. S., Lee, Y., Mitchell, E., and Finn, C. (2024). Calibrating language models
with adaptive temperature scaling. arXiv preprint arXiv:2409.19817.

[54] Yadkori, Y. A., Kuzborskij, I., György, A., and Szepesvári, C. (2024). To believe or not to
believe your llm. arXiv preprint arXiv:2406.02543.

[55] Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang, F., Wei, H.,
Lin, H., Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J., Lin, J., Dang, K., Lu, K., Bao,
K., Yang, K., Yu, L., Li, M., Xue, M., Zhang, P., Zhu, Q., Men, R., Lin, R., Li, T., Xia, T., Ren,
X., Ren, X., Fan, Y., Su, Y., Zhang, Y., Wan, Y., Liu, Y., Cui, Z., Zhang, Z., and Qiu, Z. (2024a).
Qwen2.5 technical report. arXiv preprint arXiv:2412.15115.

13

https://github.com/huggingface/trl
https://github.com/huggingface/trl

[56] Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B., Li, C., Liu, D., Tu, J., Zhou, J., Lin, J.,
et al. (2024b). Qwen2. 5-math technical report: Toward mathematical expert model via self-
improvement. arXiv preprint arXiv:2409.12122.

[57] Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., and Narasimhan, K. (2023). Tree of
thoughts: Deliberate problem solving with large language models. Advances in neural information
processing systems, 36:11809–11822.

[58] Ye, Z., Melo, L. C., Kaddar, Y., Blunsom, P., Staton, S., and Gal, Y. (2025). Uncertainty-aware
step-wise verification with generative reward models. arXiv preprint arXiv:2502.11250.

[59] Yu, Z., Xu, T., Jin, D., Sankararaman, K. A., He, Y., Zhou, W., Zeng, Z., Helenowski, E., Zhu,
C., Wang, S., et al. (2025). Think smarter not harder: Adaptive reasoning with inference aware
optimization. arXiv preprint arXiv:2501.17974.

[60] Zadrozny, B. and Elkan, C. (2001). Obtaining calibrated probability estimates from decision
trees and naive bayesian classifiers. In Icml.

[61] Zadrozny, B. and Elkan, C. (2002). Transforming classifier scores into accurate multiclass
probability estimates. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 694–699.

[62] Zhang, Z., Zheng, C., Wu, Y., Zhang, B., Lin, R., Yu, B., Liu, D., Zhou, J., and Lin, J. (2025).
The lessons of developing process reward models in mathematical reasoning. arXiv preprint
arXiv:2501.07301.

A Extended Related Work

Inference-time scaling. Recent studies have demonstrated that the capabilities of LLMs can be
significantly enhanced by employing multi-stage reasoning, rather than directly generating answers
in a single step [51, 24]. Although such methods typically require greater computational resources at
inference time, performance improvements can be substantial by decomposing problems into simpler
sub-tasks [1]. This strategy can be further improved by expanding the reasoning process: instead
of relying solely on single-pass decoding, recent inference-time scaling techniques sample multiple
candidate outputs and aggregate them for increased robustness [57, 43]. Those approaches—ranging
from majority voting to verifier-based selection [6, 30, 4], as well as sophisticated Monte Carlo search
algorithms [15] employing reward models [48, 50]—have demonstrated significant advances, particu-
larly in reasoning-intensive tasks such as mathematical problem-solving. Nevertheless, most existing
research has emphasized performance enhancement via extensive inference-time computation, while
its reliability and cost-effective utilization of computational resources remain relatively understudied.

Process Reward Models. PRMs are specialized inference-time scaling tools designed to enhance
the reliability of LLMs by verifying each intermediate step of their reasoning processes, rather than
evaluating only the final outcomes [62]. Training PRMs typically involves step-labeled datasets,
which are generated either through detailed human annotation or via automated methods like Monte
Carlo rollouts—sampling multiple solution trajectories to assess correctness probabilistically—and
evaluations by other large language models acting as judges [55, 50]. Exemplifying this approach,
Qwen-PRM [55] integrates a rigorous consensus-filtered labeling strategy that combines both human
judgments and automated assessments, enabling it to achieve state-of-the-art accuracy in step-
wise reasoning verification tasks [44]. Alternatively, Shepherd-PRM [50] illustrates that purely
automated labeling approaches, while somewhat less precise in pinpointing individual reasoning
errors, still significantly enhance overall model performance, showcasing their practicality and
scalability. Recently introduced PRMs, such as ReasonEval [52], extend beyond basic validity checks
by incorporating redundancy evaluation—assessing if reasoning steps are unnecessarily repetitive or
redundant, thus further improving robustness and effectiveness in LLM inference.

Adaptive sampling for efficient state estimation. Recent work by Puri et al. [37] suggests that
LLM reasoning processes can be framed as particle filtering—a sampling-based, probabilistic state
estimation approach. Classical state estimation literature has explored methods for dynamically
adjusting sample sizes based on state uncertainty [12, 13, 45, 10]. The core principle behind

14

these adaptive sampling methods is to decrease sample sizes when uncertainty is low; this reduces
computational costs while maintaining accuracy, particularly important for resource-constrained
environments such as mobile robotics. Similarly, information-driven adaptive strategies have been
studied in contexts of planning algorithms [18, 5, 29]. However, to the best of our knowledge, this
paper represents the first exploration of instance-adaptive sampling strategies within the context of
LLM inference-time scaling.

We would like to remark that Yu et al. [59] also tackles the adaptive reasoning problem, and their
approach shares a similar spirit with ours. Their adaptation, however, is based on the initial success
probability (i.e., question difficulty), whereas our method additionally adapts at intermediate reasoning
steps (and thus is extendable to beam search). Specifically, our approach is enabled by calibrating
PRMs, which allows us to estimate success probabilities throughout the multi-step reasoning process—
a direction that has not been explored before. Furthermore, while they adapt the reasoning length,
our method focuses on controlling the reasoning width (i.e., sample size), which we believe is a
promising avenue to explore for integrating both approaches.

Reliability of LLMs. Although state-of-the-art inference-time scaling methods frequently rely on
reward models, the reliability of these models has been relatively less explored. Johnson et al. [21]
introduced the theoretical framework Experts Don’t Cheat, proposing that reliable models generate
predictions independent of paired hints when confident about their input; Yadkori et al. [54] further
verified this idea extends to LLMs. Parallel research focuses on the concept of semantic entropy (SE)
[25, 11], identifying hallucinations through contextual inconsistencies. Ye et al. [58] subsequently
expanded SE to assess the reliability of process reward models. While these studies have made strides
in quantifying LLM reliability, they do not specifically integrate reliability assessment into inference-
time scaling strategies. Furthermore, rather than relying on PRM to estimate success probability (i.e.,
uncertainty), future work could explore uncertainty quantification tools (e.g., [14, 27, 40, 41, 36, 35]).
There is also a line of calibration-oriented work on LLMs, such as Shen et al. [42], which presents
another promising avenue to explore within our framework.

B Omitted Proofs

B.1 Proof of Proposition 1

Here, we provide a proof of Proposition 1.
Proposition 1. For every p ∈ (0, 1) and C ∈ (0, 1),

set NIAS(p, C) ≜
log(1− C)

log(1− p)
, then

⌈
NIAS(p, C)

⌉
≥ N⋆(p, C).

In other words, if the PRM could perfectly distinguish correct from incorrect reasoning, then selecting
the best trajectory among NIAS(p, C) samples (i.e., “best-of-NIAS”) guarantees an average accuracy
of (at least) C for questions whose per-trajectory success probability is p.

Proof. Draw n trajectories independently. The probability that none is correct is

Pr[no successes] = (1− p)N .

Therefore, the probability of at least one success is

Pr[at least one success] = 1− (1− p)N .

We require
1− (1− p)N ≥ δ ⇐⇒ (1− p)N ≤ 1− δ.

Since log(1− p) < 0, taking logarithms we have

N log(1− p) ≤ log(1− δ) ⇐⇒ N ≥ log(1− δ)

log(1− p)
.

Finally, setting N = NIAS(p, C) = log(1−C)
log(1−p) , we have

Nmin(p, C) =

⌈
log(1− C)

log(1− p)

⌉
.

15

Finally, if one can sample N independent trajectories each succeeding with probability p, and a
perfect reward model always picks a correct one whenever it exists, then choosing

N =

⌈
log(1− C)

log(1− p)

⌉
guarantees success probability at least C.

We also note that a similar line of theoretical analysis has been explored in parallel by Schaeffer et al.
[39].

B.2 Theoretical Justifications of IAS with Beam Search

We now prove that the same “independent-sampling” bound NIAS(p, C) underlies the instance-
adaptive scaling strategies for beam search (BS+IAS). The key observation is that, if each sampled
trajectory is independently correct with probability p (conditional on the prefix), then total expansions
under a given K and M provide K ×M independent tries.

Proposition 2 (BS+IAS-of-M). Assume K candidate prefixes, each of which independently yields a
correct continuation with probability at least pmin. Fix a target overall success probability C ∈ (0, 1)
and choose the per-prefix expansion width

M =
⌈

NIAS(pmin,C)
K

⌉
.

Then expanding all K prefixes by M continuations (for a total of K×M trajectories) and selecting
with a perfect reward model guarantees probability at least C that some trajectory is correct.

Proof. With K × M independent trials, the probability of zero successes is (1 − pmin)
KM . If

KM ≥ NIAS(pmin, C), then

(1− pmin)
KM ≤ (1− pmin)

NIAS(pmin,C) ≤ 1− C,

so the probability of at least one success is at least

1− (1− pmin)
KM ≥ C.

Proposition 3 (BS+IAS-of-K). After expanding each of Kmax prefixes by M continuations, let
p1 ≥ p2 ≥ · · · ≥ pKmax

. Define

KIAS = min
{
k | NIAS

(
pk, C

)
≤ k ×M , 1 ≤ k ≤ Kmax

}
.

Retaining the top KIAS prefixes and discarding the rest ensures overall success probability ≥ C.

Proof. For the top k prefixes, there are k ×M independent trials, each succeeding with probability
at least pk. If k ×M ≥ NIAS(pk, C), then

(1− pk)
kM ≤ (1− pk)

NIAS(pk,C) ≤ 1− C,

so the probability of at least one success is at least

1− (1− pk)
kM ≥ C.

B.2.1 Proof of Theorem 1

We require the following theorem from [38], which we slightly specialize to be one- instead of
two-sided.

16

Algorithm 1 One-Sided Split Conformal Quantile Regression (specialized from [38])

Require: Data (Xi, Yi) ∈ Rp × R, 1 ≤ i ≤ n; Miscoverage level α ∈ (0, 1); Quantile regression
algorithm A (e.g. the QR method described in the main text3).

1: procedure SPLIT CONFORMAL QR
2: Randomly split {1, . . . , n} into disjoint sets I1 and I2
3: Fit quantile function: q̂(β) ← A({(Xi, Yi) : i ∈ I1})
4: for each i ∈ I2 do
5: Compute Ei = q̂(β)(Xi)− Yi.
6: end for
7: Compute Q1−α(E, I2), the (1− α)(1 + 1/|I2|)-th empirical quantile of {Ei : i ∈ I2}
8: return Prediction interval C(x) =

[
q̂(β)(x)−Q1−α(E, I2),∞

)
for Xn+1 = x.

9: end procedure

Theorem 2 (Theorem 1 of [38], specialized). Suppose we have an exchangeable validation set
Vn = {(Xi, Yi)}ni=1 where Xi are features and Yi are labels. Consider a test point Xn+1 with
unobserved true outcome Yn+1. If (Xi, Yi), i = 1, . . . , n+ 1 are exchangeable, then the prediction
interval C(Xn+1) constructed by the (one-sided) Split Conformal Quantile Regression algorithm
(Algorithm 1) satisfies

P (Yn+1 ∈ C(Xn+1)) ≥ 1− α(Vn).

We can now prove the theorem.

Proof of Theorem 1. Follow the setting of Theorem 1, and consider that our exchangeable validation
set Vn consists of data (Xi, Pi) where Xi are partial reasoning traces and Pi are observed future
probabilities of success.4 We split Vn at random into I1 which we use for training r̂(β), and I2.

Using Theorem 2 and Algorithm 1, we then have that for an (exchangeable) test point (Xn+1, Pn+1),

P (Pn+1 ≥ q̂(β)(Xn+1)−Q1−α(E, I2)) ≥ 1− α. (1)

Purely for notational convenience, let’s set q̂(β) = r̂(β) + δ where δ and α := β̃ are constants
chosen using I1 such that δ ≥ Q1−β̃(E, I2) with high probability. This step is not strictly necessary;
we simply use it to avoid having to adjust our existing quantile regressor. This guarantees that
q̂(β)(Xn+1)−Q1−β̃(E, I2) ≥ r̂(β)(Xn+1), hence

P (Pn+1 ≥ r̂(β)(Xn+1)) ≥ 1− β̃. (2)

Now, consider that Pn+1 is the probability that 1 generation trial will succeed at recovering the
correct answer, where here the probability is conditional on Xn+1, so independent of the above
success probability. By definition, the probability that at least 1 of NIAS(Pn+1, C) trials will succeed
is at least C, and NIAS(·, C) is a monotonically decreasing function in its first argument. Therefore,
by (2), with probability at least 1− β̃,

NIAS(r̂
(β)(Xn+1), C) ≥ NIAS(Pn+1, C),

and since probability of at least 1 out of N success monotonically increases with N , with probability
at least 1− β̃,

P (success best-of-NIAS(r̂
(β)(Xn+1, C)|Xn+1) ≥ P (success best-of-NIAS(Pn+1, C)|Xn+1) ≥ C,

and therefore by independence,

P (success best-of-NIAS(r̂
(β)(Xn+1, C)|Xn+1) ≥ C(1− β̃).

17

(a) Forward Pass

(b) Monte Carlo Estimation

Figure 5: For each validation q, we first generate independent reasoning trajectories for i =
1, . . . , Nval. For each prefix trajectory, we conduct Monte Carlo simulations to estimate the success
probability, p̃(i,t).

C Calibration via Fine-Tuning

C.1 Calibration Set Collection

To evaluate the calibration quality of a given LLM and PRM pair, we construct a validation setDval =
∪q∈Qval

{(r̂(q,i,t), p̃(q,i,t))} through a systematic three-stage process, as described in Section 3.1 of
the main text. Here we provide additional implementation details and statistical analysis.

Data Collection Procedure. For notational simplicity, we omit the superscript q in the following
discussion, with the understanding that all operations are performed independently for each question
q ∈ Qval.

For each question q ∈ Qval, we first generate Nval = 8 independent reasoning trajectories using
the target LLM: {x(1),x(2), . . . ,x(Nval)} (illustrated as green arrows in Figure 5a). Next, for each
reasoning trajectory x(i) and each of its prefix trajectories x

(i)
0:t where t ∈ {0, 1, . . . , T (i)}, we

generate NMC = 8 additional follow-up trajectories conditioned on both the question and the prefix
(green arrows in Figure 5b). By evaluating and counting the number of correct follow-up trajectories

4In practice, these may be noisy, but noise can be reduced with further Monte Carlo trials.

18

Z(i,t), we estimate the PRM’s predicted reward r̂(i,t) = PRMϕ(q, x
(i)
0:t) and the empirical success

probability p̃(i,t) ≈ Z(i,t)/NMC (purple arrows in Figure 5a and blue arrows in Figure 5b).

Hardware and Software Configuration. All simulations are conducted using NVIDIA V100
32GB SMX3 devices with the vLLM inference acceleration framework [26]. We employ the standard
sampling configuration: top_p = 1.0, top_k = -1 (considering all tokens in the vocabulary),
and temperature T = 0.7 for all LLMs, consistent with best practices in recent reasoning model
studies [2, 37].

C.2 Statistical Properties and Label Quality

Unbiased Estimation. The per-prefix Monte Carlo estimator p̃(i,t) is statistically unbiased for the
true success probability. While individual estimates with NMC = 8 have non-negligible variance
(σ2

ε = p(1− p)/NMC ≈ 0.02 for typical p ≈ 0.8), our approach compensates through large-scale
aggregation.

Aggregate Accuracy. We collect between M = 40,000 and 80,000 prefix-label pairs per PRM–
LLM combination. Aggregating over this large number of samples substantially reduces the standard
error of our calibration metrics. Specifically, the standard error of the Brier score (our primary
calibration measure) scales approximately as:

SE ≈
√

2σ4
ε + 4σ2

ε ·MSEtrue

M
, (3)

where σ2
ε = p(1−p)

NMC
≈ 0.02 represents the per-instance variance (assuming typical success probability

p ≈ 0.8), and MSEtrue ≈ 0.08 represents the model’s intrinsic prediction error. With our collection
size of M ≥ 40,000, this standard error becomes sufficiently small that our reported calibration
metrics are statistically reliable, and the influence of per-instance noise on global trends is negligible.

Impact on Quantile Regression. While the aggregate statistics are accurate, the instance-wise
standard error does artificially inflate the variance of the target distribution in our quantile regression
objective. Increasing NMC could potentially improve our method’s performance by providing cleaner
training signals. However, our experimental results demonstrate that our calibration approach is
effective even with NMC = 8, achieving substantial improvements in calibration metrics across all
evaluated PRM–LLM pairs.

C.3 Additional Implementation Details

Correctness Evaluation. Following established validation procedures from prior works [56, 2], we
determine correctness by parsing the generated answer within the \boxed{} delimiter and comparing
it against the ground truth answer. Due to the mathematical nature of our evaluation datasets (MATH
and related benchmarks), there is minimal ambiguity in correctness determination—answers are
either numerically or symbolically equivalent to the ground truth or they are not.

PRM Reward Calculation. The reward computation follows the official implementation provided
by each PRM developer. In our experiments, we extract the final score predicted at the last reasoning
step, as this approach has been shown to perform well in inference-time scaling regimes [2, 43].

For Qwen-PRM, we use the following prompt format. The system prompt is:

<|im_start|>system
Please reason step by step, and put your final answer in \boxed{}.<|im_end|>

The user prompt format is:

<|im_start|>user
${Question}<|im_end|>
<|im_start|>assistant
${Prefix}<extra_0><|im_end|><|endoftext|>

19

where $Question represents the problem statement and $Prefix denotes the reasoning trajectory
prefix (which is an empty string in the case when applying IAS for the Best-of-N regime). The
reward score is computed based on the token probability at the special <extra_0> marker, which
corresponds to the final reasoning step. Similar prompt structures are used for other PRMs, following
their respective documentation.

Data and Code Release. To ensure full reproducibility and facilitate future research, we pub-
licly release our complete codebase, including all prompt templates, sampling configurations, and
evaluation scripts. Our calibration datasets—comprising

(
q, x

(q,i)
0:t , p̃(q,i,t)

)
triplets of question,

prefix trajectory, and empirical success probability—are available for multiple reasoning LLMs
at https://huggingface.co/datasets/young-j-park/prm_calibration. The dataset in-
cludes calibration data for all 18 PRM–LLM pairs evaluated in this work.

C.4 Baselines

C.4.1 Temperature Scaling

Typically, a PRM prediction head outputs two logits, e.g., for “good” vs. “bad” categories. Let these
logits be denoted by ℓgood and ℓbad. Given a temperature parameter T > 0, the calibrated probability is
computed as: r̂ = softmax

[
ℓgood/T, ℓbad/T

]
1
, where the subscript 1 selects the “good” component.

Choosing T by minimizing a calibration metric (e.g., Brier score) on validation data can align r̂ with
the empirical success probability (to some extent).

C.4.2 Isotonic Regression

Isotonic regression calibration fits a non-parametric, monotonic mapping from raw scores (e.g., PRM
reward) to target values (e.g., success probabilities). The method applies the Pool Adjacent Violators
algorithm (PAVA) [8] to learn a nondecreasing piecewise-constant function. This mapping then
stretches or compresses score regions so that, within each fitted segment, the average predicted score
matches the empirical success rate. Unlike parametric methods (e.g., temperature scaling), isotonic
regression makes no assumptions about the shape of the calibration curve, allowing it to flexibly
adapt to arbitrary monotonic distortions in the model’s outputs.

C.4.3 Histogram Binning

Histogram binning calibration partitions the prediction interval into a fixed number of equal-width
bins, then replaces each raw score with the empirical success rate of its bin. At test time, each
new prediction is assigned to its corresponding interval and is binned to that interval’s mean. This
simple non-parametric approach corrects systematic over- and under-confidence without assuming
any particular shape of the calibration curve.

C.5 Calibration via Fine-tuning

Advantage of fine-tuning. Since baseline methods correct calibration by uniformly shifting or
rescaling the output probabilities (or logits) of PRMs, they are effective only when every instance’s
prediction is consistently overestimated or underestimated. In contrast, fine-tuning approaches
leverage the capability of LLMs to capture contextual information such as question categories and
the position of the current reasoning step, enabling more comprehensive calibration. For these
reasons, we empirically observe that the simple baseline calibration methods are not adequate for
PRM calibrations.

Parameter-efficient fine-tuning. To address the issue, we adopt a fine-tuning approach, arguably
the most fundamental and straightforward method to calibrate the model. Specifically, we apply
LoRA [19] with a rank of 2, a dropout rate of 0.1, and a scaling factor of 32. To further reduce the
number of trainable parameters, we apply LoRA only for the query and value matrices in every fourth
decoder layer as well as the prediction head.

The LoRA approach offers benefits for PRM calibration beyond its computational efficiency compared
to full fine-tuning: it enables access to both the original and calibrated PRM scores in a single forward

20

https://huggingface.co/datasets/young-j-park/prm_calibration

pass. This allows for hybrid strategies (e.g., using the calibrated score for IAS and the original score
for ranking candidate reasoning), without incurring significant additional computational cost.

Quantile prediction. For quantile regression, we modify the output head by replacing the final
softmax linear layer with a sigmoid layer, producing outputs for each desired quantile (e.g., 3 quantiles
corresponding to 10%, 50%, and 90% in our experiments).

To ensure the initial predictions remain consistent with the original softmax outputs, we initialize the
sigmoid-based output head such that the sigmoid probability for each quantile matches the softmax
probability of the "good" token from the original model.

More specifically, assuming a two-token prediction scenario with logits z0 and z1, then softmax
probabilities for two classes 0 (i.e., “bad”) and 1 (i.e., “good”) are given by:

p(y = 1) =
ez1

ez0 + ez1
and p(y = 0) =

ez0

ez0 + ez1

The probability for class 1 simplifies to a sigmoid function:

p(y = 1) =
ez1

ez0 + ez1
=

1

1 + e−(z1−z0)
= σ(z1 − z0)

Thus, by equating the sigmoid input z with the logit difference z1 − z0, we maintain consistency in
initial predictions when transitioning from a softmax to a sigmoid-based output layer.

In practice, this corresponds to initializing the weights of the new linear sigmoid output layer W
as the difference between the original linear layer weights for the “good” token W1 and the “bad”
token W2, i.e., W ←W1 −W2. Similarly, the bias term b, if it exists, is initialized as the difference
of the biases from the original linear layers, i.e., b← b1 − b2. This ensures the initial logit input to
the sigmoid function directly matches the logit differences obtained from the original softmax-based
model. Fine-tuning is performed using NVIDIA A100 40GB SXM4 GPUs and the TRL library [49].

C.6 Model Calibration

Calibration error metrics assess whether a model’s predicted probabilities are consistent with observed
accuracy. Two widely used calibration metrics are the Brier score [3] and the expected calibration
error (ECE) [32]. Brier score quantifies the mean-squared difference between predicted probabilities
ŷ(l) and ground truth labels y(l) over N instances, where l = 1, . . . , N :

Brier =
1

N

N∑
l=1

(
ŷ(l) − y(l)

)2
.

ECE evaluates the discrepancy between predicted confidence and empirical accuracy by partitioning
predictions into B confidence bins {B1, . . . ,BB} and averaging the absolute difference within each
bin. Denote the set of indices whose confidences fall into bin Bb by Ib. Then

ECE =

B∑
b=1

|Ib|
N

∣∣conf(Bb)− acc(Bb)
∣∣,

where conf(Bb) = 1
|Ib|

∑
l∈Ib

ŷ(l) is the average confidence in bin b and acc(Bb) = 1
|Ib|

∑
l∈Ib

y(l)

is the empirical accuracy. Variants of ECE include adaptive calibration error (AdaptiveCE) [34] and
average calibration error (AverageCE) [33], which uses adaptive bin intervals and equal weighting
across bins, respectivley.

D Experiment Setup

We evaluate our method on two mathematical reasoning benchmarks: MATH500 [17] and AIME24-25
(i.e., AIME2024 and AIME2025). MATH500 is a 500-example subset of the MATH dataset, avail-
able at https://huggingface.co/datasets/HuggingFaceH4/MATH-500. For calibration pur-
poses, we also constructed our own MATH500-validation set by randomly subsampling 500

21

https://huggingface.co/datasets/HuggingFaceH4/MATH-500

problems from the original MATH training dataset, available at https://huggingface.co/
datasets/hendrycks/competition_math. The AIME (American Invitational Mathematics
Examination) consists of 15 questions per test, with two tests administered each year. Thus,
we use 30 questions from 2024 and 30 from 2025, totaling 60 problems, available at https:
//huggingface.co/datasets/HuggingFaceH4/aime_2024 and https://huggingface.co/
datasets/opencompass/AIME2025, respectively.

To demonstrate the efficacy of our method across diverse LLMs, we evaluate six prominent models that
vary in architecture, parameter count, and training paradigms (instruct-tuned vs. R1-distilled): Llama-
3.2-1B and Llama-3.1-8B-Instruct [47], Qwen2.5-Math-1.5B and Qwen2.5-7B-Instruct [55], and
DeepSeek-R1-Distill-Llama and DeepSeek-R1-Distill-Qwen-8B [9]. We use a standard temperature
setting of 0.7 and adopt the inference prompt template specified in Puri et al. [37] across all models.

We use Qwen2.5-Math-PRM-7B [62] as the primary PRM throughout the main manuscript, as it was
the top-performing open-source small-sized PRM in PRMBench [44]. We present additional results
for ReasonEval-7B [52] and Math-Shepherd-Mistral-7B [50] PRMs, along with comprehensive
analyses in the subsequent Appendix section. We adhered to the official prompting protocols for each
PRM, as demonstrated on their respective websites.

We use NVIDIA V100 32GB SMX3 devices for every experiment except for quantile regression
fine-tuning.

E Additional Results

E.1 Calibration Analysis of Larger-Scale PRMs

We extend our calibration analysis to larger-scale process reward models by evaluating the 72B
parameter variant on both MATH500 and AIME24-25 datasets. This analysis addresses whether the
calibration challenges observed in 7B models persist at larger scales, and whether our calibration
method remains effective across different model sizes.

Table 4 and Figure 6 present a comprehensive comparison of calibration performance across three
configurations: uncalibrated 7B models, uncalibrated 72B models, and our calibrated 7B models.
We evaluate six different base language models across two datasets, reporting both Brier score and
Positive Brier score metrics for each configuration.

The results demonstrate that while larger 72B models exhibit reduced overestimation compared to
their 7B counterparts, they still suffer from significant miscalibration issues. This observation is
expected, as both model were trained with same policy model.

These results validate two key insights: (1) the calibration problem persists across model scales
and cannot be solved simply by increasing model capacity, and (2) explicit calibration methods
can effectively address miscalibration. Notably, our calibrated 7B model not only outperforms the
uncalibrated 7B baseline but also surpasses the much larger uncalibrated 72B model, demonstrating
that targeted calibration is more effective than naive scaling.

E.2 Histogram of Estimation Error

We examine the histogram of the deviations of the estimated reward from the true success probability
(r̂(i,t) − p̃(i,t)), with both uncalibrated and calibrated PRMs.

As shown in Figures 7 and 8, the error densities of uncalibrated PRMs are skewed to the right, with
minimal mass on the left, indicating consistent overestimation. This effect is further amplified when
weaker LLMs are used to generate responses, or when evaluated on more challenging datasets such
as AIME24-25.

It is noteworthy that native PRMs are designed to estimate success in a model-agnostic manner;
consequently, they tend to overestimate success probabilities for weaker models, resulting in inflated
calibration errors. However, calibration effectively mitigates the issue and transforms the PRM error
histograms into approximately unbiased zero-mean distributions across different models and dataset
distributions.

22

https://huggingface.co/datasets/hendrycks/competition_math
https://huggingface.co/datasets/hendrycks/competition_math
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/opencompass/AIME2025
https://huggingface.co/datasets/opencompass/AIME2025

Table 4: Calibration performance comparison across model scales on MATH500 and AIME24-25
datasets (lower is better). Best results for each metric within each row are shown in bold. Results
demonstrate that explicit calibration of Qwen-PRM-7B models outperforms even uncalibrated Qwen-
PRM-72B models, highlighting the importance of targeted calibration over naive model scaling.

Dataset Model Uncalibrated 7B Uncalibrated 72B Calibrated 7B
Brier Pos. Brier Brier Pos. Brier Brier Pos. Brier

MATH500

Llama-3.2-1B 0.241 0.223 0.211 0.078 0.069 0.047
Llama-3.1-8B 0.205 0.177 0.177 0.111 0.121 0.099
Qwen-2.5-1.5B 0.154 0.130 0.155 0.106 0.127 0.107
Qwen-2.5-7B 0.101 0.085 0.118 0.057 0.082 0.053
R1-Llama-8B 0.161 0.114 0.193 0.072 0.089 0.055
R1-Qwen-7B 0.148 0.106 0.176 0.075 0.083 0.058

AIME24-25

Llama-3.2-1B 0.194 0.192 0.157 0.063 0.003 0.001
Llama-3.1-8B 0.227 0.223 0.183 0.122 0.041 0.035
Qwen-2.5-1.5B 0.330 0.322 0.256 0.176 0.073 0.053
Qwen-2.5-7B 0.289 0.282 0.205 0.139 0.072 0.066
R1-Llama-8B 0.385 0.371 0.237 0.204 0.078 0.030
R1-Qwen-7B 0.414 0.402 0.260 0.215 0.069 0.034

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

1

2

3

4

D
en

si
ty

QwenPRM-72B (Uncalibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(a) Uncalibrated Qwen-PRM-72B

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

1

2

3

4

5

D
en

si
ty

QwenPRM-72B (Uncalibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(b) Uncalibrated Qwen-PRM-72B

Figure 6: Histogram of signed deviation (i.e., estimation error) for Qwen-PRM-72B on the MATH500
(in-distribution) and AIME24-25 (out-of-distribution) datasets. Positive error indicates overestimation.
While larger 72B model exhibit reduced overestimation compared to their 7B counterparts, they still
suffer from significant miscalibration issues.

E.3 Comparison with Calibration Baselines

In this section, we present calibration results for our method and several baselines across three PRMs.
In addition to reporting the average Brier score, we also plot the 95% confidence intervals. The
results are shown in Figures 9, 10, and 11.

The Shepherd PRM exhibits a trend similar to the Qwen PRM: our method consistently outperforms
the baseline methods, whereas the baselines perform poorly on the out-of-distribution AIME24-25
dataset. The ReasonEval PRM, which is specifically trained to produce more robust outputs (especially
for intermediate steps), appears to be already well-calibrated to some extent. Nevertheless, our method
consistently surpasses the baseline approaches. Interestingly, despite its initially poor calibration,
the Qwen PRM achieves better final calibration quality than both Shepherd and ReasonEval after
fine-tuning.

We additionally compare our method against Adaptive Temperature Scaling (ATS) [53, 42], a recent
calibration method that learns instance-specific temperature parameters. Since ATS was originally
designed for standard language model outputs rather than PRM regression-style scores, we adapted it
for our setting. Specifically, we modified ATS to train a transformer head that dynamically selects
temperature parameters based on the PRM-generated hidden states of both the question and solution
prefix, enabling context-aware calibration similar to our approach.

23

Table 5: Calibration error for various methods and models on MATH500 (in-distribution) and
AIME24-25 (out-of-distribution). Values are presented as adaptive calibration error (AdaCE) and
Brier scores, where lower is better. The best result for each metric within a row is bolded. We use
Qwen-PRM-7B. Acronyms: TS (Temperature Scaling), ATS (Adpative Temperature Scaling), IR
(Isotonic Regression), and HB (Histogram Binning).

Dataset Model Uncalibrated TS ATS IR HB Calibrated (Ours)
AdaCE Brier AdaCE Brier AdaCE Brier AdaCE Brier AdaCE Brier AdaCE Brier

MATH500

Llama-3.2-1B .283 .241 .265 .190 .181 .099 .212 .097 .213 .097 .081 .069
Llama-3.1-8B .263 .205 .244 .168 .237 .130 .321 .166 .323 .166 .167 .121
Qwen-2.5-1.5B .218 .154 .205 .140 .205 .123 .271 .145 .274 .146 .155 .127
Qwen-2.5-7B .146 .101 .135 .093 .135 .076 .201 .092 .205 .094 .100 .082
R1-Llama-8B .251 .161 .223 .149 .196 .107 .297 .141 .298 .141 .113 .089
R1-Qwen-7B .241 .148 .202 .140 .178 .103 .289 .132 .289 .132 .107 .083

AIME24-25

Llama-3.2-1B .236 .194 .210 .193 .125 .065 .177 .065 .177 .065 .011 .003
Llama-3.1-8B .284 .227 .248 .206 .281 .125 .392 .215 .396 .215 .086 .041
Qwen-2.5-1.5B .401 .330 .393 .293 .367 .184 .477 .331 .486 .337 .105 .073
Qwen-2.5-7B .355 .289 .354 .249 .271 .146 .390 .250 .404 .261 .098 .072
R1-Llama-8B .526 .385 .528 .310 .438 .220 .590 .400 .588 .399 .128 .078
R1-Qwen-7B .558 .414 .570 .340 .440 .230 .613 .430 .613 .430 .090 .069

Table 5 presents comprehensive comparisons across three calibration metrics. The modified ATS
consistently outperforms simpler baselines, validating the importance of context-aware calibration.
On the in-distribution MATH500 dataset, ATS achieves competitive performance—for instance,
reducing AdaCE from 0.241 to 0.178 for R1-Qwen-7B. However, our method achieves superior
calibration with AdaCE of 0.107 for the same model.

The performance gap becomes more pronounced on the out-of-distribution AIME24-25 dataset.
While ATS provides improvements over uncalibrated models (e.g., reducing AdaCE from 0.558
to 0.440 for R1-Qwen-7B), our method demonstrates substantially better generalization with an
AdaCE of only 0.090. This pattern holds consistently across all models and metrics. For example,
on Llama-3.2-1B, our method achieves an AdaCE of 0.011 compared to 0.125 for ATS, and a Brier
score of 0.003 compared to 0.065.

E.4 Inference-time Scaling with IAS

We first reiterate that our goal is “not” to introduce a new inference-time scaling method that
universally outperforms existing approaches. Instead, we aim to enable inference-time scaling to
allocate compute budgets dynamically based on a model’s estimated likelihood of answering correctly.
The proposed IAS strategy enables us to adaptively determine, on a per-instance basis, the number of
samples that best balance accuracy and computational cost.

IAS for best-of-N . We first present results and analysis of the proposed IAS strategy across
different LLMs and PRMs. Specifically, we report performance under the best-of-N framework
in Tables 2, 6, and 7. To ensure statistical significance, the pass@1 rate is estimated by averaging
accuracy over 64 independent forward passes. Similarly, for the IAS approach, we report the score
based on 100 different trials for each question, based on the determined NIAS value computed
individually per question.

As observed, the IAS approach adaptively allocates the sampling budget while largely preserving
overall accuracy. Ironically, the ReasonEval PRM performs poorly under the best-of-N (BoN)
strategy, often yielding results worse than the pass@1 rate. However, this is not a limitation of the
IAS strategy itself, but rather a reflection of the ReasonEval PRM’s weakness in selecting the correct
answer from among candidate responses. Notably, the budgets determined by IAS for ReasonEval are
comparable to those derived from the other PRMs (See Figures 12, 13, and 14 for how effectively IAS
adaptively selects N .). In contrast, PRMs like Qwen exhibit strong ranking capabilities despite poor
initial calibration. Our calibration method proves particularly effective in such cases, as it preserves
the PRM’s original strengths while enabling effective IAS and improving its reliability.

IAS for beam search. To further demonstrate the effectiveness of the proposed IAS approach, we
evaluate it under a beam search setup, which requires PRM evaluation over intermediate reasoning
trajectories. However, due to limitations of the vLLM acceleration framework—which does not
support fine-tuned custom models or provide access to internal states—inference was significantly
slower than simple forward passes. In our setting (N = 8 × 8 = 64, M = 8) and computation
resource (i.e., V100 gpus), a single search over 500 examples took approximately 10 hours, resulting

24

in each experiment requiring over 200 hours to complete. To mitigate this computational burden, we
adopted a simplified approach: instead of performing beam search at every step, we applied it every
five steps. Given that typical reasoning trajectories span 20 or more steps, this amounted to roughly
five beam search applications per example. Due to the computational burden, we were only able to
perform a single trial for each beam search experiment.

Tables 3, 8, and 9 present the pass@1 accuracy for standard beam search (BS), BS with the proposed
IASoK, and BS with IASoM, evaluated using the Qwen, Shepherd, and ReasonEval PRMs. For
the Shepherd and ReasonEval PRMs, we conduct experiments using the MATH100 (the first 100
examples among MATH500) and AIME2024 datasets. To ensure a fair comparison, all experiments
were conducted using the calibrated PRM. The results are consistent with the observations made for
the Qwen PRM, as discussed in the main text.

E.5 Ablation Studies on IAS Parameters

We provide an ablation study on two hyperparameters that govern the trade-off between computational
cost and accuracy, under the best-of-N setup.

A target probability (C). The target probability serves as a parameter that acts as a constant
multiplier on the expression 1/ log(1− p). We present results for values of C such that log(1− C)
takes on values −0.125, −0.25, −0.5, −1.0, −2.0, −3.0, −4.0, and −5.0. Figure 15 shows the
budget-accuracy trade-off plots. We use C = 0.99, as it appears to provide a reasonable balance
between accuracy and computational cost.

A quantile parameter (β). The parameter β represents a quantile that controls how conservatively
we estimate the success probability. We report results for β = 0.1, 0.5, and 0.9. Figure 16 presents
the budget-accuracy trade-off plots. We adopt a conservative setting of β = 0.1, as it consistently
achieves strong performance. However, we note that even the 90% quantile (β = 0.9) often yields
reasonably high accuracy with significant budget savings, highlighting the flexibility of the approach.

Again, as also shown in Figures 12, 13, and 14, accuracy tends to increase monotonically with higher
inference budget, thus a “sweet spot” doesn’t exist. Exploring a principled metric to assess the
cost-performance ratio within the inference-time scaling framework remains an interesting direction
for future work.

25

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

2

4

6

D
en

si
ty

QwenPRM-7B (Uncalibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(a) Uncalibrated Qwen-PRM

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

2

4

6

8

D
en

si
ty

QwenPRM-7B (Calibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(b) Calibrated Qwen-PRM

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

1

2

3

D
en

si
ty

Shepherd-7B (Uncalibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(c) Uncalibrated Shepherd-PRM

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

2

4

6
D

en
si

ty

Shepherd-7B (Calibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(d) Calibrated Shepherd-PRM

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

2

4

6

D
en

si
ty

ReasonEval-7B (Uncalibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(e) Uncalibrated ReasonEval-PRM

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

2

4

6

D
en

si
ty

ReasonEval-7B (Calibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(f) Calibrated ReasonEval-PRM

Figure 7: Histogram of signed deviation (i.e., estimation error) for Qwen, Shepherd, and ReasonEval
PRMs evaluated on the MATH500 (in-distribution) datasets. Positive error indicates overestimation.
As shown, uncalibrated PRMs—the left column—tend to be optimistic (e.g., exhibiting higher
density on the right side compared to the left and/or forming a noticeable peak around 1.0).
This becomes particularly pronounced for weaker models. In contrast, our calibration approach—the
right column—transforms the error histograms into unbiased zero-mean distributions, consistently
across various models.

26

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

1

2

3

4

D
en

si
ty

QwenPRM-7B (Uncalibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(a) Uncalibrated Qwen-PRM

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

10

20

30

D
en

si
ty

QwenPRM-7B (Calibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(b) Calibrated Qwen-PRM

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Shepherd-7B (Uncalibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(c) Uncalibrated Shepherd-PRM

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

10

20
D

en
si

ty

Shepherd-7B (Calibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(d) Calibrated Shepherd-PRM

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

2

4

6

D
en

si
ty

ReasonEval-7B (Uncalibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(e) Uncalibrated ReasonEval-PRM

1.0 0.5 0.0 0.5 1.0
(Estimated Reward Success Prob.)

0

5

10

15

20

D
en

si
ty

ReasonEval-7B (Calibrated)

Llama-1B
Llama-8B
Qwen-1.5B
Qwen-7B
R1-Llama-8B
R1-Qwen-7B

(f) Calibrated ReasonEval-PRM

Figure 8: Histogram of signed deviation (i.e., estimation error) for Qwen, Shepherd, and ReasonEval
PRMs evaluated on the AIME24-25 (out-of-distribution) datasets. Positive error indicates overes-
timation. As shown, uncalibrated PRMs—the left column—tend to be optimistic (e.g., exhibiting
higher density on the right side compared to the left and/or forming a noticeable peak around 1.0).
This becomes particularly pronounced for more challenging, out-of-distribution problems. In
contrast, our calibration approach—the right column—transforms the error histograms into unbiased
zero-mean distributions, consistently across various models and dataset distributions.

27

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

Llama-3.2-1B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

Llama-3.1-8B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

Qwen2.5-Math-1.5B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5
B

ri
er

 S
co

re
Qwen2.5-Math-7B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

DeepSeek-R1-Distill-Llama-8B

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

DeepSeek-R1-Distill-Qwen-7B

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

Figure 9: Comparison of our method with popular calibration techniques—temperature scaling,
isotonic regression, and histogram binning—on the Qwen PRM across MATH500 and AIME24-25.

28

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

Llama-3.2-1B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

Llama-3.1-8B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

Qwen2.5-Math-1.5B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5
B

ri
er

 S
co

re
Qwen2.5-Math-7B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

DeepSeek-R1-Distill-Llama-8B

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

DeepSeek-R1-Distill-Qwen-7B

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

Figure 10: Comparison of our method with popular calibration techniques—temperature scaling,
isotonic regression, and histogram binning—on the Shepherd PRM across MATH500 and AIME24-25.

29

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

Llama-3.2-1B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

Llama-3.1-8B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

Qwen2.5-Math-1.5B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5
B

ri
er

 S
co

re
Qwen2.5-Math-7B-Instruct

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

DeepSeek-R1-Distill-Llama-8B

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

MATH500 AIME24-25
0.0

0.1

0.2

0.3

0.4

0.5

B
ri

er
 S

co
re

DeepSeek-R1-Distill-Qwen-7B

Uncalibrated
Temp. Scaling
Isotonic Reg.
Hist. Binning
QR (Ours)

Figure 11: Comparison of our method with popular calibration techniques—temperature scaling, iso-
tonic regression, and histogram binning—on the ReasonEval PRM across MATH500 and AIME24-25.

30

Table 6: Evaluation of the best-of-N method with a fixed-N strategy (BoN), compared against the
proposed instance-adaptive sampling strategy (BoN+IAS), with calibrated Shepherd PRM. We report
both accuracy and normalized computational cost (budget). Relative improvements over Pass@1
accuracy are highlighted in light blue.

Baselines w/ Uncal. PRM w/ Calib. PRM
Dataset Model Pass@1 BoN BoN+IAS Budget BoN+IAS Budget

MATH500

Llama-3.2-1B 0.2255 0.3800 0.3205 0.0852 0.3633 0.6379
Llama-3.1-8B 0.4659 0.5620 0.5419 0.0852 0.5446 0.2481
Qwen-2.5-1.5B 0.6970 0.7740 0.7518 0.0852 0.7414 0.1223
Qwen-2.5-7B 0.7994 0.8460 0.8437 0.0852 0.8345 0.1048
R1-Llama-8B 0.6734 0.7640 0.7493 0.0852 0.7767 0.3106
R1-Qwen-7B 0.7556 0.8480 0.8137 0.0852 0.8206 0.2477

AIME24-25

Llama-3.2-1B 0.0042 0.0000 0.0067 0.1206 0.0000 0.9956
Llama-3.1-8B 0.0268 0.0333 0.0442 0.1206 0.0355 0.7320
Qwen-2.5-1.5B 0.0932 0.1500 0.1310 0.1206 0.1397 0.6159
Qwen-2.5-7B 0.0885 0.2000 0.1497 0.1206 0.1507 0.5740
R1-Llama-8B 0.0784 0.1333 0.1505 0.1206 0.1760 0.8664
R1-Qwen-7B 0.1411 0.3000 0.2263 0.1206 0.2755 0.8456

Table 7: Evaluation of the best-of-N method with a fixed-N strategy (BoN), compared against the
proposed instance-adaptive sampling strategy (BoN+IAS), with calibrated ReasonEval PRM. We re-
port both accuracy and normalized computational cost (budget). Relative improvements/degradations
over Pass@1 accuracy are highlighted in light blue/red.

Baselines w/ Uncal. PRM w/ Calib. PRM
Dataset Model Pass@1 BoN BoN+IAS Budget BoN+IAS Budget

MATH500

Llama-3.2-1B 0.2255 0.2900 0.2887 0.0773 0.3095 0.4672
Llama-3.1-8B 0.4659 0.4780 0.5055 0.0773 0.5007 0.2570
Qwen-2.5-1.5B 0.6970 0.7340 0.7400 0.0773 0.7286 0.1324
Qwen-2.5-7B 0.7994 0.7500 0.8129 0.0773 0.7948 0.1523
R1-Llama-8B 0.6734 0.5300 0.6335 0.0773 0.6142 0.2069
R1-Qwen-7B 0.7556 0.6280 0.7194 0.0773 0.7016 0.1653

AIME24-25

Llama-3.2-1B 0.0042 0.0000 0.0050 0.1521 0.0000 0.9852
Llama-3.1-8B 0.0268 0.0333 0.0287 0.1521 0.0370 0.8773
Qwen-2.5-1.5B 0.0932 0.0833 0.0955 0.1521 0.0762 0.7430
Qwen-2.5-7B 0.0885 0.0500 0.1117 0.1521 0.0647 0.8471
R1-Llama-8B 0.0784 0.0333 0.0388 0.1521 0.0238 0.8263
R1-Qwen-7B 0.1411 0.0000 0.0807 0.1521 0.0468 0.8333

31

Table 8: Evaluation of the beam search method with a fixed-N /M , compared against the proposed
adaptive sampling strategy (IASoK and IASoM) using calibrated Shepherd PRMs. We report both
accuracy and computational cost (budget), measured by the average number of LLM generations per
question normalized by that of a fixed-budget BS baseline. Relative improvements over the Pass@1
accuracy are highlighted in light blue.

Baselines IAS w/ Calibrated PRM
Dataset Model Pass@1 BS BS+IASoK Budget BS+IASoM Budget

MATH100

Llama-3.2-1B 0.2255 0.4000 0.4000 0.9549 0.4300 1.0634
Llama-3.1-8B 0.4659 0.5700 0.5400 0.5377 0.5600 0.5902
Qwen-2.5-1.5B 0.6970 0.7900 0.7900 0.4806 0.7800 0.5014
Qwen-2.5-7B 0.7994 0.7800 0.8900 0.5382 0.8900 0.5794
R1-Llama-8B 0.6734 0.7900 0.8200 0.5264 0.8300 0.5672
R1-Qwen-7B 0.7556 0.8600 0.8800 0.4063 0.9000 0.4983

AIME24

Llama-3.2-1B 0.0078 0.0333 0.0333 1.0000 0.0333 1.0000
Llama-3.1-8B 0.0479 0.1000 0.1000 0.8689 0.0667 0.9636
Qwen-2.5-1.5B 0.0969 0.1000 0.1000 0.7565 0.1000 0.8523
Qwen-2.5-7B 0.0979 0.1333 0.1333 0.7994 0.1333 0.9051
R1-Llama-8B 0.0656 0.0000 0.1000 0.8958 0.1000 0.9065
R1-Qwen-7B 0.1354 0.1000 0.3333 0.9917 0.3000 1.0713

Table 9: Evaluation of the beam search method with a fixed-N /M , compared against the proposed
adaptive sampling strategy (IASoK and IASoM) using calibrated ReasonEval PRMs. We report both
accuracy and computational cost (budget), measured by the average number of LLM generations per
question normalized by that of a fixed-budget BS baseline. Relative improvements/degradations over
Pass@1 accuracy are highlighted in light blue/red.

Baselines IAS w/ Calibrated PRM
Dataset Model Pass@1 BS BS+IASoK Budget BS+IASoM Budget

MATH100

Llama-3.2-1B 0.2255 0.3400 0.4000 0.5030 0.3700 0.6730
Llama-3.1-8B 0.4659 0.5700 0.5700 0.3606 0.5700 0.4490
Qwen-2.5-1.5B 0.6970 0.7800 0.7700 0.4171 0.7900 0.4281
Qwen-2.5-7B 0.7994 0.8800 0.8700 0.4664 0.8700 0.4840
R1-Llama-8B 0.6734 0.3500 0.7900 0.3379 0.8300 0.4088
R1-Qwen-7B 0.7556 0.4800 0.8900 0.3173 0.8900 0.3628

AIME24

Llama-3.2-1B 0.0078 0.0000 0.0000 0.9258 0.0000 0.9782
Llama-3.1-8B 0.0479 0.0333 0.0000 0.4007 0.0333 0.7371
Qwen-2.5-1.5B 0.0969 0.1333 0.1000 0.3134 0.0667 0.5084
Qwen-2.5-7B 0.0979 0.1000 0.1000 0.3626 0.0667 0.5155
R1-Llama-8B 0.0656 0.0667 0.1000 0.7205 0.2000 0.8866
R1-Qwen-7B 0.1354 0.2000 0.2333 0.6203 0.3333 0.6861

32

21 23 25

The Number of Samples (N)

0.2

0.4

0.6

0.8

Av
er

ag
e

Ac
cu

ra
cy

Llama-3.2-1B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.2

0.4

0.6

0.8

Av
er

ag
e

Ac
cu

ra
cy

Llama-3.1-8B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Ac
cu

ra
cy

Qwen2.5-Math-1.5B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.6

0.7

0.8

0.9

Av
er

ag
e

Ac
cu

ra
cy

Qwen2.5-Math-7B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Ac
cu

ra
cy

DeepSeek-R1-Distill-Qwen-7B

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Ac
cu

ra
cy

DeepSeek-R1-Distill-Qwen-7B

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

Figure 12: IAS scales with problem difficulty in MATH500, with Qwen PRM. Average accuracy over
the test points with varying difficulty levels (1: easy, 5: hard) is illustrated. Regular fixed-N and our
IAS approaches are indicated by dashed lines and stars, respectively, and IAS allocates more samples
to harder questions.

33

21 23 25

The Number of Samples (N)

0.2

0.4

0.6

0.8

Av
er

ag
e

Ac
cu

ra
cy

Llama-3.2-1B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.2

0.4

0.6

0.8

Av
er

ag
e

Ac
cu

ra
cy

Llama-3.1-8B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Ac
cu

ra
cy

Qwen2.5-Math-1.5B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.6

0.7

0.8

0.9
Av

er
ag

e
Ac

cu
ra

cy
Qwen2.5-Math-7B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Ac
cu

ra
cy

DeepSeek-R1-Distill-Qwen-7B

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Ac
cu

ra
cy

DeepSeek-R1-Distill-Qwen-7B

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

Figure 13: IAS scales with problem difficulty in MATH500, with Shepherd PRM. Average accuracy
over the test points with varying difficulty levels (1: easy, 5: hard) is illustrated. Regular fixed-N
and our IAS approaches are indicated by dashed lines and stars, respectively, and IAS allocates more
samples to harder questions.

34

21 23 25

The Number of Samples (N)

0.2

0.4

0.6

0.8

Av
er

ag
e

Ac
cu

ra
cy

Llama-3.2-1B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.2

0.4

0.6

0.8

Av
er

ag
e

Ac
cu

ra
cy

Llama-3.1-8B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Ac
cu

ra
cy

Qwen2.5-Math-1.5B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.6

0.7

0.8

0.9
Av

er
ag

e
Ac

cu
ra

cy
Qwen2.5-Math-7B-Instruct

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Ac
cu

ra
cy

DeepSeek-R1-Distill-Qwen-7B

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

21 23 25

The Number of Samples (N)

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Ac
cu

ra
cy

DeepSeek-R1-Distill-Qwen-7B

Level 1
Level 2
Level 3
Level 4
Level 5
Fixed-N
IAS

Figure 14: IAS scales with problem difficulty in MATH500, with ReasonEval PRM. Average accuracy
over the test points with varying difficulty levels (1: easy, 5: hard) is illustrated. Regular fixed-N
and our IAS approaches are indicated by dashed lines and stars, respectively, and IAS allocates more
samples to harder questions.

35

0.2 0.4 0.6 0.8
Budget

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

QwenPRM-7B

Llama-3.2-1B
Llama-3.1-8B
Qwen-2.5-1.5B
Qwen-2.5-7B
R1-Llama-8B
R1-Qwen-7B

(a) Qwen-PRM on MATH500

0.6 0.8 1.0
Budget

0.00

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

QwenPRM-7B

Llama-3.2-1B
Llama-3.1-8B
Qwen-2.5-1.5B
Qwen-2.5-7B
R1-Llama-8B
R1-Qwen-7B

(b) Qwen-PRM on AIME24-25

0.0 0.2 0.4 0.6 0.8
Budget

0.4

0.6

0.8

Ac
cu

ra
cy

Shepherd-7B

Llama-3.2-1B
Llama-3.1-8B
Qwen-2.5-1.5B
Qwen-2.5-7B
R1-Llama-8B
R1-Qwen-7B

(c) Shepherd-PRM on MATH500

0.2 0.4 0.6 0.8 1.0
Budget

0.0

0.1

0.2

0.3

Ac
cu

ra
cy

Shepherd-7B

Llama-3.2-1B
Llama-3.1-8B
Qwen-2.5-1.5B
Qwen-2.5-7B
R1-Llama-8B
R1-Qwen-7B

(d) Shepherd-PRM on AIME24-25

0.0 0.2 0.4 0.6
Budget

0.4

0.6

0.8

Ac
cu

ra
cy

ReasonEval-7B

Llama-3.2-1B
Llama-3.1-8B
Qwen-2.5-1.5B
Qwen-2.5-7B
R1-Llama-8B
R1-Qwen-7B

(e) ReasonEval-PRM on MATH500

0.2 0.4 0.6 0.8 1.0
Budget

0.00

0.02

0.04

0.06

0.08

0.10

Ac
cu

ra
cy

ReasonEval-7B

Llama-3.2-1B
Llama-3.1-8B
Qwen-2.5-1.5B
Qwen-2.5-7B
R1-Llama-8B
R1-Qwen-7B

(f) ReasonEval-PRM on AIME24-25

Figure 15: Budget vs. accuracy plots on MATH500 and AIME24-25 datasets with varying C.

36

0.2 0.4 0.6
Budget

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

QwenPRM-7B

Llama-3.2-1B
Llama-3.1-8B
Qwen-2.5-1.5B
Qwen-2.5-7B
R1-Llama-8B
R1-Qwen-7B

(a) Qwen-PRM on MATH500

0.4 0.6 0.8 1.0
Budget

0.00

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

QwenPRM-7B

Llama-3.2-1B
Llama-3.1-8B
Qwen-2.5-1.5B
Qwen-2.5-7B
R1-Llama-8B
R1-Qwen-7B

(b) Qwen-PRM on AIME24-25

0.0 0.2 0.4 0.6
Budget

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Shepherd-7B

Llama-3.2-1B
Llama-3.1-8B
Qwen-2.5-1.5B
Qwen-2.5-7B
R1-Llama-8B
R1-Qwen-7B

(c) Shepherd-PRM on MATH500

0.2 0.4 0.6 0.8 1.0
Budget

0.0

0.1

0.2

Ac
cu

ra
cy

Shepherd-7B

Llama-3.2-1B
Llama-3.1-8B
Qwen-2.5-1.5B
Qwen-2.5-7B
R1-Llama-8B
R1-Qwen-7B

(d) Shepherd-PRM on AIME24-25

0.1 0.2 0.3 0.4
Budget

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

ReasonEval-7B

Llama-3.2-1B
Llama-3.1-8B
Qwen-2.5-1.5B
Qwen-2.5-7B
R1-Llama-8B
R1-Qwen-7B

(e) ReasonEval-PRM on MATH500

0.2 0.4 0.6 0.8 1.0
Budget

0.00

0.02

0.04

0.06

0.08

0.10

Ac
cu

ra
cy

ReasonEval-7B

Llama-3.2-1B
Llama-3.1-8B
Qwen-2.5-1.5B
Qwen-2.5-7B
R1-Llama-8B
R1-Qwen-7B

(f) ReasonEval-PRM on AIME24-25

Figure 16: Budget vs. accuracy plots on MATH500 and AIME24-25 datasets with varying β.

37

	Introduction
	Related Work

	Preliminaries and Notation: Inference-Time Scaling with PRMs
	Calibration and Process Rewards
	Calibration Data Collection Methodology
	Uncertainty-Aware Calibration through Quantile Regression

	Instance-Adaptive Inference-Time Scaling
	IAS: Calibrated Reward-based Instance-Adaptive Scaling

	Numerical Experiments
	Fine-Tuning PRMs for Better Calibration
	Calibrated Reward Enables Instance-Adaptive Scaling

	Conclusion and Limitations
	Extended Related Work
	Omitted Proofs
	Proof of Proposition 1
	Theoretical Justifications of IAS with Beam Search
	Proof of Theorem 1

	Calibration via Fine-Tuning
	Calibration Set Collection
	Statistical Properties and Label Quality
	Additional Implementation Details
	Baselines
	Temperature Scaling
	Isotonic Regression
	Histogram Binning

	Calibration via Fine-tuning
	Model Calibration

	Experiment Setup
	Additional Results
	Calibration Analysis of Larger-Scale PRMs
	Histogram of Estimation Error
	Comparison with Calibration Baselines
	Inference-time Scaling with IAS
	Ablation Studies on IAS Parameters

