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Abstract

In recent years, biomolecular foundation models (bioFMs) have been trained on
massive amounts of omics data to encode complex patterns in biological sequences.
These models have shown remarkable predictive performance across a broad range
of applications in biotechnology, as well as the ability to generate novel, viable
sequences. However, the vast majority of existing bioFMs are unimodal, trained
exclusively on nucleotide or amino acid sequences, and are evaluated on tasks
specific to their sequence type. With few benchmarks incorporating multi-omics
data, opportunities for cross-modal evaluations are limited. To address this gap,
we propose a novel cross-modal benchmark that links nucleotide and amino acid
sequences to common biological outcomes. Given a pair of genes, our benchmark
will pose questions such as: Do the encoded proteins co-localize or share similar
functions? Are the genes associated with a common disease or linked to common
drug targets? By providing a common platform for evaluation, our benchmark will
support comparisons of unimodal and multimodal bioFMs, offering a foundation
for tracking their capabilities and informing appropriate safety oversight.

Although DNA is composed of just four types of nucleotides, this macromolecule forms a “biological
language” that describes all life. The expressiveness of this language arises from the conversion of
DNA into proteins; triplets of nucleotides on DNA encode amino acids, which fold into proteins
that confer phenotypes and enable diverse biological functions. Biomolecular foundation models
(bioFMs), adopting architectures from natural language processing, have been trained on vast amounts
of omics data to learn the complex patterns in nucleotide and amino acid sequences [1, 2, 3, 4, 5]. By
deciphering the biological language, these models offer powerful tools for applications in personalized
medicine [6, 7, 8], drug discovery [9, 10], and protein engineering [11, 12].

The majority of existing bioFMs are unimodal, with genome foundation models (gFMs) trained
exclusively on nucleotide sequences and protein foundation models (pFMs) trained on amino acid
sequences. Despite the direct link between DNA and proteins, gFMs and pFMs excel in different
areas: pFMs better capture protein-level functional attributes, while gFMs capture additional regu-
latory information from non-coding nucleotides [13]. However, as gFMs continue to improve, the
performance gap in function prediction may narrow. Recent evidence also suggests that integrating
nucleotide and amino acid sequences during training can improve biological understanding cap-
tured by bioFMs [2, 14]. To promote the cross-modal evaluation of bioFMs, we propose a novel
dataset aligning nucleotide sequences, amino acid sequences, and phenotypic labels across several
species. Such a dataset would not only support model benchmarking but also help monitor emerging
capabilities and related safety considerations in bioFMs.
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Proposed Dataset for Cross-Modal Evaluation of BioFMs

We propose a benchmark of matched genes and proteins that are labeled with phenotypic information
to support cross-modal evaluation of gFMs and pFMs. Our dataset will include nucleotide sequences
spanning coding segments and intervening introns, as well as the encoded amino acid sequences.
We will collect sequence information from public sources, such as RefSeq [15] and UniProt [16].
Corresponding sequences will be assigned an identifier, forming gene-protein records. For each
record, we will collect information about the structure, localization, functions, interactions, and
biomedical implications of the encoded protein. Structural attributes will be derived from the Protein
Data Bank [17], while localization details will be obtained from UniProt [16]. Functional and
pathway-related information will be drawn from the Human Protein Atlas [18], Reactome [19], and
the Gene Ontology [20]. Protein-protein interactions will be collected from STRING [21], while
protein-ligand interactions will be obtained from ChEMBL [22], PubChem [23], and DrugBank [24].
Biomedical implications will be pulled from The Cancer Genome Atlas [25] and DepMap [26].

We will form prediction tasks that each ask a binary question about individual records or pairs of
records. For example, given an individual record, we will ask: Are melanoma tumor cells dependent
on the associated gene? Meanwhile, given two records, we will ask: Do the encoded proteins share a
subcellular location? Do they have similar functions? Do they interact? Are they known to bind a
common ligand? Our prediction tasks will tend to be protein centric and will not probe a model’s
understanding of non-coding or regulatory features of the genome. Since pFMs are specialized for
protein-centric prediction tasks and our nucleotide sequences will include introns, pFMs may hold
an advantage on our benchmark and can serve as a reference point for future gFM development. As
gFMs improve in their ability to distinguish coding regions from introns and infer protein properties,
the performance gap may narrow. To evaluate bioFMs, we will train separate prediction heads for
each model and prediction task, then quantify performance on the held-out examples.

Our benchmark will test whether leading gFMs and pFMs capture biological information beyond what
can be obtained from sequence alignment alone. For prediction tasks involving pairs of gene-protein
records, we will compare the sequence identity of the positive and negative examples and will sample
the two classes to ensure overlapping sequence-identity distributions. We will also identify a subset
of “challenge cases” where records share attributes but have dissimilar sequences, or conversely, have
similar sequences but differ in their attributes.

Preliminary Results

We present GENO-PROT as a demonstration of our proposed dataset [13]. GENO-PROT includes
nine prediction tasks like those described above, which reference human nucleotide and amino acid
sequences. We evaluate leading bioFMs ranging from 6.6 million to seven billion parameters in size
[1,2, 3,5, 27, 28], as well as simple ensembles that combine predictions from gFMs and pFMs. As
a baseline comparison, we also score the zero-shot performance of general-purpose large language
models (LLMs), including GPT-4.1 and GPT-40. We find that pFMs tend to outperform gFMs on
protein-centric prediction tasks; further gFM development is needed for reliable protein inference.
Meanwhile, general-purpose LLMs tend to perform at or near chance levels. Ensembles of gFMs
and pFMs match or outperform the individual models they contain, suggesting improved robustness.
Our proposed dataset will extend GENO-PROT to additional species and prediction tasks, while also
controlling for sequence similarity in the positive and negative classes [13].

Summary

BioFMs encode complex relationships in nucleotide and amino acid sequences that underlie biological
phenotypes. However, existing benchmarks for evaluating these models are largely unimodal, limiting
cross-modal comparisons. We propose a novel benchmark that links nucleotide and amino acid
sequences to phenotypic labels, formulated as binary prediction tasks designed to probe a model’s
biological understanding. The benchmark will enable direct comparisons of gFMs and pFMs. By
controlling for sequence similarity, our benchmark will highlight cases where traditional alignment-
based approaches are poorly suited. Preliminary results using human sequences suggest that current
pFMs tend to outperform gFMs on protein-centric prediction tasks, while both tend to outperform
general-purpose LLMs. When used in multimodal ensembles, bioFMs tend to achieve more robust
performance [13]. However, as bioFMs continue to develop, the performance landscape may vary,
and our benchmark will serve as a resource for tracking modeling capabilities.
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