
GSM-∞: How Do your LLMs Behave over
Infinitely Increasing Reasoning Complexity and Context Length?

Yang Zhou* 1 Hongyi Liu* 1 Zhuoming Chen 1 Yuandong Tian 2 Beidi Chen 1

*Equal contribution

Abstract
Recently, long-context large language models
(LLMs) have shown strong performance in in-
formation retrieval and long-document QA. How-
ever, to tackle the most challenging intellectual
problems, LLMs must reason effectively in long
and complex contexts (e.g., frontier mathematical
research). Studying how LLMs handle increas-
ing reasoning complexity and context length is
essential, yet existing benchmarks lack a solid ba-
sis for quantitative evaluation. Inspired by the
abstraction of GSM-8K problems as computa-
tional graphs—and the ability to introduce noise
by adding unnecessary nodes and edges—we de-
velop a grade-school math problem generator
capable of producing arithmetic problems with
infinite difficulty and context length under fine-
grained control. Using our newly synthesized
GSM-∞ benchmark, we comprehensively evalu-
ate existing LLMs. We find a consistent sigmoid
decline in reasoning performance as complex-
ity increases, along with a systematic inference
scaling trend: exponentially increasing inference
computation yields only linear performance gains.
These findings underscore the fundamental limi-
tations of current long-context LLMs and the key
challenges in scaling reasoning capabilities. Our
GSM-∞ benchmark provides a scalable and con-
trollable testbed for systematically studying and
advancing LLM reasoning in long and complex
contexts.

1. Introduction
Recently, state-of-the-art long-context LLMs (Team et al.,
2024; MiniMax et al., 2025) have achieved astonishing per-

1Carnegie Mellon University 2Meta GenAI. Correspondence
to: Beidi Chen <beidic@andrew.cmu.edu>.

Proceedings of the 2nd Workshop on Long-Context Foundation
Models, Vancouver, Canada. 2025. Copyright 2025 by the au-
thor(s).

Figure 1. Evaluation of 10 powerful LLMs on GSM-∞, com-
paring API generation cost (horizontal axis) with zero-context
reasoning ability (vertical axis). Bubble size represents reasoning
performance at a 16K context length.

formance in a tremendously long context, where Team et al.
(2024) achieves near-perfect performance in 10M multi-
modal retrieval and long document QA. However, for long-
context LLMs to contribute to cutting-edge mathematical
and scientific discoveries or function as autonomous agents,
they must be capable of processing dense, complex infor-
mation and reason through multi-step tasks. For instance,
Sir Andrew Wiles’ proof (Wiles, 1995) of Fermat’s Last
Theorem in 1995 spans more than 88K highly compact to-
kens with deep logical connections, making context-level
RAG (Lewis et al., 2021) insufficient and highlighting the
need for long-context LLMs. Therefore, it is crucial to
benchmark and facilitate long-context LLMs for complex
reasoning and high-density information processing.

Although widely used, current long-context benchmarks do
not fully capture the true potential of long-context LLMs (Yu
et al., 2024a; Li et al., 2024a;b), making it challenging to
measure their progress toward advanced intellectual agents.
It is mainly due to the following three reasons: (1) Low
Complexity. Many long-context benchmarks, such as Long-
Bench (Bai et al., 2025; 2024) and most tasks in RULER
(Hsieh et al., 2024b), focus on retrieval or summarization,
which involve low reasoning complexity. Similar to (Yu
et al., 2024b), we found that simple context-level RAG

1

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

RULER LongBenchv2

LongBench LOFT

Figure 2. Study of Llama-3.1-70B-Instruct with Passive RAG (referred to as OnePassRAG) and Active RAG (referred to as InteractiveRAG)
on popular long-context benchmarks: RULER (at 64K context length), LongBench (>8K), LongBenchV2, and LOFT (128K context
length). RAG is under the 2048 retrieved token budget, and the decoder used for the RAG is Llama-3.1-70B-Instruct. RAGs generally
have robust performance, on par with the corresponding LLMs, showing that previous long-context benchmarks are either too simple in
reasoning complexity or contain detectable noise.

achieves on-par or even better results than long-context
LLMs (shown in Figure 2). (2) Detectable Noise. Many
tasks are innately short-context but are bloated into longer
context through semantically irrelevant filler text (Kuratov
et al. (2024) and variable-tracing in Hsieh et al. (2024b)),
which is easily distinguished by a retriever of context-level
RAG. (3) Low Resource. While complex long-context
tasks exist, such as long code completion (Loughridge et al.,
2024), they lack sufficient high-quality examples. This
scarcity limits test diversity and fine-grained difficulty as-
sessment, reducing their effectiveness in model evaluation.
Figure 2 presents a motivation where we should simple-
to-build and cheap RAG methods achieve on-par and
sometimes even better performance on most mainstream
long-context tasks compared to LC-LLMs. Due to space
limitation, detailed problem formulation is presented in
Appendix A.

Ideally, a long-context reasoning benchmark should (1) offer
controllable and scalable complexity, (2) incorporate hard-
to-distinguish noise, and (3) support infinite data genera-
tion for continuous and adaptable evaluation. Inspired by
Delétang et al. (2023); Ye et al. (2024a), we model reason-
ing problems as computation graphs enriched with language
semantics. By adjusting their structure and complexity,
we gain fine-grained control over reasoning difficulty and
enable infinite scaling. Instead of inserting semantically
irrelevant filler text, noise is introduced as additional nodes
within the core graph, strategically connected to existing
nodes without contributing to the necessary reasoning steps
for solving the tasks. This design enables the generation of
arbitrarily long test examples while making it challenging

for context-level RAG to differentiate relevant information
from noise in the raw text.

However, several technical challenges must be addressed to
construct a practical benchmark. First, computation graphs
must be effectively translated into natural language to en-
sure compatibility with LLMs. Second, the benchmark
should disentangle LLMs’ reasoning abilities from their
prior knowledge. Third, ensuring diverse reasoning pat-
terns—including variations in entities and relationships—is
crucial for fair and comprehensive evaluation.

We introduce GSM-∞, a long-context benchmarking
framework that scales and controls reasoning complexity
and noise through fine-grained manipulation of computa-
tion graphs, enabling their translation into diverse, human-
and LLM-readable problems (Short example in Figure 5(b)).
Due to space limitation, we present the detailed data con-
struction process and generation in the Appendix B and
C. The resulting examples can scale up in both reasoning
complexity and context length, which is RAG-insolvable.
(detailed in Figure 3(d) and 6)

We conduct a comprehensive evaluation of 18 state-of-the-
art LLMs on zero-noise problems and 10 LLMs on various
noise-injected tasks using GSM-∞. In zero-noise settings,
recent reasoning-optimized LLMs demonstrate substantial
improvements over their non-reasoning counterparts. No-
tably, Deepseek-R1 (DeepSeek-AI et al., 2025) achieves an
average AUC score nearly four times higher than previous
SOTA models. However, in noise-injected scenarios, LLMs
exhibit varying degrees of performance degradation. Our
analysis reveals several key observations: (1) LLM perfor-

2

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

Table 1. 18 selected models are evaluated on GSM-∞ zero-noise benchmarks using Area-Under-Curve (AUC), which is computed by
taking the Riemann Sum of accuracy versus op count from 2 to when the model accuracy drops below 5%. We also present detailed
statics of the first op number for the model to have an accuracy lower than 50%, 10%, and the average accuracy of the first 30 ops settings.
Besides, we also highlight the reasoning models, linear attention hybrid models, and SSM hybrid models.

Models Three Subtasks Detailed Statistics on Hard Subtask Score

Symbolic Medium Hard 1st<50% op 1st<10% op Avg. Acc op≤30 Average↑
deepseek-r1 7280.0 9750.85 8573.8 100 >130 0.9427 8534.88
o1-mini 5060.0 6054.91 3738.43 50 90 0.8397 4951.11
deepseek-v3 4310.0 4100.81 2407.86 24 55 0.6669 3606.22
qwq-32b-preview 3530.0 3205.75 1846.19 21 50 0.5403 2860.65
gemini-1.5-pro-002 2547.0 3659.59 2318.28 26 45 0.6924 2841.62
claude-3.5-sonnet 2161.0 3281.8 2115.79 26 40 0.6758 2519.53
mistral-large-2411 2332.5 2879.92 2310.49 24 50 0.6645 2507.64
qwen-2.5-72b-instruct 2048.0 2496.81 2016.38 21 40 0.5433 2187.06
gpt-4o-2024-11-20 2379.0 2457.37 1451.54 18 30 0.5064 2095.97
gemini-1.5-flash-002 1970.0 1478.75 1274.25 13 30 0.4460 1574.33
llama-3.1-70b-instruct 1769.0 1650.25 1205.25 15 30 0.4314 1541.50
minimax-text-01 1618.5 1712.64 1178.51 14 30 0.4213 1503.22
llama-3.1-405b-instruct 1557.0 1321.54 950.0 11 20 0.3409 1276.18
gpt-4o-mini 1389.0 1406.5 913.89 12 22 0.3094 1236.46
claude-3.5-haiku 897.0 1053.16 784.34 10 22 0.2910 911.50
qwen-2.5-7b-instruct 786.95 886.75 618.5 7 19 0.2257 764.07
llama-3.1-8b-instruct 462.0 786.5 606.5 6 17 0.2186 618.30
jamba-1.5-large 856.0 485.13 466.4 6 26 0.1828 602.51

mance Decay with reasoning complexity is in a sigmoid-
like pattern; (2) LLM Performance degradation intensifies
as context length increases within the same difficulty level;
(3) LLM consistently performs better on forward-thinking
tasks than on backward-thinking ones; (4) Repeated sam-
pling clearly shows that performance improves linearly with
increased inference steps, but at an exponentially growing
computation cost.

2. Evaluation
We evaluated 18 enormous and powerful LLMs on zero-
noise problems, resulting in Table 1, while 10 models are
evaluated on the long context as shown in Table 2.

From Table 1, we can see that the score separates these
LLMs into clear groups. Reasoning models (R1 and o1-
mini) are significantly ahead of the rest of non-reasoning
LLMs. Also, similar things can be discussed when compar-
ing 70B and 7B level models. In Table 2, we see that the
models show a very different decay pattern, while Gemini-
1.5-pro is significantly ahead of the rest of the other models.

LLM Performance Degradation Can be Modeled Us-
ing Sigmoid Function: Our construction of GSM-∞
enables precise measurement of LLM performance across
fine-grained difficulty levels. For each subtask, we observe
a clear trend: LLM accuracy declines as the number of
required operations increases. Surprisingly, most models
exhibit a sigmoid-like performance decay, as shown in 3 for
forward problems (see Section C.1 for definitions).

Table 2. 10 selected models are evaluated on GSM-∞ Long Con-
text benchmarks using Average AUC of Symbolic, Medium, and
Hard. We evaluated models on 8K, 16K, and 32K context. Al-
though our pipeline is capable of generating longer problems, the
resource required to go further for larger models beyond our ac-
ceptance, while smaller models effectively has completely failed.
Model 8K 16K 32K AVG↑
gemini-1.5-pro-002 1182.43 896.31 812.96 963.9
qwen-2.5-72b-instruct 927.33 681.53 563.65 724.17
mistral-large-2411 914.49 563.73 319.21 599.14
deepseek-v3 935.10 477.02 313.66 575.2
gemini-1.5-flash-002 673.88 476.72 377.38 509.3
llama-3.1-70b-instruct 479.00 394.50 355.5 409.67
minimax-text-01 481.32 359.56 325.95 388.94
gpt-4o-mini 401.00 337.81 275.63 338.15
qwen-2.5-7b-instruct 248.00 211.50 196.17 218.56
llama-3.1-8b-instruct 183.67 149.50 109.45 147.54

Under the Medium subtask, LLM performance aligns re-
markably well with a sigmoid function curve, with R² >
0.98. The pattern is intuitive: at low operation counts, accu-
racy remains near 1.0; as complexity increases, performance
first decays gradually, then drops sharply toward zero, where
LLMs effectively fail to solve the problems. The score even-
tually stabilizes near zero.

Reverse Problems are Harder to Solve for LLMs: Be-
cause the generator of GSM-∞ can generate both the ”for-
ward” and the ”reverse” problems, we can compare them
separately. Most LLMs perform worse in reverse prob-

3

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

R^2 = 0.98431

R^2 = 0.9825

R^2 = 0.9828 7.04

8.21

7.56

1.10

9.10

12.90

(a) (b) (c) (d)

Figure 3. (a) shows three different LLMs’ behavior on GSM-∞ benchmark zero-context Medium Forward, GPT o1-mini, Qwen-2.5-
72B-Instruct, and Qwen-2.5-7B-Instruct. These models are drastically different in reasoning ability but have performance be modeled by
sigmoid well, all with R2 >0.98. (b) shows the gap between forward-thinking and reverse-thinking problems from Mistral Large on
zero-context Hard. reverse-thinking problems are significantly harder and can be approximated by the sigmoid function that is essentially
left-ward shifting from the forward sigmoid function. (c) and (d) presents RAG and corresponding LLMs’ performance on different
noises. Other than ours, RAG even improves performance.

(a) (b)

Figure 4. (a) shows repeated sampling on zero-context Hard task
with Qwen-2.5-7B-Instruct; (b) shows the AUC to repeated sam-
pling number of trials. We show that for repeated sampling, ex-
ponentially increasing inference compute only leads to a linear
increase in AUC improvement.

lems than forward ones, shown in Figure 3(b) using Mistral-
Large (Jiang et al., 2023a). A detailed breakdown is listed
in Appendix H. Besides, LLM performance on reverse prob-
lems can also be modeled by a sigmoid mapping. Five more
LLM plots are presented in Appendix H.

Long-context Degradation and Noise Ablation: We eval-
uate LLM performance across increasing context lengths (0,
8K, 16K, 32K) and observe a consistent decline in perfor-
mance as context length increases. Notably, models exhibit
different decay patterns. We present results for 10 mod-
els across 3 subtasks, each with four curves representing
different context lengths. All 30 plots are in Appendix K.

We conduct an ablation study on three noise types: GSM-
∞ (ours), LLM-generated, and random. For LLM-
generated noise, we prompt GPT-4o to create a fake
documentary-style commentary on random problems, oc-
casionally introducing nonsensical variable mentions. For
random noise, we follow Hsieh et al. (2024), using generic

statements like ”The sky is blue. The tree is green.” We
evaluate Llama-3.1-70B-Instruct and a RAG system under
all three noise types in an 8K context. Interestingly, RAG
outperforms long-context LLMs on LLM-generated and ran-
dom noise, effectively filtering irrelevant content. However,
it fails to distinguish GSM-∞ noise from essential problem
statements.

Limitations of Repeated Sampling: We study both Qwen-
2.5-7B-Instruct and Llama-3.1-8B-Instruct as Brown et al.
(2024) best-of-N repeated sampling. Interestingly, we find
that repeated sampling seems to boost the performance the
most for smaller op count subsets, and the benefit of re-
peated sampling diminishes gradually for larger op count
subsets, Qwen-2.5-7B-Instruct behavior is plotted in Figure
4(a) with different repeated trial settings.

Surprisingly, when we calculate the AUC score under every
curve corresponding to each number of repeated trial set-
tings and plot the AUC score versus the number of repeated
trial settings and take the log scale of the repeated trial N, the
graph is linear, as shown in Figure 4(b). (Both R-squared
above 0.99) Therefore, GSM-∞ helps reveal that Re-
peated Sampling leads to linear AUC Improvement from
exponentially increasing inference computation cost.

3. Conclusion
To advance their development and benchmarking, we intro-
duce GSM-∞, a synthetic long-context reasoning bench-
mark generated entirely by a software-based system with
fine-grained control over complexity and information den-
sity. Through extensive evaluations on GSM-∞, we un-
cover key insights to inform future LLM training and infer-
ence improvements.

4

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

References
Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,

Du, Z., Liu, X., Zeng, A., Hou, L., Dong, Y., Tang, J.,
and Li, J. Longbench: A bilingual, multitask benchmark
for long context understanding, 2024. URL https:
//arxiv.org/abs/2308.14508.

Bai, Y., Tu, S., Zhang, J., Peng, H., Wang, X., Lv, X.,
Cao, S., Xu, J., Hou, L., Dong, Y., Tang, J., and Li,
J. Longbench v2: Towards deeper understanding and
reasoning on realistic long-context multitasks, 2025. URL
https://arxiv.org/abs/2412.15204.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer:
The long-document transformer, 2020. URL https:
//arxiv.org/abs/2004.05150.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V., Ré,
C., and Mirhoseini, A. Large language monkeys: Scaling
inference compute with repeated sampling, 2024. URL
https://arxiv.org/abs/2407.21787.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Dao, T. FlashAttention-2: Faster attention with better paral-
lelism and work partitioning. In International Conference
on Learning Representations (ICLR), 2024.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. FlashAt-
tention: Fast and memory-efficient exact attention with
IO-awareness. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2022.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X.,
Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao,
Z., Li, Z., Gao, Z., Liu, A., Xue, B., Wang, B., Wu, B.,
Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan,
C., Dai, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo,
F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu,
H., Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li,
H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J.,
Li, J., Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K.,
Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang, L.,
Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L., Xia,
L., Zhang, M., Zhang, M., Tang, M., Li, M., Wang, M.,
Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q., Chen,
Q., Du, Q., Ge, R., Zhang, R., Pan, R., Wang, R., Chen,
R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen, S., Ye,
S., Wang, S., Yu, S., Zhou, S., Pan, S., Li, S. S., Zhou,
S., Wu, S., Ye, S., Yun, T., Pei, T., Sun, T., Wang, T.,
Zeng, W., Zhao, W., Liu, W., Liang, W., Gao, W., Yu, W.,
Zhang, W., Xiao, W. L., An, W., Liu, X., Wang, X., Chen,

X., Nie, X., Cheng, X., Liu, X., Xie, X., Liu, X., Yang,
X., Li, X., Su, X., Lin, X., Li, X. Q., Jin, X., Shen, X.,
Chen, X., Sun, X., Wang, X., Song, X., Zhou, X., Wang,
X., Shan, X., Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang,
Y., Xu, Y., Li, Y., Zhao, Y., Sun, Y., Wang, Y., Yu, Y.,
Zhang, Y., Shi, Y., Xiong, Y., He, Y., Piao, Y., Wang, Y.,
Tan, Y., Ma, Y., Liu, Y., Guo, Y., Ou, Y., Wang, Y., Gong,
Y., Zou, Y., He, Y., Xiong, Y., Luo, Y., You, Y., Liu, Y.,
Zhou, Y., Zhu, Y. X., Xu, Y., Huang, Y., Li, Y., Zheng,
Y., Zhu, Y., Ma, Y., Tang, Y., Zha, Y., Yan, Y., Ren, Z. Z.,
Ren, Z., Sha, Z., Fu, Z., Xu, Z., Xie, Z., Zhang, Z., Hao,
Z., Ma, Z., Yan, Z., Wu, Z., Gu, Z., Zhu, Z., Liu, Z., Li,
Z., Xie, Z., Song, Z., Pan, Z., Huang, Z., Xu, Z., Zhang,
Z., and Zhang, Z. Deepseek-r1: Incentivizing reasoning
capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Delétang, G., Ruoss, A., Grau-Moya, J., Genewein, T.,
Wenliang, L. K., Catt, E., Cundy, C., Hutter, M., Legg,
S., Veness, J., and Ortega, P. A. Neural networks and
the chomsky hierarchy, 2023. URL https://arxiv.
org/abs/2207.02098.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A.,
Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravanku-
mar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A.,
Rodriguez, A., Gregerson, A., Spataru, A., Roziere, B.,
Biron, B., Tang, B., Chern, B., Caucheteux, C., Nayak,
C., Bi, C., Marra, C., McConnell, C., Keller, C., Touret,
C., Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C., Al-
lonsius, D., Song, D., Pintz, D., Livshits, D., Esiobu, D.,
Choudhary, D., Mahajan, D., Garcia-Olano, D., Perino,
D., Hupkes, D., Lakomkin, E., AlBadawy, E., Lobanova,
E., Dinan, E., Smith, E. M., Radenovic, F., Zhang, F., Syn-
naeve, G., Lee, G., Anderson, G. L., Nail, G., Mialon, G.,
Pang, G., Cucurell, G., Nguyen, H., Korevaar, H., Xu, H.,
Touvron, H., Zarov, I., Ibarra, I. A., Kloumann, I., Misra,
I., Evtimov, I., Copet, J., Lee, J., Geffert, J., Vranes,
J., Park, J., Mahadeokar, J., Shah, J., van der Linde, J.,
Billock, J., Hong, J., Lee, J., Fu, J., Chi, J., Huang, J.,
Liu, J., Wang, J., Yu, J., Bitton, J., Spisak, J., Park, J.,
Rocca, J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V.,
Upasani, K., Plawiak, K., Li, K., Heafield, K., Stone, K.,
El-Arini, K., Iyer, K., Malik, K., Chiu, K., Bhalla, K.,
Rantala-Yeary, L., van der Maaten, L., Chen, L., Tan, L.,
Jenkins, L., Martin, L., Madaan, L., Malo, L., Blecher, L.,
Landzaat, L., de Oliveira, L., Muzzi, M., Pasupuleti, M.,
Singh, M., Paluri, M., Kardas, M., Oldham, M., Rita, M.,
Pavlova, M., Kambadur, M., Lewis, M., Si, M., Singh,
M. K., Hassan, M., Goyal, N., Torabi, N., Bashlykov, N.,
Bogoychev, N., Chatterji, N., Duchenne, O., Çelebi, O.,
Alrassy, P., Zhang, P., Li, P., Vasic, P., Weng, P., Bhargava,
P., Dubal, P., Krishnan, P., Koura, P. S., Xu, P., He, Q.,
Dong, Q., Srinivasan, R., Ganapathy, R., Calderer, R.,

5

https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2412.15204
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2207.02098
https://arxiv.org/abs/2207.02098

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

Cabral, R. S., Stojnic, R., Raileanu, R., Girdhar, R., Patel,
R., Sauvestre, R., Polidoro, R., Sumbaly, R., Taylor, R.,
Silva, R., Hou, R., Wang, R., Hosseini, S., Chennabas-
appa, S., Singh, S., Bell, S., Kim, S. S., Edunov, S., Nie,
S., Narang, S., Raparthy, S., Shen, S., Wan, S., Bhosale,
S., Zhang, S., Vandenhende, S., Batra, S., Whitman, S.,
Sootla, S., Collot, S., Gururangan, S., Borodinsky, S., Her-
man, T., Fowler, T., Sheasha, T., Georgiou, T., Scialom,
T., Speckbacher, T., Mihaylov, T., Xiao, T., Karn, U.,
Goswami, V., Gupta, V., Ramanathan, V., Kerkez, V.,
Gonguet, V., Do, V., Vogeti, V., Petrovic, V., Chu, W.,
Xiong, W., Fu, W., Meers, W., Martinet, X., Wang, X.,
Tan, X. E., Xie, X., Jia, X., Wang, X., Goldschlag, Y.,
Gaur, Y., Babaei, Y., Wen, Y., Song, Y., Zhang, Y., Li, Y.,
Mao, Y., Coudert, Z. D., Yan, Z., Chen, Z., Papakipos, Z.,
Singh, A., Grattafiori, A., Jain, A., Kelsey, A., Shajnfeld,
A., Gangidi, A., Victoria, A., Goldstand, A., Menon, A.,
Sharma, A., Boesenberg, A., Vaughan, A., Baevski, A.,
Feinstein, A., Kallet, A., Sangani, A., Yunus, A., Lupu,
A., Alvarado, A., Caples, A., Gu, A., Ho, A., Poulton,
A., Ryan, A., Ramchandani, A., Franco, A., Saraf, A.,
Chowdhury, A., Gabriel, A., Bharambe, A., Eisenman, A.,
Yazdan, A., James, B., Maurer, B., Leonhardi, B., Huang,
B., Loyd, B., Paola, B. D., Paranjape, B., Liu, B., Wu, B.,
Ni, B., Hancock, B., Wasti, B., Spence, B., Stojkovic, B.,
Gamido, B., Montalvo, B., Parker, C., Burton, C., Mejia,
C., Wang, C., Kim, C., Zhou, C., Hu, C., Chu, C.-H.,
Cai, C., Tindal, C., Feichtenhofer, C., Civin, D., Beaty,
D., Kreymer, D., Li, D., Wyatt, D., Adkins, D., Xu, D.,
Testuggine, D., David, D., Parikh, D., Liskovich, D., Foss,
D., Wang, D., Le, D., Holland, D., Dowling, E., Jamil,
E., Montgomery, E., Presani, E., Hahn, E., Wood, E.,
Brinkman, E., Arcaute, E., Dunbar, E., Smothers, E., Sun,
F., Kreuk, F., Tian, F., Ozgenel, F., Caggioni, F., Guzmán,
F., Kanayet, F., Seide, F., Florez, G. M., Schwarz, G.,
Badeer, G., Swee, G., Halpern, G., Thattai, G., Herman,
G., Sizov, G., Guangyi, Zhang, Lakshminarayanan, G.,
Shojanazeri, H., Zou, H., Wang, H., Zha, H., Habeeb,
H., Rudolph, H., Suk, H., Aspegren, H., Goldman, H.,
Damlaj, I., Molybog, I., Tufanov, I., Veliche, I.-E., Gat,
I., Weissman, J., Geboski, J., Kohli, J., Asher, J., Gaya,
J.-B., Marcus, J., Tang, J., Chan, J., Zhen, J., Reizenstein,
J., Teboul, J., Zhong, J., Jin, J., Yang, J., Cummings, J.,
Carvill, J., Shepard, J., McPhie, J., Torres, J., Ginsburg,
J., Wang, J., Wu, K., U, K. H., Saxena, K., Prasad, K.,
Khandelwal, K., Zand, K., Matosich, K., Veeraragha-
van, K., Michelena, K., Li, K., Huang, K., Chawla, K.,
Lakhotia, K., Huang, K., Chen, L., Garg, L., A, L., Silva,
L., Bell, L., Zhang, L., Guo, L., Yu, L., Moshkovich,
L., Wehrstedt, L., Khabsa, M., Avalani, M., Bhatt, M.,
Tsimpoukelli, M., Mankus, M., Hasson, M., Lennie, M.,
Reso, M., Groshev, M., Naumov, M., Lathi, M., Ke-
neally, M., Seltzer, M. L., Valko, M., Restrepo, M., Patel,
M., Vyatskov, M., Samvelyan, M., Clark, M., Macey,

M., Wang, M., Hermoso, M. J., Metanat, M., Rastegari,
M., Bansal, M., Santhanam, N., Parks, N., White, N.,
Bawa, N., Singhal, N., Egebo, N., Usunier, N., Laptev,
N. P., Dong, N., Zhang, N., Cheng, N., Chernoguz, O.,
Hart, O., Salpekar, O., Kalinli, O., Kent, P., Parekh, P.,
Saab, P., Balaji, P., Rittner, P., Bontrager, P., Roux, P.,
Dollar, P., Zvyagina, P., Ratanchandani, P., Yuvraj, P.,
Liang, Q., Alao, R., Rodriguez, R., Ayub, R., Murthy,
R., Nayani, R., Mitra, R., Li, R., Hogan, R., Battey, R.,
Wang, R., Maheswari, R., Howes, R., Rinott, R., Bondu,
S. J., Datta, S., Chugh, S., Hunt, S., Dhillon, S., Sidorov,
S., Pan, S., Verma, S., Yamamoto, S., Ramaswamy, S.,
Lindsay, S., Lindsay, S., Feng, S., Lin, S., Zha, S. C.,
Shankar, S., Zhang, S., Zhang, S., Wang, S., Agarwal,
S., Sajuyigbe, S., Chintala, S., Max, S., Chen, S., Kehoe,
S., Satterfield, S., Govindaprasad, S., Gupta, S., Cho,
S., Virk, S., Subramanian, S., Choudhury, S., Goldman,
S., Remez, T., Glaser, T., Best, T., Kohler, T., Robinson,
T., Li, T., Zhang, T., Matthews, T., Chou, T., Shaked,
T., Vontimitta, V., Ajayi, V., Montanez, V., Mohan, V.,
Kumar, V. S., Mangla, V., Albiero, V., Ionescu, V., Poe-
naru, V., Mihailescu, V. T., Ivanov, V., Li, W., Wang, W.,
Jiang, W., Bouaziz, W., Constable, W., Tang, X., Wang,
X., Wu, X., Wang, X., Xia, X., Wu, X., Gao, X., Chen,
Y., Hu, Y., Jia, Y., Qi, Y., Li, Y., Zhang, Y., Zhang, Y.,
Adi, Y., Nam, Y., Yu, Wang, Hao, Y., Qian, Y., He, Y.,
Rait, Z., DeVito, Z., Rosnbrick, Z., Wen, Z., Yang, Z.,
and Zhao, Z. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Github. Needle in a haystack - pressure testing llms,
2023. URL https://github.com/gkamradt/
LLMTest_NeedleInAHaystack/tree/main.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Hsieh, C.-P., Sun, S., Kriman, S., Acharya, S., Rekesh,
D., Jia, F., and Ginsburg, B. Ruler: What’s the real
context size of your long-context language models? arXiv
preprint arXiv:2404.06654, 2024a.

Hsieh, C.-P., Sun, S., Kriman, S., Acharya, S., Rekesh,
D., Jia, F., Zhang, Y., and Ginsburg, B. Ruler: What’s
the real context size of your long-context language
models?, 2024b. URL https://arxiv.org/abs/
2404.06654.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023a.

Jiang, Z., Xu, F. F., Gao, L., Sun, Z., Liu, Q., Dwivedi-Yu,
J., Yang, Y., Callan, J., and Neubig, G. Active retrieval

6

https://arxiv.org/abs/2407.21783
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

augmented generation, 2023b. URL https://arxiv.
org/abs/2305.06983.

Kamradt, G. Needle in a haystack - pressure testing llms,
2023. URL https://github.com/gkamradt/
LLMTestNeedleInAHaystack/tree/main.

Kuratov, Y., Bulatov, A., Anokhin, P., Rodkin, I., Sorokin,
D., Sorokin, A., and Burtsev, M. Babilong: Test-
ing the limits of llms with long context reasoning-in-
a-haystack, 2024. URL https://arxiv.org/abs/
2406.10149.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lee, J., Chen, A., Dai, Z., Dua, D., Sachan, D. S., Bo-
ratko, M., Luan, Y., Arnold, S. M. R., Perot, V., Dalmia,
S., Hu, H., Lin, X., Pasupat, P., Amini, A., Cole, J. R.,
Riedel, S., Naim, I., Chang, M.-W., and Guu, K. Can
long-context language models subsume retrieval, rag, sql,
and more?, 2024. URL https://arxiv.org/abs/
2406.13121.

Levy, M., Jacoby, A., and Goldberg, Y. Same task, more
tokens: the impact of input length on the reasoning
performance of large language models, 2024. URL
https://arxiv.org/abs/2402.14848.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., Küttler, H., Lewis, M., tau Yih, W.,
Rocktäschel, T., Riedel, S., and Kiela, D. Retrieval-
augmented generation for knowledge-intensive nlp tasks,
2021. URL https://arxiv.org/abs/2005.
11401.

Li, X., Cao, Y., Ma, Y., and Sun, A. Long context vs.
rag for llms: An evaluation and revisits. arXiv preprint
arXiv:2501.01880, 2024a.

Li, Z., Li, C., Zhang, M., Mei, Q., and Bendersky, M. Re-
trieval augmented generation or long-context llms? a
comprehensive study and hybrid approach. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing: Industry Track, pp. 881–
893, 2024b.

Liu, H., Zaharia, M., and Abbeel, P. Ring attention with
blockwise transformers for near-infinite context, 2023a.
URL https://arxiv.org/abs/2310.01889.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How
language models use long contexts, 2023b. URL https:
//arxiv.org/abs/2307.03172.

Loughridge, C., Sun, Q., Ahrenbach, S., Cassano, F., Sun,
C., Sheng, Y., Mudide, A., Misu, M. R. H., Amin, N.,
and Tegmark, M. Dafnybench: A benchmark for formal
software verification, 2024. URL https://arxiv.
org/abs/2406.08467.

MiniMax, Li, A., Gong, B., Yang, B., Shan, B., Liu, C.,
Zhu, C., Zhang, C., Guo, C., Chen, D., Li, D., Jiao, E.,
Li, G., Zhang, G., Sun, H., Dong, H., Zhu, J., Zhuang, J.,
Song, J., Zhu, J., Han, J., Li, J., Xie, J., Xu, J., Yan, J.,
Zhang, K., Xiao, K., Kang, K., Han, L., Wang, L., Yu,
L., Feng, L., Zheng, L., Chai, L., Xing, L., Ju, M., Chi,
M., Zhang, M., Huang, P., Niu, P., Li, P., Zhao, P., Yang,
Q., Xu, Q., Wang, Q., Wang, Q., Li, Q., Leng, R., Shi, S.,
Yu, S., Li, S., Zhu, S., Huang, T., Liang, T., Sun, W., Sun,
W., Cheng, W., Li, W., Song, X., Su, X., Han, X., Zhang,
X., Hou, X., Min, X., Zou, X., Shen, X., Gong, Y., Zhu,
Y., Zhou, Y., Zhong, Y., Hu, Y., Fan, Y., Yu, Y., Yang,
Y., Li, Y., Huang, Y., Li, Y., Huang, Y., Xu, Y., Mao, Y.,
Li, Z., Li, Z., Tao, Z., Ying, Z., Cong, Z., Qin, Z., Fan,
Z., Yu, Z., Jiang, Z., and Wu, Z. Minimax-01: Scaling
foundation models with lightning attention, 2025. URL
https://arxiv.org/abs/2501.08313.

Mirzadeh, I., Alizadeh, K., Shahrokhi, H., Tuzel, O., Bengio,
S., and Farajtabar, M. Gsm-symbolic: Understanding the
limitations of mathematical reasoning in large language
models. arXiv preprint arXiv:2410.05229, 2024.

Shyam, V., Pilault, J., Shepperd, E., Anthony, Q., and
Millidge, B. Tree attention: Topology-aware decoding
for long-context attention on gpu clusters, 2024. URL
https://arxiv.org/abs/2408.04093.

Team, G., Georgiev, P., Lei, V. I., Burnell, R., Bai, L.,
Gulati, A., Tanzer, G., Vincent, D., Pan, Z., Wang, S.,
et al. Gemini 1.5: Unlocking multimodal understand-
ing across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Wiles, A. Modular elliptic curves and fermat’s last theorem.
Annals of mathematics, 141(3):443–551, 1995.

Ye, T., Xu, Z., Li, Y., and Allen-Zhu, Z. Physics of language
models: Part 2.1, grade-school math and the hidden rea-
soning process, 2024a. URL https://arxiv.org/
abs/2407.20311.

Ye, T., Xu, Z., Li, Y., and Allen-Zhu, Z. Physics of language
models: Part 2.2, how to learn from mistakes on grade-
school math problems, 2024b. URL https://arxiv.
org/abs/2408.16293.

Yu, T., Xu, A., and Akkiraju, R. In defense of rag in the
era of long-context language models. arXiv preprint
arXiv:2409.01666, 2024a.

7

https://arxiv.org/abs/2305.06983
https://arxiv.org/abs/2305.06983
https://github.com/gkamradt/LLMTest NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest NeedleInAHaystack/tree/main
https://arxiv.org/abs/2406.10149
https://arxiv.org/abs/2406.10149
https://arxiv.org/abs/2406.13121
https://arxiv.org/abs/2406.13121
https://arxiv.org/abs/2402.14848
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2406.08467
https://arxiv.org/abs/2406.08467
https://arxiv.org/abs/2501.08313
https://arxiv.org/abs/2408.04093
https://arxiv.org/abs/2407.20311
https://arxiv.org/abs/2407.20311
https://arxiv.org/abs/2408.16293
https://arxiv.org/abs/2408.16293

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

Yu, T., Xu, A., and Akkiraju, R. In defense of rag in the era
of long-context language models, 2024b. URL https:
//arxiv.org/abs/2409.01666.

Zhang, X., Chen, Y., Hu, S., Xu, Z., Chen, J., Hao, M. K.,
Han, X., Thai, Z. L., Wang, S., Liu, Z., and Sun, M.
∞bench: Extending long context evaluation beyond 100k
tokens, 2024. URL https://arxiv.org/abs/
2402.13718.

8

https://arxiv.org/abs/2409.01666
https://arxiv.org/abs/2409.01666
https://arxiv.org/abs/2402.13718
https://arxiv.org/abs/2402.13718

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

A. Related Work and Problem Statement
Re

as
on

in
g

C
om

pl
ex

ity

Context Length

RULER

LongBench
v1,v2

LOFT

GSM-Infinite
Regime

SOTA LLM Capability

MATH

GSM-8K

Frontier
Math

System: Assume any animals not mentioned doesn’t exist.
User: #Adult Monkey at Jefferson Zoo equals 2. #Adult Lion at J. Zoo equals 4. Avg. #Newborn
Children per Adult Lion at J. Zoo equals 3 plus #Adult Lion at J. Zoo. Avg. #Newborn Children per
Adult Monkey at J. Zoo equals the sum of Avg. #Newborn Children per Adult Lion at J. Zoo and
#Adult Monkey at J. Zoo. What is the total number of newborn animal children at J. Zoo?
Assistant: Avg. #Newborn Children per Adult Lion at J. Zoo equals 4 + 3 = 7.[1] Avg. #Newborn
Children per Adult Monkey at J. Zoo equals 7 + 2 = 9.[2][3] Total newborn Animal Children at J. Zoo
equals 2 x 9 + 4 x 7 = 28 + 18 = 46.[4][5][6][7]

Average Number of Newborn
Children per Adult Monkey at J. Zoo

Average #Newborn
Children per Adult Lion at J. Zoo

#Adult Lion at J. Zoo #Adult Monkey at J. Zoo

4

3
5

2

7

6

1
Total newborn

Animal Children
at Jefferson Zoo

Total: 7 ops

(a) (b) (c)

Figure 5. (a) We position existing benchmarks across the Reasoning complexity versus context length plot. Reasoning datasets are usually
of very short context. Existing long context benchmarks are usually low in reasoning complexity. Our task can cover any context length
that the user so chooses and can generate infinite reasoning complexity. However, for high reasoning complexity, our task needs to use a
longer context for problems. Our task is shown in Red. (b) A simplified example of our dataset-building process. We first generate an
interconnected computation graph, and we then based on the graph, attach real-world context to it to formulate the problem statements. (c)
Shows Qwen-2.5-72B-Instruct Score decay across zero-context, 8K, 16K, and 32K.
Low Complexity. A significant portion of long-context evaluation datasets, including RULER (Hsieh et al., 2024b),
LongBench (Bai et al., 2024), LongBench v2 (Bai et al., 2025), and LOFT (Lee et al., 2024), primarily assess retrieval
and summarization rather than complex reasoning. Our experiments demonstrate that RAG systems achieve competitive
results with Llama-3.1-70B-Instruct across these datasets. Notably, RAG outperforms LLMs in retrieval-focused tasks (e.g.,
RULER, LOFT) and performs comparably in text summarization and QA (most LongBench tasks), as well as structured
reasoning problems such as variable tracking (RULER-vt) and code completion (LongBench-repobench-p). As shown in
Figure 2, RAG methods provide a strong baseline while being substantially more efficient.

Detectable Noise. Many long-context benchmarks artificially extend short-context tasks by injecting extraneous text that does
not contribute to solving the problem, allowing retrieval-based models to filter out noise effectively. In RULER’s variable-
tracing task with an 8192-token context, Llama-3.1-70B-Instruct achieves 100%, while OnePassRAG and InteractiveRAG
reach 82.4% and 98.4%, respectively, despite using only a 2048-token retrieval budget. A detailed breakdown in Figure 6
(a) reveals that retrievers consistently identify and prioritize relevant information while disregarding injected noise. These
findings indicate that existing long-context benchmarks do not adequately justify the need for expensive long-context LLMs,
as RAG systems can effectively mitigate the impact of noise and achieve similar performance.

Low Resource. Many high-quality reasoning tasks heavily rely on human efforts and have test examples in limited quantity.
It is infeasible to extract subsets of examples with exact op at 8 for precise LLM evaluation due to the limited number of
available cases—only 26 in total, with even fewer satisfying op ≥ 8. This scarcity makes meaningful evaluation impractical.
How can we find a benchmark that contains sufficient problems at every fine-grained level of reasoning difficulty, from easy
retrieval tasks to infinitely hard challenges, while providing infinitely customizable context length with high information
density?

B. Computation Graph
In this section, we explore the connection between reasoning problems and computation graphs, core ideas to scale and
control reasoning complexity (Appendix B.1), and introduce challenging, indistinguishable noise (Appendix B.2) by
strategically manipulating computation graph structures.

B.1. Graph Construction to Build Reasoning Problems

After running a careful study of GSM-8K problems, we draw the following crucial observations that allow us to map a
randomly generated computation graph to grade-school-level math reasoning problems that cover all possible operations
and relationship types.

Mapping Explicit Ops to Computation Graph - From Every operation used in the GSM-8K is one of the four “+”,
“-”, “×”, and “÷”. Consider the following example when operations are presented explicitly, “Eggs cost twice as much as

9

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

(a)

(b) (c) (d)

Figure 6. RAG performance on our proposed long-context benchmarks. (a) studies retriever’s behavior on the first 100 chunks of a random
problem in vt from RULER with 8192 context length. The chunks that need to be retrieved to solve the problem are labeled in coral, while
the noise is in blue. The chunks have retriever scores ranked from large (semantically far) to small (semantically close). Retriever locates
the essential chunks with high precision, classifying all necessary chunks with the right side of the spectrum; (b) contrasts vt with our
long-context benchmarks, showing that the retriever cannot locate precisely which chunk to retrieve. (c) and (d) display the performance
of two RAG systems on our benchmark medium and hard tasks. (Figure best viewed in color)

(a) (b)

Figure 7. (a) presents a conservative estimate for each problem difficulty in GSM-8K 1.3K test set. We evaluate the difficulty of the
problems by the number of operations needed to get to the final answer. The op count ranges from 2 to 12, while most are around 3-4. (b)
shows the Llama-3.1-8B-Instruct performance across different semantics hierarchies, revealing the hidden reasoning difficulty innate in
natural language.

tomatoes, while tomatoes cost 1 dollar each.” These statements mention operations (“plus”, “more”, “times”, etc.) can easily
be abstracted out as a computation graph with variables, “dollar per egg” and “dollar per tomato”, as nodes. There are
two edges one pointing from ”dollar per tomato” to ”dollar per egg”, while another one from a constant 2 to ”dollar per
tomato”. Therefore, randomly generating a computation graph with different topology of edge connections will lead to a
new reasoning problem once the natural language context are attached to the nodes of the graph.

Generating Implicit +- using Computation Graphs - On the other hand, the operations can also be presented implicitly
hidden in natural language hierarchies. “Mary earns 20 dollars in the morning, while she earns 25 dollars in the afternoon.
How much total she earned that day?” Although the problem doesn’t explicitly mention addition, the solution has to sum
up 20 and 25 to get 45. The reason is that natural language assumes a working day consists of morning and afternoon.
Similarly, all four operations can be hidden in natural language hierarchies. Inspired by Ye et al. (2024a), we adopt its
construct of “Abstract Parameters” and “Instance Parameters” to construct computational graphs that facilitate the generation
of problem statements containing the hidden operations. Essentially, the newly added constructs can be thought of as adding
the “total money” as a new node to the computational graph, which has two edges coming in, one from node ”Morning
money” and the other one from node “Afternoon money”. But when generating the problem, we omit the description of two
edges pointing to the node “total money on Friday”.

10

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

“Avg. #Newborn Children per Adult Lion in Zoo”

Animal type LocationNewborn Animal Children

Three-entity variables additionally induces hidden operations × and ÷

Q: Given 1 and 2, What is the total number of newborn animal children
in Zoo? Total Newborn Animal Children in Zoo = #Lions in Zoo × Avg.
#Newborn Children per Adult Lion. (Forward)

#Lions in Zoo

Q: Given 1 and 3, What is the Avg. #Newborn Children per Adult Lion in
Zoo? Avg. #Newborn Children per Adult Lion = Total Newborn Animal
Children in Zoo ÷ #Lions in Zoo. (Reverse)

Avg. #Newborn Children
per Adult Lion in Zoo

Total Newborn Animal
Children in Zoo

1 2 3

Essential Variables and Logical Connections

Noise Variables

Noise Variables

“#Monkeys in Zoo”
Animal type Location

Two-entity variables naturally induces hidden operations + and -

Q: Given 1, 2, What is the total number of animals in Zoo?
Total Animal in Zoo = #Lions in Zoo + #Monkeys in Zoo. (Forward)

#Lions in Zoo #Monkeys in Zoo

Q: Given 1, 3, What is the Number of Monkeys in Zoo?
#Monkeys in Zoo = Total Animal in Zoo - #Lions in Zoo. (Reverse)

1 2 3
Total Animal in Zoo

(a) (b) (c)

Figure 8. (a) shows a generator that focuses on only generating two-entity variables. For generating hidden operations × and ÷, we also
build a generator for three-entity variables in (b). (c) We view noise generation as an extension of the essential computation graph, and we
found that the spider-like topology results in a high information density long context. (Figure best viewed in color)

Generating Implicit ×÷ using Computation Graphs - The above-mentioned problem with the hidden “+” operation
consists of only the ”two-entity variables”. “Morning Money” contains two entities, “Morning” and “Money”, where in
the context, “Money” is an attribute of “Morning”. Same with “After- noon Money”. In fact, out of all the examples we
manually examined in GSM-8K, the minimum number of entities in the variable name is two. However, problems of only
“two-entity” variables can only generate hidden operations of + and - but not × and ÷. For a problem to contain hidden
operations ×, problems must contain variables with more than two entities in its name. For example, “Mary works 8 hours
on Friday. Her hourly rate on Friday is 10 dollars. How much she will earn on Friday in total?” The variable ”money per
hour” contains “money”, “hour”, and “Friday” three entities, where “money” is an attribute of “hour”, while “hour” is also
an attribute of “Friday”.

Our computation graph generator employs the abstract parameter construct to generate implicit operations and three-entity
variables to represent multiplication operations. To maximize diversity in reasoning paths, we impose minimal restrictions
on graph generation. During this process, a query node is sampled from the graph, and the corresponding topological sort
list—ending with the query—ensures the shortest solution path, serving as a measure of the problem’s reasoning complexity.
This approach enables the generation of a vast number of synthetic graphs. Furthermore, adjusting the number of variables
provides a coarse control over complexity, which is refined through precise filtering to produce well-defined subsets of
graphs that meet specific operation constraints.

B.2. Noise Construction Using Computation Graph

Spider Topology - We observe that we can view noise as extending the computational graph to incorporate fake and
unnecessary parameters and operators. However, two critical questions emerge. First, how to extend the computation graph
without contaminating the original graph’s solution and contaminations? We found that edges have to point outwards from
the nodes in the original graph to the newly added noise nodes, essentially preventing the noise nodes from contributing to the
core graph. Second, how to maximize the chance that RAG cannot retrieve the essential graph? It turns out interconnecting
edges between newly added noise nodes won’t contribute help detering RAG’s retriever. We find out a simple trick works
well: ensuring the majority of the added edges connect core nodes and the noise nodes contribute to a semantically close
noise. We call this design Spider Topology as shown in Figure 8(c).

We evaluated the resulting noise using two RAG systems in A. The results are shown in Figures 6(c) and (d). Llama-3.1-
70B-Instruct achieves drastically stronger performance than the two RAG systems on 8K 2-entity problems and 3-entity
problems. We also carried out the same study before on our data set setting 2, in Figure 6(b). We found that the RAG
retriever now completely cannot distinguish which essential chunks from noise chunks, showing a clear contrast with vt
tasks of the same context length in (a).

C. GSM-∞
In this section, we present key techniques that enable the synthetic dataset to be diverse in operations, LLM-understandable,
and enable the evaluation to be free from non-reasoning factors. Then, we present synthetic problem generators capable of
generating grade-school math questions with arbitrary reasoning difficulty and context length. Thus, we generate a suite of

11

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

benchmarks called GSM-∞.

C.1. Reverse Problems

The key limitation of Ye et al. (2024a) abstract parameters and instance parameter design is that it is only able to generate
problems with solutions with the “forward” and constructive ordering. Shown in the Figure 8 (a) and (b), the design dictates
that the specific and detailed variables should be defined before a more abstract variable. For example, “the number of Lions
in Zoo” and “the number of Monkeys in Zoo” have to be defined before “Total Animal in Zoo” is defined. The “forward”
ordering leads to the inability to generate hidden ’-’ operations for 2-entity problems and hidden “÷” operations for 3-entity
problems that require the more abstract variables, e.g. “Total Animal in Zoo”, to be defined before a more specific variable,
e.g. “the number of Monkeys in Zoo”.

To generate all four kinds of hidden operations, we introduce a “reverse mode” to generating the computation graph.
Essentially, the graph construction still continues as before: starting with specific detailed variables and growing to
incorporate more abstract variables. When it completes and we know all the values of nodes in the graph, we then randomly
mask out a specific initial low-level variables and force the solution to traverse in the reverse direction as in the ”forward”
ordering. We present the illustration of data generation in Figures 8 (a) and (b) for the 2-entity and 3-entity, respectively.
However, for 3-entity problems, it can result in quadratic equations leading to multiple possible solutions. We develop some
techniques that effectively reduce the probability of the situation. Details of implementation are presented in Figure 9 in
Appendix.

C.2. Language Attachment through Templates

Mapping computation graphs to natural language is critical for evaluating LLMs’ reasoning capabilities. To automate
this process, we develop inter-swappable templates that enhance linguistic diversity while maintaining clarity. Several
key considerations inform our design. First, Certain syntactic forms, such as possessive constructions (e.g., A’s B), are
straightforward to encode but can mislead LLMs due to their deviation from natural language. For example, South Zoo’s
Penguin is restructured as Penguin in South Zoo, and South Zoo’s Adult Penguin’s Average Number of Newborn Children
becomes Average Number of Newborn Children per Adult Penguin in South Zoo. Second, to ensure minimal constraints
to random graph generation, templates enforce unit consistency across two-entity and three-entity variables to enable
assignment between these two. For instance, “The average number of animal children per penguin in South Zoo” must share
a unit with “The number of penguins in South Zoo” to allow variable assignments. Third, to ensure real-world knowledge
doesn’t confuse the LLM’s decision, we avoid specific real-world locations, people’s names, and festival names from
appearing in the template. Based on these constricts, we propose three different templates that meet real-world templates:
children-animal-zoo, teachers-school-district, and awards-movies-festival. We present in Appendix I an ablation study
showing that three templates are consistent in overall performance with only minor fluctuations when evaluated using
Llama-3.1-8B-Instruct. At each op, equal problems are tested for both constructive ordering (forward) and reverse ordering
(reverse).

C.3. Benchmark Details

With the synthetic problem generators detailed in Section C, we then use them to generate problems to build a suite of
reasoning tasks with increasing complexity. For the brevity of reference, we refer to the generated problems with only
explicit operations as “Easy”, the generated problems with 2-entity variables at maximum as “Medium”, and the generated
problems with 3-entity variables at maximum as ”Hard.

Ideally, when evaluating an LLM, we want to evaluate all difficulty levels, from the most basic logic complexity to when
it completely fails to solve any problem. For the Easy subset of problems, it usually leads to large operation counts for
powerful LLMs. However, although complexity-wise not challenging, LLMs trained with internal COT tend to generate
very long arguments, saturating their API output generation limit (4K for many models). Thus, we observe a sudden decay
in accuracy in large ops, not because of LLMs’ ability bottlenecks, but because of the above-mentioned nuance. Thus, we
make a tweak to its problem: Instead of asking the LLM to find the value of one variable, we ask the LLM to find all the
variables that have some value specified, effectively increasing the difficulty of the problem.

For the modified Easy subset, we keep the generated problem in the most basic form: symbolic assignment. The typical
problem statement then becomes ”v1235 equals v1468 plus 1.” Since the modified problem is not easier compared to Medium

12

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

and Hard, we now call it ”Symbolic”. For Medium and Hard, we use all three templates and mixed the generated problems
together to ensure diversity. For reporting LLMs performance, we use Area Under Curve (AUC), which is computing a
Riemann sum over the LLM’s performance in accuracy versus number of operations from 2 to when its performance is
lower than 5%.

We prepare zero-noise, 8K, 16K, and 32K in the benchmarks. The existing generation pipeline is capable of generating in >
16M context, but the smaller 70B level models effectively failed in the 32K context already, while evaluating larger ones
brings cost beyond our acceptance.

D. Related Work
D.1. Long-context Language Models

Various works related to the Long-context Language Model have been proposed. Flash attention(Dao et al., 2022), Flash
attention2(Dao, 2024), Ring attention(Liu et al., 2023a), and Tree attention(Shyam et al., 2024) significantly reduced the
memory footprint and communication overhead for processing long context in engineering level across multiple nodes.
Architectural level innovations such as sparse attentions represented by sliding window attention(Beltagy et al., 2020),
are also widely used to reduce the overhead caused by the increasing sequence length. New training strategies, such as
gradually extending the training context length in the final stages of pretraining have been applied to support a long context
window(Dubey et al., 2024).

D.2. Long context benchmarks and tasks

There have been a quite a few works benchmarking long-context language models. Existing comprehensive benchmarks like
∞bench(Zhang et al., 2024) cover realistic tasks including document QA, summary, and synthetic tasks including information
retrieval, expression calculation, extending the context length in the benchmark to over 200k tokens. ∞bench(Zhang et al.,
2024) does have mathematical reasoning tasks, however the most relevant math.calc part seems to be too difficult for SOTA
models to work out. Synthetic tasks often offer more control and are less affected by parametric knowledge in comparison
with realistic tasks. One comprehensive synthetic benchmark is RULER(Hsieh et al., 2024a), a synthetic benchmark with
tasks including retrieval, variable tracking and so on, offering some controls over context length and task complexity.
Experiments with various complexities were done, but it does not provide a quantitative analysis of complexity and context
length on the correctness of the task, let alone isolate two separate patterns of performance decay. Other benchmarks usually
focus on simple retrieval(Github, 2023; Liu et al., 2023b), fact reasoning(Kuratov et al., 2024), the impact of long context
on natural language reasoning(Levy et al., 2024) and other real-world knowledge involved tasks.

D.3. Limitation of Existing Reasoning Tasks

Popular reasoning benchmarks are loose collections of human-made problems that naturally suffer from the following
limitations. Firstly, the difficulty of problems within the same benchmark varies widely. We analyzed all 1.3K test problems
in the GSM8K dataset, we plot the histogram in the number of operations in Figure 7(a). The problem varied from 2 to
over 12 following a skewed bell shape curve. This lack of fine-grained control makes it challenging to systematically
evaluate models across incremental difficulty levels. Also, notice that the total number of problems is less than 10 for op
≥ 9, too little for stable evaluation. The lack of problem quantity on human-curated datasets eliminates the possibility
of filtering out problems of each fine-grained difficulty level. Secondly, there is a significant difficulty gap between the
benchmarks: GSM-8K focuses on middle school problems, MATH (Hendrycks et al., 2021) and AIME targets prospective
university students, and Frontier Math challenges top-tier math graduate students. It is difficult to quantitatively determine
the difference in problem difficulty between GSM-8K problems with MATH problems since MATH uses operations such as
taking power or roots that are absent in GSM-8K. Similarly, it is not possible to determine the difference in complexity
from MATH to Frontier Math. It is difficult to quantitatively model LLMs’ performance degradation with the continuously
increasing difficulty of the problem. Third, most of the existing problems have very short input prompts. On average,
GSM-8K test set problems have a length of 59.96 tokens, while MATH test set problems have 67.37 tokens when using
Llama 3.1 tokenizer. We have seen from A that the addition of irrelevant noise cannot meaningfully evaluate the ability to
reason in a long context of LLMs.

13

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

D.4. Synthesized Datasets for long-context

Synthesized tasks are simple to build and absolutely deterministic, data contamination safe, but highly effective to evaluate
certain aspects of LLM performance. Its use in long-context benchmarks is profound. Needle-in-the-haystack (Kamradt,
2023), a pioneering long-context synthesized task, now becomes the go-to task for evaluating LLM long-context retrieval
ability. On the other hand, LLM reasoning benchmarks also see recent efforts in synthesized tasks. (Mirzadeh et al., 2024)
recently proposes to use build synthesized dataset upon GSM8K (Cobbe et al., 2021) to study the robustness of LLM
reasoning. Part of our work draws a strong inspiration from a series of works ((Ye et al., 2024a), (Ye et al., 2024b))
which systematically studies the intricacies of decoder transformers in solving grade-school level problems. Following
their footsteps, we carefully redesign the process of generating the problems so current LLMs can solve without training, and
together with thoughtful steps in noise addition, we effectively construct effective reasoning benchmarks for the long-context
community.

E. Detailed Experiment Setup
E.1. RAG Experiment Setup

The RAG system contains two components, the retriever and the decoder. For the retriever, we use all-mpnet-v2-base. For
the decoder, we use Llama-3.1-70B-Instruct. The context retrieval budget for all problems is 2048. We employ two different
RAG methods: passive and active RAGs. Passive RAG calls the retriever once before the generation of the decoder. The
retriever computes the semantic similarity or distance between each chunk of context and the query sentence. These chunks
in context are then ranked from closest (most semantic similar) to furthest (least semantic similar), and depending on the
retrieved context, top-k chunks are retrieved. For our study, we used the L2 distance between context chunk embeddings and
query embeddings. The decoder then takes the retrieved chunks as input and then outputs its response to the query.

We use two types of RAG systems: Passive RAG that only calls the retriever once at the beginning to retrieve relevant
context or Interactive RAG (Jiang et al., 2023b) in which the decoder decides when to retrieve, how many retrievals are
needed, and generate a query for each retrieval. For the latter one, we restrict the decoder generation with only the latest
retrieval content and its past generation.

On the other hand, active RAG shows strong performance (Jiang et al., 2023b) especially for common sense reasoning tasks.
In addition to the steps in passive RAGs, the decoder is allowed to initiate additional calls to the retriever to retrieve more
context by generating new queries. We follow the state-of-the-art active RAG method FLARE (Jiang et al., 2023b), which
allows for 10 rounds of query, but restricts the LLM to only see its current round of retrieved context and its past rounds of
generation to generate its full response.

E.2. Repeated Sampling Experiment Setup

E.2.1. PROCEDURE

1. Oversampling Phase

• Generate 256 samples per task with temperature T = 1.0

• Use fixed random seeds for reproducibility

2. Accuracy Calculation

• Compute per-task empirical accuracy:

ptask =
Correct Samples

256
(1)

• Estimate accuracy for N samples:
Acctask = 1− (1− ptask)

N (2)

3. Aggregation

• Average results across 80 tasks:

Final Accuracy =
1

80

80∑
i=1

Acctaski (3)

14

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

E.2.2. RATIONALE

• Oversampling: 256 samples reduces variance in estimating ptask compared to using 128 samples directly

• Probability Formula: Models cumulative success probability:

P (≥ 1 correct in k trials) = 1− (1− p)k

• Task Count: 80 tasks per op provide stable statistics while remaining computationally feasible

15

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

F. Full Result of RAG experiments
Here, we present the full result of the RAG experiment for further analysis.

F.1. RULER

Models s1 s2 s3 mk1 mk2 mk3 mv mq Context Length
Llama 3.1 70B Instruct 100 100 100 100 100 100 100 100 8k
OnePass RAG 100 100 100 100 100 96 98.5 100 8k
Interactive RAG 100 100 100 100 100 98 99 99 8k
Llama 3.1 70B Instruct 100 100 100 100 98 100 98 100 32k
OnePass RAG 100 100 100 98 100 72 99.5 97.5 32k
Interactive RAG 100 100 100 98 96 96 98.5 98.5 32k
Llama 3.1 70B Instruct 100 100 100 98 96 100 89 98 64k
OnePass RAG 100 100 100 100 100 56 95.5 100 64k
Interactive RAG 100 100 100 100 96 98 99 100 64k

Table 3: RAG vs Model (RULER NIAH)

Models vt cwe fwe qa1 qa2 Context Length
Llama 3.1 70B Instruct 100 100 96.67 84 74 8k
OnePass RAG 82.4 14.8 97.33 86 86 8k
Interactive RAG 98.4 31.2 79.33 80 68 8k
Llama 3.1 70B Instruct 100 95.2 97.33 80 66 32k
OnePass RAG 86 5.2 92 84 74 32k
Interactive RAG 98 7.6 80 78 64 32k
Llama 3.1 70B Instruct 100 6.2 95.33 72 62 64k
OnePass RAG 78.4 1.2 88.67 82 74 64k
Interactive RAG 98.8 2.6 72 78 56 64k

Table 4: RAG vs Model (RULER other subsets)

Abbreviations: s1-3 = niah single 1-3, mk1-3 = niah multikey 1-3, mv = niah multivalue, mq = niah multiquery

F.2. LongBench V2

Tasks Overall Easy Hard Short Long
Llama 3.1 70B Instruct 30 33.3 28.1 44.7 21
OnePassRAG (budget 2048) 25 33.3 20.3 23.7 25.8
InteractiveRAG (budget 2048) 33 36.1 31.2 34.2 32.3

Table 5: RAG vs Model (LongBench V2)

F.3. LongBench

Tasks passage count hotpot-qa samsum
Llama 3.1 70B Instruct 36.0,36.0,32.0 58.87,71.22,76.44 28.88,35.95,41.48
OnePassRAG (budget 2048) 0.0,0.0,0.0 65.04,61.59,63.05 31.63,23.28,26.84
InteractiveRAG (budget 2048) 27.0,14.0,6.0 61.86,51.0,55.94 24.83,20.21,23.81

Table 6: RAG vs Model (LongBench) - Part 1

16

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

Tasks multi-news multifieldqa en gov report
Llama 3.1 70B Instruct 27.71,24.81,23.17 57.31,51.83,64.98 34.94,34.97,31.82
OnePassRAG (budget 2048) 26.85,22.72,20.49 51.69,48.66,55.85 32.6,30.67,27.32
InteractiveRAG (budget 2048) 24.64,19.99,18.87 47.71,42.98,58.45 29.91,27.02,25.34

Table 7: RAG vs Model (LongBench) - Part 2

Tasks qasper passage retrieval en 2wikimqa
Llama 3.1 70B Instruct 50.3,46.5,25.89 100.0,100.0,100.0 74.93,64.37,59.6
OnePassRAG (budget 2048) 45.73,43.5,35.3 72.0,72.0,79.0 67.97,59.64,48.4
InteractiveRAG (budget 2048) 43.8,37.9,32.84 91.0,90.0,85.33 46.04,43.46,38.8

Table 8: RAG vs Model (LongBench) - Part 3

Tasks triviaqa trec lcc repobench-p
Llama 3.1 70B Instruct 82.0,93.6,94.0 48.0,12.0,12.0 50.14,55.0,50.04 29.98,27.82,26.84
OnePassRAG (budget 2048) 92.13,89.46,90.97 47.0,56.0,53.0 19.92,14.5,18.36 34.76,33.62,28.0
InteractiveRAG (budget 2048) 88.11,92.32,91.5 56.0,57.0,52.0 24.26,23.26,22.57 14.97,17.15,16.56

Table 9: RAG vs Model (LongBench) - Part 4

Abbreviations: The 3 data separated by commas are subsets of 0-4k, 4-8k,8k+ respectively

F.4. LOFT

Tasks ArguAna FEVER FIQA MS MARCO NQ Quora SciFact
Llama 3.1 70B Instruct 0.06 0.78 0.37 0.67 0.84 0.62 0.59
OnePassRAG (budget 2048) 0.64 0.88 0.45 0.77 0.86 0.62 0.64
InteractiveRAG (budget 2048) 0.42 0.73 0.53 0.69 0.76 0.83 0.87

Table 10: RAG vs Model (LOFT) - Part 1

Tasks Touché-2020 HotPotQA MuSiQue QAMPARI QUEST
Llama 3.1 70B Instruct 0.4411 0.37 0.2 0.024 0.07166
OnePassRAG (budget 2048) 0.2529 0.455 0.2383 0.1559 0.1899
InteractiveRAG (budget 2048) 0.79 0.29 0.13 0.1539 0.2983

Table 11: RAG vs Model (LOFT) - Part 2

Abbreviations: We completed this experiment only on 128k context length because LOFT didn’t release their official
prompt for 32k and 1M.

17

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

G. Illustrative Problems
This section presents one representative problem from each subset (Symbolic, Medium, and Hard) defined in the appendix.
These examples illustrate the variations within the benchmark. see Table 12

Table 12. Illustrative Problems from Each Subset
Feature Symbolic Medium Hard

Problem • Symbolic (op=5): <context>\nassign V705804 = V437110 + 1. assign V986916 = V705804.
assign V873548 = 6. assign V684196 = V873548. assign V437110 = V873548.\n </context>
\n\nThe context contains relationships between variables. These relationships are independent
mathematical equations that are all satisfied simultaneously.\n Using only these relationships,
determine which variables (if any) from which values can be derived are equal to 7.\nShow
your step-by-step reasoning and calculations, and then conclude your final answer in a sentence.
Answer: V705804,V986916.

• Medium (op=5): Problem: The number of adult owl in Bundle Ranch equals 2 times the
number of adult eagle in Bundle Ranch. The number of adult eagle in Hamilton Farm equals
the difference between the total number of adult animals in Bundle Ranch and the number of
adult eagle in Bundle Ranch. The number of adult owl in Hamilton Farm equals 4 times the
number of adult owl in Bundle Ranch. The number of adult eagle in Bundle Ranch equals 3.
Question: What is the total number of adult animals in Bundle Ranch? Answer: 9.

• Hard (op=5): The average number of newborn children per adult blue jay in Bundle Ranch
equals 2. The number of adult parrot in Bundle Ranch equals 2. The number of adult blue
jay in Bundle Ranch equals 2 times the average number of newborn children per adult blue
jay in Bundle Ranch. The number of adult eagle in Bundle Ranch equals 2 times the average
number of newborn children per adult blue jay in Bundle Ranch. The number of adult parrot in
South Zoo equals 4 times the sum of the average number of newborn children per adult eagle
in Hamilton Farm, the number of adult eagle in Hamilton Farm, and the average number of
newborn children per adult eagle in Hamilton Farm. The average number of newborn children
per adult eagle in Hamilton Farm equals the number of adult eagle in Bundle Ranch. The
number of adult eagle in Hamilton Farm equals 3. The average number of newborn children
per adult parrot in Bundle Ranch equals the total number of adult animals in Hamilton Farm.
The number of adult eagle in South Zoo equals 1. The average number of newborn children
per adult parrot in South Zoo equals the average number of newborn children per adult parrot
in Bundle Ranch. The average number of newborn children per adult eagle in Bundle Ranch
equals 3 plus the average number of newborn children per adult parrot in Bundle Ranch.
The average number of newborn children per adult eagle in South Zoo equals the sum of
the number of adult blue jay in Bundle Ranch, the average number of newborn children per
adult blue jay in Bundle Ranch, the average number of newborn children per adult parrot in
Bundle Ranch, and the number of adult parrot in Bundle Ranch. Question: What is the average
number of newborn children per adult eagle in Bundle Ranch? Answer: 6.

18

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

H. Forward and Reverse Problems Breakdown

Models Forward Problem Reverse Problem Forward AUC - Reverse AUC
Llama 3.1 70B Instruct 2100.625000 1283.750000 816.875000
GPT 4O-mini 1529.725400 1267.579000 262.146400
Jamba-1.5-Large 390.380000 624.980000 -234.600000
GPT 4O 3073.997375 1952.816875 1121.180500
Mistral Large 3468.234100 2431.732450 1036.501650
Llama 3.1 8B Instruct 1030.000000 563.125000 466.875000
Claude Sonnet 3653.830050 3158.657850 495.172200
Qwen 2.5 72B Instruct 2889.375000 2141.250000 748.125000
Qwen 2.5 7B Instruct 995.625000 833.125000 162.500000
o1-mini 6517.510550 5592.307100 925.203450
Gemini 1.5 Flash 1889.375000 1153.750000 735.625000
Claude Haiku 1234.620000 873.100000 361.520000
Llama 3.1 405B Instruct 1781.400000 981.250000 800.150000
DeepseekV3 4613.125000 3713.125000 900.000000
Gemini 1.5 Pro 4204.564075 3160.574950 1043.989125
Deepseek R1 9764.950000 9750.950000 14.000000
Minimax Text-01 2148.071300 1539.415650 608.655650
Qwen-QwQ-32B-Preview 3530.000000 2846.250000 683.750000

Table 13: Medium Difference in AUC in Forward Problems and Reverse
Problems

Models Forward Problem Reverse Problem Forward AUC - Reverse AUC
Claude Haiku 819.240000 776.900000 42.340000
Llama 3.1 70B Instruct 1314.375000 1098.750000 215.625000
Gemini 1.5 Flash 1341.250000 1219.375000 121.875000
Minimax Text-01 1360.555000 1034.625000 325.930000
Deepseek R1 8444.500000 8756.950000 -312.450000
OpenAI o1mini 3831.381000 3645.474200 185.906800
Gemini 1.5 Pro 2255.732025 2444.270375 -188.538350
DeepseekV3 2725.085000 2109.560000 615.525000
Qwen-2.5-7B-Instruct 625.625000 630.625000 -5.000000
4O 1592.280000 1311.560000 280.720000
Llama 3.1 8B Instruct 759.375000 460.625000 298.750000
Qwen 2.5 72B Instruct 2196.875000 1895.000000 301.875000
Claude Sonnet 2242.309950 1999.998100 242.311850
4O-mini 858.400000 873.310000 -14.910000
Qwen-QwQ-32B-Preview 1878.750000 1855.625000 23.125000
Mistral Large 2570.940500 2018.469000 552.471500
Llama 3.1 405B Instruct 1215.000000 743.750000 471.250000
Jamba-1.5-Large 274.980000 699.990000 -425.010000

Table 14: Hard Difference in AUC in Forward Problems and Reverse
Problems

19

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

Figure 9. Comparison between forward and reverse

I. Ablation Study of Task Templates
We have three different real-world templates ready. We show that they offer consistent scores with Llama-3.1-8B-Instruct,
with slight variables in specific operations. We also show three problem examples.

20

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

Template: “Crazy Zootopia”
Problem: The number of adult racoon in South Zoo equals 1 plus the total number of
adult animals in Mayer Aquarium. The number of adult fox in Mayer Aquarium equals 2.
Question: What is the total number of adult animals in South Zoo?
Solution: Define adult fox in Mayer Aquarium as t; so t = 2. Define total number of adult
animals in Mayer Aquarium as l; so l = t = 2. Define adult racoon in South Zoo as h; n = l =
2; so h = 1 + n = 1 + 2 = 3. Define total number of adult animals in South Zoo as Y; so Y = h
= 3. Answer: 3.

Template: “Teachers in School”
Problem: The number of regional medical school in Brightford equals 1. The number of
elementary school in Hawkesbury equals 1 plus the total number of schools in
Brightford.
Question: What is the total number of schools in Hawkesbury?
Solution: Define regional medical school in Brightford as B; so B = 1. Define total
number of schools in Brightford as y; so y = B = 1. Define elementary school in
Hawkesbury as T; m = y = 1; so T = 1 + m = 1 + 1 = 2. Define total number of schools in
Hawkesbury as q; so q = T = 2. Answer: 2.

Template: “Movie Festival Awards”
Problem: The number of solemn period drama in Festival de Clairmont equals 1 plus
the total number of movies in Festival de Saint-Rivage. The number of calm road movie
in Festival de Saint-Rivage equals 3.
Question: What is the total number of movies in Festival de Clairmont?
Solution: Define calm road movie in Festival de Saint-Rivage as Z; so Z = 3. Define total
number of movies in Festival de Saint-Rivage as x; so x = Z = 3. Define solemn period
drama in Festival de Clairmont as e; o = x = 3; so e = 1 + o = 1 + 3 = 4. Define total
number of movies in Festival de Clairmont as G; so G = e = 4. Answer: 4.

Figure 10. Comparison between different task templates

J. Performance Degradation pattern related to Training Tokens
Previous analyses have demonstrated a sigmoidal relationship between model complexity and performance degradation. To
systematically examine how this relationship varies with training data scale, we conducted empirical investigations across
different token budgets. Our findings delineate two distinct behavioral regimes: (1) an exponential decay pattern emerges
under constrained token budgets, while (2) a characteristic sigmoidal progression manifests in compute-optimal training
scenarios. This dichotomy underscores the pivotal role of data sufficiency in determining the degradation dynamics of
capacity-scaled models, revealing that scaling laws are fundamentally mediated by the adequacy of training resources.

Figure 11. Performance Degradation pattern related to Training Tokens. For constrained token budgets, the curve shows an exponential
decay pattern. For more token budgets, the curve shows an sigmoidal decay pattern.

21

GSM-∞: How Do your LLMs Behave over Infinitely Increasing Reasoning Complexity and Context Length?

K. Long-Context Degradation of Models
In this section, we provide the accuracy decay curves of all LLMs tested across zero-context, 8K, 16K and 32K for further
analysis. We selected the first 30 reasoning steps to truncate the data for comparison purposes.

Figure 12. Accuracy decay with context length for different models

22

