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ABSTRACT

Recent multi-player game benchmarks can be sensitive: modest changes to role,
system, or judge prompts often flip win-rate rankings under identical decoding;
and static, read-once descriptions fail to impart the game-specific priors (rules,
legality, action→transition effects) needed for consistent play. We document this
context-induced instability and argue evaluation should be agentic: let interaction
surface and solidify priors, then evaluate models for both their strength (perfor-
mance) and reliability (consistency under perturbations). To establish more re-
liable baselines, we present COPER, a backbone-agnostic, tuning-free self-play
recipe that (i) evolves prompts using a conservative TrueSkill lower-confidence
bound, (ii) writes structured reflections into a persistent experience bank retrieved
across turns to supply rule-aware priors, and (iii) uses prioritized replay to re-
visit rare, informative states for sample-efficient stabilization. Across five text
games, COPER raises mean win rate from 24.9%→ 49.5% (GPT-4o-mini) and
21.7% → 44.3% (Qwen-2.5-7B-Instruct) with a small budget (5×400 self-play
games per task), and stabilizes agent performance under evaluation. These re-
sults show that much of today’s LLM game headroom can be unlocked by context
rather than weight updates, with COPER yielding strong improvements in negoti-
ation games, competitive results in some imperfect-information settings, and RL
remaining more effective in perfect-information games.

1 INTRODUCTION
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(a) Performance and prompt stability analysis
across different prompt optimization methods.

va
ria

nt
 1

va
ria

nt
 2

va
ria

nt
 3

va
ria

nt
 4

va
ria

nt
 5

variant 1

variant 2

variant 3

variant 4

variant 5

1.000

0.138 1.000

-0.504 0.304 1.000

0.500 -0.207 -0.378 1.000

-0.143 -0.138 -0.504 0.000 1.000

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ke
nd

al
l T

au

(b) Ranking sensitivity in KUHNPOKER.

Figure 1: Left: We evaluate baseline and other prompt optimization methods by average win-rate
and RSE. Our method, COPER, achieved the highest win-rates and the lowest variance, demonstrat-
ing enhanced performance and stability. Right: With environment and evaluator pools fixed, five
nearly equivalent prompt variants still flip pairwise outcomes and reshuffle rankings. The heatmap
shows Kendall’s τb for every pair of prompts: blue means very similar rankings (τb ≈ 1), white
means unstable rankings (τb ≈ 0), and orange means rank reversals (τb < 0).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Large language models (LLMs) have rapidly saturated many static benchmarks, leaving limited
headroom for further progress on single-turn QA and reasoning datasets such as AIME (AIME,
2024), SWE-Bench (Jimenez et al., 2023), and GPQA (Rein et al., 2024). This saturation has
shifted attention toward multi-step evaluations, especially game-based benchmarks (Yao et al., 2025;
Duan et al., 2024; Topsakal et al., 2024; Fan et al., 2024), which stress long-horizon reasoning
and adaptation. Games are a natural testbed: they are easy to simulate, come with well-defined
win conditions, and demand capabilities that mirror real-world challenges, e.g., planning under
uncertainty, coordination, negotiation, and context adaptation.

Unfortunately, current game-LLM evaluations are found to be sensitive and under-agentic. Firstly,
current game evaluations are prompt sensitive. Prior work has shown that LLM accuracy can be
highly sensitive to prompt phrasing in QA (Mizrahi et al., 2024), and this effect is amplified in
interactive games where agents exchange information over many turns. Because prompts couple
across agents, judges, and tools, small changes in role or system templates can flip ELO comparisons
and reorder models under identical decoding. Our measurements reproduce this phenomenon: near
equivalent prompts induce large variations in win rates and produce ranking reversals. As shown in
Fig. 1b, in KUHNPOKER, holding the evaluation model fixed, even minor wording changes in the
initial game prompt led to ranking reversals (orange cells), as measured by Kendall’s τb between
leaderboards.

Secondly, read-once descriptions lack the agentic feedback loop necessary to develop game-specific
priors such as precise rules, legality constraints, and the effects of actions on game states and pay-
offs. While benchmarks provide textual rule descriptions, these priors are rarely internalized from
a single reading. Without interaction-driven learning, models repeatedly violate rules and exhibit
poor long-term strategic play. Unlike Olympiad-style problems that can be solved through care-
ful reasoning alone, games require continuous interaction. This is where players must refine their
understanding of the game mechanics and adapt their strategies dynamically based on experience.

Thesis We argue that game-LLM evaluation should mirror human play: let interaction surface and
solidify priors, then evaluate models for both strength and reliability. We therefore seek a weight
tuning-free, agentic evaluation recipe that stabilizes rankings under prompt variation and closes the
gap between a model’s latent competence and realized in-game performance.

Approach We propose COPER (Context Optimized with Prompt, Experience and Replay), an
LLM backbone-agnostic, tuning-free framework that pairs (i) prompt evolution, (ii) a persis-
tent experience bank, and (iii) prioritized replay. Prompt evolution treats prompt selection
as structured search with a conservative TrueSkill lower-confidence bound S(p) = µ − κσ to
favor candidates that are strong and reliable. The experience bank consolidates trajectory re-
flections using CRUD-style updates (Eq. 3) and retrieves relevant insights to refresh the op-
erative description across turns, surfacing rule-aware priors without weight updates. Replay
mixes fresh self-play with targeted revisits to rare/informative states via a lightweight gate and
priority exponent, accelerating stabilization while preserving coverage (see Eq. 4 and Eq. 5).
Together, these components create an agentic context at inference time—prompt + experience +
replay—that improves adherence to rules and reduces variance across prompts.

Across five text-based games sampled from SPIN-Bench (Yao et al., 2025) and
TextArena (Guertler et al., 2025a), COPER achieves large, budget-efficient gains and more
reliable rankings under prompt stratification: for GPT-4o-mini (OpenAI, 2024), mean win rate
improves from 24.9% to 49.5%; for Qwen-2.5-7B-Instruct (Yang et al., 2024), from 21.7%
to 44.3%, using only 5 × 400 self-play games per task. Moreover, rankings stabilize when the
evaluation protocol itself is agentic.

Our contributions can be outlined as follows:

• Context-induced ranking instability in multi-LLM game benches. Auditing SPIN-Bench
and TextArena showed that baselines are highly sensitive to how agents, judges and tools
are prompted; because prompts couple across agents, small changes in role/system prompts or
message templates can flip ELO and model orderings even with identical decoding settings. This
effect, amplified by cross-agent interactions and path-dependent dialog, goes beyond single-LM
prompt sensitivity and is under-reported despite benches exposing rich prompt hooks. We argue
that multi-prompt, prompt-stratified reporting should be mandatory for these benches.
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• Prompt + Experience + Replay (COPER): a simple yet effective recipe. We introduce a
training-free mechanism that (i) writes episodic summaries of trajectories to an experience bank,
(ii) retrieves them to edit/evolve per-agent prompts online, and (iii) performs branch-and-replay
from flagged states during self-play to guide exploration - thus “fine-tuning without weight up-
dates.” COPER unifies verbal-feedback reflection with memory-augmented prompting and ex-
perience replay into a single, principled procedure tailored to multi-agent games.

• Large, sample-efficient gains on multi-LLM games. As shown in Fig. 1a, COPER achieves
substantially higher win rates than prior prompt optimization methods like MIPRO, while staying
competitive with RL-based baselines like UnstableBaseline at a fraction of their compu-
tational and rollout cost.

2 PRELIMINARY AND PROBLEM STATEMENT

Two-Player Multi-Turn Markov Game. We consider a two-player, turn-based, zero-sum, par-
tially observable environment defined by the tuple (S,A,O, T,R,Ω). Here, S denotes the state
space, A the action space, O the observation space, T : S × A → S the transition kernel, and
R : S ×A→ {−1, 0, 1} is a sparse terminal reward. In general, the agent does not observe the full
state s ∈ S; instead, it receives a partial observation o = Ω(s), where Ω : S → O is the observation
function mapping states to agent observations. Players alternate turns, and we let p ∈ {0, 1} denote
the player index. At time step t, the active player p = (t mod 2) selects an action a

(p)
t ∈ A, while

the opponent remains idle. Terminal outcomes are given by R0(τ) = ρ(sT ) and R1(τ) = −ρ(sT ),
where τ denotes the trajectory of play and ρ : Sterminal → {−1, 0, 1} assigns each terminal state sT
to a final outcome. As the interaction length increases, sampling noise, non-stationarity, and error
propagation accumulate, resulting in amplified variance in the observed outcomes.

Game Context: Prompt and Experience. We use context to denote all information that condi-
tions the model before and during play. Let C = (p,M), where p is the instruction prompt: role
and core system text fixed at the start of play; M is the experience memory, interaction-derived
knowledge distilled from self-play and evaluation trajectories and retrieved at inference without
weight updates. This contextual prior helps the model interpret transitions and payoffs more effec-
tively, promoting stability over extended interactions.

Full-Context Evaluation. Given a method m with context design space Cm (e.g., choices of p
and M ), game suite G, and opponent pool E , each independent run produces a best context Cr ∈
Cm. We execute n runs. For every game g ∈ G and opponent e ∈ E , we play k rounds; each
round consists of two games with swapped first-move order to remove first-move bias. Opponent
models use fixed reference contexts specified in Appx. D. Let WRr,g ∈ [0, 1] denote the evaluated
agent’s win rate in game g under context Cr, averaged over all opponents in E and k rounds. The
overall performance for run r is then xr = 1

|G|
∑

g∈G WRr,g. We report mean performance across
runs, mean(x1, . . . , xn), together with relative standard error (RSE), defined as RSE(%) = 100×

std(x1,...,xn)
mean(x1,...,xn)×

√
n
, where lower RSE values indicate greater stability across independent context

selections.

Variance Across Prompt and Context. Small wording changes in this template can induce large
shifts in both absolute and relative performance, which motivates multi prompt evaluation and cal-
ibration protocols (Mizrahi et al., 2024; Zhao et al., 2021). We evaluate state-of-the-art mod-
els (GPT-4o (OpenAI et al., 2024), DeepSeek-R1 Guo et al. (2025), Gemini-2.5-Flash Comanici
et al. (2025), Grok-3-Mini (xAI, 2025), GPT-o3-mini (OpenAI, 2025), and Qwen3-235B-A22B-
2507 (Qwen et al., 2025)) on KUHNPOKER via round robin tournaments using five nearly equiva-
lent prompts. To quantify ranking sensitivity, we use Kendall’s τb (Kendall, 1938), which compares
the ordering of all model pairs; for two rankings with nc concordant pairs, nd discordant pairs, and
tie corrections tx and ty , the coefficient is τb = nc−nd√

(nc+nd+tx) (nc+nd+ty)
. For each prompt pair,

we compute Kendall’s τb between the resulting leaderboards and summarize the values in a heatmap
(Fig. 1b). The results show considerable dispersion. Across prompt variants, absolute performance
and pairwise rankings frequently reverse, reflecting sensitivity to minor prompt design decisions.
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3 THE COPER FRAMEWORK

Figure 2: The COPER Framework. At each generation, new candidates are proposed by explor-
ing contexts through three strategies: random proposals, crossover, and experience-guided updates.
These candidates are then evaluated via self-play, and the best-performing population is used to up-
date the candidate pool. To encourage exploration and mitigate redundant early moves, a prioritized
replay module is introduced, enabling efficient search for robust prompts and priors within a single
game.

We present COPER, an iterative procedure that optimizes prompts and game context to maximize
performance and stability in two-player Markov games. In each generation, COPER runs a tour-
nament in a selected game, evolves prompts (Sec. 3.1), derives experience insights from self-play
trajectories (Sec. 3.2), and selects state for replay to enable efficient exploration (Sec. 3.3). Fig. 2
provides an overview, and Fig. 3 in Appendix formalizes the procedure.

3.1 COPER CONTEXT OPTIMIZATION LOOP

We begin by describing how COPER evaluates and selects candidate prompts through our context
optimization loop. Let Cg denote the context population (size N ) at generation g. Each context
c ∈ Cg is evaluated by self-play in game G. We maintain Bayesian skill estimates (µc, σc) via
TRUESKILL (Herbrich et al., 2006), where µc is the posterior mean skill and σc is the posterior
standard deviation from observed match outcomes. Selection uses a conservative objective (default
κ = 1):

S(c) = µc − κσc. (1)

In each tournament at generation g, every context in Cg plays t rounds of matches against a fixed
baseline agent: the same base model instantiated with the default prompt only, shown in Appx.
Sec. D . For asymmetric games, each round consists of two games with roles swapped to remove
first-move bias. The resulting outcomes update TRUESKILL and yield S(c) for selection.

We also maintain a persistent candidate pool CP with capacity S (initialized as CP0 = {c1, . . . , cn}
from n base-context variants). After generation g, CP is refreshed by keeping top-scoring elements
observed to date, and Cg+1 is formed from the best N candidates. Sec. 4.2 covers our configuration.

At each step, COPER forms the next population Cg+1 from Cg and CP via three proposal operators:

1. Random proposals: introduce novel variations to encourage exploration by sampling a
playstyle from a fixed catalog and apply small, length-bounded edits to the base context to in-
stantiate that style while preserving legality and interface constraints (Appx. C.1).

2. Crossover: recombine high-scoring parents (by S(c)) at section- or sentence-level to propagate
useful structure (Appx. C.2).

3. Experience-guided updates: incorporate insights distilled from trajectory reflections (Sec. 3.2)
into targeted prompt edits.

4
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This combination balances exploration and exploitation, progressively accumulating more effective
contextual instructions across generations. Following evaluation at generation g, the candidate pool
is refreshed to retain the top performers from CP ∪ Cg . After the final generation, COPER returns
the best candidate:

p⋆ = argmax
c∈C

S(c). (2)

3.2 EXPERIENCE REFLECTION

In addition to context optimization, multi-turn games present an asymmetry: during play, agents
must reason over uncertain futures, while after the game, analysis can rely on a single realized tra-
jectory, making attribution easier (Andrychowicz et al., 2017). COPER builds on this by prompting
the LLM to extract structured reflections from complete trajectories.

Experience bank, workflow, and next-generation play. COPER maintains a permanent memory
M that persists across all generations. At the end of generation g, completed trajectories τ , together
with final outcomes r(τ) and sampled intermediate states, are collected for reflection. The collector
draws a budget of ρ trajectories and elicits up to κ typed insights per trajectory, accumulating them
into a working experience setW(g). Inspired by CRUD (Martin, 1983), the LLM reconcilesW(g)

withM via create, update, and delete:

M ←
(
M\D(g)

)
∪ U (g) ∪ C(g), (3)

where D(g) discards outdated or conflicting items, U (g) updates matched items with merged ver-
sions, and C(g) adds new items from unmatched insights inW(g).

In generation g+1, a designated fraction π ∈ [0, 1] of the new agent pool is initialized as experience-
guided: each such agent receives a sub-sampled context m(g) ⊆M drawn directly from the perma-
nent experience bank. The remaining agents are instantiated without additional context. Matches
then follow the standard tournament schedule. Upon completion, new trajectories feed the reflection
pipeline, insights are computed under the (ρ, κ) budgets, andM is updated as in Eq. 3.

3.3 REPLAY

Finally, while experience reflection equips agents with distilled knowledge from past trajectories, it
does not ensure rare states will be revisited. To complement this, we introduce a replay mechanism
that selectively revisits stored sequences during self-play.

The replay buffer, with capacity B, records cumulative sequences of all player actions, the corre-
sponding game states, and the game’s random seed at each timestep. Because storage occurs at each
turn within an episode, replayed trajectories need not cover a full game. Invalid moves are retained
to preserve the unaltered course of play, ensuring that replays faithfully reflect the original gameplay
dynamics. To avoid dominance by common action patterns, the buffer biases sampling toward in-
frequently encountered trajectories, encouraging a more diverse and balanced pool of prompt-level
insights.

Formally, the priority of a trajectory τ is defined as the inverse of its occurrence count:

priority(τ) =
1

N(τ)
, (4)

where N(τ) is the number of times trajectory τ has appeared in the buffer B.

During sampling, the probability pi of selecting trajectory τi is obtained by raising its priority to a
power α > 0 (the priority exponent that controls sharpness) and normalizing over the buffer:

pi =

(
priority(τi)

)α∑|B|
j=1

(
priority(τj)

)α , (5)

where |B| is the current number of stored trajectories in the buffer.

The buffer is first populated during step 0 and becomes available from step 1. A gating parameter β
determines how often games are initialized from the replay buffer rather than played afresh. When
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replay is chosen, the stored trajectory prefix (i.e., the sequence of past player actions, corresponding
game states and the associated game’s random seed) are injected into the environment, ensuring
faithful reproductions of past episodes while balancing new exploration.

In our implementation, we set the buffer size to B = 100,000 and use α = 0.6 with a replay gate
of β = 0.4, unless otherwise stated. Since the buffer operates as a sliding window of capacity B, it
continuously refreshes with new data while retaining a diverse set of past plays.

4 EXPERIMENT SETUP

4.1 GAME ENVIRONMENTS

We performed experiments across three categories of games: Negotiation, which tests coopera-
tion and trade-offs (Kramár et al., 2022; Abdelnabi et al., 2024b); Imperfect Information, which
probes reasoning under uncertainty from partial observations (Brown et al., 2020; Guo et al., 2024);
and Perfect Information, which emphasizes planning and long-horizon reasoning with full game
visibility (Silver et al., 2017a). Details of each game are provided in Appx. H.

4.2 OPTIMIZER SETTINGS

Baseline: Our baseline uses the default TextArena (Guertler et al., 2025a) prompts without opti-
mization (examples in Appx. D).

COPER: Using the COPER Framework detailed in Sec. 3, our optimization runs use a population
size N of 8 over 5 generations. Each self-play tournament corresponds to one generation with 50
games per optimized agent. Reflection signals are incorporated into the optimization, and token
costs of each method are reported in Tab. 5.

For comparison, we benchmark against other prompt optimization methods—Textgrad (Yuksek-
gonul et al., 2024), MIPRO (Opsahl-Ong et al., 2024), and GEPA (Agrawal et al., 2025)—as well
as reinforcement learning baselines including UnstableBaseline (Guertler et al., 2025b) and
SPIRAL (Liu et al., 2025). Detailed setups of their optimization are provided in Appx. E.

4.3 EVALUATION SETTINGS

All experiments use GPT-4o-mini (OpenAI, 2024) and Qwen-2.5-7B-Instruct (Yang et al., 2024)
as base models. For prompt-based methods, we perform three independent runs. In each run,
the optimized prompt and context are evaluated against held-out opponents: Grok-4-Fast-Non-
Reasoning (xAI / Grok Team, 2025), Gemini-2.5-Flash-Lite (Comanici et al., 2025), and Qwen3-
235B-A22B-Instruct-2507 (Yang et al., 2024). Unless otherwise noted, each run consists of 50
games. We report mean win rates across runs together with standard error (SE). A fixed sampling
temperature of τ = 1.0 is used throughout.

For RL-based methods, we train a single policy, select the best checkpoint, and evaluate it over three
sets of 50 games each against the same opponents. The mean win rate across these sets is reported.

5 RESULTS AND ANALYSIS
Observation 1: COPER outperforms other methods in both win rate and robustness. As
shown in Tab. 10, COPER outperforms other optimization methods in most of the five game envi-
ronments. Compared to prompt optimization methods, COPER significantly outperforms MIPRO
by an average of 12.8% across all tasks on GPT-4o-mini. Our agentic contextual learning method
remains competitive with computationally intensive RL-based approaches. For instance, COPER
achieves an average win rate of 44.3%, comparable to UnstableBaseline’s 46.1%, while be-
ing substantially more efficient both in computational cost and game rounds. Specifically, COPER
required only 2,000 games per task which is 19 times fewer than UnstableBaseline’s 38,000
games.

Beyond improvements in win rate, COPER enhances robustness by reducing the Relative Standard
Error (RSE) defined in Sec. 2. Due to the inherent instability in multi-turn gameplay, significant
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Table 1: Benchmark results for different approaches using GPT-4o-mini and Qwen2.5-7B-Instruct
across multiple tasks. Each win rate is the mean across three evaluation models (sec. 4.3).

Optimizer Negotiation Imperfect Info Perfect Info Mean
Win Rate

Mean
RSE

SimpleNegotiation TwoDollar KuhnPoker Briscola Simpletak

GPT-4o-mini
baseline 31.3% 32.2% 39.1% 0.3% 21.4% 24.9% 25.9%
Textgrad 42.0% 44.6% 55.6% 7.1% 23.6% 34.6% 18.4%
MIPRO 38.4% 50.9% 55.1% 19.7% 19.1% 36.7% 12.4%
GEPA 36.8% 40.4% 52.2% 3.3% 26.9% 32.0% 11.3%
COPER (Ours) 54.9% 52.4% 55.6% 42.7% 41.8% 49.5% 6.4%

Qwen2.5-7B-Instruct
baseline 24.0% 17.1% 49.3% 2.8% 15.1% 21.7% 17.6%
Textgrad 37.1% 29.3% 52.8% 7.1% 22.4% 29.9% 21.7%
MIPRO 42.4% 47.5% 53.8% 2.2% 20.9% 33.4% 7.3%
GEPA 34.4% 31.7% 55.8% 3.3% 19.3% 28.8% 14.8%
UnstableBaseline 41.1% 30.4% 58.4% 53.3% 47.3% 46.1% 24.8%
SPIRAL 45.7% – 56.7% – 32.7% – –
COPER (Ours) 48.0% 48.4% 60.0% 31.1% 34.0% 44.3% 6.1%

variance is observed in the baseline without optimization. Compared to other prompt optimization
methods, COPER achieves a lower mean RSE across different games. For example, using GPT-4o-
mini, COPER achieves 6.4% RSE compared to MIPRO’s 12.4%. Notably, UnstableBaseline
exhibits increased RSE, indicating that current outcome-based reinforcement learning with sparse
rewards remains unstable when optimizing performance in multi-turn, multi-agent scenarios.

Table 2: GPT-4o-mini ablations with progressive module additions.

Setting TwoDollar KuhnPoker Briscola Mean Win Rate

Baseline 32.2% 39.1% 0.3% 23.8%
+ Prompt Optimization 24.7% 54.7% 2.0% 27.1%

+ Experience 48.7% 57.2% 38.4% 48.1%
+ Replay 52.4% 55.6% 42.7% 50.2%

Observation 2: Experience unlocks LLMs’ game-playing capabilities. Tab. 2 presents our ab-
lation study examining the effectiveness of each component. Without the experience module, prompt
optimization alone fails to effectively teach the model game dynamics, yielding only marginal im-
provements (2.0% in BRISCOLA) or even performance drops (-7.5% in TWODOLLAR). However,
adding experience augmentation yields large gains by 38.1% and 16.5% respectively. Prompt-only
optimization tends to plateau after initial phrasing improvements. However, experience-based up-
dates distill rule clarifications, violation patterns, and counter-strategies into a stable game-specific
prior that sustains useful information. Finally, adding replay showed a further 2.1% average boost
by revisiting high-priority states to reinforce successful strategies and correct recurring mistakes.

Table 3: Generalization across task

.

Training Game Negotiation Imperfect Info Perfect Info Mean
Win RateSimpleNegotiation TwoDollar KuhnPoker Briscola Simpletak

GPT-4o-mini
SimpleNegotiation 46.9% (+15.6%) 37.8% (+5.6%) 48.9% (+9.8%) 0.0% (-0.3%) 37.7% (+16.3%) 34.3% (+9.4%)
TwoDollar 31.1% (-0.2%) 48.7% (+16.5%) 53.3% (+14.2%) 1.1% (+0.8%) 47.8% (+26.4%) 36.4% (+11.5%)
KuhnPoker 31.1% (-0.2%) 34.4% (+2.2%) 57.2% (+18.1%) 22.2% (+21.9%) 30.0% (+8.6%) 35.0% (+10.1%)
Briscola 38.9% (+7.6%) 27.8% (-4.4%) 57.8% (+18.7%) 38.4% (+38.1%) 14.3% (-7.1%) 35.4% (+10.6%)
Simpletak 37.8% (+6.5%) 35.6% (+3.4%) 65.0% (+25.9%) 0.0% (-0.3%) 30.7% (+9.3%) 33.8% (+9.0%)

Observation 3: Cross-game generalization of learned context. Tab. 3 presents our cross-game
evaluation results. Columns indicate the source game where our method learned its context through
self-play. Rows show target games where we evaluate the learned context zero-shot, without any
fine-tuning. Each cell reports win rates from 50 independent matches against evaluator models.

We found that the learned prompts and context often transfer to unseen environments, improving
win rates in most new games. This reveals two key patterns:

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Protocol-level skills transfer across game families. Core decision-making components—such
as turn management, action formatting, and short-horizon planning—generalize effectively even
when payoff structures differ significantly. For example, SimpleTak→ KuhnPoker achieves +25.9%
improvement, and TwoDollar → SimpleTak yields +26.4%. These gains suggest that the learned
prompts create a general “decision scaffold” that extends beyond game-specific heuristics.

Transfer exhibits directional asymmetry. The transfer effectiveness depends on the direction
of knowledge transfer. Negotiation strategies from TWODOLLAR improve performance on SIM-
PLENEGOTIATION (+5.6%), but the reverse is negligible (−0.2%). Similarly, Briscola→ Simple-
Tak shows negative transfer (−7.1%) despite strong within-family performance. This asymmetry
suggests that transfer success depends also on the alignment between source and target game me-
chanics; for instance, card-tracking strategies may not translate to perfect-information board games.

Table 4: Generalization across models.

Model Briscola KuhnPoker TwoDollar Mean
Self-play on gpt-4o-mini to find the best context

Gemini-2.5-flash-lite 22.7% 48.7% 20.0% 30.5%
Gemini-2.5-flash-lite (with best context) 41.3% (+18.6%) 60.7% (+12.0%) 50.0% (+30.0%) 50.7% (+20.2%)
Grok-4-fast-non-reasoning 49.3% 58.7% 24.7% 44.2%
Grok-4-fast-non-reasoning (with best context) 41.3% (-8.0%) 52.7% (-6.0%) 48.0% (+23.3%) 47.3% (+3.1%)

Observation 4: Learned context does not always transfer across models. As shown in Tab. 4,
we test whether a context learned via self-play on GPT-4o-mini can generalize to other models.
Specifically, we apply the prompts and experience produced by COPER to Gemini-2.5-flash-lite
and Grok-4-fast-non-reasoning, and evaluate against the same opponent pool described in Sec. 4.3.
The results reveal a mixed picture. This highlights that learned context is not universally portable
across architectures, further underscoring the need for per-model agentic context optimization.

Table 5: Output token cost for each prompt optimization method (exact counts).

Optimizer SimpleNegotiation KuhnPoker SimpleTak Avg. tokens

Textgrad 842 986 938 922
MIPRO 145,864 162,084 754,534 354,161
GEPA 110,325 119,365 111,907 113,865
COPER (Ours) 87,364 94,160 89,152 90,575

Observation 5: COPER is computationally and sample efficient. Beyond its performance
gains, COPER is highly efficient. As shown in Tab. 5, it uses only 91K output tokens, which is
one-quarter of MIPRO (354K) and 20% fewer than GEPA (113K). Textgrad consumes very few
tokens (∼1K) since it updates prompts via a single differentiable loss, but its optimization capacity
is limited. Overall, experience-guided prompts strike a better balance of efficiency and effectiveness
than reflection- or gradient-only baselines. Notably, incorporating replay with a β = 0.6 reduced
our token usage on SIMPLETAK by 22.7% compared to runs without replay, further underscoring its
role in efficient exploration.

6 RELATED WORKS

6.1 PROMPT OPTIMIZATION

Automatic prompt optimization has evolved into a principled, black-box search over prompt seeds,
feedback signals, candidate generation, and selection strategies (Ramnath et al., 2025). Program-
matic frameworks such as DSPy compile LM pipelines and optimize prompts directly toward a
user metric (Khattab et al., 2023); gradient-via-text methods propagate natural-language feedback
through computation graphs to update intermediate decisions (Yuksekgonul et al., 2024). Recent
systems jointly search over agentic patterns and prompt contents (Spiess et al., 2025), offer zero-
configuration prompt pipelines with meta-optimizers and DSPy backends (Murthy et al., 2025),
or meta-learn general system prompts while adapting user prompts (Choi et al., 2025). COPER
complements this line by targeting interactive games: it evolves context via conservative selection,
writes structured reflections to a persistent experience bank, and reuses them across turns. It pro-
vides rule-aware priors without weight updates while remaining backbone-agnostic. For a detailed
comparison of our approach and existing prompt optimization methods, please refer to Appx. F.
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6.2 LLM FOR GAMES

Early multi-agent evaluations used role prompts and multi-turn dialogue to probe cooperation and
theory-of-mind (Abdelnabi et al., 2024a). Community arenas expanded coverage: TextArena pro-
vides competitive text games with online TrueSkill ranking (Guertler et al., 2025a); SPIN-Bench
combines planning, cooperative/competitive play, and negotiation, highlighting limits in deep rea-
soning and coordination (Yao et al., 2025); and GT-Bench evaluates strategic play in board and
card games (Duan et al., 2024). Prompt design strongly affects move quality (Topsakal et al., 2024),
and moving toward off-the-shelf games required harnesses to reduce perception and prompt brit-
tleness (Hu et al., 2025). COPER addresses this brittleness in text-based game settings directly: it
treats evaluation as agentic context construction, stabilizing rankings under prompt variation while
improving adherence to game capabilities underexplored by fixed-prompt protocols.

6.3 SELF-PLAY AND EVOLUTIONARY LLM

Classical self-play (AlphaGo/AlphaZero) established competitive self-improvement through re-
peated matches and selection (Silver et al., 2017b; 2016). LLM variants close the loop without
large curated corpora: Absolute Zero leverages data-free RLVR to attain strong math/coding
results (Zhao et al., 2025); SPIRAL frames multi-turn reasoning as zero-sum self-play (Liu et al.,
2025); and language self-play improves instruction following via self-generated interactions (Kuba
et al., 2025). Evolutionary approaches perform reflective prompt/program search (e.g., GEPA out-
performing RL baselines; evolutionary coding agents) (Agrawal et al., 2025; Novikov et al., 2025).
COPER combines these ideas in a tuning-free way: it performs evolutionary context search guided
by a reliability-aware objective (TrueSkill LCB), augments it with persistent experience to supply
game-specific priors, and uses prioritized replay to revisit rare informative states, yielding stronger
and more reliable in-game performance without parameter updates.

7 LIMITATION AND FUTURE WORK

While COPER shows strong gains and stable outcomes via prompts, experience, and replay, the spe-
cific contributions of weighted tuning versus experience-centric context optimization remain under-
characterized. Our comparisons emphasize parameter-efficient RL baselines—REINFORCE (Sut-
ton et al., 1999) with LoRA adapters (Hu et al., 2022)—to control compute, and we have only
partial comparisons to SPIRAL; thus the strength of full-parameter policy-gradient baselines (e.g.,
PPO (Schulman et al., 2017)) may be understated. A fairer assessment would include full-parameter
optimizers under larger training budgets. Finally, our benchmark currently spans five games and
relatively lightweight base models due to budget limits, leaving broader task and model coverage
for future work.

COPER currently targets game environments, the pipeline is readily applicable to genuinely multi-
step settings. For example, instruction following in ALFWorld and realistic browser-based tasks in
WebArena (Shridhar et al., 2020; Zhou et al., 2023). A complementary direction is to convert short-
lived episodic gains into durable, parametric capabilities by consolidating context memory into
model weights via targeted knowledge editing and adapter-to-base consolidation/mixture schemes,
aiming for the persistence of full fine-tuning while preserving experience-based sample efficiency.

8 CONCLUSION

We identified a critical challenge in agent systems: amplified context sensitivity in multi-turn
multi-agent interactions, particularly in game-based benchmarks. To address this, we introduced
COPER, a training-free, backbone-agnostic framework with three synergistic components: evolu-
tionary prompt optimization, persistent experience bank, and prioritized replay mechanism. COPER
achieves significant improvements across multiple games while maintaining computational effi-
ciency. The learned contextual knowledge generalizes to different models and unseen games. Abla-
tion studies confirm each component’s essential contribution. This work highlights amplified context
sensitivity in multi-agent scenarios and opens new directions for developing robust agent systems
for complex interactive environments.
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REPRODUCIBILITY STATEMENT

We will release the full source code, configuration files, and instructions for COPER, covering all
algorithms and settings. Every effort has been made to ensure that the results presented in this paper
are reproducible. Our implementation has been validated through multiple independent runs and
diverse evaluation settings to confirm robustness and reproducibility.

ETHICS STATEMENT

Evaluating LLMs in multi-agent games advances reasoning, negotiation, and strategy, with potential
benefits for education and decision support. At the same time, such environments may incentivize
deceptive or manipulative behavior, especially in negotiation tasks. Our study is limited to controlled
settings without human data, but future applications in high-stakes domains require safeguards, over-
sight, and alignment research. While we did not study fairness or bias directly, we see multi-agent
games as a useful testbed for identifying such issues early.
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A LLM USAGE

Large language models were used to assist in the writing and polishing of this manuscript. Specifi-
cally, we employed LLMs to refine language, improve readability, ensure clarity in certain sections,
check grammar, rephrase sentences, and enhance overall presentation. Importantly, the LLMs were
not involved in research modeling or experimental design; all research ideas, analyses, and conclu-
sions were developed and validated by the authors.

B ALGORITHM EXPLANATION

Algorithm 1 COPER: Context Optimization with Reflection
Require: Base context cbase, analyzer LLM A, environment G, evaluated model familyF , population size

N , generation count T , operator ratios (rrand, rcross, rexp) with rrand+rcross+rexp = 1, experience
fraction π, reflection budgets (ρ, L), scoring S(c) = µc − κσc (default κ=1)

1: CP0 ← {cbase} ∪ {STYLEMIX(A, cbase, i)}N−1
i=1 ▷ Initialize candidate pool (random proposals)

2: C0 ← SELECTTOPN(CP0, N ;S) ▷ Initialize population
3: Initialize experience bankM← ∅
4: for g = 0 to T−1 do
5: Pop← INSTANTIATEAGENTS(Cg,F , π,M) ▷ π fraction receive subsample ofM
6: Rg ← TOURNAMENT(Pop, G) ▷ Self-play trajectories
7: (µ, σ)← UPDATETRUESKILL(Cg,Rg); S(c)← µc − κσc

8: W(g) ← REFLECT(A,Rg; ρ, L) ▷ Typed insights per trajectory
9: M← CRUD_UPDATE(M,W(g)) ▷ Create/Update/Delete

10: nrand ← ⌊Nrrand⌋; ncross ← ⌊Nrcross⌋; nexp ← N − nrand − ncross

11: Urand ← RANDOMPROPOSALS(A, CPg, nrand) ▷ Style-guided edits
12: Uexp ← EXPERIENCEGUIDED(A, CPg,M, nexp) ▷ Edits informed byM
13: P ← SAMPLEPARENTS(CPg, ncross) ▷ Inverse-rank sampling within elite set
14: Ucross ← CROSSOVER(A,P) ▷ Section-/sentence-level recombination
15: B ← CPg ∪ Urand ∪ Uexp ∪ Ucross
16: Cg+1 ← SELECTTOPN(B, N ;S); CPg+1 ← RETAINTOP(B;S)
17: end for
18: return c⋆ = argmaxc∈CPT S(c)

Algorithm 2 Replay-Augmented Tournament Step (extension of Alg. 1)
Require: Replay buffer B, priority exponent α, replay gate β
1: for each scheduled tournament game in Alg. 1 do
2: u← U(0, 1)
3: if u < β and |B| > 0 then

4: τ ← SAMPLEREPLAY(B, α) ▷ Prioritized sampling: pi =

(
priority(τi)

)α∑
j

(
priority(τj)

)α
5: Initialize game with τ ’s stored trajectory prefix ▷ Replay episodes excluded from TrueSkill

updates
6: else
7: Play a fresh game as in Alg. 1
8: Update TrueSkill scores with the resulting match outcome
9: end if

10: B ← INSERT(B, τ) ▷ Push trajectory with updated inverse-frequency priority
11: end for

Figure 3: (Top) Self-play loop integrating candidate and population pools, trajectory reflection, and
experience-guided prompt evolution. (Bottom) Replay buffer sampling procedure for prioritizing
high-interest states.
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C PROMPT OPTIMIZATION OPERATORS

We instantiate two lightweight proposal operators that generate candidates for the next population.
Defaults are fixed to concrete values for reproducibility.

C.1 RANDOM PROPOSALS (STYLE-GUIDED AUGMENTATION)

Objective. Inject controlled diversity by editing a base context c to reflect a sampled playstyle while
preserving legality and interface constraints.

Style catalog. A fixed library S spanning core play patterns (aggressive, defensive, analytical,
creative, strategic, adaptive, balanced), tactical approaches (opportunistic, conservative, risk-taking,
methodical, intuitive, predictive, reactive, proactive, experimental, systematic), game-specific strate-
gies (positional, territorial, sacrificial, blocking-focused, center-control, edge-control, fork-creating,
trap-setting, opening-focused, endgame-focused), cognitive styles (minimax-oriented, probabilis-
tic, rule-based, principle-driven, context-aware, meta-gaming, exploitative, counter-play), and be-
havioral patterns (deceptive, transparent, unpredictable, consistent, alternating, escalating, de-
escalating, mirroring, contrarian, harmonizing).

Procedure. Sample s ∼ Unif(S) and ask the base model to produce c′ by (i) inserting a brief
style preface and (ii) making length-bounded edits to directives to embody s. Allowed edits: to-
ken substitution, clause insertion/deletion, and reordering; tool descriptions, legality reminders, and
input/output schema must remain intact.

C.2 CROSSOVER (TEMPLATE RECOMBINATION)

Objective. Recombine high-value elements from two parents to propagate useful structure while
maintaining a coherent, compact context.

Parent selection. From the candidate pool CP , sample two parents (c(1), c(2)) using inverse-
rank sampling with power parameter r = 1.5: if rankS(c) ∈ {1, 2, . . .} (1 is best), then
P (c) ∝ rankS(c)

−r. Restrict to the elite set comprising the top q = 0.25 fraction by S(·); break
ties by maximizing Hamming distance between section signatures to encourage diversity.

Granularity. Always perform sentence-level crossover on individual directives.

Merge procedure. (i) Extract candidate fragments from c(1) and c(2), prioritizing the higher-S
parent; (ii) prompt the base model to synthesize a single coherent template from these fragments;
(iii) enforce maximum sentence length and overall token budget. The resulting child is c′.

D BASE PROMPT EXAMPLES

D.1 BASE SYSTEM PROMPT

You are a competitive game player. Make sure you read the game instructions carefully, and
always follow the required format.
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D.2 NEGOTIATION GAMES

SimpleNegotiation Game Starting Prompt
You are Player 0 in the Negotiation Game.
You have some resources, and your task is to trade such that the total value of your resources
increases.
The resources and associated values you currently have are:

+ [Wheat] Qty: 14 Value: 6
+ [Wood] Qty: 15 Value: 11
+ [Sheep] Qty: 18 Value: 18
+ [Brick] Qty: 12 Value: 27
+ [Ore] Qty: 22 Value: 38

At each turn, you can talk to your opponent and make a trade offer.
Use the following special tokens for actions:

- ’[Offer: 3 Sheep, 2 Ore -> 5 Brick, 2 Sheep]’: [Offer: Offered Resources -> Requested
Resources]

- ’[Accept]’: To accept an incoming offer.
- ’[Deny]’: To deny an incoming offer (default).

The game lasts for 10 turns in total.

Figure 4: SimpleNegotiation Game Starting Prompt

TwoDollar Game Starting Prompt

[GAME] TWO DOLLAR NEGOTIATION GAME
You are Player 0 negotiating with another player over how to split $2.00 total. There are 20
maximum rounds.
GAME RULES:
- You must reach an agreement on how to split the $2.00
- If no agreement is reached, both players get $0.00
- You have secret instructions that only you can see (below)
REQUIRED ACTION FORMAT:
Always provide your reasoning/persuasion BEFORE the bracketed action.
Any text after the bracketed action will be ignored.
Available actions:
- Make a proposal: "I think this is fair because... [Propose] $X.XX"
- Accept current proposal: "This works for me because... [Accept]"
- Reject current proposal: "I can’t accept this because... [Reject]"
=== YOUR SECRET INSTRUCTIONS ===
This person you are dealing with probably will not want to tell you about it but he or she has had
a terribly hard month. This past month was full of disaster: money troubles, family difficulties,
and none of it your colleague’s fault. Through it all, your colleague has been bearing up.
Nevertheless, this is zero-sum bargaining, so get all you can. Make up whatever story you wish,
and get as much of the $2.00 as possible. (Just remember that your colleague has been having a
very hard time.)
VICTORY CONDITION: Reach any deal while being appropriately sympathetic
FAILURE CONDITION: No deal reached OR be too harsh given their difficulties
[GAME] === ROUND 1 of 20 ===

Figure 5: TwoDollar Game Starting Prompt
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D.3 IMPERFECT INFORMATION GAMES

KuhnPoker Game Starting Prompt
You are Player 0 in a 3 round game of Kuhn Poker.
Game Rules:
- Kuhn Poker uses a 3-card deck with J, Q, K (J lowest, K highest)
- Each player antes 1 chip and receives 1 card each round (note that the cards are dealt without
replacement, so you cannot have the same card as your opponent).
- Game continues for 3 rounds
- The player with the most chips after all rounds wins
Action Rules:
- ’[check]’: Pass without betting (only if no bet is on the table)
- ’[bet]’: Add 1 chip to the pot (only if no bet is on the table)
- ’[call]’: Match an opponent’s bet by adding 1 chip to the pot
- ’[fold]’: Surrender your hand and let your opponent win the pot
### Starting round 1 out of 3 rounds. Your card is: ’Q’
Player 1, submitted move: ’[bet]’.
Your available actions are: ’[fold]’, ’[call]’

Figure 6: KuhnPoker Game Starting Prompt

Briscola Game Starting Prompt

You are playing Briscola - Player 0.
Goal: Win tricks and collect the most points (120 total points in the deck).
Card Points: A=11, 3=10, K=4, Q=3, J=2, others=0
Card Power: A > 3 > K > Q > J > 7 > 6 > 5 > 4 > 2
Trump cards beat non-trump cards regardless of power.

Action: ’[play X]’ where X is the position (1-3) of the card in your hand

Briscola game started! Trump suit: ♣ (Trump card: Q♣)
Your hand:

1. J♠ [2 pts]
2. K♣ [4 pts] (TRUMP)
3. A♦ [11 pts]

No cards played yet this trick.

Scores: Player 0: 0 pts | Player 1: 0 pts
Trump suit: ♣ | Cards left in deck: 34

Play a card using [play X]

Figure 7: Briscola Game Starting Prompt
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D.4 PERFECT INFORMATION GAMES

SimpleTak Game Starting Prompt
You are Player 0 in SimpleTak.
On the board, your stones appear as ’O’ and your opponent’s stones appear as ’X’.

On your turn, choose one empty cell (by its numbered index) and place your stone there. For
example, ’[12]’ places your stone in cell 12.

Your objective is to form a continuous path of your stones that connects two opposite edges of
the board (top-to-bottom or left-to-right).

Current Board:

+----+----+----+----+
| 0 | 1 | 2 | 3 |
+----+----+----+----+
| 4 | 5 | 6 | 7 |
+----+----+----+----+
| 8 | 9 | 10 | 11 |
+----+----+----+----+
| 12 | 13 | 14 | 15 |
+----+----+----+----+

Available Moves: [0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]

Figure 8: SimpleTak Game Starting Prompt

E EXPERIMENTAL SETUP AND BASELINE DETAILS

We incorporate three prompt optimization methods to refine prompts using tournament trajectories.
Specifically, we leverage offline trajectories collected during the tournament’s self-play process to
improve the agents’ prompts. The experimental settings are as follows: the number of generations is
set to 5, the population size to 8, the number of self-play rounds to 25, and the number of evaluation
rounds to 25. We discuss Textgrad in detail in Section E.1, describe our implementation of
MIPRO in Section E.2, and provide a comprehensive overview of GEPA in Section E.3. Training
details for UnstableBaseline are presented in Section E.4.

E.1 TEXTGRAD

Textgrad (Yuksekgonul et al., 2024) is a framework that performs “text differentials” to optimize
prompts. Within this framework, a text-based loss function analyzes errors, which are then back-
propagated to the original prompt through the Textgrad engine. In our case, the goal is to optimize
the system prompt of the agent using the trajectories generated under the current system prompt. We
design a text-based loss that highlights deficiencies in the generated trajectories. The Textgrad
backpropagation engine then propagates gradients back to the system prompt, updating it accord-
ingly. The loss template we adopt is shown in Figure 9.

For each optimization step, we concatenate multiple trajectories, embed them into the template,
and use the completed template as the loss input. To ensure balanced feedback, we select an equal
number of win, loss, and draw trajectories. This design allows the Textgrad engine to develop a
more comprehensive understanding of the current system prompt’s overall game-play patterns.

Table 6: Performance of the Textgrad method across three independent trials using GPT-4o-mini
and Qwen2.5-7B-Instruct. Results are reported as mean win rates with standard deviations.
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Textgrad Negotiation Imperfect Info Perfect Info

SimpleNegotiation TwoDollar KuhnPoker Briscola Simpletak

GPT-4o-mini

Trial 1 41.3% 48.3% 58.7% 1.3% 25.3%
Trial 2 44.7% 41.3% 56.0% 2.0% 23.3%
Trial 3 40.0% 44.0% 52.0% 18.0% 22.0%

Avg. 42.0% 44.6% 55.6% 7.1% 23.6%
Std. 2.4 3.5 3.4% 9.4% 1.7%

Qwen2.5-7B-Instruct

Trial 1 40.0% 38.0% 51.3% 3.3% 18.0%
Trial 2 34.0% 34.0% 54.7% 16.7% 22.7%
Trial 3 37.3% 16.0% 52.7% 1.3% 26.7%

Avg. 37.1% 29.3% 52.8% 7.1% 22.4%
Std. 3.0 11.7% 1.7% 8.3% 4.3%

Text-based loss template for Textgrad

You are an objective evaluator for a two-player zero-sum game agent’s SYSTEM PROMPT.

Goal of the SYSTEM PROMPT (what it MUST enforce):
- Maximize the agent’s win rate.
- Minimize the opponent’s win rate.
- Have strategies that lead to victory.
- Ensure all moves strictly follow game rules and formats.

Here are some game trajectories using the current SYSTEM PROMPT:
{{trajectory examples}}

Identify specific weaknesses or flaws in the SYSTEM PROMPT that may have led to losses or
suboptimal plays.
Do NOT suggest improvements or rewrites, only identify weaknesses.
Be very concise and specific.

Figure 9: Text-based loss template for Textgrad

E.2 MIPRO

MIPRO (Opsahl-Ong et al., 2024) optimizes prompts based on downstream task performance. In
our work, we adopt the MIPROv2 implementation provided by the Dspy library (Khattab et al.,
2023). The optimization procedure consists of three main steps: (1) Sampling examples: For each
candidate prompt, MIPRO samples a set of examples. (2) Proposing prompts: New system prompts
are proposed by a propose model based on the current system prompt, along with additional game-
related information such as the program description, data description, random sampling tips, and
few-shot examples. (3) Evaluation through trials: Several trials are conducted to evaluate which
combination of proposed prompts and few-shot examples yields the best performance. A Bayesian
search strategy is then applied to guide the selection of the next candidate combination, improving
efficiency and reducing computational cost.

In our experiments, we only have access to offline game data. Therefore, we treat each step in a
trajectory as an individual data point. For each step, we record the outcome (win, loss, or draw) of the
trajectory it belongs to. MIPRO’s evaluation metric is defined based on the model’s re-inference of
these steps: (1) If the model outputs an invalid action (i.e., one that does not conform to the required
format), the score is 0. (2) For steps from winning trajectories, if the model predicts the same action
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as the original step, the score is 1; otherwise, it is 0. (3) For steps from losing trajectories, if the
model predicts the same action, the score is 0 (to discourage repeating losing moves); otherwise, it
is 1. (4) For steps from draw trajectories, if the model predicts the same action, the score is 0.2;
otherwise, it is 0.5, encouraging exploration beyond draw-inducing moves.

This scoring scheme encourages the model to replicate winning strategies, avoid losing ones, and
explore alternatives to drawn outcomes. The overall MIPRO scoring standard is shown in Figure 10.
In practice, we set the number of proposed prompts to 6, the number of few-shot examples to 3,
and the number of trials to 10. If the optimal configuration includes few-shot examples, these are
appended to the final proposed system prompt to form the new system prompt.

Table 7: Performance of the MIPRO method across three independent trials using GPT-4o-mini
and Qwen2.5-7B-Instruct. Results are reported as mean win rates with corresponding standard
deviations.

MIPRO Negotiation Imperfect Info Perfect Info

SimpleNegotiation TwoDollar KuhnPoker Briscola Simpletak

GPT-4o-mini

Trial 1 38.7% 53.3% 50.7% 23.3% 16.0%
Trial 2 38.0% 52.7% 60.0% 32.7% 20.0%
Trial 3 38.7% 46.7% 54.7% 3.33% 21.3%

Avg. 38.4% 50.9% 55.1% 19.7% 19.1%
Std. 0.38 3.67 4.68 14.99 2.78

Qwen2.5-7B-Instruct

Trial 1 43.3% 40.7% 54.0% 2.0% 18.7%
Trial 2 37.3% 52.0% 50.0% 2.0% 19.3%
Trial 3 46.7% 50.0% 57.3% 2.7% 24.7%

Avg. 42.4% 47.5% 53.8% 2.2% 20.9%
Std. 4.73 6.05 3.67 0.38 3.29

MIPRO scoring standard

Invalid Action: score = 0.0

Win Trajectory: Action match: score = 1.0 / Action mismatch: score = 0.0

Lose Trajectory: Action match: score = 0.0 / Action mismatch: score = 1.0

Draw Trajectory: Action match: score = 0.2 / Action mismatch: score = 0.5

Figure 10: MIPRO scoring standard

E.3 GEPA

GEPA (Agrawal et al., 2025) builds upon the high-level idea of MIPRO, but extends it by incor-
porating both evaluation scores and explicit feedback from the evaluation metric to guide prompt
optimization. The process can be summarized as follows: (1) Initial evaluation: Run a set of ex-
amples through the evaluation metric to obtain an initial score and feedback. (2) Prompt proposal:
Generate a new prompt based on the current prompt and the feedback collected. (3) Testing and
retention: Evaluate the new prompt on a mini-batch. If its score surpasses the initial score, retain it
in the candidate pool. (4) Candidate selection: In the next round, apply a Pareto-based filtering strat-
egy to identify the set of candidate prompts that dominate on the validation set. Select one of these
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Pareto-optimal prompts for further iteration. (5) Stopping condition: The optimization continues
until the maximum number of evaluation metric calls reaches a predefined limit.

In our experiments, we set the maximum number of evaluation metric calls to 100 for each prompt
optimization in GEPA. For win and lose trajectories, we adopt the same evaluation metric as MIPRO.
For draw trajectories, we assign a score of 0 when the predicted action matches the trajectory action,
and a score of 1 otherwise. In addition, we incorporate feedback signals in GEPA evaluation metric.
The structured feedback template shown in Figure 11 is used during GEPA evaluation.

Table 8: Performance of the GEPA method across three independent trials using GPT-4o-mini and
Qwen2.5-7B-Instruct. Results are reported as mean win rates with corresponding standard devia-
tions.

GEPA Negotiation Imperfect Info Perfect Info

SimpleNegotiation TwoDollar KuhnPoker Briscola Simpletak

GPT-4o-mini

Trial 1 34.7% 32.7% 54.7% 1.3% 23.3%
Trial 2 38.0% 43.3% 50.7% 3.3% 29.3%
Trial 3 38.0% 45.3% 51.3% 5.3% 28.0%

Avg. 36.8% 40.4% 52.2% 3.3% 26.9%
Std. 1.92 6.81 2.14 2.00 3.15

Qwen2.5-7B-Instruct

Trial 1 29.3% 22.7% 56.0% 4.0% 20.0%
Trial 2 38.7% 30.0% 54.0% 2.0% 12.0%
Trial 3 35.3% 42.7% 57.3% 2.0% 26.0%

Avg. 34.4% 31.7% 55.8% 3.3% 19.3%
Std. 4.73 10.12 1.68 1.55 7.02

E.4 UNSTABLEBASELINE

Table 9: Performance of the UnstableBaseline method across three independent trials using
Qwen2.5-7B-Instruct. Results are reported as mean win rates with corresponding standard devia-
tions, where each mean win rate was from the average of 3 rounds of 50 matches with each opponent,
with alternating starting positions.

UnstableBaseline Negotiation Imperfect Info Perfect Info
SimpleNegotiation TwoDollar KuhnPoker Briscola Simpletak

Qwen2.5-7B-Instruct
Gemini-2.5-Flash-Lite 54.7% 43.3% 60.0% 88.6% 90.0%
Grok-4-Fast-Non-Reasoning 44.7% 22.0% 58.6% 33.3% 20.0%
Qwen3-235B-A22B-Instruct-2507 24.0% 26.0% 56.7% 38.0% 32.0%

Avg. 41.1% 30.4% 58.4% 53.3% 47.3%
Std. 15.6 11.3 1.67 30.7 37.4

UnstableBaseline (Guertler et al., 2025b) is an asynchronous online multi-agent reinforcement
learning library that uses Low-Rank Adapters (LoRA) for model training. Unlike its peers such
as Verifiers (William Brown, 2025) and SPIRAL (Liu et al., 2025), UnstableBaseline is
designed to be lightweight and closely integrated with the TextArena (Guertler et al., 2025a) en-
vironment, in the same spirit that the baseline (Dhariwal et al., 2017) library complements OpenAI
Gym (Brockman et al., 2016).

For our experiments, we trained Qwen2.5-7B-Instruct with LoRA adapters applied to the attention
and feedforward projections. We used a rank of r = 16 and α = 32 and dropout = 0.0. Using
the REINFORCE algorithm (Williams, 1992), we found that the best-performing checkpoints were
obtained between 100 and 150 steps, where each step consisted of 384 game trajectories.
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GEPA scoring standard

# invalid action
score = 0.0
feedback = “Your predicted action is invalid. Please ensure that your action is a valid move in
the game. Here is the reasoning process {{model_raw_output}}. Think about how you could
have reasoned to choose a valid action that leads to a WIN."

# Win Trajectory
# Action match
score = 1.0
feedback = “You correctly predicted the action {{pred_action}} that led to a WIN. This action
was indeed the one taken in the winning trajectory. Great job!"

# Action mismatch
score = 0.0
feedback = “You predicted the action {{pred_action}}, but the action taken in the winning
trajectory was {{traj_action}}. This mismatch means you did not predict the winning action
correctly. Here is the reasoning process {{pred_raw_action}}. Think about how you could have
reasoned to get the correct action."

# Lose Trajectory
# Action match
score = 0.0
feedback = “You correctly predicted the action {{pred_action}} that led to a LOSE. However,
this action was part of a losing trajectory. While your prediction matches the trajectory, it did
not lead to a win. Here is the reasoning process {{pred_raw_action}}. Think about how you
could have reasoned to choose an action that leads to a WIN."

# Action mismatch
score = 1.0
feedback = “You predicted the action {{pred_action}}, but the action taken in the losing
trajectory was {{traj_action}}. This mismatch means you did not predict the losing action
correctly. Here is the reasoning process {{pred_raw_action}}. Think about how you could have
reasoned to choose an action that leads to a WIN."

# Draw Trajectory
# Action match
score = 0.0
feedback = “You predicted the action {{pred_action}}, which matches the action taken in the
TIE trajectory. However, since the trajectory resulted in a TIE, this does not help in achieving
a WIN. Here is the reasoning process {{pred_raw_action}}. Think about how you could have
reasoned to choose an action that leads to a WIN."

# Action mismatch
score = 1.0
feedback = “You predicted the action {{pred_action}}, but the action taken in the TIE trajectory
was {{traj_action}}. This mismatch means you did not predict the TIE action correctly. Here
is the reasoning process {{pred_raw_action}}. Think about how you could have reasoned to
choose an action that leads to a WIN."

Figure 11: GEPA scoring standard

From the best performing checkpoints, we held 3 rounds of 50 games against each of our evaluation
models that is similarly used in our training settings for the other prompt evolution experiments.
Their results can be found in table 9.
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E.5 SPIRAL

Liu et al. (2025) is a framework that enables language models to autonomously develop reason-
ing capabilities through self-play in multi-turn, zero-sum games. For our experiments, we train
Qwen2.5-7B-Instruct using Dr. GRPO, following the default rollout size in the provided exam-
ple—each rollout comprising 128 games over 400 total steps. We then select the best-performing
checkpoint and evaluate it over three rounds of 50 games each.

F COMPARISON WITH EXISTING PROMPT OPTIMIZATION METHODS

In Section E, we introduced three baseline prompt optimization methods. Here, we further highlight
how our approach differs from these methods.

As shown in Figure 2, our method evolves a population of prompts using elitism, local edits/expan-
sions, random exploration, and crossover. Random exploration enables broader search over prompt
variants, while crossover leverages strategies from high-performing prompts to refine new prompt
candidates.

Versus Textgrad. Textgrad relies on hand-crafted text losses and gradient-style backpropagation
over natural language. In contrast, our method is entirely gradient-free: it requires no differen-
tiable loss functions or template engineering. This avoids sensitivity to wording in loss templates
and reduces dependence on diagnostic outputs, where weak language models often fail to generate
meaningful diagnostic responses.

Versus MIPRO. MIPRO frames optimization as Bayesian search over (prompt, few-shot) pairs,
requiring many trials and frequent evaluation metric calls. Its effectiveness hinges on having a
well-defined evaluation metric, which is difficult to obtain in text-based games where no concise
supervision signal exists. As a result, MIPRO consumes many tokens without achieving strong
performance. Our method, by contrast, does not rely on explicit evaluation metrics. It can leverage
diverse signals from self-play trajectories, achieving better performance with fewer model calls and
without heavy trial scheduling.

Versus GEPA. GEPA extends MIPRO’s evaluation process by augmenting it with verbose textual
feedback and repeatedly querying an evaluation oracle until its call budget is exhausted, making
it heavily dependent on the quality of the evaluation metric. Its key mechanism is a Pareto-based
selection strategy, which identifies promising prompts from the candidate pool based on the Pareto
frontier. However, the construction of this frontier relies strongly on the evaluation scores, and
when the metric is not well-defined, the selected prompts may not be optimal. In contrast, our
method replaces such reliance on external feedback with experience-guided edits distilled directly
from self-play outcomes, while maintaining diversity through crossover and randomization. This
design reduces token usage, improves robustness under noisy feedback, and removes dependence
on external evaluation metrics.

G FULL RESULTS

Table 10: Performance of the COPER method across three independent trials using GPT-4o-mini
and Qwen2.5-7B-Instruct. Results are reported as mean win rates with corresponding standard
deviations.
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COPER Negotiation Imperfect Info Perfect Info

SimpleNegotiation TwoDollar KuhnPoker Briscola Simpletak

GPT-4o-mini

Trial 1 57.3% 46.0% 54.0% 54.0% 45.3%
Trial 2 55.3% 62.7% 57.3% 38.0% 40.7%
Trial 3 52.0% 48.7% 55.3% 36.0% 39.3%

Avg. 54.9% 52.4% 55.6% 42.7% 41.8%
Std. 2.69 8.95 1.68 9.87 3.15

Qwen2.5-7B-Instruct

Trial 1 48.0% 53.3% 60.7% 39.3% 37.3%
Trial 2 47.3% 54.0% 59.3% 26.7% 32.0%
Trial 3 48.7% 38.0% 60.0% 27.3% 32.7%

Avg. 48.0% 48.4% 60.0% 31.1% 34.0%
Std. 0.67 9.05 0.67 7.13 2.90

H GAME ENVIRONMENTS

These are the more detailed descriptions of the games we selected the following set of text-based
games from TextArena (Guertler et al., 2025a) and SPIN-Bench (Yao et al., 2025).

Simple Negotiation (Nash, 1950) requires players to reason about trade-offs through the exchange
of resources such as wood, wheat, sheep, brick, and ore. Each player aims to maximize the value
of their inventory by making offers and counteroffers with their opponent. Success depends on the
each player’s ability to infer the opponent’s valuation of resources and strategically increase their
own portfolio without making disadvantageous trades.

Two Dollar Game (Rowe, 2001) is a classroom negotiation game where two players have to agree
on how to divide a fixed sum of $2.00. Typically, players each receive private role instructions
that impose certain constraints or encourage specific negotiation styles. This asymmetric informa-
tion requires players to balance their objectives with compromises while inferring the opponent’s
position.

Kuhn Poker (Kuhn, 1951) is a simplified form of poker played with three cards (Jack, Queen, and
King). Two players each receive one card, while the third remains unseen. A single round of betting
follows, where players can check, bet, call, or fold. If neither folds, the winner is determined by the
higher card.

Briscola (McLeod, 2023) is a traditional Italian trick-taking card game played with a 40-card deck.
At the start, a single card is revealed to determine the trump suit, and each player is dealt a hand of
cards. Players take turns playing one card per trick, with the highest card of the leading suit or the
highest trump winning the round. The objective is to accumulate points by capturing valuable cards,
requiring players to balance tactical play with long-term strategy and inference of the opponent’s
hand.

Simple Tak (Rothfuss, 2011) is a two-player connection game inspired by the traditional game Tak.
Players place tiles on a square grid with the objective of forming a continuous path that connects
opposite sides of the board. Unlike full Tak, stacking pieces is not allowed, though players may
block their opponent’s path by occupying critical spaces. The game emphasizes spatial reasoning,
foresight, and the balance between advancing one’s own path and disrupting the opponent’s progress.
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