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Abstract
In the emerging field of large language models
(LLMs), a significant challenge arises when or-
ganizations with vast datasets lack the computa-
tional resources to independently train and fine-
tune models. This issue stems from privacy, com-
pliance, and resource constraints: organizations
cannot share their sensitive data but still need ex-
ternal computational assistance for model training.
In this paper, we implement, enhance, and empir-
ically compare several methods, including Split
Learning (SL) and select Federated Learning (FL)
methods, which enable data-rich yet compute-
poor clients to offload LLM training without shar-
ing raw data. Our study evaluates these methods
across multiple dimensions, including model qual-
ity and training time.

1. Introduction
Large Language Models (LLMs) are increasingly gaining
traction, finding applications in myriad of domains, includ-
ing programming (Chen et al., 2021), biomedicine (Gu et al.,
2021), and question answering (Yang et al., 2022). With
model sizes often surpassing several billion parameters, suc-
cessful LLMs are typically trained in data centers equipped
with specialized hardware, entailing significant investments
in terms of finances, energy consumption, and time (Luc-
cioni et al., 2023). Considering their size, these models
require a large corpus of data for training; so, most LLMs
leverage swaths of publicly available data collected from
heterogeneous data sources, such as web-scraped content,
which also makes the so-obtained models versatile problem
solvers across several tasks.

Tailoring an LLM with the help of domain-specific private
data – the focus of our work – promises to improve the
model’s performance in particular use cases. Many compa-
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nies, for instance, rely on models trained on their customer
data as a cornerstone of their business, necessitating a model
specifically designed and trained on their proprietary data.
In many cases, training such models on in-house infrastruc-
ture is infeasible due to very high computational costs. To
cope, it is indeed common to start from publicly available
pre-trained LLMs and fine-tune all model parameters on the
downstream task.1 However, very large models render this
strategy impractical for small organizations due to high hard-
ware requirements. While parameter-efficient fine-tuning
lowers the hardware requirements (Houlsby et al., 2019; Hu
et al., 2022; He et al., 2022), we consider it an undesirable
approach towards our goal of tailoring LLM on private data,
beyond the specific reach of fine-tuning on a specialized
dataset or downstream task (Wang et al., 2024).

Thus, organizations face a dilemma. They can upload their
private data to the cloud and centrally2 train the model
employing the cloud’s vast computational resources. How-
ever, data sharing with cloud platforms may present chal-
lenges regarding data privacy, sovereignty and legal com-
pliance (Truong et al., 2021). Alternatively, organizations
may upgrade their private infrastructure, but this option may
be cost-prohibitive. Under such circumstances, there is a
dire need for methods capable of harnessing the combined
computational capabilities of both the local infrastructure
and cloud providers without sharing raw data.

To meet data privacy requirements in other contexts, col-
laborative training paradigms such as Federated Learning
(FL) (Bonawitz et al., 2019; McMahan et al., 2017; Konečný
et al., 2016) and Split Learning (SL) (Poirot et al., 2019;
Vepakomma et al., 2018; Gupta & Raskar, 2018) have
emerged. In the former, a “federation” of clients collab-
orates to train a single model by sharing locally computed
model updates. In the latter case, SL partitions the model
horizontally into two or more segments which are trained in
an end-to-end fashion.

1We broadly refer to LLM training as the process of updating
model parameters using an organization’s private data, whether
this involves fine-tuning a pre-trained LLM or (pre-)training an
LLM from scratch.

2Standard (or centralized) training refers to the process of train-
ing a model on a cluster with sufficient computational resources,
where the cluster nodes have direct access to the raw training data.
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Existing FL methods are not directly applicable to the dis-
cussed one-client setup where a single client (i.e., an organi-
zation) is the data owner and wants to use a public cloud’s
computational capabilities to train an LLM. This means
model-sharing FL methods in (McMahan et al., 2017; Li
et al., 2020) are only designed to improve model conver-
gence in cases where multiple clients wish to collaborate.
Furthermore, in most FL methods, the high computational
capacity of the server remains untapped, as the server is
relegated to performing coordination tasks. Some FL meth-
ods such as FedGKT (He et al., 2020) and FSL (Han et al.,
2021) avoid this limitation by training smaller models on
the clients and a larger model on the server.

SL methods allow a single client to leverage the compu-
tational capabilities of the server to train a model, that is
larger than the one they could train on their own. While
SL does not alter the training procedures and thus ensures
the same model quality as standard training, this approach
incurs high network utilization and potentially low resource
utilization – we discuss these issues throughout the paper.

To the best of our knowledge, these methods have never
been applied to the one-client setup. Specifically, neither
FL methods nor SL have been explored for offloading the
training of LLMs. Given these considerations, our study
aims to explore the following key questions:

• Can FedGKT and FSL train a model that matches the
quality of a model trained centrally or using SL?

• Among these methods, what is the most time efficient
method for training LLMs in the one-client setup?

To address these questions, our main contributions are:

• We develop an extensible framework that enables prac-
titioners to experiment with and deploy all considered
methods in real-world settings.

• We discuss optimizations that enhance the efficiency of
the methods in the one-client scenario and generally.

• We evaluate FedGKT, FSL, and three SL variants, com-
paring their model quality and throughput.

2. Repurposing collaborative training
2.1. Background

We consider a setup in which there is a single client that has
a private dataset D = {(xj , yj)}|D|

j=1 where xj represents
the j-th input sample, yj the corresponding ground-truth
label, and |D| the cardinality of the private dataset. The final
goal is to obtain a model that minimizes the following objec-
tive: minw∈Rd

1
|D|

∑|D|
j=1 l(fs(ws, fc(wc, xj)), yj), where

fi(wi, x) with i either ‘c’ or ‘s’ for client and server, respec-
tively is the output of the model parametrized with weights
w = wc ∪ ws when presented input x and task-specific loss
l. The main assumption in this work is that the client cannot
train a large enough model w on its own, thus it needs to
offload a portion of the training workload to a server.

In all of the methods we discuss the client sends intermedi-
ate features fc(wc, xj) and the target label yj to the server,3

where wc is the client weights or a subset of such weights.
Moreover, in all of the methods there is a model split prob-
lem, where the user has to decide how many layers the client
model and how many layers the server model should have.

2.2. Applying existing methods

Split Learning. Similar to pipeline parallelism (Huang
et al., 2019), SL (Gupta & Raskar, 2018; Vepakomma et al.,
2018; Poirot et al., 2019) horizontally partitions a model
w = w1, . . . , wk into k subsequent components that are
executed sequentially. In other words, the model output is it-
eratively defined as ei = fi(wi; ei−1), with e0 representing
the input features. In the most basic scenario with k = 2,
the first L layers of the model are located on the client,
while the remaining layers are on the server. In such a setup
the server computes the loss, hence the client is required to
share the target labels.

In the U-shaped architecture (Vepakomma et al., 2018),
the model is partitioned into k = 3 segments, with the
client holding both w1 and w3. This arrangement shifts the
computation of the loss to the client. While eliminating the
need for the client to share target labels, this architectural
variation comes with additional communication overhead,
as for any gradient update, four passes over the network
are required – two during the forward and two during the
backward pass.

We only consider k = 2 (Plain SL) and k = 3 (U-shaped
SL) since even if the model were partitioned into multi-
ple segments on the server, these are perceived as a single
logical entity by the client.

We note that PETALS (Borzunov et al., 2023), a platform
for collaborative fine-tuning and inference for large mod-
els, during the fine-tuning use case, can be viewed as an
instance of U-shaped SL. A PETALS client maps input data
to intermediate features, which are sent to a chain of servers.
These servers process the features through a sequence of
layers and return the final intermediate features to the client,
which completes the model’s forward pass, computes the
loss and starts the backward pass. The model parameters at
the servers must remain frozen and only client-side parame-
ters are trainable. Instead, we allow for all parameters to be
updated.

3An exception is the U-shaped SL, which we discuss later.
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FedGKT. In FedGKT (He et al., 2020) a client model wc

and a server model ws are trained in parallel. The client
model is logically separated into an encoder wc,e and a
classification head wc,h. As for the server model, it has
many layers followed by a classification head. The server
model expects intermediate features ei = f(wc,e, xi) from
the client as an input. Also, the server receives the ground-
truth label yj and client’s logits f(wc,h, f(wc,e, xi)). Both
the client and the server update their models by locally
computing a loss that consists of the task-specific term, e.g.,
the cross-entropy loss, and a knowledge distillation term,
in which the logits of the other model serve as knowledge
teacher. Note that the client starts using the distillation term
from the second round onwards, as it does not have access
to the server logits in the first round. At inference time,
the client can use either its model wc or its encoder wc,e in
conjunction with the server model ws.

FSL. FSL (Han et al., 2021), like FedGKT, concurrently
trains both a client model and a server model, both equipped
with a classification head. However, unlike FedGKT, in
FSL, there is no knowledge distillation term in either the
client or the server loss. As a result, in FSL, the client model
is updated independently of the server model.

Application to LLM. In all the methods discussed, the
client retains control over the lower layers of the model
undergoing training. In the context of LLMs, these layers
include the embedding table and one or more transformer
blocks. In some algorithms (such as FedGKT and FSL),
the client also possesses an auxiliary classification head.
Conversely, the server model always consists of one or more
transformer blocks and, with the exception of the U-shaped
SL method, also a final output layer (classification head).

3. Optimizations
In this section, we discuss some implementation optimiza-
tions that can enhance the system efficiency without com-
promising the model’s final performance.

Compressing token embeddings. Network commu-
nication plays a crucial role in all of the above-discussed
methods. A straightforward implementation would necessi-
tate the client sending n · h floating-point values for each
training example to the server, where n is the sequence
length operated on by the LLM and h is the embedding
dimension. One potential strategy to reduce network traf-
fic when training LLMs is letting the client share only the
embeddings of non-padding tokens. Specifically, as LLMs
process fixed-length sequences, sequences shorter than the
target length are padded to match it. Since padded tokens
are not attended to during the forward computation, clients
can avoid transmitting them and the server can set such em-
beddings to 0⃗. A similar optimization can be applied when

sending gradients from the server to the client. We explore
the benefits of this lossless compression in Section 4.3.

Overlapping computation. In SL, the client and server
training loops are tightly coupled. That is, after sending data
to the server, the client waits for the server’s response, and
vice versa. Similarly, in FedGKT, both nodes experience
long idle times due to round-based communication, where
the client and server alternately train.

FSL avoids this limitation because the client trains its model
solely on the local data. This property is desirable because
the client does not need to wait for the server to do the
training. Therefore, in FSL the client communicates the
intermediate features immediately after the forward pass,
before the backward pass. Thus, an overlap between the
client and server computations is achieved.

We observe that FedGKT can be adapted to obtain the same
property as FSL. We modify the client logic to send fea-
tures, logits, and target labels to the server as soon as they
are computed. This modification allows the server to start
training without waiting for the client to finish its training.

In SL, overlapping computation between the client and
server is feasible when all client parameters are frozen –
this is sometimes desirable when fine-tuning a pre-trained
model. In such a case, as the client does not require gradient
data from the server, it can continue training without wait-
ing for the server’s response. We term this SL variant with
overlapping computation as “StreamSL.”

4. Evaluation
We evaluate various methods for training a model in the
one-client setup. Given the client’s constrained resources,
the goal is for these methods to attain a model quality com-
parable to standard training within an efficient training time.
Since the client may rent cloud resources for the method’s
execution, training time directly affects the overall cost.
To this end, we conduct various experiments to assess the
model quality (accuracy) and evaluate system performance
(training throughput and communication volume).

We find that to date, there exists no framework that facili-
tates implementing and deploying the considered algorithms.
Therefore, to make a fair assessment of system performance,
we develop a flexible extension to Flower (Beutel et al.,
2022), one of the most popular and widely used FL frame-
works. The need for our extension arises because in Flower,
clients cannot invoke server functions. Furthermore, Flower,
being designed for FL settings, does not include the concept
of a server-side model. The extension allows users to effort-
lessly implement and deploy all the methods described in
Section 2.2. We hence utilize this extension throughout Sec-
tion 4. We provide a detailed discussion of the extension’s
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Figure 1. Test accuracy comparison between FedGKT and FSL relative to “Standard training X”, where X is the number of layers in the
model. “Node X” denotes the X-layer model trained on the respective node, e.g., Server 23 refers to the server model with 23 layers.

architecture and usage examples in Appendix A.

4.1. Model quality

To assess whether FedGKT and FSL can achieve compa-
rable or superior model quality compared to standard
training, we conduct a comprehensive comparison of the
accuracies achieved by all of these methods.4 We use the
BERT model architecture for all of our experiments (Devlin
et al., 2019). Specifically, we assume the client can locally
train a small model with either 1 or 3 layers.5 The accuracy
attained by such models serves as a lower bound, as fail-
ure to meet this threshold would make using these methods
impractical. As an upper bound, we explore the training of
12- (BERT base) or 24-layer (BERT large) models, which
would exceed the capacity for client-side training, hence
it serves an artificial upper bound. Throughout these ex-
periments, we initialize the layers with either BERT base
or BERT large pre-trained model weights. For FSL and
FedGKT, the model weights are partitioned across the two
nodes. For instance, when working with pre-trained 12-
layer model with 3 client layers, the embedding table and
the first 3 layers are managed by the client, while the re-
maining 9 layers are placed on the server. The classification
head in all cases is initialized randomly. Our evaluation fo-
cuses on sequence classification tasks across three datasets:
IMDB reviews (Maas et al., 2011), Ag News, and Yelp
reviews (Zhang et al., 2015).

In all experiments, we execute the method for 5 training
epochs and report the test accuracy of the model (server
model in FedGKT and FSL) checkpoints with the highest
validation accuracy. We present the accuracies achieved
using the BERT large model in this section and include re-

4SL is equivalent to centralized training.
5We refer to a transformer block and in this case a BERT block

as a layer for simplicity.

sults for the BERT base model in Appendix B. As both FSL
and FedGKT involve training two models (client & server),
we report the accuracy achieved by each model separately
in Figure 1. We observe that the accuracy achieved by the
client model is consistently lower than that of the server
model, which is expected due to the deeper model architec-
ture used on the server. Furthermore, FedGKT generally
exhibits slightly higher accuracies compared to FSL, most
notably in the client model due to the use of knowledge
distillation. Still, the server model accuracy differences are
often marginal. However, the key observation is that both
FedGKT and FSL consistently achieve similar model
quality to standard training across all experiments.

4.2. Throughput

We next analyze which method shows the shortest train-
ing time. We quantify this by measuring throughput, which
is defined as the number of batches processed per unit of
time and thus is inversely proportional to training time. For
the experiment, we use a high-capacity server equipped with
an A100 GPU and a low-capacity client with a P6000 GPU,
connected via a 1 Gbps link. Figure 2 reports the throughput
of the five considered methods while varying the number of
layers trained on both the client and the server.

Methods with non-overlapping computation. The Plain
SL and U-shaped SL methods do not involve overlapping
computations and consequently achieve the lowest through-
put. Among the two, the U-shaped variant exhibits slightly
lower throughput due to increased network communication
and the fact that the final fully connected layer is executed
on the client.

Considering the speed disparity between the client and
server, maximizing throughput in these methods requires
maximizing the number of layers executed on the server. For
instance, in Figure 2 we see that throughput is consistently
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Figure 2. Throughput achieved by the methods using 8 and 24
layers, of which 1 or 3 are held by the client. The batch size B is
set to 32.

higher when the client operates one layer compared to three
layers. However, adjusting the number of layers executed on
the client may impact the risk of privacy leakage (Abuadbba
et al., 2020). Finally, note that varying the number of layers
does not impact the final accuracy of the trained model.

Methods with overlapping computation. The observed
patterns in the FSL, FedGKT, and StreamSL methods can
be attributed to the presence of a bottleneck node, which is
slower than the other node and consequently prevents the
overall system from achieving higher throughput. Specif-
ically, when the server experiences low throughput due to
training a high number of layers, the slower processing of
the client does not impact the overall training speed. For ex-
ample, when training a model with 24 layers, the throughput
of the three methods is very similar and exhibits minimal
variance with respect to the number of client layers, as the
server is the bottleneck. In contrast, when training a model
with 8 layers, increasing the number of client layers from
1 to 3 leads to a substantial drop in throughput for the FSL
and FedGKT methods because the client becomes the bot-
tleneck. This drop is less pronounced for StreamSL, as in
this method, the client only performs the forward pass and
therefore has a much smaller computational burden.

Methods with overlapping computation achieve the most
effective usage of the available resources when there is no
single bottleneck node – meaning, both the client and server
process data at the same pace, thereby avoiding idle time.
Yet, even if such a perfect balance is not achieved, methods
with overlapping computation still achieve the highest
training throughput. However, unlike the two SL variants

Table 1. Average num. of communicated tokens and Std. Dev.
Dataset Num. Communicated Tokens

IMDB 280± 140
Yelp Reviews 178± 136
Ag News 57± 21

previously discussed, in these methods varying the number
of client layers impacts the quality (accuracy) of the model
as observed in Figure 1.

4.3. Communication volume

We test the lossless compression presented in Section 3
and observe that it significantly reduces the amount of
communicated data without impacting model perfor-
mance. In our experiments, we set the context size to 512,
hence a naı̈ve approach would require sending 512 768-
dimensional token embeddings for each training example,
totaling 512 · 768 ≈ 40k floating-point values. With the
compression, however, the nodes only exchange as many
token embeddings as the length of the input sequence. As
shown in Table 1, this reduces the number of exchanged
embeddings – and hence floating-point values – by 45% to
88%. While reducing the context size could alleviate the
issue, it might lead to information loss and consequently
compromise model performance.

Reducing the amount of exchanged data decreases commu-
nication time due to decreased data transmission over the
network and reduced serialization and deserialization over-
heads at the nodes. However, while the compression affects
the throughput of all methods, its impact varies. Specifically,
methods with overlapping computation may not benefit as
much as their non-overlapping counterparts, as network
latency can be masked by computation time.

5. Conclusion
Our effort represents an initial step toward enabling the
training of LLMs in the one-client setup, where a compute-
constrained client wishes to leverage a powerful server in
a privacy-preserving manner. Specifically, to preserve the
client’s data privacy while allowing the client to fine-tune an
LLM, we considered various SL variants and adapted two
FL methods, FedGKT and FSL, to fit the problem formula-
tion. We implemented these methods with several compu-
tation and communication optimizations that maintain the
method’s performance and compared them in terms of accu-
racy and training time. Notably, our findings reveal that both
FedGKT and FSL achieve accuracy on par with centralized
training and SL and at the same time significantly reduce
training time over SL due to the overlapping computation
between the client and server nodes.
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Suresh, A. T., and Bacon, D. Federated Learning: Strate-
gies for Improving Communication Efficiency, 2016.
URL https://arxiv.org/abs/1610.05492.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Tal-
walkar, A., and Smith, V. Federated Optimiza-
tion in Heterogeneous Networks. In MLSys,
2020. URL https://proceedings.mlsys.
org/paper_files/paper/2020/file/
1f5fe83998a09396ebe6477d9475ba0c-Paper.
pdf.

Luccioni, A. S., Viguier, S., and Ligozat, A.-L. Estimating
the Carbon Footprint of BLOOM, a 176B Parameter Lan-
guage Model. Journal of Machine Learning Research,
24(253), 2023. URL http://jmlr.org/papers/
v24/23-0069.html.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,
and Potts, C. Learning Word Vectors for Sentiment Analy-
sis. In ACL, 2011. URL http://www.aclweb.org/
anthology/P11-1015.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
Arcas, B. A. y. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In AISTATS,
2017. URL https://proceedings.mlr.press/
v54/mcmahan17a.html.

Poirot, M. G., Vepakomma, P., Chang, K., Kalpathy-Cramer,
J., Gupta, R., and Raskar, R. Split learning for col-
laborative deep learning in healthcare, 2019. URL
https://arxiv.org/abs/1912.12115.

Truong, N., Sun, K., Wang, S., Guitton, F., and Guo, Y.
Privacy preservation in federated learning: An insight-
ful survey from the GDPR perspective. Computers &
Security, 110, 2021. URL https://doi.org/10.
1016/j.cose.2021.102402.

Vepakomma, P., Gupta, O., Swedish, T., and Raskar, R. Split
learning for health: Distributed deep learning without
sharing raw patient data, 2018. URL https://arxiv.
org/abs/1812.00564.

Wang, Y., Si, S., Li, D., Lukasik, M., Yu, F., Hsieh, C.-
J., Dhillon, I. S., and Kumar, S. Two-stage LLM Fine-
tuning with Less Specialization and More Generalization.
In ICLR, 2024. URL https://openreview.net/
forum?id=pCEgna6Qco.

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi,
D., Ryder, N., Pachocki, J., Chen, W., and Gao, J. Tensor
Programs V: Tuning Large Neural Networks via Zero-
Shot Hyperparameter Transfer, 2022. URL https://
arxiv.org/abs/2203.03466.

Zhang, X., Zhao, J., and LeCun, Y. Character-level Convo-
lutional Networks for Text Classification. In NeurIPS,
2015. URL https://proceedings.neurips.
cc/paper_files/paper/2015/file/
250cf8b51c773f3f8dc8b4be867a9a02-Paper.
pdf.

7

https://arxiv.org/abs/1610.05492
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
http://jmlr.org/papers/v24/23-0069.html
http://jmlr.org/papers/v24/23-0069.html
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://arxiv.org/abs/1912.12115
https://doi.org/10.1016/j.cose.2021.102402
https://doi.org/10.1016/j.cose.2021.102402
https://arxiv.org/abs/1812.00564
https://arxiv.org/abs/1812.00564
https://openreview.net/forum?id=pCEgna6Qco
https://openreview.net/forum?id=pCEgna6Qco
https://arxiv.org/abs/2203.03466
https://arxiv.org/abs/2203.03466
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf


Train your cake and eat it too! Repurposing collaborative training to tailor LLMs to private data without sharing

A. Development of an Extensible Framework
We developed an extension of Flower (Beutel et al., 2022), one of the most widely used FL frameworks, to enable
clients to request server functions. To facilitate its usage, the extension provides the same API as Flower. We here
describe the implementation and provide some usage examples. The extension is available at https://github.com/
sands-lab/slower, while a getting-started guide is provided at https://github.com/BorisRado/slower_
simple_examples.

A.1. Architecture

In the framework, clients are seamlessly assigned a server_model_proxy attribute that, as displayed in Figure 3,
allows them to invoke methods executed on the server. Similar to Flower, users need to implement the client logic, including
the lower layers of the model and possibly the last layers in U-shaped architectures. Additionally, users must specify the
logic for the server model in the ServerModel class. During training and evaluation, the Client object can invoke
methods of the server_model_proxy, which are marshaled over the network using gRPC to the corresponding server
model methods through the system’s internal mechanisms. Furthermore, like Flower, the extension supports simulating the
distributed algorithms on a single node by employing the ray library.

Client

Server Model Manager

Server Model
Server Model

Servicer
Server Model

Proxy

Client Server

Server

Server informs the client it
is ready to serve requests

Client informs the server it
is has finished training

Server Model
Stub

Figure 3. High-level architecture of the implemented framework in the case of gRPC deployments. Green boxes represent the training
logic that the user needs to implement, while yellow boxes represent the framework’s internal classes that are involved in the process of
serving different types of client requests. Solid lines denote within-node communication while dashed lines denote communication over
the network.

The server model proxy enables the client to invoke the server’s logic either synchronously or asynchronously. In the
synchronous case, the client waits for the server’s response before continuing, as in the plain SL algorithm. In the
asynchronous case, the client invokes the server logic and then continues its process, effectively enabling the two nodes to
achieve overlapping computation. The difference between synchronous and asynchronous algorithms is visually represented
in Figure 4.

Client

ServerModel

(a)

Client

ServerModel

(b)

Figure 4. Visual representation of the workflow of (a) synchronous algorithms (e.g., plain SL and U-shaped SL) and (b) asynchronous
algorithms with overlapping computation (e.g., FedGKT, FSL, and StreamSL). Dashed orange and blue lines denote client requests and
server responses, respectively, while solid green and red lines indicate when the node is computing and when it is idle. In (b) the client is
the bottleneck, hence the server needs to wait to receive client data.
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To enable a great degree of flexibility, the client and the server can exchange arbitrary numpy data or raw bytes, hence
allowing the user to apply any data serialization strategy.

A.2. Usage examples

We now provide some usage examples of the framework. The following code demonstrates how to implement the client for
the Plain SL algorithm:

1 class PlainSLClient(NumPyClient): # NumPyClient is a class provided by the extension
2

3 def fit(self, parameters, config):
4 # parameters and config are equivalent to the corresponding arguments in Flower
5 # prepare model and training dataloader
6

7 for batch in trainloader:
8 labels = batch.pop("labels")
9 batch = to_device(batch) # possibly move data to GPU

10

11 # forward pass on the client model
12 embeddings = self.model(
13 batch["input_ids"],
14 batch["attention_mask"]
15 )
16

17 # compress embeddings with the lossless compression
18 np_embeddings = compress_to_np_list(
19 embeddings,
20 batch["attention_mask"].sum(dim=1) # number of tokens
21 )
22

23 # invoke the server model
24 gradient = self.server_model_proxy.serve_gradient_update_request(
25 embeddings=np_embeddings,
26 labels=labels.numpy()
27 )
28

29 # uncompress the data
30 gradient = expand_to_pt_tensor(gradient)[0]
31

32 # backward pass
33 self.optimizer.zero_grad()
34 embeddings.backward(to_device(gradient))
35 self.optimizer.step()
36

37 # save model to disk or send parameters to the server
38 return [], 0, {}

As mentioned, the library also allows invoking the server model asynchronously, effectively achieving overlapping computa-
tion. In the case of the StreamSL algorithm, the above training logic needs to be updated as follows:

1 with torch.no_grad():
2 # no need to store activations
3 embeddings = ... # forward pass on the client as above
4

5 np_embeddings = ... # compress embeddings as above
6 self.server_model_proxy.serve_gradient_update_request(
7 embeddings=np_embeddings,
8 labels=labels.numpy(),
9 blocking=False # this makes the request asynchronous

10 )
11 # here client immediately continues
12 while self.server_model_proxy.get_pending_batches_count() > 20:
13 # wait if the client is too much ahead of the server
14 time.sleep(1)

9
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In both cases, the user also needs to define the server model logic. For instance, for the Plain SL algorithm, the server model
logic might look as follows:

1 class PlainSLServerModel(NumPyServerModel):
2

3 def configure_fit(self, parameters, config):
4 ... # configure the server model
5

6 def serve_gradient_update_request(self, embeddings, labels):
7 # uncompress the data, set it to PyTorch format, and move it to GPU
8 labels = torch.from_numpy(labels).to(self.device)
9 embeddings, lens = expand_to_pt_tensor(embeddings)

10 embeddings = to_device(embeddings)
11 embeddings["hidden_states"].requires_grad_(True)
12

13 # forward pass and loss computation
14 predictions = self.model(**embeddings)
15 loss = self.criterion(predictions, labels)
16

17 # backward pass
18 self.model.zero_grad()
19 loss.backward()
20 self.optimizer.step()
21

22 # send to the client the gradient information
23 gradient = compress_to_np_list(
24 embeddings["hidden_states"].grad, lens
25 )
26 return gradient

The training logic for the StreamSL algorithm is very similar, the main difference being in the fact, that the server model can
return None instead of the gradient, as such value is dropped by the framework.

Note, that in these examples we assumed to be defining the training logic in plain PyTorch, but as Flower, the extension is
agnostic to the underlying deep learning library.

B. Further results
We here show the results when using BERT base as the upper bound model and to initialize the models in FedGKT and
FSL. In Figure 5, we see that the main conclusions we made in Section 4.1 still hold, that is, models trained with FSL and
FedGKT achieve comparable model qualities as standard training while training a shallow network purely on the client
causes a significant drop in accuracy.

FedGKT FSL
58.1

61.1

64.1

67.1

70.0

Te
st

A
cc

ur
ac

y

68.22 68.34

60.64
59.8

68.17
67.41

66.76

65.43

Yelp Reviews

FedGKT FSL
Method

83.8

86.1

88.5

90.9

93.3

91.48 91.75

85.72
85.12

91.9
91.53

87.36
86.94

IMDB

FedGKT FSL
92.1

92.7

93.4

94.1

94.7

94.12
94.34

92.76

92.46

94.16

93.5593.88

93.39

Ag News

Server 11
Client 1

Server 9
Client 3

Standard Training 1
Standard Training 3

Standard Training 12

Figure 5. Test accuracy comparison between FedGKT and FSL relative to “Standard training X”, where X is the number of layers in the
model. “Node X” denotes the X-layer model trained on the respective node, e.g., Server 9 refers to the server model with 9 layers.
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