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ABSTRACT

We present a novel domain adaptation framework that uses morphologic segmen-
tation to translate images from arbitrary input domains (real and synthetic) into
a uniform output domain. Our framework is based on an established image-to-
image translation pipeline that allows us to first transform the input image into
a generalized representation that encodes morphology and semantics – the edge-
plus-segmentation map (EPS) – which is then transformed into an output domain.
Images transformed into the output domain are photo-realistic and free of artifacts
that are commonly present across different real (e.g. lens flare, motion blur, etc.)
and synthetic (e.g. unrealistic textures, simplified geometry, etc.) data sets. Our
goal is to establish a preprocessing step that unifies data from multiple sources
into a common representation that facilitates training downstream tasks in com-
puter vision. This way, neural networks for existing tasks can be trained on a
larger variety of training data, while they are also less affected by overfitting to
specific data sets. We showcase the effectiveness of our approach by qualitatively
and quantitatively evaluating our method on four data sets of simulated and real
data of urban scenes.

1 INTRODUCTION
Deep neural networks have shown unparalleled success on a variety of tasks in computer vision
and computer graphics, among many others. To enable this paramount performance a majority
of approaches relies on large and diverse data sets that are difficult to establish. Especially, for
image-to-image tasks, where an image is transformed into a different representation (e.g. semantic
segmentation), labels are extremely difficult to obtain. Furthermore, even large and well established
data sets such as KITTI [Geiger et al. (2013)] and Cityscapes [Cordts et al. (2016a)] are biased and
do not contain enough variance to allow for training models that are robust and generalize well.
Synthetic data generated with modern rendering and simulation algorithms may provide a solution
to this problem. However, the disparity between real and synthetic data often limits using generated
data to train models so as to operate on real data. A number of approaches aim to explicitly over-
come this limitation by modeling the sim-to-real transfer based on Generative Adversarial Networks
(GANs) that transform synthetically generated images into images with more photo-realistic visual
traits, such as shadows, highlights, or higher frequency textures [Wang et al. (2018); Bousmalis
et al. (2018); James et al. (2019); Zhu et al. (2017); Yi et al. (2017)]. However, while some of the
existing approaches show impressive results, it remains challenging to faithfully reconstruct the full
spectrum of details in real images.

In this paper, we introduce a novel framework that translates images from various data sources to
a unified representation. Synthetically generated images are enhanced, while the details of real
photographs are reduced. Our goal is to establish a preprocessing step that translates data from
different sources and of different modalities (real, synthetic) into a unified representation that can
then be used to train networks for computer vision downstream tasks, such as classification, object
detection, or semantic segmentation. This has the advantage that the downstream network can be
trained on less complex data and – in turn – usually with a less complex architecture. Our image-to-
image translation approach combines a state-of-the-art semantic segmentation algorithm [Soria et al.
(2019a)] with an edge detection algorithm [Chen et al. (2018a)] to generate edge-plus-segmentation
(EPS) maps from arbitrary input images. We refer to this intermediate representation as morphologic
segmentation. Instead of directly working on RGB images our GAN only uses the EPS maps to
generate output images. Hence, our method is agnostic to the style and details of the input images.
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Figure 1: An input image is transformed into the output image using our framework: we first
generate an EPS map as intermediate representation to then generate the output image in the target
domain with an image-to-image translation GAN. Object classes of the EPS map are visualized
based on the color scheme of Cordts et al. [Cordts et al. (2016a)]. The input image shown here for
illustration is taken from the Cityscapes data set.

Our generator network builds upon the state-of-the-art pix2pixHD algorithm [Wang et al. (2018)].
Instead of using contour maps, we employ edge maps that also show internal object edges to provide
further guidance for the image generation process. Moreover, we use a progressive learning scheme
to achieve high-resolution output images and reduced training time.

To show that the automatic generation of training data is feasible and that EPS maps serve as a mean-
ingful intermediate representation, for generating photo-realistic images with plausible amounts of
detail, we train a generator on image data collected from YouTube videos. Once trained, the gener-
ator can then be used for the translation of images from various sources, including CARLA [Doso-
vitskiy et al. (2017); Hendrycks et al. (2019)], Cityscapes [Cordts et al. (2016a)], FCAV [Johnson-
Roberson et al. (2017)], and KITTI [Geiger et al. (2013)] as well as across different modalities. To
validate the impact of EPS maps, we run ablation studies and measure common metrics for semantic
segmentation.

In summary, our contributions are (1) we introduce a novel framework for translating images from
different sources into a unified representation; (2) we introduce edge-plus-segmentation (EPS) maps
as a novel representation for training image-to-image translation networks so as to operate on inputs
of different sources and modalities; (3) we evaluate our approach on a range of different data sources
and perform ablation studies using established metrics.

2 RELATED WORK
Generative Adversarial Networks. GANs [Goodfellow et al. (2014)] provide a powerful means for
image generation by training a generator network so that it generates images that are indistinguish-
able from a target distribution. Furthermore, it has been recognized that GANs can be a applied to
a wide range of image synthesis and analysis problems, including image-to-image translation [Isola
et al. (2017); Mirza & Osindero (2014); Ronneberger et al. (2015); Long et al. (2015a)] or – more
generally – image generation [Arjovsky et al. (2017); Reed et al. (2016); Wang & Gupta (2016);
Zhao et al. (2019)], image manipulation [Zhu et al. (2016)], object detection [Li et al. (2017)], and
video generation [Mathieu et al. (2015); Vondrick et al. (2016)]. As training on large image resolu-
tions easily becomes infeasible, many approaches aim to improve the output resolution, often based
on stacked architectures [Wang et al. (2018); Huang et al. (2017); Zhang et al. (2017); Karras et al.
(2018); Ledig et al. (2017)]. Similar to many of the existing approaches, we rely on a GAN-based
pipeline to convert images to a common target domain.

Image-to-Image Translation. A number of methods use GANs for image-to-image translation. To
this end, Isola et al. [Isola et al. (2017)] present pix2pix, the first approach that takes inspiration from
established networks [Ronneberger et al. (2015); Long et al. (2015a)] to transfer images between
domains. Although pix2pix can be applied to a wide variety of domains, it is limited by the supported
output resolution and it requires a large amount of training data. Various approaches address this
and related problems. Zhu et al. [Zhu et al. (2017a)] introduce cycle-consistency loss: images are
first translated to the target domain and then back to the source domain; loss is measured over the
generated and the input image. Cycle consistency allows generating impressive results across a large
variety of image domains [Zhu et al. (2017b)]. Liu et al. [Liu et al. (2019)] present a method that can
generate images from previously unseen classes from only a few examples. Similarly, Disco GANs
learn cross-domain relations and can transform instances of one class to similar looking instances of
another class without requiring extra labels [Kim et al. (2017)]. Huang et al. [Huang et al. (2018)]
transfer an input image into a shared content space and a class specific style space, which allows
recreating images of different classes in an unsupervised manner. Chen et al. [Chen & Koltun
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Figure 2: EPS maps are generated by combining a semantic segmentation map and an edge map
generated by two state-of-the-art networks.
(2017)] propose cascaded refinement networks, which drastically increases the output resolution
and feature quality. On a slightly different trajectory, Gatys et al. [Gatys et al. (2015)] introduce a
neural style-transfer network, which is able to transfer among various artistic styles of images; for
a comprehensive overview we refer to Jing et al. [Jing et al. (2019)]. While style transfer networks
primarily focuses on the visual appearance of images, they do not capture any semantic properties,
which limits using these algorithms for many types of image-to-image transfer.

Domain Adaptation. Methods for domain adaptation use neural networks to more generally model
the domain shift of source and target domains by either converting one domain into the other or
by lifting source and target domain into a shared domain. To this end, Tzeng et al. [Tzeng et al.
(2015)] use a CNN-based architecture to model domain invariance for domain transfer, while Long
et al. [Long et al. (2015b)] propose Deep Adaptation Network (DAN) to match domain distributions
in a Hilbert space. Murez et al. [Murez et al. (2018)] propose a method for the domain adaptation
by more explicitly constraining the extracted features of the encoder network, which enables them
to model the domain shift of unpaired images. Moreover, it has been recognized that adversarial
losses can be leveraged for modeling the domain shift. This includes GANs that model for un-
equally labeled data of source and target domains [Luo et al. (2017)], for improving the realism of
simulated images [Shrivastava et al. (2017)], for unsupervised training setups [Sankaranarayanan
et al. (2017)], and more general approaches that combine discriminative modeling and weight shar-
ing with an adversarial loss [Tzeng et al. (2017)]. Similar to the existing approaches our goal is
to model the domain shift of different source domains so as to lift samples into a common target
domain. However, unlike them we use EPS maps to translate images of a variety of source domains
into a common target domain.

3 METHOD
Our method consists of two main steps: first, we introduce morphologic segmentation as the com-
bination of semantic segmentation and edge detection. Specifically, we generate an edge-plus-
segmentation (EPS) map as a representation for input images. In a second step, we generate an
output image by only synthesizing it from an EPS map. In the following we describe how we gen-
erate EPS maps and how we use them to synthesize photo-realistic images with a GAN.

EPS Map Generation. We introduce EPS maps as an abstract intermediate representation of an
image that encodes semantic information of objects as well as their morphology defined as edges.
We argue that a common semantic segmentation map is insufficient as it does not provide intra-
object details. Therefore, we extend semantic segmentation maps with edges, which encode more
intricate geometric details. We aim to devise a representation for images that abstracts away defining
details such as textures, lighting conditions, or the style of an image, that may be unique to a specific
data set. Our goal is to train a generator network so that it can synthesize an image with uniform,
yet complex visual traits, by only using the EPS map.

Edge detection as well as semantic segmentation have been active areas of research for many years.
We use state-of-the-art approaches for semantic segmentation (DeepLabv3) [Chen et al. (2017)]
and edge detection (DexiNed-f) [Soria et al. (2019b)]. Please note that both networks are in prin-
cipal interchangeable without affecting the rest of the pipeline. DeepLabv3 is the state-of-the-art
extension of DeepLabv1 [Chen et al. (2015)] and DeepLabv2 [Chen et al. (2018)]. In the previ-
ous versions, the input image is processed by the network using atrous convolution increasing the
receptive field while maintaining the spatial dimension of the feature maps followed by bilinear in-
terpolation and fully connected conditional random field (CRF) postprocessing taking context into
account. DeepLabv2 employs ResNet [He et al. (2016)] and VGGNet [Simonyan & Zisserman
(2015)] while DeepLabv1 only uses VGGNet. DeepLabv2 further employs atrous spatial pyramid
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pooling (ASPP) enabling the network to encode multi-scale contextual information. In DeepLabv3,
ASPP is further augmented with features on the image-level encoding global context information
and further boosting performance. It outperforms its predecessors even without the CRF postpro-
cessing. Chen et al. [Chen et al. (2018b)] then further extended DeepLabv3 to DeepLabv3+ mainly
by adding a decoder module refining the segmentation results especially along object boundaries.

DexiNed-f is an edge detector devised by Soria et al. [Soria et al. (2019b)] providing fused edge
maps. It is based on holistically-nested edge detection (HED) [Xie & Tu (2015)] enabling holistic
image training and prediction while allowing for multi-scale and multi-level feature learning. Its
general architecture is inspired from the Xception network [Chollet (2016)].

Figure 2 shows how we compute EPS maps. The input image is passed to DexiNed-f to produce a
grayscale image of the edges, while we use DeepLabv3+ to generate the segmentation map. Both
maps are combined by pixel-wise addition to create the EPS map. We argue that EPS maps reduce
the number of input dimensions, while providing enough meaningful details to reconstruct photo-
realistic images.

Image Synthesis. Our image generator builds upon pix2pixHD [Wang et al. (2018)] as an extension
of pix2pix [Isola et al. (2017)] overcoming the lack of fine details and unrealistic textures. In this
regard, the authors introduced a novel adversarial learning objective increasing robustness together
with optimized multi-scale architectures of the generator and the discriminator networks. As in
pix2pix, loss functions are specifically tailored to the input domain.

The original pix2pixHD implementation supports two different encodings for the segmentation
maps: a one-hot encoding for each class, or color-coded RGB maps with different colors repre-
senting different classes. Due to the encoding of the EPS maps, the latter one is used. In the original
implementation an object instance map can be provided along the segmentation map. Since the
edge information from the EPS maps already encode similar information (however, edge maps have
not necessarily closed object boundaries and also contain inner edges), we do not make use of this
additional input channel. While pix2pixHD is used without modifying its architecture, the type of
input information and its encoding is notable different from the original proposed.

4 IMPLEMENTATION AND TRAINING
For generating EPS maps we use pretrained instances of DeepLabv3+ and DexiNed-f. Depending
on the supported classes and used training data, different versions of DeepLabv3+ are available.
We use the Xception71 variant, which is trained on the Cityscapes [Cordts et al. (2016b)] data set,
which outputs segmentation classes commonly found in the Cityscapes images. While DexiNed-
f is very versatile and performs well on a large set of input domains, semantic segmentation is
more problem tailored. Thus, when executing our framework on different image types, the trained
DeepLabv3+ network would need to be exchanged. Since DeepLabv3+, DexiNed-f, and pix2pixHD
are implemented in Python, using either TensorFlow or PyTorch, our EPS pipeline is completely
written in Python.

Training Data. The manual labeling of data is a time consuming and often tedious process
[Johnson-Roberson et al. (2017)]. Therefore, to emphasize the independence from manually la-
beled training data, we abstain from using a classic data set. Instead, we use a large set of YouTube
videos (according to fair use guidelines) showing urban scenes from the driver’s perspective. This
allows us to cover a wider variety of scenarios compared to what is contained in any of the cur-
rently available data sets, that are shown in Figure 3. In total, 98 different videos corresponding
to about 45 hours of video material were used. The videos have been selected using appropriate
hashtags ensuring that most scenes are showing European roads at daytime summer days, providing
good weather conditions. From these videos, around 101 000 frames were randomly extracted and
used for training. Many videos contain unsuitable scenes. Therefore, we manually removed video
segments prior to randomly selecting frames for training.

Our data set is further augmented using a combination of three simple steps: first, each image is
rotated around a randomly selected center by ±7◦. A random cropping of up to half of the image is
then applied in each dimension. Finally, we scale the image by ±20%, while preserving the aspect
ratio. After applying these augmentation steps, the number of training artifacts is greatly reduced.

Progressive Training. We train generator and discriminator by progressively increasing the image
resolution in four steps (each doubling the resolution); starting with a resolution of 128 × 72 up
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to a final resolution of 1024 × 576. Increasing the resolution results in finer details as the training
progresses. Accordingly, the learning rate of η = 0.0001 used in the first step is decreased with
increasing resolution to η = 0.00001 in the second and third steps. However, in the final step,
the initial learning rate η = 0.0001 is applied again in order to avoid overfitting, which results in
improved stability [Karras et al. (2017)].

5 EVALUATION
Examples of synthesized images from various input sources are shown in Figure 3. While the
input images across the different data sets show a number of heterogeneous visual features, such
as varying lighting condition or diverse environments, the translated images only show consistent
visual traits. For example, while many of the input images taken from the FCAV data set show a
desert environment, its corresponding output images show features of more common environments.
Furthermore, it can be observed that synthetic input images are enhanced with more photo-realistic
details. In contrast, images of real data sets are showing less artifacts commonly present in photos
(e.g. exceedingly strong contrasts, hard shadows, gray cast, etc.). The disparity between real and
synthetic data is significantly reduced.

We follow an established evaluation protocol for image-to-image translation [Wang et al. (2018);
Isola et al. (2017); Zhu et al. (2017a)]. The quality of our results is evaluated by computing semantic
segmentation maps of the output images and by comparing how well the resulting segmentation
maps match the corresponding segmentation of the input images. This can easily be quantified by
computing the mean intersection-over-union, IoU ∈ [0, 1] ⊂ R, score. Figure 3 lists the IoU score for
the different cases presented therein. The scores range from IoU = 0.380 to IoU = 0.557 and can be
considered as average values. A representative cross section of our results is shown here. Moreover,
the distributions of the IoU scores per class are shown in Figure 4 (left). For this evaluation, 150
images from CARLA, 500 images from Cityscapes, 365 images from FCAV, and 285 images from
KITTI data set were analysed. DeepLabv3+ for the semantic segmentation was employed as in our
whole image-to-image translation pipeline. This likely causes the effect that significantly higher
scores are usually obtained for the Cityscapes inputs since DeepLabv3+ is trained on the Cityscapes
data set [Chen et al. (2018b)].

We carry out three ablation studies providing further evaluations of our approach. In particular,
we systematically analyze the impact of quality of the input data, the availability of accurate edge
details, and the quality of the segmentation. In this regard, we analyzed a reduced data set com-
prising 16 images of each input source CARLA, Cityscapes, FCAV, and KITTI since each image
produced a series of new images as explained in the following. Figure 7 illustrates the effect caused
by smoothing the input image. Specifically, a Kuwahara filter [Kuwahara et al. (1976)] is applied
using different radii r to control the smoothing intensity. We quantify the effect of smoothing by
measuring IoU scores between segmentations of input and output images for different smoothing in-
tensities. This is illustrated for the different classes in Figure 4 (right). It can be observed that in the
case of real data (Cityscapes and KITTI), the IoU scores are initially above the ones of synthetic data
(CARLA and FCAV), while the scores are getting more similar with increasing smoothing radius.
As the general quality of images decreases, the domain disparity between real and synthetic data is
reduced. This study also shows significant robustness of our approach with respect to image qual-
ity as illustrated in Figure 7 (middle row) demonstrating the effect of a relatively strong Kuwahara
smoothing with r = 4. The smoothed input image is completely blurred, while the corresponding
output image contains fine traits such as structural and texture details of the vegetation located be-
tween the street and the sidewalk on the right. Thus, our approach can potentially enable the use of
additional data sources for training downstream tasks.

Moreover, we investigate the importance of the accuracy of edges and segmentation with respect to
the output quality. Edges are systematically carved as illustrated in Figure 5. Since we observed that
most edges already show relatively small gradients, we threshold pixels at 64% intensity in each step
followed by a smoothing procedure with a 1px kernel. This can be repeated to allow for different
edge carving levels. The IoU scores between segmentations of input and output images for different
levels are measured further underlying our previous observations. Our image-to-image transforma-
tion is robust towards a decrease of image quality while domain disparity between real and synthetic
data is reduced. We carry out a similar ablation study by systematically reducing the quality of the
semantic segmentation instead of edge quality. This is illustrated in Figure 6 and consistent with the
previous observations. In this regard, segmentation maps are systematically warped to reduce their
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Figure 3: Examples of synthesized images from various input sources CARLA, Cityscapes, FCAV,
and KITTI comprising real and rendered data. The EPS maps are extracted from the input images
and then used as the only input to synthesize the output images.

Figure 4: Illustration of the IoU scores per class considering CARLA, Cityscapes, FCAV, and KITTI
(left), and the dependence of the IoU score on different smoothing radii (right).

Figure 5: Illustration of the effect caused by different edge carving levels and the corresponding IoU
score. The input image shown here for illustration is taken from the KITTI data set.
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Figure 6: Illustration of the effect caused by warping semantic segmentations using different inten-
sities, and the corresponding IoU score. The input image shown here for illustration is taken from
the CARLA data set.

Figure 7: Illustration of the effect caused by smoothing the input image. A Kuwahara filter is applied
with different radii. The input image is taken from the FCAV data set.
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quality by manipulating control points. Fine details are first warped by shifting control points by
distances sampled from a normal distribution with a standard deviation corresponding to the warp
level. The result is then warped by a single point along a distance proportional to the warp level con-
cluding a distorting process affecting multiple scales.1 The analysis shows that our approach is more
robust with respect to a loss of segmentation quality compared to edge quality. In other words, even
if the segmentation quality is rather low, given appropriate edges usually available, proper results
can still be achieved.

Since semantic segmentation is a less stable task than edge detection (for instance in Figure 7 the
segmentation degrades faster) and it is unsurprising that our generator tends to prioritize edge infor-
mation. In the CARLA example in Figure 3, the whole sky is classified as building in the EPS map,
but the generator learned to ignore such obvious mistakes, as they also occur for the training data.
As another example, the street sign in Figure 5 is falsely segmented as tree, but correctly recreated as
long as the edge information is intact. However, this behaviour makes it harder to guide the image
generation process by changing the segmentation map. In Figure 6 it can be observed that when
the tree line is moved in the segmentation map, trees are still generated according to the edge map
(although artifacts appear in the sky). We expect our method to profit most from improved semantic
segmentation networks in the future.

To validate how well our method is able to overcome the domain dispar-
ity present across different data sets we visualize image embeddings gen-
erated with a convolutional autoencoder [Vincent et al. (2008)] (Figure 8).

Figure 8: t-SNE plots of 1.3k image embeddings of the orig-
inal images (left) and the generated ones (right).

We first train the encoder so as to
reconstruct the original input images
of each data set (left). Second, we
use the same images, convert them
to EPS maps, to then generate photo-
realistic images with our pipeline
(right). Encoding the original data
generates obvious clusters, which in-
dicates that the autoencoder latches
on to the unique visual features of
each data set (e.g. desert next to the
road for FCAV data, low frequency
textures in CARLA, etc.). Images
generated with our pipeline are de-
void of these artifacts and only show similar visual traits, which results in a more uniform dis-
tribution of embeddings. This shows that our method allows us to remove domain shifts that are
present in different data sets and for different data modalities.

6 CONCLUSION
We have presented a novel framework that allows us to translate images of various input sources
into a unified target domain. Our approach uses EPS maps as an intermediate representation to gen-
erate images with photo-realistic, but simplified visual traits. Our goal is to remove common image
artifacts, while we maintain enough plausible details to faithfully represent an image. This way, our
pipeline can be used to generate training data that facilitates training downstream computer vision
tasks, such as classification, object detection, or semantic segmentation. By generating images from
EPS maps our method is able to remove a wide range of image artifacts of real data, including sea-
sonal and daytime shifts, camera artifacts such as lens flares, as well as to compensate for common
artifacts of synthetic data, such as simplified geometry or low frequency textures. We have shown
that our pipeline is able to generate images with similar visual properties from four different data
sources. Furthermore, we have evaluated our approach through a number of ablation studies that
show its robustness against common artifacts present across the source domains. However, since
the quality of edges is of superior importance compared to segmentations, it is hard to ignore edges
impeding the generation of more abstract recreations of the input images. As avenues for future
work, it would be interesting to explore the usefulness of our method for an even large number of
data sources and for the training of computer vision downstream tasks.

1The resolution of our segmentation maps is given by 1024× 576. A 7× 5 grid is used in which the inner
points are shifted. The result is further transformed by shifting the center point in a random direction by a
distance of twice the warp level.
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