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ABSTRACT

Predicting molecular docking poses with flow matching algorithms represents
both a promising opportunity and a challenging task. Recently, a flow match-
ing algorithm, HarmonicFlow, has been reported to yield encouraging molecular
docking results. The method employs a harmonic prior to make initial predic-
tions. In light of the importance of long-range information for molecular struc-
ture, we sought to understand the consequences of the harmonic prior for docking
results. We found that the most-recent-at-the-time-of-our-initial-writing method
often provides compressed poses, and there is some correlation between this com-
pression and docking performance (though results changed with a newer version).
We retrained the method to use a prior incorporating information from a molecular
conformation, to determine whether a prior with more comprehensive structural
detail would provide better performance. Performance did not improve with this
new prior, whether the exact long-range information was used or whether noise
was added. This finding suggests that further prior development is unlikely to
improve performance, implying perhaps advances in the neural network could be
another avenue to consider. Therefore, we discuss some possible ways to leverage
local and long-range structural information in the neural network. By understand-
ing chemical features associated with docking performance, investigating results
with a more chemically-informed prior, and suggesting possible neural network
advances, this work enhances the molecular machine learning community’s grasp
of the repertoire of opportunities available to improve docking performance.

1 INTRODUCTION

In a rewarding but challenging drug discovery journey,(Kola & Landis| [2004) structural informa-
tion can help illuminate the path forward.(Blundell, [1996) Viewing how a protein interacts with a
target ligand can catalyze progress in drug design: by seeing the structure, a medicinal chemist can
generate ideas for new molecules with enhanced interactions.(Greer et al., [1994) Experimentally
obtaining structures can be resource-intensive. Molecular docking employs in silico techniques to
generate a structure of a protein-ligand complex, providing critical structural information with lower
cost.(Shoichet et al.,[2002) Traditionally, docking methods were physics-based, employing first prin-
ciples governing intermolecular interactions in order to predict a ligand’s pose.(Friesner et al.,[2004)
While helpful, these methods simplify the underlying physics, which can limit output quality.

Machine learning methods offer a promising alternative. Instead of hard-coding in particular
physics, they learn from the available data, analyzing input protein-ligand complexes in order to
grasp the principles governing protein-ligand interactions. Recently, generative models have demon-
strated strong docking performance.(Corso et al., [2022} |Stirk et al.l|2023) HarmonicFlow (HF) is a
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flow-matching generative model, learning a vector field to find the ligand pose.(Stirk et al.| [2023)
This method, although representing an improvement over others, does not provide root-mean-square
deviations (RMSDs) under 2 A of the correct pose in over half of cases even when the pocket is de-
fined (Stark et al., [ 2023)), offering opportunities for further improvement.

Previous diffusion-based docking models (Corso et al.,[2022) sample from a Gaussian, then denoise
the chosen parameters to find the docking pose. Flow matching algorithms, on the other hand,
learn the flow field between the initial and the true data distribution. This allows the model to use an
informative prior as input instead of a Gaussian. An informative prior will provide positive inductive
bias for the flow-matching process.

The current flow-matching algorithm for ligand docking employs a harmonic prior, sampling bonded
atoms near each other.(Jing et al., 2023) We noted that this prior would therefore neglect longer-
range information. This observation motivated two lines of inquiry discussed in this paper. First, we
sought to understand the possible consequences of the loss of long-range information for poses and
for docking performance. Second, we modified the HF prior to incorporate long-range information
and compared performance across priors. We present both of these investigations and then share
some possible future avenues based on the results and further structural analysis.

2 METHODS

The training, validation, and test sets were from PDBbind (Liu et al. [2017), using a time split.
Distance-Pocket was used to define the binding pocket. We experimented with an additional in-
formative prior that uses RDKit(rdk), an open-source toolkit for cheminformatics, to calculate the
atomic coordinates in the ligand. We used RDKit to sample a different conformer as a prior each
time. RDKit generates the conformer coordinates using distance geometry. RDK:it first calculates
the molecule bounds matrix that contains minimum and maximum distances between pairs of atoms
based on bonds in the molecule. It then uses this information to generate a random distance matrix
that is consistent with the calculated bounds. The distance matrix is used to produce the 3D coordi-
nates of the molecule, and different random distance matrices derive different structures when RDKit
samples them. The Universal Force Field (Rappé et al., |[1992) was used to clean up the generated
conformers. (Landrum| |2012) We also experimented with a prior that adds Gaussian noise to the
coordinates generated by RDKit. While RDKit samples different priors when generating conform-
ers, adding Gaussian noise to the RDKit prior adds further randomness. This increases the variety
of conformers accessibly sampled from the starting distribution, allowing a deeper exploration of
the prior distribution space. We retrained HarmonicFlow RDKit and RDKit with Gaussian noise
priors and benchmarked against the Gaussian and harmonic priors in the original work. Each model
was trained with a batch size of 8 and 200 epochs. RMSD of the docked ligand pose compared to
PDBbind was used to analyze docking performance. There were 268 ligands in the test set used
after preprocessing.

RMSD was analyzed in two different ways for the analysis. In[3.1]and [3.3] RMSD for each com-
plex was computed for one output pose out of the samples, so that analysis could be connected
to a single structure. Meanwhile, in[3.2] from the HF output, a summary of test set RMSD perfor-
mance was found directly from the HarmonicFlow output (working from all samples). In both cases,
RMSD was relative to the PDBbind ligand, and no symmetry adjustment was applied. From each
complex identity, features describing the ligand could be computed from the processed PDBbind
data provided in the HF GitHub Zenodo link. RDKit (rdk) was used to calculate ligand features.
Conformers for the consensus analysis in were generated with RDKit ETKDGv2 (Riniker &
Landrum) 2015), following a procedure adapted from earlier work. (Stérk et al.||2022)) Several mod-
ifications were made, including making conformer generation deterministic to aid analysis. This
represents a slightly different procedure than that used for the retraining in

3 RESULTS

We note that we present here results for the most recent HarmonicFlow workflow on GitHub at the
time of writing this paper. Recently, an updated workflow was reported that led to significantly
different results. We focus in the main text on the earlier results, due to how they illustrate op-
portunities to obtain a structural perspective on machine learning model output. Appendix Figure
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[6] presents results with the updated workflow. We believe this snapshot-in-time of our perspective
while writing the paper could provide suggestions for encoding molecular information in machine
learning methods which transcend this particular case study.

3.1 DRIVERS OF HARMONICFLOW WITH HARMONIC PRIOR DOCKING PERFORMANCE

In light of the harmonic prior’s only incorporating local information, we sought to investigate: how
well do ligands with more long-range information perform in docking? We found that there is a
slight association between ligand heavy atom count and HF performance (Figure [7h). (Harmon-
icFlow discussed in this section refers to HarmonicFlow with a harmonic prior: we focused on this
prior because of its extensive use in earlier work. (Stark et al.||[2023)) Intuitively, larger ligand size
should correspond to higher count of non-local contacts (i.e., larger ligands have larger counts of
atom pairs not directly bonded to each other). Another relevant type of long-range information is
count of rotatable bonds, measuring flexibility of the ligand. We found that there is not much associ-
ation between ligand rotatable bond count and HF performance (Figure [7p), though the association
is in the direction of higher rotatable bond count with worse RMSD performance. Thus, loss of
long-range information for the initial HarmonicFlow structures appears slightly more deleterious
for larger ligands: because they are larger, non-local information could be more relevant.

To further understand possible structural underpinnings of RMSD performance, we considered the
consequences of the lack of long-range information for the output predicted structure poses. The
initial harmonic prior produces a quite compressed structure. (Stark et al., [2023) To what extent
does the final pose retain some folded-in character? We compared the radius of gyration of the
PDBbind ligand structure with the HF-predicted ligand structure. Radius of gyration is a geometric
parameter which can be interpreted as measuring the extent of dispersion of a set of points, such as
atoms of a molecule. (Lobanov et al., 2008)) We calculated the percent error of the radius of gyration
for the HF-predicted ligand structure, compared to the PDBbind ligand structure. Percent error helps
avoid possible confounding issues due to size effects. We found that many of the HF-predicted poses
have a negative radius of gyration percent error, meaning that HF is predicting poses which are more
compact, or folded-in, compared to the actual crystal structure poses (FigureTp).

Furthermore, we found that higher over-estimation of compactness is associated with worse RMSD
performance (Figure [Tk), but not with heavy atom count (Figure Of). The explanation could be
that HarmonicFlow begins with quite folded-in structures, with steric repulsions. While the infer-
ence process should help unfold the structure, there seems to still be some folded-in quality re-
tained. We note that the updated HarmonicFlow method led to reduced compression (Figure [6h): al-
though the update occurred for other reasons, our independently finding this compression highlights
how chemical intuition-driven analysis workflows can provide insights relevant to further machine
learning methods development. This finding further motivated our existing interest in incorporating
long-range information into the HarmonicFlow prior: could starting with more extended structures
improve performance?
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Figure 1: (a) 6PYA (Round et al.l 2020) Structure sampled from the prior, final pose, and PDBbind
pose (aligned with fit” in PyMOL(LLC) to aid visualization). This structure was selected to illus-
trate compression, not to be representative. (b) Distribution of percent errors in radii of gyration
(relative to PDBbind structure) from inference. (c) Scatterplot of RMSD with radius of gyration
percent error. Appendix discusses p-value limitations and context of use.

3.2 RESULTS FOR HARMONICFLOW WITH A RDKIT PRIOR

We calculated the RMSD on the test set for each model with different priors. RMSD < 2A and
Median RMSD are reported in Table |1} The results reveal that the harmonic prior still has the best
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percentage of RMSD < 2A and lowest median RMSD. RDKit has the worst performance in both
metrics, indicating that using an RDKit prior might provide negative inductive bias to the model.
However, the RDKit with noise prior outperforms the Gaussian prior in both metrics, implying
introducing additional randomness to the RDKit prior could provide positive inductive bias. All of
the priors underestimate radius of gyration (Figure [2)).

| RMSD < 2A  MEDIAN RMSD

GAUSSIAN 47.5 2.09
HARMONIC 53.7 1.83
RDKIT 44.8 2.29
RDKIT W/ NOISE 48.8 2.05

Table 1: Comparison of different priors. RMSD < 2A is the percentage of predictions that have
an RMSD to the ground truth within 2A. Median RMSD is the median RMSD to the ground truth.

3.3 ANALYSIS OF STRUCTURES SUGGESTS POSSIBLE FUTURE DIRECTIONS

This work considers priors with a range of amounts of information. The similarity of performance
for these priors with vastly different amounts of information suggests that further developing a prior
based on a single structure is unlikely to yield a meaningful performance improvement. Furthermore,
the finding that priors with long-range structures underestimate radius of gyration (Figure[2) suggests
that long-range prior information is not sufficient for avoiding compressed poses. Therefore, another
possible route to improve performance could be to incorporate additional information outside of the
prior, such as into the neural network architecture. A prior is a starting point, so it should not
meaningfully influence how compressed a final pose is. Incorporating information to help prevent
compression across the pose generation process, not only at the start, is therefore a possible direction.

This section describes initial preliminary analyses to in-
vestigate: how can chemical understanding provide rel-
evant information for the neural network? In light of
the graph representation of the molecule employed, pair-
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first on bond distances, then on longer-range distances.

We emphasize that the goal is to share general observa- Figure 2: Comparison of radius of gy-
tions to guide future method development, and that we ration. Percentage error of radius of gy-
have not yet tested possible advances suggested in this ration is calculated using the PDBbind
forward-looking brainstorming section. In this section, structure as a reference. The radius of
HarmonicFlow refers to HarmonicFlow with a harmonic  gyration percentage error is calculated
prior, and test set ligands were analyzed. While the up- for each different prior.

dated HarmonicFlow workflow provides different results

(Figure[6), we present results with the earlier method, as discussed further at the start of Section 3]

We found that HarmonicFlow underestimates bond lengths, relative to the PDBbind structures (Fig-
ure [3p), and that there are very often negative bond length percent errors. We found the average
bond length percent error for each structure, to summarize the extent of this underestimation. It
is correlated with both radius of gyration percent error and RMSD (Figure [3p). This correlation
between bond length underestimation and performance raises the question: if only bonded informa-
tion was in the prior, as is the case in the current harmonic prior, but chemically correct bond length
information was provided outside the prior (elsewhere in the architecture), would RMSD perfor-
mance improve? One further direction could be to include information in the neural network input
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graph bonded atom edges about bond distances based on chemical knowledge of bond lengths from
element and hybridization information.
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Figure 3: (a) Percent error of HarmonicFlow individual bond distances relative to PDBbind values.
(b) Scatterplot of each complex’s average HarmonicFlow bond distance percent error with RMSD
and radius of gyration percent error.

We investigated whether an RDKit-generated conformer ensemble could provide longer-range dis-
tance information relevant to the final ligand pose. For each ligand, we generated 10 RDKit con-
formers. Because bond distances and angles should be expected to vary little (by chemical intuition),
we focused on atoms separated by a torsion or more (over 2 bonds away from each other). For each
such pair of atoms, we found the pairwise distance in each conformer (Figure ). We computed the
standard deviation of each such pairwise distance across conformers. There exists a wide spread
of these standard deviations (Figure [TI). Pairwise distance uncertainty may be relevant to neural
network architecture. One possibility is high certainty (low standard deviation across conformers)
information could be incorporated, so that distance information that is inferred from the conformers
to be non-controversial helps guide the model. A second possibility is low certainty (high stan-
dard deviation) information could also help the model understand opportunities for flexibility in the
molecule. For this paper, we focus on high certainty pairwise distances, though there may also be
insight to be gained from other pairwise distances.

Conformer 1 Conformer 2 Conformer 3

: low variation across conformers, classified as consensus distance
: high variation across conformers, not classified as consensus distance

Figure 4: Conformer consensus distance analysis schematic

Those pairwise distances with low variation (standard deviation under 0.10 A) across conformers
were selected to represent our consensus distances (Figure): conformers are in approximate agree-
ment on their value. The existence of consensus distances is quite common, with 94% of structures
having at least 5 consensus distances (Figure [Sh). We found that these consensus distances have
low percent error when comparing their average values (across conformers) and the corresponding
value for the distance between the same atom pair in the PDBbind ligand pose. Furthermore, in
the HarmonicFlow pose, these same distances are often significantly underestimated (Figure 5p).
A further direction could be to incorporate into the neural network input graph edges information
corresponding to these consensus distances, thus including insights from the agreement between
conformers which are both longer-range and likely to be accurate. This initial preliminary analysis
focused on the output of conformer generation, and we also note that the distance geometry field
(Havel, [1998; Blaney & Dixon, {1994), including the conceptual foundation of ETKDG approach
(Riniker & Landrum) 2015)), could be an area poised to contribute to future work. Further review
of this literature could be fruitful. It is possible distance geometry information could be directly
relevant to the neural network edges, without conformer generation acting as an intermediary of
sorts. Also, it is likely (by chemical intuition) a number of these consensus distances correspond to
aromatic rings: if this is the case, adding aromatic ring geometric information to the neural network
may be another approach.



Published at the GEM workshop, ICLR 2024

(a) 20 (b) 2000 Conformer Consensus
1750 HarmonicFlow
Conformer Consensus
15 >1500 04
9 1647 21250 oa0
H Fl
S0 0490 $ 1000 Hormaricriow
g o 750 0134
T “ 500
250
0 0% <40 —30 0o 20
0 50 100 150 200 250 % error of non-bonded consensus dist.
Count Consensus Distances (relative to PDB)

Figure 5: (a) Count of consensus distances in each structure. (b) Distribution of consensus distance
percent error, with PDBbind as the reference, for the RDKit conformer ensemble’s average distance
value and for HarmonicFlow.

4 LIMITATIONS AND FUTURE WORK

One limitation of this study is in the test set. It contains under 300 entries. A larger test set would
enhance robustness of conclusions. Furthermore, the test, train, and validation dataset contains only
ligand-protein complexes which have been reported to be amenable to structural characterization:
speculating, possibly generalization to ligand-protein complexes which do not yield structures as
easily may not be ideal. It would also be useful to analyze HarmonicFlow blind docking poses.

This work investigated the feasibility of the consensus distances concept but did not implement it in
the neural network: such implementation is a possible future direction. Furthermore, investigating
how consensus and non-consensus distance properties vary with other conformer generation meth-
ods (beyond RDKit), such as machine learning-based conformer generation approaches (Jing et al.,
2022) is another possible direction, helping ascertain the sensitivity of consensus and non-consensus
distance identification to conformer generation approach selection. In addition, an arbitrarily set
threshold is currently employed to define consensus distances: one further step could be to more
explicitly contextualize the standard deviation in the bonding framework by correcting for the num-
ber of bonds between atoms. While this work focused on consensus distances, developing a more
nuanced understanding of non-consensus distances, such as analyzing variation patterns across con-
formers (e.g., bimodal versus a spread-out Gaussian), could help ascertain how to most effectively
incorporate insights from these distances into the neural network.

We emphasize that, after the initial writing of this paper, the HarmonicFlow workflow was updated.
This update, which was made independently of the work in this paper, led to less compressed poses
(Figure [6). We believe the findings in this paper still remain of interest to the molecular machine
learning community, because they present an illustration of the opportunities structural inspection
offers to analyze methods’ output. Although, in this case, the reduced compression occurred for
other reasons, the analyses in this paper could have helped guide workflow development. Fur-
thermore, as the molecular machine learning community develops additional innovative molecular
representations of varying levels of complexity, incorporation of chemical knowledge, such as that
described in Section [3.3] may be relevant for enhancing performance of other workflows.

5 CONCLUSION

The most-recent-at-the-time-of-initial-writing HarmonicFlow method with a harmonic prior pro-
duces compressed poses. Including longer range information does not improve flow matching re-
sults. Incorporating distance information from structural analysis into neural network architecture
represents a possible future direction. By investigating the effect of priors on flow matching perfor-
mance and suggesting neural network advances, this work expands the molecular machine learning
community’s understanding of how its toolbox can be leveraged for docking. These findings high-
light the importance of taking a molecular-level glimpse into machine learning results; structural
investigation can provide insights which may not always be available by statistics alone. In addi-
tion, the consensus distance approach brainstormed in this paper suggests the research community
may want to reflect on how chemical and structural knowledge can inform model architecture. This
work helps to understand the interplay between molecular structure and machine learning method
performance, so that chemical insight can help enhance performance and accelerate drug discovery.
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A APPENDIX

A.1 CODE AVAILABILITY

Code can be accessed at: https://github.com/hynsam/Flow_Matching Docking_
Analysis.

A.2 ADDITIONAL METHODOLOGICAL DETAILS
A.2.1 LIGAND PROCESSING

All ligand files were checked to ensure that they only contain one molecule, and ligand files with
more than one molecule were excluded. The PDBbind ligands were sanitized in RDKit, although
the final poses were not due to RDKit errors encountered. While sanitizing in general changes
some properties, our initial not-yet-comprehensive checks thus far have not indicated changes on
sanitizing in properties which we compared between PDBbind ligands and final poses.

As mentioned above in the discussion of RMSD, symmetry and chemical equivalence across struc-
tures may be an issue for conformer pairwise distance standard deviations as well, and this is an area
for possible future work. If a further symmetry adjustment does turn out to be necessary, that should
only lower the standard deviations, so our impression is that the consensus distance analysis would
reveal more consensus distances in this scenario.

A.2.2 CORRELATION ANALYSIS AND PLOTTING

To check correlations, we used the Spearman rank correlation coefficient. We note that the docu-
mentation(sci) mentioned p-values are only valid for more data points than we employed. We retain
the p-values for qualitative general interpretation purposes, but we emphasize to the reader that the
p-value is not entirely suitable here. The permutation analysis noted in the documentation is a pos-
sible area of future interest.(sci) While we made an effort to always include all data points in plots,
we did sometimes truncate bounds when extreme values were present, to aid interpretation.

A.3 POSSIBLE FURTHER EXTENSIONS

While this work is ligand-focused, considering protein-ligand interactions could be another possible
future direction. We have carried out an initial preliminary PoseCheck(Harris et al., |2023) study
of results from another HarmonicFlow run and compared to DiffDock PoseCheck results. While
differences between the methods’ settings complicate a direct comparison, we noted that the Har-
monicFlow run did have fewer steric clashes as determined by PoseCheck. These fewer clashes
may be due to the aforementioned pose compression. Comparing protein-ligand interactions in Har-
monicFlow output versus PDBbind structures, and further physical feasibility analysis, may yield
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suggestions of additional neural network architecture updates for components relating to protein-
ligand interactions.

A.4 ADDITIONAL FIGURES
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Figure 6: Results with latest HarmonicFlow method (a) Distribution of percent errors in radii of
gyration from inference (percent error relative to PDBbind structure). (b) Scatterplot of RMSD
with radius of gyration percent error. (c) Percent error of HarmonicFlow individual bond distances
relative to PDBbind values. (d) Scatterplot of each complex’s average HarmonicFlow bond distance
percent error with RMSD and radius of gyration percent error. (e) Distribution of consensus distance
percent error, with PDBbind as the reference, for the RDKit conformer ensemble’s average distance
value and for HarmonicFlow.
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Figure 7: Scatterplot of RMSD and (a) ligand heavy atom count (b) ligand rotatable bond count



Published at the GEM workshop, ICLR 2024

b,
© o010 Tst 00175 Test
% 008 Train § 0.150 Train
= t test p-value: > 0.125 t test p-value:
© 0.06 7.976%10-! @ 0.100 4.034%107?
w [
3 Htrain 30.2 - 0.075 Mtrain 7.3
g0.04 Otran 16.5 E 0,050 Ourain 7.4
S 0.02 Mtest 30.4 o Mtest 6.9
=" Otest 14.3 Z0.025 Otest 6.1
0.005730 40 60 80 100120140160 0000519 20 30 40 50 60
Heavy Atom Count Rotatable Bond Count
© - Test
§ 0.08 Train
2 0.06 t test p-value:
@ 2.326%10°!
“0.04 Ltrain 4.4
£ Oiran 1.4
2 0.02 Heest 4.5
= Otest 1.3
0.00

0 2 4 6 8 10 12 14
Radius of Gyration

Figure 8: Distributions in the test and training sets of (a) heavy atom count, (b) rotatable bond count,
and (c) radius of gyration. The t test p-value is used for approximate guidance, although suitability
of the t test was not rigorously evaluated.
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Figure 9: Scatterplot of radius of gyration and heavy atom count
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Figure 10: (a) Scatterplot of RMSD with absolute value of radius of gyration percent error. (b)
Scatterplot of heavy atom count with absolute value of radius of gyration percent error.
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Figure 11: Distribution of all conformer ensemble standard deviations of pairwise distances of atoms
separated by 3 or more bonds
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Figure 12: Consensus distance count distribution, for different consensus distance definition thresh-

old values. These values differ only subtly from each other, and exploring a wider range of thresholds
is a possible future direction.
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Figure 13: Consensus distance percent error (relative to PDBbind) comparison in the conformer en-
semble’s average distance value versus in HarmonicFlow, for different consensus distance definition
threshold values. These values differ only subtly from each other, and exploring a wider range of
thresholds is a possible future direction.
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