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ABSTRACT

In this work, we consider the problem of constructing prediction intervals (PIs) for
point predictions that are obtained using transformers. We propose a novel method
for constructing PIs called in-context Jackknife+ (ICJ+), by using a meta-learned
transformer trained via in-context learning (ICL) to perform training-free leave-
one-out (LOO) predictions, i.e., by only prompting the transformer with LOO
datasets and no retraining. We provide distribution-free coverage guarantees for
our proposed ICJ+ algorithm under mild assumptions, by leveraging the stability
of in-context trained transformers. We evaluate the coverage and width of the
intervals obtained using ICJ+ on synthetic i.i.d. data for five classes of functions,
and observe that their performance is comparable or superior to the benchmark
J+ and true confidence intervals.

1 INTRODUCTION

Predicting a quantity of interest based on historical data of responses and covariates is necessary
in numerous applications including the energy sector (Haben et al., 2023) and supply chain man-
agement (Syntetos et al., 2016). Traditionally, data-driven methods have addressed these problems
using either point predictors or probabilistic predictors at their core. Recently, there has been grow-
ing interest in using modern transformer-based foundation models to meta-learn parametric and
non-parametric estimators, by leveraging their in-context learning (ICL) (Hollmann et al., 2025;
Maichle et al., 2024) capabilities. Garg et al. (2022) studies in-context learning in transformers for
simple function classes such as linear regression and ReLU 2-layer neural networks, and Li et al.
(2023) provides formal generalization bounds for the same setting using the stability of the algo-
rithm meta-learned by the transformer. However, these methods produce only a point prediction
with no uncertainty estimates.

This necessitates the construction of valid prediction intervals around these predictions. Such un-
certainty representation becomes especially important for predictions (involved in high-stakes de-
cisions) obtained using transformers that are known to hallucinate (Abbasi-Yadkori et al., 2024b).
Very recently, there has been a growing interest in uncertainty quantification for transformers, but
they mainly focus on text data with a finite vocabulary (Abbasi-Yadkori et al., 2024a). This moti-
vates us to come up with new algorithms and theories for representing uncertainty in transformers
that work with continuous numerical data. To do this, we leverage the key idea that a transformer
trained in an in-context manner represents a meta-learned algorithm that can give different predic-
tors based on different prompts. This enables us to obtain LOO predictors by only prompting a
transformer using appropriate data without any retraining, and use these LOO predictions for con-
structing PIs using the J+ (Barber et al., 2021) method. The proposed in-context Jackknife+ (ICJ+)
algorithm has the two-fold advantage of being faster (by avoiding retraining) as well as obtaining
good quality PIs (due to enhanced accuracy of the underlying point predictor obtained using the ICL
transformer).

Contributions. We make the following main contributions:

∗Equal Contribution
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1. We propose in-context Jackknife+ (ICJ+), a modified version of the Jacknife+ (J+) frame-
work that leverages the meta-learning capability of in-context trained transformers for con-
structing prediction intervals around point predictions without any model retraining.

2. While the idea to prompt a transformer in a LOO manner is pretty simple and brings ob-
vious benefits when used for predictive inference, the theoretical validity of such a method
is not obvious. We build upon the idea of algorithmic stability—studied in both the pre-
dictive inference and transformer generalization literature—to come up with finite sample
as well as asymptotic coverage guarantees for our proposed ICJ+ algorithm under mild
assumptions.

3. We benchmark the performance of our proposed algorithm against the original J+ method
with model retrainings as well as the true confidence intervals, based on synthetic i.i.d. data
generated for various function classes. We observe that our method achieves superior cov-
erage while maintaining reasonable interval width, and reducing the computational burden
by many folds compared to J+.

2 PROBLEM SETUP

Suppose we are given training data Sn := {(Xi, Yi)}ni=1, consisting of i.i.d. realizations of a random
response Y ∈ Y ⊆ R and associated contextual feature information X ∈ X ⊆ Rp. Our goal is to
predict the value of the response Yn+1 for a new data point given feature information Xn+1, which
is independently drawn from the same distribution as the training data. To achieve this, we aim to
use a transformer model TF that takes as input a prompt consisting of the training data Sn and the
test point Xn+1. However, this raises the crucial question of how to quantify the uncertainty in our
prediction. Specifically, how can we construct a data-dependent prediction interval Ĉα (Xn+1) ⊂ Y
around the transformer’s point forecast, ensuring that it contains Yn+1 with a given probability of
1 − α, without relying on assumptions about the underlying unknown distribution? To be specific,
our goal is to construct Ĉα (Xn+1) so that it satisfies either the marginal coverage guarantee

P
(
Yn+1 ∈ Ĉα (Xn+1)

)
≥ 1− α , (1)

where the expectation is with respect to {(Xi, Yi)}n+1
i=1 , or the stronger conditional coverage guar-

antee

P
(
Yn+1 ∈ Ĉα (Xn+1)

∣∣Sn

)
≥ 1− α (2)

where the expectation is only taken with respect to (Xn+1, Yn+1) given Sn. The conditional cov-
erage P

(
Yn+1 ∈ Ĉα (Xn+1)

∣∣Sn

)
is itself a random variable dependent on Sn and is our main

object of interest in this paper. As we shall see in Section 3.2.1, obtaining (2) is usually only pos-
sible provided that the underlying algorithm is stable (i.e. is insensitive to small changes in the
training data), which transformers in fact are.

In the field of distribution-free predictive inference, Conformalized Prediction (CP), refers to the
construction of PIs using residuals of the form Ri = |ŷi − yi|, where ŷi is the point prediction of
the conditional expectation of Y given X = xi obtained using some base algorithm. The class
of CP methods that offer the best performance are called full conformal methods, in the sense that
they do not need to split the data into an additional calibration set. One of the most popular full
conformal methods is the Jackknife+ (J+), which uses leave-one-out (LOO) predictors for creating
the residuals. However, the main limitation of this method is that it needs to be retrained in order of
number of training examples. In this paper, we explore how PIs can be constructed if transformers
are employed as the base algorithm that maps data to point predictors in the J+ method. We find that
the ICL capability of modern transformers allows us to obtain LOO predictors and hence J+ PIs for
free, i.e., without any retraining. In the following Section, we first introduce ICL for least squares
regression and then describe how ICL can be leveraged for training-free predictive inference.
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3 TRAINING-FREE PIS USING ICL

3.1 IN-CONTEXT LEARNING

ICL refers to the ability of a transformer TF, trained on prompts comprising input-output pairs
for a given task, to generate an output for a new prompt corresponding to a different task, without
requiring any fine-tuning (Garg et al., 2022). To illustrate this in our context, let Sm := {(xi, yi)}mi=1
represent a set of m feature-target pairs sampled from a common underlying data-generating process
(X, Y ). Using these example pairs, we define the prompt

x
(m+1)
prompt := (x1, y1, . . . ,xm, ym,xm+1) ∈ R(2m+1)×d (3)

to make a prediction for the new input xm+1.1 A transformer TF(·) is said to demonstrate ICL if it
can generate a meaningful prediction TF(x(m+1)

prompt ) for the response ym+1 given xm+1, solely based
on the examples {(xi, yi)}mi=1 provided in the prompt, without having encountered any examples
from the same data-generating process (X, Y ) during training. As such, TF conducts an implicit
optimization on the sequence Sm to make a prediction for xm+1 (Li et al., 2023). A transformer TF
can therefore be abstracted as a learning algorithm mapping a sequence Sm of arbitrary size m to a
prediction function fTFSm

(·) : X → Y represented as:

f̂TFSm
(xm+1) := TF

((
Sm,xm+1

))
:= TF

(
xm+1

prompt

)
, (4)

where xm+1
prompt is constructed as described earlier, using the m examples in Sm and xm+1. A learning

algorithm Alg ∈ A denotes a function, that takes a training data set as input and returns a fitted
regression function f̂ : X → Y (Liang & Barber, 2023). For a fixed architecture, each specific set of
transformer weights defines a distinct learning algorithm. Thus, A represents the set of all possible
transformer models within the given architecture.

To equip TF with the ICL ability, like Garg et al. (2022) or Li et al. (2023), we train the trans-
former TF using multi-task learning (MTL) over t ∈ [T ] tasks, each task characterized by a training
sequence St

n := {(xt
i, y

t
i)}

n
i=1 of n feature-target pairs sampled from a common data-generating

process. The data-generating processes of all tasks are assumed to be mutually independent. Let
St
m := {(xt

i, y
t
i)}

m
i=1 denote a subsequence of St

m for m ≤ n. Our ICL training objective is then
given by:

T̂F ∈ argmin
TF∈A

1

T

T∑
t=1

1

n

n−1∑
i=0

(
yti+1 − f̂TFSt

i
(xt

i+1)
)2

3.2 IN-CONTEXT JACKKNIFE+

We will now show how the meta-learning capability of in-context trained transformers can
be leveraged to obtain PIs similar to (2) without any model retraining. One well-known
distribution-free method to generate Ĉα is the so-called Jackkinfe+ (J+) (Barber et al., 2021).
Given a training dataset Sn = {(xi, yi)}ni=1, define the modified training dataset S

\i
n :=

((x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)) by removing point i. The J+ prediction
interval (PI) for a test point xn+1 ∈ X is then given by

ĈJ+
α (xn+1) =

[
Q−

α

({
f̂\i(xn+1)−Ri

}n
i=1

)
, Q+

α

(
{f̂\i(xn+1) +Ri}ni=1

)]
, (5)

where f̂\i is trained on S
\i
n , Ri :=

∣∣yi − f̂\i(xi)
∣∣ represents the i−th LOO residual, Q+

α (·) and
Q−

α (·) represent the empirical upper and lower α−quantiles2.

While J+ provides robust and theoretically grounded prediction intervals, it is computationally ex-
pensive since the model must be retrained n times—once for each LOO subset. To address these

1Tokens are interpreted as row-vectors. TF outputs the last token as its prediction.
2For a set {vi}ni=1 ⊂ R, we define Q+

α ({vi}ni=1) and Q−
α ({vi}ni=1) as the upper and lower-α quantiles, i.e.,

Q+
α ({vi}ni=1) is the ⌈(1− α)(n+ 1)⌉−th smallest value of {vi}ni=1 and Q−

α ({vi}ni=1) = −Q+
α ({vi}ni=1).
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computational challenges, we propose the In-context Jackknife+ (ICJ+) approach that leverages the
ICL capability of transformers to generate LOO predictors without requiring retraining. As outlined
in (4), given a fixed set of feature-target pairs in S\i

n as context, a transformer implicitly defines a
LOO predictor f̂TF

S\i
n

(·) : X → Y , f̂TF
S\i
n

(x) = TF(x\i
prompt) where

x
\i
prompt := (x1, y1, . . . ,xi−1, yi−1,xi+1, yi+1, . . . ,xn, yn,x) .

Instead of retraining a model on each set S\i
n , we simply prompt the transformer TFwith the feature-

target pairs in S\i
n and the point to predict. Further details can be found in Algorithm 1. The ICJ+

approach requires prompting the transformer 2n times: n times to compute {Ri}ni=1 and another n
times to compute {f̂TF

S\i
n

(xn+1)}ni=1. Table 1 compares the computational costs of J+ and ICJ+ in
terms of the number of model retrainings.

Algorithm 1 In-context Jackknife+ (ICJ+). Training-free J+ using an in-context
trained transformer for constructing PIs around point estimates according to Equations (4) and (5).
Input: A trained transformer TF, Dataset Sn := {(xi, yi)}ni=1, a test point xn+1 ∈ X
Output: Prediction interval ĈICJ+

α (xn+1)

1: for i = 1, . . . , n do
2: x

\i,(m)
prompt = (x1, y1, . . . ,xi−1, yi−1,xi+1, yi+1, . . . ,xn, yn,xm) for m ∈ {i, n+ 1}

3: Compute f̂TF
S\i
n

= TF
(
x

\i,(m)
prompt

)
for m ∈ {i, n+ 1}

4: Compute Ri =
∣∣yi − f̂TF

S\i
n
(xi)

∣∣
5: end for

Compute the ICJ+ prediction interval at xn+1 as

ĈICJ+
α (xn+1) =

[
Q−

α

({
f̂TF
S\i
n
(xn+1)−Ri

}n

i=1

)
, Q+

α

({
f̂TF
S\i
n
(xn+1) +Ri

}n

i=1

)]

3.2.1 CONDITIONAL COVERAGE FOR ICJ+

There is an intrinsic connection between the theory of distribution-free prediction intervals and algo-
rithmic stability. (Ndiaye, 2022) shows that if the base algorithm is stable, one can obtain conformal
PIs without model retraining and without data splitting. Moreover, in recent years, several studies
have established finite-sample guarantees for prediction intervals derived using the J+ algorithm,
relying solely on the assumption of some form of algorithmic stability of the underlying point pre-
dictor (Barber et al., 2021; Amann et al., 2023). In this paper, we consider the replace-one stability
that was introduced in (Shalev-Shwartz et al., 2010) and studied in the context of PIs in (Liang &
Barber, 2023).
Definition 1 (Replace-one Algorithmic Stability). Let Sn = {(Xi, Yi)}ni=1 be a set of n samples
and denote by Si

n the modification of Sn where the i-th sample is replaced by (X ′
i, Y

′
i ). A learning

algorithm Alg is βn replace-one stable if

E
(∣∣∣f̂n(X)− f̂ i

n(X)
∣∣∣) ≤ βn for all i = 1, . . . , n

where
f̂n := Alg (Sn) , f̂

i
n := Alg

(
Si
n

)
and the expectation is taken with respect to all data points ((Xi, Yi))

n
i=1, (X

′
i, Y

′
i ),X .

On the other hand, recent work on the generalization of transformers (Li et al., 2023) shows that
the algorithm represented by an in-context trained transformer is replace-one stable according to
Definition 1. We state this result in the following Proposition.
Proposition 1 (Replace-one Stability for Transformers). Under mild assumptions on the weight
matrices as detailed in Theorem 4, a transformer TF with R ∈ N layers and an upper bound Γ > 0
on the operator norm of the combined key-query matrices across all self-attention heads, is replace-

one stable according to Definition 2 with βn :=
2((1+Γ)eΓ)

R

2n−1 , i.e.,

E
(∣∣∣f̂TFSn

(X)− f̂TFSi
n
(X)

∣∣∣) ≤
2
(
(1 + Γ)eΓ

)R
2n− 1

for all i = 1, . . . , n (6)
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Proposition 1 is an informal summary of the results presented in Theorem 4 in Appendix A.1.1. The
result directly follows from recent work on transformer generalization theory (Li et al., 2023), and
the key steps leading to (6) are outlined in A.1.1. The above result on the replace-one stability of
transformers can be combined with the stability-based coverage guarantees provided in (Liang &
Barber, 2023) to obtain the desired conditional coverage for our ICJ+ algorithm. To do that, we
have to first define the symmetry of a learning algorithm, which is an assumption required for our
finite sample coverage guarantee.

Definition 2 (Symmetry to Training Data). For n ∈ N, any set of training data Sn = {(xi, yi)}ni=1,
and any permutation π on {1, . . . , n}, a learning algorithm Alg is said to be symmetric if it holds
that

Alg((x1, y1), . . . , (xn, yn)) = Alg((xπ(1), yπ(1)), . . . , (xπ(n), yπ(n))),

i.e., Alg is invariant to the ordering of the input arguments.

In the context of transformers, symmetry implies that f̂TFSn
(xi+1) = f̂TFSπ

n
(xi+1), where Sπ

n is a
permutation of the training data Sn. While we cannot provide a formal proof of symmetry for our
transformer TF, we do provide supporting empirical evidence in the Appendix A.2.5 (Figure 3)3.
We are now ready to state our theoretical coverage guarantee for ICJ+, by assuming the symmetry
of the transformer learning algorithm.

Theorem 1 (Training-conditional coverage for ICJ+). Suppose Sn = {(Xi, Yi)}ni=1 and
(Xn+1, Yn+1) are i.i.d samples of (X, Y ), and that the conditional distribution of Y | X has a
density hY |X(y | x) with respect to the Lebesgue measure with

B := E
[
sup
y∈R

hY |X(y | X)

]
< ∞,

where the expected value is taken with respect to the marginal distribution of X . Further assume
that TF is symmetric as defined in Definition 2. Let us define the training-conditional miscoverage
rate of the ICJ+ prediction interval as

αICJ+ (Sn) = P
{
Yn+1 /∈ ĈICJ+

α (Xn+1)
∣∣Sn

}
.

Then for any δ ∈ (0, 1) it holds that

P

(
αICJ+ (Sn) < α+ 3

√
log(1/δ)

2
+ 4 4
√
2Bβn

)
≥ 1− 3δ − 3

√
2Bβn .

Proof. Once we have the stability result for transformers (Proposition 1), the statement of Theorem
1 follows from Theorem 4.4 of (Liang & Barber, 2023). The only difference is that their Theorem
assumed replace-m stability, and we set m = 1 in their result for our case of replace-one stability.

Note that to achieve our goal of ensuring αICJ+(Sn) being close to α with high probability, βn

must be small. We observe that while βn decreases as the number of in-context samples n grows,
it increases exponentially with the number of transformer layers R. In general, the number of in-
context samples has to be high to ensure training conditional coverage based on (1). Nevertheless,
the stability of our transformer model ensures that training conditional coverage is at least given
asymptotically:

Corollary 2 (Asymptotic results). Assume the conditions of Theorem 1 hold. Then there exists
sequences (εn)∞n=1, (δn)

∞
n=1 ⊂ [0,∞] with εn, δn → 0 such that

P
(
αICJ+ (Sn) ≤ α+ εn

)
≥ 1− δn

for all n ≥ 1. As a direct consequence, we can additionally conclude αICJ+ (Sn)
P−→ α for n → ∞.

3Moreover, it is reasonable in our case to assume symmetry to training data according to Definition 2
because the transformer model is solely trained on i.i.d. data, and not sequential data like in language models.
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Table 1: Comparison of computational costs in terms of # of training runs.

PI Method Base ICL
J+ n (Barber et al., 2021) 1 (ICJ+, Alg. 1)
J+aB B (Kim et al., 2020) 1 (ICJ+aB, Apx. A.3 Alg. 2)

A limitation of both Theorem 1 and Corollary 2 is the requirement that TF be symmetric with respect
to the training data. However, by leveraging insights from Liang & Barber (2023) on the relationship
between replace-stability and remove-stability, we can adopt the asymptotic coverage guarantees
developed by Amann et al. (2023), which do not impose this symmetry requirement. Instead, we
only need to assume that the prediction errors are bounded in probability—a mild condition when
working with i.i.d. data.
Theorem 3 (Asymptotic conditional coverage for ICJ+ without symmetry). Suppose Sn =
{(Xi, Yi)}ni=1 and (Xn+1, Yn+1) are i.i.d samples of (X, Y ), and assume that the conditional
distribution of Y | X has a density hY |X(y | x) with respect to the Lebesgue measure with

E
(
sup
y∈R

hY |X(y | X)

)
< ∞,

where the expected value is taken with respect to the marginal distribution of X . Assume the pre-
diction errors are bounded in probability, i.e., for every ε > 0 there exists an M > 0 such that

sup
n∈N

P
(∣∣∣Yn+1 − f̂TFSn

(X)
∣∣∣ ≥ M

)
≤ ε,

where the expectation is taken with respect to {(Xi, Yi)}n+1
i=1 . Then we have

lim
n→∞

E
(∣∣αICJ+ (Sn)− α

∣∣) = 0, (7)

where the expectation is taken with respect to Sn. (7) directly implies αICJ+ (Sn)
P−→ α for n → ∞.

The proof of Theorem 3 can be found in Appendix A.1.2.

4 EXPERIMENTS

In this Section, we demonstrate the predictive performance of our proposed ICJ+ algorithm and
benchmark it against the J+ algorithm and the true uncertainty for synthetic i.i.d. data. We begin
by explaining the data generation process and the transformer architecture along with its in-context
training procedure. Following this, we explain the implementation of the predictive inference algo-
rithms and compare their performances based on the metrics of coverage score and interval width
score.

Dataset generation and function classes. We generate synthetic data for five function classes,
where any function class, in general, is given by H = {h | h (x) = g(x) + ξ; ξ ∼ N (0, σ2)}, for
features x ∈ Rp, response y = h(x), and fixed noise σ = 1.5. We work with two feature dimensions
p ∈ {1, 20}, and the features are sampled from the Rp dimensional standard normal distribution
x ∼ N (0, Ip). We study five function classes namely: linear (LR), quadratic (QR), cubic (CR),
ReLU 2 layer neural network (NN), and a modified sinusoidal function (SR). For example, in LR,
the parameterized noise-less function is defined according to g(x) = β⊤x, the parameter being
sampled from β ∼ N (0, Ip). The definitions of the remaining function classes are relegated to
Appendix A.2.1 for brevity.

Transformer architecture. Similar to Garg et al. (2022), we use transformer architectures from
the GPT-2 family (Radford, 2018), in particular the small (for p = 1) and standard (for p = 20)
architectures, which have been detailed in Appendix A.2.2, Table 4.

In-context transformer training. We train a transformer model per function class as a meta-learner,
following the setting of Garg et al. (2022). For this, we first sample a random function h from the
function class H we are training on. For example, for LR this would mean sampling β ∼ N (0, Ip).
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(a) Prediction intervals (PI) and metrics for two different feature samplings of 1D SR and in-sample evaluation.
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(b) Prediction intervals (PI) and metrics for two different feature samplings of 1D SR and out-of-sample evalu-
ation.

Figure 1: Comparison of PIs across different feature samplings of an instance of the one-dimensional
SR function class (α = 0.1). We observe that for in-sample evaluation ICJ+ reaches the target
coverage, while for out-of-sample evaluation it performs slightly worse.

Then we sample inputs xi from the multivariate standard normal distribution N (0, Ip) and con-
struct a training dataset as Sm+1 = (x1, h(x1), . . . ,xm+1, h(xm+1)). Given the training dataset

Sm+1, we obtain the transformer predictions
{
f̂TFSi

(xi+1)
}m

i=0
and compute the mean squared loss

1
m+1

∑m
i=0

(
h(xi+1)− f̂TFSi

(xi+1)
)2

. At each training step, the loss is averaged over a batch of ran-
domly generated prompts (with different functions from the chosen function class h ∈ H), followed
by an update step. A context length m = 100 is used across all function classes and models.

Construction and evaluation of PIs. While the base algorithm for ICJ+ is a meta-learned trans-
former that can produce predictors for any function belonging to the function class it is trained on,
the base algorithm for the benchmark J+ is a standard machine learning algorithm such as MLP
that is not capable of meta-learning across the function class. Therefore, for a fair comparison, we
choose a particular instance of a function from a function class for comparison of PIs. For example,
in LR this would mean choosing the function g(x) = β⊤

1 x, for some fixed β1.

We implement the J+ algorithm as described in (Barber et al., 2021) with a 2-layer neural network
with ReLU activation (MLP) consisting of hidden dimension 512 as the base algorithm. Each LOO
retraining is done for 1000 steps. The ICJ+ algorithm is implemented according to Algorithm 1.
For any instance of a function class, we obtain 64 datasets, each with 150 points, where the different
datasets represent different feature samplings of the same function instance to introduce statistical
variability. Out of this, the first 100 points for each dataset are used for LOO retraining in J+ and
equivalently LOO prompting in ICJ+, and the last 50 points are used for evaluation or testing.
We also compare these two methods to the true 1 − α confidence interval (CI) according to the
formula CIα (xi) = g(xi)± Zα/2 × σ, where g(xi) is the response value without noise as defined
above, σ = 1.5 is the standard deviation, and Zα/2 is the Z−score for the given confidence level.
During the evaluation, we sample the features x for both the in-sample and out-of-sample settings
as detailed below.

• In-sample. For in-sample evaluation, the features are sampled in the same way as training, that is,
from the multivariate standard normal distribution, as we have described above x ∼ N (0, Ip).

• Out-of-sample. For out-of-sample evaluation, the features are constructed on a grid spanning
[−3.5, 3.5]p to simulate extrapolation. This grid is densely sampled near the origin (reflecting re-
gions well-represented in training data) and increasingly sparse toward the extremes, deliberately
exceeding the range where 99.9% of N (0, Ip) samples lie: {x ∈ Rp : ∥x∥2 ≤ 3.29}.

Metrics and comparison. We use two metrics—regression coverage score and regression width
score—to quantify the performance of our methods. Coverage Score (or empirical coverage proba-
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Table 2: Average coverage (C) and interval width (W), with standard deviations, for J+, ICJ+, and
the True 90% CI on 1D data, aggregated over 5 function samples in the same function class for both
evaluation regimes.

Function Linear Quadratic Qubic ReLu Sinusoidal
Method C W C W C W C W C W

In Sample
J+ 0.94±0.04 0.57±0.05 0.94±0.04 0.57±0.05 0.94±0.04 0.57±0.05 0.94±0.04 0.58±0.05 0.94±0.04 0.58±0.05
ICJ+ 0.94±0.04 0.57±0.05 0.94±0.04 0.57±0.05 0.94±0.04 0.59±0.05 0.94±0.04 0.59±0.06 0.94±0.04 0.73±0.11
True CI 0.90±0.04 0.49±0.00 0.90±0.04 0.49±0.00 0.90±0.04 0.49±0.00 0.90±0.04 0.49±0.00 0.90±0.04 0.49±0.00

Out Of Sample
J+ 0.92±0.04 0.58±0.05 0.93±0.04 0.57±0.05 0.93±0.04 0.59±0.05 0.94±0.04 0.58±0.05 0.90±0.04 0.75±0.05
ICJ+ 0.93±0.05 0.57±0.05 0.91±0.06 0.57±0.05 0.88±0.08 0.59±0.05 0.94±0.04 0.59±0.05 0.80±0.07 0.77±0.11
True CI 0.90±0.04 0.49±0.00 0.90±0.04 0.49±0.00 0.90±0.04 0.49±0.00 0.90±0.04 0.49±0.00 0.90±0.04 0.49±0.00

bility) in the context of PIs for regression measures how well a model’s predicted intervals capture
the true values of the target variable. For a test set given by {(xi, yi)}n+N

i=n+1 and a predictive infer-
ence method that gives [Li, Ui] as the lower and upper bounds of the interval for test point xi, the
coverage score is computed as CP = 1

N 1 {Li ≤ yi ≤ Ui}, where 1{·} is the indicator function.
While we want to reach the desired coverage of 1 − α, (i.e., CP = 0.9 for α = 0.1 in our case)
to ensure the validity of our PI, we also want to ensure that the intervals are not too wide. This is
measured by the interval width score, which is computed as IW = 1

N

∑n
i=1(Ui −Li). The metrics

are computed with N = 100 for our test set described above and across the 64 instances to obtain
measures of statistical dispersion.

Results. In Figure 1 we use box plots to depict the coverage scores and the width scores across
64 different feature samplings of the same function instance from the one-dimensional modified
sinusoidal (SR) class. For in-sample evaluation, we can observe that our proposed ICJ+ as well as
the benchmark J+ always cover more points than the target on average. We also observe that this
good coverage offered by ICJ+ does not come at the cost of width, in fact, the width score of the
ICJ+ PI is at par with that of the benchmark. For out-of-sample evaluation, our ICJ+ performs
slightly worse that the benchmark on the SR function class. Table 2 and Figures 5, 6, 7, 8 (Appendix
A.2.4) provide a more detailed comparison for all the function classes, where we observe similar
trends except that ICJ+ in fact performs at par with J+ for most other function classes even out-
of-sample. The results for 20-dimensional data are deferred to the Appendix A.2.3 in Figure 4 and
Table 5. For higher dimensional data, we find that ICJ+ outperforms J+ by a large margin in terms
of both coverage and width.

5 CONCLUSION

We introduced in-context Jackknife+ (ICJ+), a novel method for constructing prediction intervals
(PIs) using transformers trained via in-context learning (ICL). By leveraging training-free leave-one-
out (LOO) predictions, we are able to show that J+ can be applied to transformer-based in-context
learners. ICJ+ eliminates the need for model retraining while maintaining distribution-free cover-
age guarantees under mild assumptions. Our theoretical analysis, grounded in algorithmic stability,
establishes both finite-sample and asymptotic validity. Empirical evaluations on synthetic i.i.d. data
across multiple function classes demonstrate that ICJ+ achieves comparable coverage to Jackknife+
(J+) with retraining, while significantly reducing computational costs. Looking ahead, ICJ+ could
be extended to foundation models beyond transformers and adapted to permutation-invariant ICL
methods for broader applicability. Addressing the exponential growth of the stability parameter
βn, remains a key challenge, where PAC-Bayes bounds and model compression techniques might
possibly offer promising solutions (Lotfi et al., 2024). Our work paves the way for more efficient
and theoretically grounded uncertainty quantification for transformer-based predictors. In Appendix
A.3, we end with a discussion of how our proposed ICJ+ can be extended to incorporate model
(epistemic) uncertainty, i.e., the model’s uncertainty in approximating the true conditional distribu-
tion, by using training-free bootstrapping (ref. ICJ+aB Algorithm 2). Future work would include
benchmarking the computational efficiency of ICJ+ using detailed timing comparisons, as well as
experiments on real-world data possibly with temporal dependance.
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A APPENDIX

A.1 ADDITIONAL THEORETICAL RESULTS

A.1.1 TRANSFORMER STABILITY

The replace-one stability of transformer models, as stated in Proposition 1, has been established in
a uniform sense in Theorem 3.2 of Li et al. (2023). Theorem 4 presents a slightly modified version
tailored to our requirements.

Before we can state the stability result for transformer models, we need to revisit the architecture
of the transformer model TF under consideration. TF is an R-layer transformer model with an
initial linear layer for embedding the input tokens into the embedding space Remb. The input tokens
are then repeatedly transformed by a sequence of R subsequent self-attention and feed-forward
sublayers with ReLU-activation. By W (r) and V (r) we denote the combined-key-query and value
matrices of the r-th self-attention layer and by M

(r)
1 ,M

(r)
2 the weight matrices of the r-th feed-

forward layer. TF outputs the last token of the final layer. Given a sequence of n feature-target
samples Sn = {(Xi, Yi)}ni=1, prompts are constructed as shown in (3).

Theorem 4 (Transformer Stability). Let TF be a R-layer transformer with the architecture specified
above. Let Sn = {(xi, yi)}ni=1 be a sequence of n samples and denote by Si

n the modification of Sn

where the i-th sample is replaced by (x′
i, y

′
i). Assume that ∥xi∥2, ∥yi∥2 ≤ 1 for all i = 1, . . . , n.

Further, assume that

∥V (r)∥ ≤ 1

∥M (r)
1 ∥, ∥M (r)

2 ∥ ≤ 1

∥W (r)∥ ≤ Γ

2

for all layers r ∈ [R]. Additionally, we require the matrix operator norm of the linear embedding
layer to be smaller or equal to 1. Then we have

∣∣∣f̂TFSn
(x)− f̂TFSi

n
(x)
∣∣∣ ≤ 2

(
(1 + Γ)eΓ

)R
2n− 1

∀x ∈ X (8)

and TF is replace-one-stable with βn :=
2((1+Γ)eΓ)

R

2n−1 .

Proof. It is straightforward to verify that all the requirements of Theorem 3.2 in Li et al. (2023) are
satisfied, which directly establishes (8). Taking the expectation of (8) with respect to {(Xi, Yi)}ni=1,
(X ′

i, Y
′
i ), and X immediately yields the claimed βn replace-one stability.
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A.1.2 PROOFS OF ASYMPTOTIC COVERAGE IN THEOREM 3

To prove Theorem 3, we apply Corollary 5.6 of Amann et al. (2023). To adapt this result to our
setting, we leverage insights of Liang & Barber (2023) on the relationship between replace-stability
and remove-stability.

Proof of Theorem 3. As outlined above, our goal is to establish that the assumptions of Theorem 3
suffice to satisfy all conditions required for the application of Corollary 5.6 in Amann et al. (2023).

Continuous Case Assumption 1: It is easy to see, that the so-called Continuous Case Assumption 1
(CC1 Assumption) as defined in (Amann et al., 2023) is satisfied. As the conditional distribution of
Y | X = x has a density for almost all x ∈ X , the absolute continuity of Y given X = x immedi-
ately follows. Furthermore, as E

(
supy∈R hY |X(y | X)

)
< ∞, it follows that supy∈R hY |X(y | X)

must be finite for almost all x ∈ X .

Boundedness in probability of density: Let ε > 0 and M > 0 be arbitrary. Set B :=
E
(
supy∈R hY |X(y | X)

)
. By applying Markov’s inequality we get

sup
n∈N

P
(
sup
y∈R

hYn|Xn
(y | Xn) ≥ M

)
≤ sup

n∈N

E
(
supy∈R hYn|Xn

(y | Xn)
)

M
=

B

M

Set M0 := B
ε to get

sup
n∈N

P
(
sup
y∈R

hYn|Xn
(y | Xn) ≥ M0

)
≤ B

M0
= ε,

which shows that the sequence
(
supy∈R hYn|Xn

(y | Xn)
)∞
n=1

is bounded in probability.

Asymptotic Stability: It remains to establish asymptotic stability as defined by Amann et al. (2023).
To do that, we need to show for every ε > 0 that

1

n

n∑
i=1

P
(∣∣∣f̂TFSn

(X)− f̂TF
S\i
n
(X) ≥ ε

∣∣∣)→ 0 (9)

for n → ∞. From Proposition 1 we know that TF is βn replace-one-stable with βn → 0 for n → ∞.
Proposition 4.6 of Liang & Barber (2023) shows that if TF is replace-one stable, then there exists an
alternative learning algorithm Alg such that

1. f̂AlgSm
= f̂TFSm

for any set of training data Sm with size m = 1, . . . , n− 1, i.e., Alg and TF
are identical learning algorithms for training data sizes of n− 1 and smaller.

2. Alg is βn remove-one-stable, i.e.,

sup
i=1,...,n

E
(
f̂AlgSn

(X)− f̂Alg
S\i
n

(X)
)
≤ βn

For arbitrary ε > 0, applying Markov’s inequality then yields

1

n

n∑
i=1

P
(∣∣∣f̂AlgSn

(X)− f̂Alg
S\i
n

(X) ≥ ε
∣∣∣) ≤ 1

n

n∑
i=1

1

ε
E
(
f̂AlgSn

(X)− f̂Alg
S\i
n

(X)
)
≤ βn

ε
→ 0

for n → ∞, which shows that Alg is asymptotically stable as defined in (9). Consequently, with
Alg as the learning algorithm, all requirements of Corollary 4.6 of Amann et al. (2023) are fulfilled,
so we can conclude

E
(∣∣∣P{Yn+1 /∈ ĈJ+(Alg)

α (Xn+1)
∣∣Sn

}
− α

∣∣∣)→ 0 (10)

for n → ∞, where C
J+(Alg)
α is the J+ prediction interval resulting from generating the leave-one-

out predictors f̂
\i
n with Alg. We now follow the reasoning in the proof of Theorem 4.4 in (Liang

& Barber, 2023) to show that this also ensures the validity of (10) when computing Ĉα using ICJ+
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with TF, rather than applying J+with Alg as the learning algorithm. Observe, that when performing
ICJ+, TF conducts in-context learning on samples of size n− 1, where by definition, TF and Alg
are identical. Consequently, the resulting prediction interval CICJ+

α from TF is exactly the same as
C
J+(Alg)
α , so the desired result immediately follows.

A.2 ADDITIONAL EXPERIMENTS

A.2.1 FUNCTION CLASSES FOR DATASET GENERATION

Now, we define each of the particular function classes. As described in the Section 4, any function
class, in general, is given by H = {h | h (x) = g(x) + ξ; ξ ∼ N (0, σ2)}. According to the
function class, g(x) is defined in Table 3 below.

Table 3: Details regarding function classes for data generation. Symbols as defined in Section 4.

Function Class Abbreviation g(x) Parameters Remarks

Linear LR β⊤x β ∼ N (0, Ip) -
Quadratic QR β⊤x2 β ∼ N (0, Ip) Pointwise

Cubic CR β⊤x3 β ∼ N (0, Ip) Pointwise

ReLU 2-layer NN NN
∑r

k=1 αkσ(β
⊤
k x) βk ∼ N (0, Ip), αk ∼ N (0, 2/r)

r = 100 is # hidden nodes
σ(·) = max(0, ·) is ReLU act. fn.

Modified Sinusoidal SR β⊤A sin(fx+ θ)
β ∼ N (0, Ip) , θ ∼ N (0, Ip)
A ∼ N (0, σ2), f ∼ N (0, σ2)

Pointwise

A.2.2 TRANSFORMER ARCHITECTURE AND TRAINING

Here we provide a detailed account of the transformer architectures used in our work. This has been
detailed in Table 4. Training is conducted on a single NVIDIA GeForce RTX 4090 GPU with 24
GB of RAM, and runtime varying from 30 minutes to 11 hours depending on the model size. We
use the Adam optimizer (Kingma, 2014) and train for a total of 500,000 steps with a batch size of
64. A fixed learning rate of 10−4 is used across all function classes and models.
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Coverage for J+ Across Dimensions

(a) Coverage across dimensions
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(b) Width across dimensions

Figure 2: Comparison of coverage and width across data dimensions using J+ for a target coverage
level of 90%. We observe that the coverage of J+ has a roughly decreasing trend with an increase
in the dimensions of the data. The poor performance of J+ is however not due poor model fitting,
we always obtain a MSE loss of 0.

A.2.3 PIS FOR 20 DIMENSIONAL DATA

The comparison of coverage score and width score metrics for the 20-dimensional data is plotted in
Figure 4, for all function classes. We observe that the performance of the proposed ICJ+ is superior
to that of the benchmark J+ by a wide margin. To perform a sanity check for our J+ results, we
plot its PI metrics across dimensions (Figure 2). We observe that its performance does decrease with
an increasing number of dimensions, and the degradation in performance is not due to poor model
training.
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Table 4: Details regarding variants of the GPT-2 transformer architecture.

Data dimension (d) Model Embedding size #Layers #Heads

1 Small 128 6 4
20 Standard 256 12 8

Table 5: Average coverage (C) and interval width (W), with standard deviations, for J+, ICJ+, and
the True 90% CI on 20D data, aggregated over 5 function samples in the same function class for
both evaluation regimes.

Function Linear Quadratic Qubic ReLu Sinusoidal
Method C W C W C W C W C W

In Sample
J+ 0.30±0.01 0.15±0.01 0.30±0.04 0.33±0.04 0.24±0.02 2.03±0.13 0.18±0.03 0.09±0.01 0.13±0.02 0.19±0.10
ICJ+ 0.94±0.00 0.72±0.01 0.94±0.00 0.79±0.02 0.94±0.01 1.42±0.09 0.94±0.00 1.57±0.64 0.94±0.00 0.61±0.03
True CI 0.90±0.00 0.49±0.00 0.90±0.00 0.49±0.00 0.90±0.00 0.49±0.00 0.90±0.00 0.49±0.00 0.90±0.00 0.49±0.00

A.2.4 PIS FOR 1 DIMENSIONAL DATA

We provide the prediction intervals and metrics for the remaining four function classes in Figures 5,
6, 7, 8.

A.2.5 SYMMETRY TO TRAINING DATA

We conduct an ablation study to check the symmetry to training data for transformers, which was
an assumption for our theoretical result (ref. Definition 2). For our proposed method, symmetry to
training data would translate to permutation invariance of the transformer prompt. For each function
class (defined above), we create N(π) = 100 permutations of the input prompt and evaluate it on
64 test points. For each test point, we record the standard deviation for each of the 100 predictions.
The same is repeated for each of the 64 test points and depicted via box plots in Figure 3. A lower
standard deviation in predictions across the 100 permutations would point to the validity of the sym-
metry assumption. One can observe that the standard deviation values are quite low for the first row
(ReLU 2-layer neural network) and a bit higher for the second row (linear regression). However, the
comparison is also not completely fair since the standard deviation is not scale invariant, and data
from each function class has a different scale. Therefore, we can conclude that transformers loosely
obey the symmetry assumption, and that verifying this assumption can be challenging. Our future
work would involve more exhaustive experiments to verify symmetry by taking into account scale
invariant measures of variability, as well as exploring permutation invariant transformer architec-
tures.

A.3 EPISTEMIC UNCERTAINTY-AWARE PREDICTION INTERVALS

In the Conclusion, we highlighted the importance of incorporating epistemic uncertainty in PIs.
Intuitively, estimating the epistemic or second-order uncertainty (Sale et al., 2023; Rossellini et al.,
2024) would require access to multiple point estimates or multiple (conditional) probability distribu-
tions. One of the simplest ways to obtain this is by bootstrapping, i.e., creating models on resampled
subsets. We can do this using ICL without retraining, and just by prompting as depicted in Algo-
rithm 2. We propose a modified version of the Jackknife+-after-Bootstrap (Kim et al., 2020) called
ICJ+aB (Algorithm 2) to account for epistemic uncertainty in its PIs. The main difference to J+aB
is the use of in-context bootstrapping for creating the LOO point estimates. This results in epistemic
uncertainty aware PIs without any additional training overhead that was incurred by the previously
proposed J+aB. A comparison of the computational costs is depicted in Table 1.
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Figure 3: Transformer symmetry to input permutations. Each point in a box represents standard
deviations of predictions across 100 permutations for a particular context length, and the box rep-
resents variability across 64 test points. The first row represents the function class ReLU 2-layer
neural network, and the second row represents the function class linear regression.

Algorithm 2 ICJ+aB. In-context Jackknife+-after-Bootstrap for constructing epistemic
uncertainty-aware PIs around point estimates.
Input: A trained transformer TF, Dataset Sn := {(xi, yi)}ni=1, a test point xn+1 ∈ X
Output: Prediction interval ĈICJ+aB

α (xn+1)

1: for b = 1, . . . , B do
2: Sample index set Ib =

(
ib1, . . . , i

b
k

)
with replacement from set {1, . . . , n}

3: end for
4: for i = 1, . . . , n do
5: Define J\i := {b ∈ [B] : i /∈ Ib}
6: for b ∈ J\i do
7: Construct prompt xb,(m)

prompt =
(
xib1

, yib1
, . . . ,xib

k
, yib

k
,xm

)
for m ∈ {i, n+ 1}

8: end for
9: Compute LOO predictions as

f̂\i(xm) =
1

|J\i|
∑

b∈J\i

TF
(
x

b,(m)
prompt

)
for m ∈ {i, n+ 1}

10: Compute Ri =
∣∣yi − f̂\i(xi)

∣∣
11: end for
Compute the ICJ+aB prediction interval at xn+1 as

ĈICJ+aB
α (xn+1) =

[
Q−

α

({
f̂\i(xn+1)−Ri

}n

i=1

)
, Q+

α

({
f̂\i(xn+1) +Ri

}n

i=1

)]
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(c) Coverage and Width for CR.
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(d) Coverage and Width for NN.
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(e) Coverage and Width for SR.

Figure 4: Comparison of coverage and width scores for 20-dimensional data. We observe that our
transformer-based ICJ+ outperforms the benchmark J+ consistently across all function classes.

15



1st workshop of ”Quantify Uncertainty and Hallucination in Foundation Models: The Next
Frontier in Reliable AI” at ICLR’25

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

1.0

0.5

0.0

0.5

1.0

y

90% Prediction Intervals

2 1 0 1 2
x

1.0

0.5

0.0

0.5

1.0

y

90% Prediction Intervals

ICJ+ J+ CI
Methods

0.80

0.85

0.90

0.95

1.00

Co
ve

ra
ge

 S
co

re

Comparison of Coverage

ICJ+ J+ CI
Methods

0.50

0.55

0.60

0.65

0.70

W
id

th
 S

co
re

Comparison of Width

(a) Prediction intervals and metrics for two different feature samplings of 1D LR and in-sample evaluation.
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(b) Prediction intervals and metrics for two different feature samplings of 1D LR and out-of-sample evaluation.

ICJ+ J+ True CI g(x) Training Samples Test Samples

Figure 5: Comparison of PIs across different feature samplings of an instance of the one-dimensional
LR function class (α = 0.1).We observe that both methods reach the target coverage while main-
taining comparable width, for in-sample out-of-sample evaluation.
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(a) Prediction intervals and metrics for two different feature samplings of 1D QR and in-sample evaluation.
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(b) Prediction intervals and metrics for two different feature samplings of 1D QR and out-of-sample evaluation.

ICJ+ J+ True CI g(x) Training Samples Test Samples

Figure 6: Comparison of PIs across different feature samplings of an instance of the one-dimensional
QR function class (α = 0.1). We observe that for in-sample evaluation ICJ+ reaches the target
coverage, while for out-of-sample evaluation it performs slightly worse.
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(a) Prediction intervals and metrics for two different feature samplings of 1D CR and in-sample evaluation.
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(b) Prediction intervals and metrics for two different feature samplings of 1D CR and out-of-sample evaluation.

ICJ+ J+ True CI g(x) Training Samples Test Samples

Figure 7: Comparison of PIs across different feature samplings of an instance of the one-dimensional
CR function class (α = 0.1). We observe that for in-sample evaluation ICJ+ reaches the target
coverage, while for out-of-sample evaluation it performs slightly worse.
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(a) Prediction intervals and metrics for two different feature samplings of 1D ReLU and in-sample evaluation.
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(b) Prediction intervals and metrics for two different feature samplings of 1D ReLU and out-of-sample evalua-
tion.

ICJ+ J+ True CI g(x) Training Samples Test Samples

Figure 8: Comparison of PIs across different feature samplings of an instance of the one-dimensional
NN function class (α = 0.1). We observe that both methods reach the target coverage while main-
taining comparable width, for in-sample out-of-sample evaluation.
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