
Robi Butler: Multimodal Remote Interaction with Household Robotic
Assistants

Anxing Xiao, Anshul Gupta, Yuhong Deng, Kaixin Li, David Hsu

Abstract— In this paper, we introduce Robi Butler, a novel
household robotic system that enables multimodal interaction
with the user. Leveraging advanced communication interfaces,
Robi Butler enables users to monitor the robot’s status, give tex-
t/voice instruction, and select target objects with hand pointing.
At the core of our robotic system are the high-level behavior
module powered by Large Language Models (LLMs) that in-
terpret received multimodal instructions to generate plans, and
open-vocabulary primitives supported by the Vision-Language
Models (VLMs) for executing the planned actions with text
and pointing queries. The integration of above components
allows Robi Butler to ground remote multimodal instruction
in the real-world home environment in a zero-shot manner. We
demonstrate the efficacy and efficiency of this system with a
variety of daily household tasks involving remote users, such
as question answering via interactive mobile manipulation, and
object disambiguation for manipulation through gesture. Link:
https://robibutler.github.io/

I. INTRODUCTION

A robotic assistant capable of assisting remote users with
household tasks could greatly improve the convenience and
efficiency of our daily lives. In this work, we aim to develop
a multimodal remote interactive system for household robot
assistants to enable bidirectional remote human-robot com-
munication and interaction. Imagine you are out and want
to check the ingredients in the refrigerator and prepare the
heated food, the intelligent robots should have the ability to
receive, interpret, and execute the instructions given by your
natural expressions such as language and gesture.

There are several issues behind building such a robot
butler. The first is human-robot communication: allowing
remote users to give instructions using natural expressions
and receive feedback from the robot. We humans usually
use both language and gestures to express our needs and
preferences. Relying only on voice, text, and video streaming
limits the instructions users can send, resulting in a less
natural experience. To address this issue, we designed a
communication interface consisting of a zoom chat and a
hand pointing website that allows human users to send mul-
timodal instructions using language and pointing. Moreover,
grounding the received multimodal instructions is also a
challenge, the robot needs to have the ability to interpret and
execute the open multimodal instructions in the real-world
environments. While some recent work has exploited the
advanced capabilities of foundation models to achieve open
vocabulary mobile manipulation in domestic environments
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Robi, can you 
take this  to 
the sofa.

Sure! I can help 

with that. 

Generated Plan:

pick(         ), 
move(‘sofa’), 
placeon(‘sofa’)

Fig. 1: The illustration of the proposed system. Our system allows remote
human users to efficiently and naturally select the target and instruct the
robot to perform tasks using mixed language and gestures.

[1]–[4], the action executed only supports pure language in-
structions as parameters without additional gesture modality.
Previous work focusing on nonverbal interaction typically
ignores the need to interpret language-related gestures [5]–
[7], rely on a hand-designed closed set of instructions and
in-domain training [8]–[10], or use short fixed language and
limit pointing selection in third-person camera [11]. To allow
the robot to ground both open language instruction and open
pointing selection, we first implement a mobile manipulation
system that supports open vocabulary action primitives with
pointing selection in real-world household environments,
driven by the recent advances in vision language models
(VLMs). Then, we introduce a high-level behavior manager,
powered by large language models (LLMs), which organizes
and aligns the received speech and gesture instructions with
the human-in-the-loop to generate compositions of action
primitives to solve the task.

We call the integrated system Robi Butler. It is a multi-
modal remote interactive system for robotic home assistants
with mobile manipulators that enables bi-directional remote
human-robot interaction grounded on the real home environ-
ment through text, voice, video and gesture.

A. Related Work

Language and Gesture in Human-Robot Interaction
Human-Robot Interaction (HRI) is strongly influenced by the
communication interface. Language is the most powerful nat-
ural interface for human communication. Instructing robots
with natural language has been widely explored in previous
work with traditional method [12]–[17] and Foundation
Model powered method [1], [18]–[23]. However, language
can be ambiguous and inaccurate. Humans typically use
nonverbal interaction, such as pointing, to support their
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Fig. 2: The conceptual framework of the proposed system, as discussed in II-A. The robot system consists of three components: Communication Interfaces,
High-level Behavior Manager, and Fundamental Skills. The Communication Interfaces transmit the inputs received from the remote user to the High-level
Behavior Module, which composes the Fundamental Skill to interact with the environment to fulfill the instructions or answer questions.

references. [5] introduced the concept of the clickable world
which allow users to use the laser pointer to trigger robots’
actions. The remote point-and-click interface for grasping has
also been explored in [6]. These works focus solely on non-
verbal interaction itself, ignoring the need to interpret speech-
related gestures [7]. Prior works have investigated how to
interpret language and speech-related gestures together [8]–
[10]. However, these methods require hand-designed word
sets or in-domain training, thus fail to deal with open
language instructions. While recent work leverages the power
of LLM to interpret gesture and speech instructions [11],
the speech instructions are short and rarely varied, and
the interface relies on the third-person camera, limiting the
remote users to specify the target. Our system is built on
top of a multimodal communication interface to construct
a virtual clickable world that allows the remote user to
select the target by pointing while speaking, and the robot
could interpret the received open multimodal instructions and
generate and execute the actions sequence in the real world.

Household Robot Assistant The pursuit of home robot
assistants has been a long-standing dream within the robotics
community and has evolved significantly over the past
few decades. Intelligent home robot assistants with mobile
manipulation capabilities would enable a wider range of
functionalities remotely and deeper integration into daily
routines. Household mobile manipulation systems have been
explored in the past both in simulation platforms [24]–[26]
and real-world systems [27]–[31], these classical systems
have poor generalization in terms of human-robot interaction
because they do not incorporate open language, one can only
specify one of a limited number of goals or options using
fixed language or modifying code. More recent work has
exploited the advanced capabilities of vision and language
base models to achieve open vocabulary mobile manipulation
in domestic environments [1]–[4]. However, the input is pure
language instruction without additional modality, and there is
no closed-loop interaction between the human and the robot.
In this paper, we explored to method and system to build
an open-vocabulary mobile manipulation with the support of
multi-round language and gesture interaction.

II. METHODS AND IMPLEMENTATION

In this work, we address the problem of remote human-
robot interaction for household robotic assistants. Specifi-
cally, our goal is to build a multimodal interactive household
robotic system that allows human users to communicate and
interact with the robot with language instructions and gesture
selections to perform household tasks remotely and naturally.

A. Overall System

The proposed system developed in this paper is illustrated
in Fig. 2. When wearing the AR devices, the user can send
text/voice instructions L and pointing selections G to the
robot and receive video stream, text/voice feedback F from
it. For the robotic system, there are three crucial components:
communication interfaces C, high-level behavior module H ,
and fundamental skills A. The communication interfaces
enable bidirectional communication between the user and
the robot, allowing receiving the text, voice commands, and
pointing selections from the remote user device and sending
the video stream, text, and voice feedback back. Given the
received language instructions L and pointing selections G,
the high-level behavior module interprets and corresponds
the language instructions L and pointing selections G to
understand the user’s intent, and then generates the action
sequence P = {a0, a1, ..., aN}, at ∈ A for the robot to
interact with the environment, together with the response R
to the user. The response can be low-level execution feedback
or a general response to the user.

The fundamental capabilities A include the core function-
alities and skills that the robot needs to perceive and interact
with the environment, consisting of basic mobile manipula-
tion and question-answering skills, including move(), pick(),
placeon(), open(), vqa(). Noticed that our skills support both
open vocabulary and pointing queries except action open().

B. Communication Interfaces

The communication interfaces are designed to enable
multimodal remote interaction between humans and robots.
These interfaces support a variety of bi-directional commu-
nication channels, including voice, text, and gesture-based
interactions. The communication interfaces include the Zoom



Fig. 3: The visualization of communication interfaces.
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Fig. 4: The frameork of high-level behaviour module
website and a gesture selection website (Fig. 3). The Zoom
website handles voice, text and video communication. On
the robot server side, we use the Selenium library to extract
specific text communication elements from the Zoom website
chat box during live sessions. The Zoom platform’s live
transcription feature is used to convert the user’s voice
commands into text. To support the pointing selection of
target objects, we developed a gesture website that allows
users to make point selections that are then sent back to the
robot server. The website server is developed using Flask,
and video frames are sent to the user’s web browser at a
frequency of 5 Hz. The results of the point selections are
immediately sent to the robot server.

C. High-level Behavior Module

The primary purpose of the high-level behavior module
is to composes the Fundamental Skill that interacts with
the environment to fulfil the instructions and answer the
questions given by the user. As illustrated in Fig. 4, this
module takes the received instruction and gesture selection
as input, the response is send back to the user through
our communication interface before or during the execution
process of actions. The module uses large language model
(LLM) to reason and formulate the response as well as a
structured plan through code. The plan generated by the LLM
will be send to the execution manager, which is responsible
for the alignment of gesture with language.

The task planner is built around a large language model
with a prompt instructing it to behave as a household robotic
assistant. We define the robot’s role, known location list,
a list of fundamental skills that the robot can perform and
few-shot example to demonstrate how to use these skills.
We also write the rule to help the alignment of instruction
and gesture selection. When the language input involves the
keyword ‘this’, the planner will generate ‘*’ as the action
parameters. For example, if the instruction is “Robi, please
pick this and put it on the plate”, the generated plan will be
“pick(*), placeon(‘plate’)”. In the execution manager, the ‘*’
will be aligned with the gesture selection. We store the latest
five gesture selections and match all the ’*’ in the plan with
the gesture selections. The action feedback will also be sent

Open-Vocabulary 
Object Detection

Segment Anything Contact GraspNet

Text Query

Point Query

Motion Planning

Depth Image

RGB Image Grasps

Mask

Trajectory

Fig. 5: The open-vocabulary pick pipeline

to the user for further information. We also deploy a simple
process to monitor the feedback from the execution. When
the detection system returns two objects, the robot will send
“Which one are you refering to?” and wait for the user to
choose the target object. Full prompts for the LLM can be
found at the website. We choose GPT-4 [32] from OpenAI
as the language model used in our system. We maintain a
history chat message history that includes the feedback from
the execution manager.

D. Fundamental Skills

1) Manipulation: For the robot to physically interact with
the environment, the robot is equipped with manipulation
skills such as picking up items, placing items, and opening
containers or appliances.

Open-Vocabulary Pick Policy The modular framework
for pick policy is visualized in Fig. 5. We use a pre-trained
open-vocabulary detection [33] and segmentation model [34]
to generate the target object mask and combine it with a
pre-trained grasping model Contact-GraspNet [35] to get the
grasping pose. Once the grasping pose is obtained, we can
use the motion planning tools [36] to generate a trajectory
for the robot arm to perform the grasping.

Open-Vocabulary Place Policy Similar to the pick policy,
the place policy also uses the open vocabulary object seg-
mentation. After obtaining the segmented point clouds, we
calculate the center of the point clouds in the X-Y plane and
the height is calculated by adding 0.2 meters to the highest
point of the segmented point clouds. For the larger fixed
receptacle and location such as table, counter, and trash can,
we use a fixed place location to simply the setting.

Learning-based Open Policy Similar to [37], we used
imitation learning [38] to enable complex actions such as
opening a microwave and fridge. A human demonstrator
used the VR controller to teleoperate the pose and state of
the robot’s gripper, and the joint angles were computed by
solving inverse kinematics (IK). An average of 30 trajectory
demonstrations per primitive action are collected with the
real robot.

2) Navigation: The navigation within our system, inte-
grates both the predifined navigation pose and the open-
vocabulary navigation to identify and move to the target loca-
tion. First, we create an occupancy map using Gmapping [39]
and define the navigation waypoint for the known locations
in the map. We choose to manually define the navigation
waypoint for the known location because it can simplify
the subsequent manipulation process. The navigation also
supports navigation to the location that is not in the known



TABLE I: Real-world Experiments Result. Objects that require user’s selection by pointing are highlighted in bold.

Task Name Task SR Planning SR Average Time Average Interactions

Put overripe avocado in the trash can. 3/3 3/3 156s 1
Move the cup from the coffee table to the kitchen counter. 1/3 3/3 182s 2
Check the item in the fridge. 3/3 3/3 145s 1
Take the drink to the coffee table. 2/3 3/3 117s 1
Navigate to the location and check if the surface is clean. 3/3 3/3 77s 2

Mean 80% 100% 135s 1.4

location lists by text query and point query, similiar to the
open vocabulary object segmentation module discussed in the
pick policy II-D.1. We use the off-the-shelf path and motion
planning algorithm in ROS Navigation Stack to generate the
navigation path and motion trajectory.

3) Visual Question Answering: Our system is capable of
answering users’ open-ended questions about the objects in
the robot’s environment. Specifically, for the action vqa(text)
and vqa(text, pointing), our system applies GPT-4V [40] and
supports two kinds of tasks:

Question answering via mobile manipulation For real-
world environments, answering the question directly from
the visual sensor input ignores the robot’s ability to perform
navigation and manipulation. Previous works [41], [42] to
address these problems rely heavily on in-distribution train-
ing. Our solution leverages the reasoning ability of LLM.
Given the question q, we use LLM to generate the sequence
of actions: {ai} before querying the GPT-4V.

Question answering via point referring While text-only
input allows users to ask questions, the single modality may
fall short in terms of precise specification in the question. We
hope to allow the robot to answer the question together with a
pointing selection given by the user, i.e. vqa(text, pointing).
To achieve this, we apply a visual prompting method for
GPT-4V similar to [43]. We use SAM to get the segmentation
and draw a mask and a point in the image. The processed
image is sent to the GPT-4V to answer the question.

III. PRELIMINARY EXPERIMENTS

A. Setting

Task Description In this section, we evaluate our sys-
tem on a set of daily household tasks that require remote
language and gesture instruction from humans. The tasks
were designed with reference to the American Time Use
Survey [44], which records how people spend their time.
These specific tasks are under the common daily household
class of Food and drink preparation (0.50 hr/day), Interior
cleaning (0.35 hr/day), Household & personal organization
and planning (0.11 hr/day), and Medical and care services
(0.06 hr/day). The ten tasks required the robot to be able to
answer questions and rearrange objects with remote language
and pointing instructions. The names of the tasks can be
found in Table. I. The robot is in a home environment and
the user sits in a different room from the robot to send the
voice and gesture command while viewing the shared zoom
screen. More details can be found on the website.

We evaluate the system based on the following metrics:
Task Success Rate: We define a successful task as one in
which the goal was achieved or the correct answers were

returned to the remote user within 5 minutes. Planning
Success Rate: A plan is successful if the generated plan
can lead to a success task assuming the low-level skills
are executed perfectly. Average Time per Completed Task:
The average time spend to successfully complete the task.
Average Interactions: The average number of interactions
per task.

B. Results and Analysis

For each task, we record and compute the efficacy and
efficiency measures described in III-A. The main results
of the experiments are shown in Table. I. Some recorded
videos of the experiments can be found on the website for
demonstration. The average task success rate, an indicator
of efficacy, stands at 80%, highlighting the system’s ability
to complete the diverse tasks in real-world environment as
intended. The 100% planning success rate suggests that the
gap is mainly due to the imperfect low-level action execution.
Our results also show that the system takes about 135
seconds on average and requires at most two interactions to
complete a task, demonstrating the efficiency of the proposed
system. Note that most of the time is spent on the navigation
and manipulation process.

Failure Modes Analysis Despite the overall success, there
is still gap to stop the task from performing in real-world
robustly. Our analysis identified several key areas where the
system’s performance could falter:

• Grasp execution: An error occurs while gripping the
target cup. Although the pose is generated, the gripper
accidentally touches the cup during the approach pro-
cess.

• Accidental pointing: The user accidentally pointed to
the wrong target when giving the instruction, leading to
failure.

• Motion Planning: While the arm is moving, the drink
in the robot’s gripper hits the body, causing the drink
to fall to the floor.

IV. CONCLUSION

This work presents an interactive robotic assistant de-
signed to improve household tasks by facilitating multimodal
interactions with remote users. We have presented the three
key components for realizing such a robot butler system. We
also demonstrate the practical assistive question-answering
and object rearranging application implemented on a mobile
manipulator. The experimental evidence shows the efficacy
and efficiency of our system. In future work, we hope to test
the system in more everyday tasks with more users and to
extend the system with more diverse manipulation skills.
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