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Abstract

While research on applications and evaluations of explana-
tion methods continues to expand, fairness of the explanation
methods concerning disparities in their performance across
subgroups remains an often overlooked aspect. In this pa-
per, we address this gap by showing that, across three tasks
and five language models, widely used post-hoc feature attri-
bution methods exhibit significant gender disparity with re-
spect to their faithfulness, robustness, and complexity. These
disparities persist even when the models are pre-trained or
fine-tuned on particularly unbiased datasets, indicating that
the disparities we observe are not merely consequences of
biased training data. Our results highlight the importance of
addressing disparities in explanations when developing and
applying explainability methods, as these can lead to biased
outcomes against certain subgroups, with particularly critical
implications in high-stakes contexts. Furthermore, our find-
ings underscore the importance of incorporating the fairness
of explanations, alongside overall model fairness and explain-
ability, as a requirement in regulatory frameworks.

1 Introduction

TestPre-trained language models (PLMs) are increasingly
used in various natural language processing (NLP) tasks but
are often hard-to-understand black boxes, which makes the
problems of explaining PLMs and evaluating those expla-
nations highly valuable. The growing demand to understand
how PLMs generate their outputs has led to the increased
adoption of Explainable Al methods in NLP. Explainable
NLP, in particular, focuses on developing and applying tech-
niques to interpret the inner workings and predictions of
NLP models, including PLMs. Model-agnostic post-hoc fea-
ture importance methods have been particularly favored due
to their wide applicability (Jacovi|2023). These methods
aim to quantify the importance of each token for a given
input and its corresponding model prediction. Such meth-
ods can make use of the gradients of the model with re-
spect to its inputs (Sundararajan, Taly, and Yan|[2017; |Si-
monyan, Vedaldi, and Zisserman| 2013), or use surrogate
models (Ribeiro, Singh, and Guestrin/2016; |Lundberg and
Lee|2017).

The growing interest in explainable NLP is evidenced by
the increasing number of publications surveying explain-

ability in NLP (Liu, Yin, and Wang|2019; Wallace, Gard-
ner, and Singh| 2020; Zhao et al.2024; [Madsen, Reddy,
and Chandar|[2022; Zin1 and Awad| 2022} |Danilevsky et al.
2020). Additionally, as NLP models are frequently applied
in high-stakes domains such as medical (Johri et al.|[2025)
and legal settings (Valvoda and Cotterell 2024) where ex-
plainability is essential, a growing number of survey papers
now focus on explainability in specific NLP tasks, including
fact-checking (Kotonya and Toni|2020), text summarization
(Dhaini et al.|2024)), and for specific explainability methods
in NLP (Mosca et al.[2022). Such surveys highlight the wide
application of post-hoc methods in NLP. Furthermore, post-
hoc methods are used as main explainers in numerous ex-
plainability tools and frameworks proposed in the literature
(Arras, Osman, and Samek|[2022} |Li et al.[|2023; |Yang et al.
2022 |Attanasio et al.|2023} [Sarti et al.|2023)). These frame-
works typically incorporate a range of post-hoc explanation
methods while supporting multiple data types and diverse
machine learning (ML) model types, including PLMs.

Given the widespread adoption of these methods, evalu-
ating their explanations is increasingly important. Explana-
tion evaluation has become an active research area in recent
years (Nauta et al.|2023}; [Longo et al.|2024), with numerous
metrics and properties proposed (DeYoung et al.[2020; Ar-
ras, Osman, and Samek|2022; [Sithakoul, Meftah, and Feutry
2024) to measure the quality of explanations. One desirable
aspect of an explanation method is subgroup fairness: sim-
ilar quality of the explanation across subgroups such as the
different genders. For example,

consider a PLM-based Al system used by clinicians to di-
agnose patients from textual symptom descriptions and pro-
vide post-hoc explanations. The system misdiagnoses both a
male and female patient with identical symptoms, where the
explanation for the female patient correctly highlights the er-
ror, helping the physician identify the mistake. However, the
explanation for the male patient falsely emphasizes relevant
features in the input text, such as specific symptom-related
keywords, misleading the physician into trusting the incor-
rect diagnosis. This discrepancy could undermine trust and
harm patient outcomes.

However, there is a lack of research on evaluating the
fairness of explanation methods across demographic groups,
particularly in NLP.

Most previous works at the intersection of fairness and



explainability in NLP explore using explainability as a tool
to detect bias in language models (T.y.s.s. et al.[2024; |Balkir
et al.[2022; [Mathew et al. [2021} Brandl, Bugliarello, and
Chalkidis| 2024} Sarti et al.|[2023; |Vig et al.|[2020; |Galle-
gos et al.|2024) or facial recognition models (Huber et al.
2023)) while some other recent works examine the influence
of explanations on human-Al decision-making (Schoeffer,
De-Arteaga, and Kiihl|2024; [Morrison et al.|2024). Despite
the rigorous studies on evaluating fairness and bias in lan-
guage models, less attention has been given to detecting bias
in explanations or, in other words, the fairness of explana-
tions themselves.

In this work, we evaluate disparities in the quality of post-
hoc explanations across subgroups. We evaluate explanation
quality based on a set of key explanation properties. Specif-
ically, we investigate whether explanation methods produce
similar faithfulness, robustness, and complexity across de-
mographic groups , and focus on gender as a protected at-
tribute. [1_-] We aim to answer the following research ques-
tion: Do post-hoc explanation methods perform equivalently
across different subgroups, and if not, how can we evaluate
gender disparities in explanations?

Our findings indicate significant gender disparities in the
explanations across different language models, even when
the models do not exhibit significant bias.

Our main contributions are:

* We evaluate the gender disparity in six post-hoc expla-
nation methods on four BERT-based models and GPT-
2 using seven evaluation metrics to measure the quality
of explanations with respect to their faithfulness, robust-
ness, and complexity.

* We show that all methods can exhibit significant gender
disparities regarding all the evaluation metrics used in the
experiments.

* We further demonstrate that gender disparity in explana-
tions persists even when the models are trained solely on
an unbiased dataset, leading to the conclusion that the
bias we observe is mainly influenced by the explanation
methods.

* We finally outline and discuss the implications and con-
siderations for practitioners based on our results.

We present this work as a step toward raising awareness
of gender disparities in explanations and their implications,
particularly when interpreting language model outcomes in
real-world applications. We hope it contributes to ongoing
research efforts aimed at improving the fairness and reliabil-
ity of post-hoc explainability methods.

2 Related Work

A number of studies have highlighted limitations of post-
hoc explainability methods (Madsen et al.|[2024; Jain and
‘Wallace 2019; Krishna et al.[[2024a)); however, they fail to

1Gender, race, age, among others, are referred to as protected
attributes under the US anti-discrimination law (Xiang and Raj1
2019)

consider how these methods perform across different sub-
groups, thus overlooking issues of fairness of explanations
applied to textual datasets.

Wilming et al.| (2024)) study how bias in BERT can in-
fluence explanation correctness. They show how re-training
and fine-tuning various components of the BERT archi-
tecture can improve explanation accuracy in identifying
ground-truth tokens. However, this requires a dataset with
ground-truth explanations, which is often not the case in
more practically relevant datasets. Our study instead eval-
uates disparities in explanations using multiple metrics that
capture three main properties of explanations, none of which
requires a dataset with ground-truth explanations. We also
introduce a setup designed to minimize any model-induced
bias in the explanations, allowing us to investigate gender
disparities independent of potential bias in the language
models.

The topic of disparities in post-hoc explanations has
been addressed in the literature by three studies, all focus-
ing on tabular datasets (Dai et al.|[2022; Balagopalan et al.
2022;[Mhasawade et al.|2024). | Dai et al.|(2022)) evaluate dis-
parity in the explanation performance with respect to faith-
fulness (also referred to as fidelity), stability, consistency,
and complexity while Balagopalan et al.| (2022) focus their
evaluation mainly on faithfulness. However, the two works
solely experiment on tabular datasets and employ two model
classes: linear regression and small neural networks. It re-
mains unclear whether and to what extent explanation meth-
ods perform similarly across different subgroups when ap-
plied to textual datasets using various PLMs. Other works
explore additional factors that may contribute to the level
of disparities exhibited by certain post-hoc explainability
methods. Balagopalan et al.| (2022) and [Mhasawade et al.
(2024) investigate how specific data properties influence dis-
parities in local explanations, with a particular emphasis on
faithfulness. In particular, they examine whether the data
representation encodes information about the sensitive at-
tribute, and [Mhasawade et al.| (2024) further investigates
other properties such as limited sample size and covariate
shift and evaluates how model characteristics, like model
complexity, can result in greater or lesser disparities in the
fidelity of LIME (Ribeiro, Singh, and Guestrin|2016)) expla-
nations.

Textual datasets present unique challenges compared
to tabular datasets. Among the general text-specific chal-
lenges in applying explainability methods (Zini and Awad
2022) compared to tabular datasets, isolating sensitive or
protected attributes, such as gender, is particularly more
complex in text. This complexity arises from the unstruc-
tured nature of text, the implicit representation of gender-
related information (as opposed to being explicitly encoded
in a single column in tabular datasets), and the context de-
pendency, where gender-related information often depends
on the surrounding text. In earlier studies, model selection
was limited to either linear regression or a 3- to 4-layer neu-
ral network. This work, as detailed later in this paper, ex-
plores a diverse set of five transformer-based language mod-
els of varying sizes and complexity and two distinct archi-
tectures: encoder-only and decoder-only models. Such lan-
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Figure 1: Overview of our experimental pipeline, exemplified with the GECO dataset (Wilming et al.[2024). We begin by
obtaining predictions for male/female sentence pairs. We then use feature attribution methods to explain the predictions and
evaluate the explanations using various metrics. We finally analyze the distributions of evaluation scores per each metric for
male and female sentences and observe if the evaluations differ significantly between the two genders, indicating gender bias

and disparity in explanations.

guage models demonstrate high performance in text classi-
fication tasks, making them an ideal choice for real-world
applications. This underscores the importance of investigat-
ing disparities in the post-hoc explanations across subgroups
when explanation methods are applied to explain the out-
comes of these language models.

To the best of our knowledge, this paper presents the first
study evaluating gender disparities in post-hoc explanations
with respect to multiple quality metrics on various language
models on textual datasets.

3 Disparity in Post-hoc Explanations
3.1 Local Post-hoc Explanation Methods

In our evaluation, we focus on six local feature attribu-
tion methods: Gradient (Saliency) (Simonyan, Vedaldi, and
Zisserman||2013)), Integrated Gradients (IG) (Sundararajan,
Taly, and Yan|[2017), SHAP (Lundberg and Lee [2017),
LIME (Ribeiro, Singh, and Guestrin/2016), and extensions
of Gradient and IG in which the input features are multiplied
by the importance scores, named Gradient x Input (GxI) and
IG x Input (IGxI). The applicability of these post-hoc expla-
nation methods has also made them useful for various down-
stream tasks (Zini and Awad|[2022} |Danilevsky et al.|[2020),
and also recently for obtaining rationales from smaller mod-
els to be used in prompting large language models (LLMs) to
improve their performance(Krishna et al.[2024b; Bhan et al.
2024).

3.2 Evaluating Explanations

Prior research on evaluating explanations has introduced
various properties and desiderata that can be used to as-
sess the quality of explanation methods and the explanations
themselves (Robnik—ﬁikonja and Bohanec|2018;|Nauta et al.
2023).

Several studies have built upon these foundational prop-
erties to develop metrics for evaluating different aspects of
explanation quality. These metrics include both quantitative
measures, such as fidelity, stability, consistency, and plau-
sibility (Zhou et al.|[2021} |Yeh et al.|2019; DeYoung et al.
2020; L1 et al.|2023), as well as qualitative approaches,

which involve human-based evaluations of the generated ex-
planations (Lakkaraju and Bastani [2020; |Jesus et al.|[2021)
to assess how humans perceive these explanations.

In this paper, we quantitatively evaluate explanation qual-
ity based on three main desired properties: faithfulness, ro-
bustness, and complexity. Table[2](Appendix [B]) presents the
metrics we consider to measure the aforementioned proper-
ties to evaluate the quality of explanations.

Faithfulness refers to the degree to which an explana-
tion accurately reflects and aligns with the internal work-
ings and decision-making process of a model (Jacovi and
Goldberg|2020). High faithfulness in explanations is desir-
able because it ensures that the explanation truly represents
the model’s functioning in making a prediction. We evalu-
ate faithfulness using four metrics: comprehensiveness, suf-
ficiency, soft comprehensiveness, and soft sufficiency. While
sufficiency and comprehensiveness are commonly used, re-
cent studies suggest they can lead to inaccurate faithful-
ness measurements due to the complete token removal op-
eration they use (Zhao et al.|2022}; |Chrysostomou and Ale-
tras| 2022); therefore, we also use soft comprehensiveness
and soft sufficiency, which have proven more accurate in
measuring faithfulness by masking parts of the tokens’ em-
beddings proportional to their importance scores rather than
completely removing a fixed number of tokens (Zhao and
Aletras||2023). Considering prior literature highlighting dis-
agreement among metrics used to measure faithfulness (Jain
and Wallace|[2019; Krishna et al.|2024a), we employ multi-
ple metrics that differ in evaluating faithfulness. The focus
of our study is not to compare these metrics but rather to
investigate disparities in explanations with respect to these
metrics.

Robustness refers to the degree to which an explainability
method responds to small perturbations and changes of the
inputs, consistently producing reliable and stable explana-
tions (Sithakoul, Meftah, and Feutry|2024; |Alvarez-Melis
and Jaakkola 2018). In particular, we try to compute the
worst-case perturbation that results in the most significant
change in the explanations within a region around the origi-
nal input.



Complexity refers to the degree to which users can eas-
ily understand and interpret an explanation. Sparse expla-
nations, compared to dense ones, are generally more fa-
vorable as they are less complex and easier to comprehend
(Sithakoul, Meftah, and Feutry|2024)). We evaluate explana-
tion complexity using two measures: sparsity and Gini in-
dex. We define and provide the formulation and the imple-
mentation details of these metrics in Appendix

3.3 Implications of Significant Disparity

Based on the identified properties, we discuss the implica-
tions of the disparity in these properties. Although we focus
this paper on gender, the same considerations can apply to
other protected attributes.

Disparities in explanation faithfulness can result in expla-
nations that do not accurately reflect the model’s decision-
making process across all groups, potentially leading to less
accurate explanations for one group (e.g., female inputs)
compared to another (e.g., male inputs). As shown in the ex-
ample in the introduction, this could undermine stakehold-
ers’ trust, leading them to rely on incorrect model outputs.
Significant disparity in complexity implies that the explana-
tions for the model’s decisions are more complex and, there-
fore, more challenging to understand for one group com-
pared to another. Robustness disparity implies that explana-
tions for one group exhibit higher sensitivity to slight pertur-
bations, making them more vulnerable to noisy, erroneous
data or adversarial attacks.

4 Experimental Setup
4.1 Datasets

An ideal dataset to test our hypothesis would contain male
and female inputs where the only difference between a pair
of male/female inputs is the gender in those inputs, and the
difference in gender should have an influence on the task,
i.e., the model should not be able to learn to ignore the gen-
ders. While ensuring that two inputs differ only in gender
is easier to do with tabular data where gender is a categori-
cal attribute, it is harder in textual data in which gender can
be apparent in a number of ways: as the subject, or as an
object, either explicitly through pronouns or more implic-
itly through nouns such as sister/brother or actor/actress.
Ensuring that the models cannot ignore the genders is also
non-trivial since it is hard to measure what features of a sen-
tence actually reliably influence the inputs. In fact, knowing
that would in a way be equivalent to having ground-truth
feature importance explanations, as we would know that the
words signaling gender in a sentence strongly influence the
prediction. We experiment with three datasets, taking dif-
ferent approaches with respect to these two considerations.
Table[T]displays example inputs from each of our datasets.
The first dataset is GECO (Wilming et al.|2024), consist-
ing of pairs of sentences that only differ in their words sig-
naling gender; e.g., replacing him with her and sister with
brother. The task is to classify the gender in a sentence,
either of the entire sentence or only the subject of a sen-
tence. Thus GECO strictly enforces that pairs of sentences
are identical except gender, and that those genders strongly

influence the predictions, as they are the predictions them-
selves.

Next, inspired by the CrowS-Pairs dataset (Nangia et al.
2020), we construct the synthetic Stereotypes dataset by
prompting Claude 3.5 Sonnet (Anthropic|2024) (see Ap-
pendix [Dfor the details). It consists of sentence pairs differ-
ing only in their gendered words as in GECO, but the task
is to classify if a sentence expresses a valid stereotype or
not. A valid stereotype is one that is (even if factually inac-
curate) associated with one gender more than the other, and
the invalid sentences associate the same stereotype with the
other gender. This way, we again have pairs of inputs identi-
cal except gender, but now the gender in a sentence is not the
label directly although it strongly affects it. We validate our
dataset first by manually verifying a subset of the inputs, and
then by observing that models fine-tuned on this dataset can
achieve high accuracy, indicating that the task is meaningful
and can be solved with the information in the sentences.

Finally, we convert the tabular COMPAS (Angwin
et al|2016) dataset for recidivism prediction to text in
order to obtain a dataset without pairs identical up to
gender, and one in which the gender attribute has a weaker,
although not negligible, influence on the task. Following
earlier work (Fang et al.|[2024), we convert each row to
a comma-separated string such as 3 priors, score
factor 1, under 45, under 25, African
American, male, misdemeanor.We do not process
the COMPAS dataset to have input pairs that only differ
in their gender. That would require assigning labels to
previously unseen data points, which we avoid doing to
not modify the original relationships between the existing
features.

4.2 Models

We use five open-source language models that are acces-
sible through the HuggingFace Hub for our experiments,
with more information as well as hyperlinks in Table [3] in
the appendix. The first two are a base BERT (Devlin et al.
2019) model and a distilled TinyBERT (Qian et al.|[2022)).
The third is the GPT-2 model released by OpenAl (Radford
et al.|2019), and the fourth is the RoOBERTa-large model (Liu
et al.|2019) which is the largest model we experiment with,
with around 355M parameters. Finally, we experiment with
a version of BERT released by Meta and named FairBERTa
(J1ao et al.|[2020). We chose to include FairBERTa as it is
fine-tuned on a dataset in which inputs containing gender
information are perturbed to non-binary words (e.g., he/she
— they), that is argued to lead to a model which exhibits less
disparity between genders.

4.3 Explanation Methods & Evaluation

For the implementation of our explanation methods (Sec-
tion @, we use the ferret library (Attanasio et al.|[2023)
which provides off-the-shelf support for models available
through the Hugging Face transformers library. We also use
ferret and an extension of it for its implementation of com-
prehensiveness, sufficiency, and sensitivity metrics. We pro-
vide our own implementations based on earlier work for



Table 1: Example inputs from the datasets used in our experiments. Bold words indicate those that are changed between male

and female sentences of each pair.

Dataset Examples

Labels Task Size

GECO ALL (Wilming et al.[2024)

He is cynically false about his childhood.

She is cynically false about her childhood. Female

Female: 1,61
Classify gender emale: 1,610
Male Male: 1,610

She takes her to a hospital. Femal Female: 1,610
GECO SUBJ (Wilming et al.2024) ¢ (akes ier to a hospita CMAC Classify gender emate

He takes her to a hospital. Male Male: 1,610

As a woman CFO, she cut budgets ruthlessly. Yes Female: 1,675
Stereotypes Detect stereotype

As a man CFO, he cut budgets ruthlessly. No Male: 1,675

1 priors, s factor 0, under 45, under 25, Hispanic, mal Yes . Female: 1,175
COMPAS (Angwin et al.[2016) pr%ors score kac or . under uncer 1spanic, mate e Predict recidivism emale

0 priors, score factor 0, under 45, under 25, other race, female ~ No Male: 4,997

the sparsity, Gini index, and soft sufficiency/comprehensive-
ness.

Lower values are preferred for sufficiency (AOPC), soft
sufficiency, and sparsity, while higher values are preferred
for the other metrics.

4.4 Quantifying Disparity

We obtain feature-importance explanations for each input in
our test set and evaluate the explanations with our metrics,
resulting in a list of evaluation scores for the male and fe-
male subsets of the dataset, per explanation method and met-
ric. We can then compare these lists per metric to quantify if
there is a statistically significant difference or not, and if so
how strong it is (i.e. the effect size).

To measure if the disparity is statistically significant, we
follow the previous work (Dai et al.[2022) and use the Mann-
Whitney U test that is applicable to subgroups with different
sizes to test the null hypothesis that for any pair of values
chosen from the subgroups, they are equally likely to be
greater than each other. This corresponds to the methods per-
forming equivalently between the two subgroups. We con-
clude there is a statistically significant difference if p < 0.05
and quantify the effect size with the Cohen’s d metric we de-
fine in Appendix

5 Results and Analysis

Our main results are shown as follows: Tables[9]and [TT|(Ap-
pendix display the counts of runs (out of five) resulting
in statistically significant (p < .05) disparity, highlighting
the cases with considerable effect size (|d| > 0.2, following
the literature (Sawilowsky|2009)) with bold. Moreover, blue
cells indicate that the male sentences have higher scores for
that metric, while red cells indicate female sentences’ scores
are higher, with the strength of the color varying with respect
to the count in the cell. To evaluate if the disparity we ob-
serve is a consequence of the models being pre-trained on
biased data, we also report results after training BERT and
GPT-2 from scratch on GECO in Section [5.4] We explain
our training setup in more detail in Appendix |G| and show
the average effect sizes of disparities for each configuration
in Tables [5] [6] [7] [§] in Appendix [H] as well as further box-
plots displaying the distributions of scores in Figures [3|in
Appendix [Hl We also present a bias analysis in Appendix

[ using GECO and show that the models’ predictive perfor-
mance does not exhibit significant disparity.

In total, of the 5,040 combinations of dataset, model, ex-
planation, metric, seeds in our experiments, 3,647 (72.4%)
exhibit statistically significant (p < 0.05) disparity and
2,761 (54.8%) do so with a considerable effect size (|d| >
0.2).

5.1 Disparity per Explanation Method
To analyze disparity per method, we aggregate results in Ta-

bles and [I0] (Appendix [H) (or Tables [3} [6[7] and [§]in
the Appendix) row-wise considering all experimental com-
binations with metrics, models and datasets. Results show
that IGxI (60%), SHAP (59%) and LIME (57%) exhibit the
highest values for significant disparity with considerable ef-
fect size

followed by Grad (51.3%), GxI (51.1%), and IG (49%)
where these values are notably high and reflect significant
disparity and bias in the performance of these explanations.

Excluding IGxI, gradient-based methods (Grad, GxI, IG)
show relatively less significant explanation disparity than
perturbation-based methods (SHAP and LIME). Overall, re-
sults demonstrate that all six methods we considered exhibit
significant disparity with considerable effect size on more
than 49% of the combinations. These results are also re-
flected in the differences and gaps between the evaluation
scores distributions in Figure [2] (and Figure [3]in Appendix

H).

5.2 Disparity Across Metrics

Faithfulness Disparity On both GECO datasets, more
than 95% of the runs with soft sufficiency and soft compre-
hensiveness results in significant disparity, with 85% also
exhibiting considerable effect size, while the comprehen-
siveness and sufficiency less frequently result in significant
disparity. Most noticeably on GECO-SUBJ, all runs with
the soft metrics result in significant disparity. Furthermore,
for all faithfulness metrics, the direction of their disparities
for each model is often consistent between the explanation
methods, indicating that the model plays a larger role in de-
termining this direction than the explanation method.

In particular, the soft metrics show a noticeable decrease
in the number of runs with significant disparity on the COM-



PAS and Stereotypes datasets, to less than 40% on COMPAS
and 20% on Stereotypes. Nevertheless, the regular compre-
hensiveness and sufficiency metrics show a smaller decrease
with 63% of runs on COMPAS and 71.5% on Stereotypes
showing significant disparity. These results indicate that the
soft removal operations can help reduce disparities in the
faithfulness of explanations as long as the sensitive attribute
is not the label directly.

We also observe in particular on the more practically rele-
vant COMPAS dataset that unbiased pre-training as in Fair-
BERTa and using larger models such as RoBERTa might
help reduce the occurrence of disparities. Nevertheless, the
high amount of faithfulness disparities visible across models
and explanation methods for the comprehensiveness and suf-
ficiency metrics highlights that feature attribution methods
can lead to unfair performance between sensitive attributes
such as gender.

Complexity Disparity On the GECO datasets, the com-
plexity metrics Gini index and sparsity, exhibit disparity less
frequently than the faithfulness metrics, at 70% and 49.5%
respectively, with 53% and 42% of the total runs also result-
ing in disparity with considerable effect size. Results for the
COMPAS and Stereotypes datasets also follow similar per-
centages, with 65% (38% with considerable effect size) and
68% (54% with considerable effect size) for the Gini Index
on COMPAS and Stereotypes, and likewise 57% (27%) and
40% (30%) for sparsity.

Similar to the results with faithfulness metrics, using
larger models such as RoBERTa decreases the disparity in
the complexity of explanations, as it is most strongly visible
when very few of the Grad, GxI, IG, and IGxI explanations
show significant disparity in complexity on GECO. Never-
theless, despite this behavior, LIME and SHAP almost al-
ways result in disparity with RoOBERTa on GECO, highlight-
ing that the amount of disparity is not only a consequence of
the model, but it varies with the explanation methods as well.

Sensitivity Disparity Considering sensitivity, 85% of runs
on GECO results in disparities with considerable effect size,
which is the highest among all evaluation metrics. Although
not the highest among all metrics, 42% of run on Stereo-
types and 45% on COMPAS also result in disparities with
considerable effect size, indicating that such disparities per-
sists across different datasets and explanation methods.
Following the trend from the previous metrics, the larger
RoBERTa model again results in the least amount of dis-
parity in sensitivity on COMPAS and Stereotypes, high-
lighting again that larger models may be less, although not
completely, prone to gender disparities in their explanations.
However, this is not visible on the GECO datasets, where all
runs result in statistically significant disparities in sensitiv-

1ty.

5.3 Disparities Across Datasets

Overall, our results confirm the hypothesis that the GECO
datasets would show the highest amount of disparity, since
the sensitive attribute had a stronger influence on the task by
way of being the label itself. As we decrease the impact of
gender on the task, first with the Stereotypes and then with

the COMPAS datasets, we observe less disparity but still a
significant one. This indicates that the amount of disparity
depends not only on the model or the explanation methods,
but on the dataset as well. However, most crucially, this is
not because the datasets are particularly biased but because
the dataset determines the influence the sensitive attribute
has on the predictions.

5.4 Disparity when the Models are Trained from
Scratch

To eliminate the possibility that the disparity we observe is
just a consequence of the data the models were pre-trained
on, we now apply our pipeline to models trained only on the
two variants of the GECO dataset. More specifically, using
BERT and GPT-2, we initialize the models randomly and
then train them either on GECO-ALL or GECO-SUBJ for
50 epochs.

Table[T0|displays the number of runs out of five resulting
in statistically significant (p < .05) disparity, and highlights
those that has a considerable effect size (d > 0.2) in bold.
Similar to the results in Table in[9] more than 80% of runs
for both models show significant gender disparity. More-
over, the direction of the disparity per metric, as indicated by
the colors of cells in the table, also follows a similar pattern.
For instance, in both sets of results, male sentences have ex-
planations with higher soft sufficiency and sparsity scores,
and female sentences have higher soft comprehensiveness
scores. Thus, we conclude that even if trained only on an
unbiased dataset such as GECqﬂ the explanation methods
frequently result in disparate treatments of the two genders.
These results confirm that while datasets and models can in-
fluence the disparities in explanations, aligning with (Mha-
sawade et al.[2024)),

they are not the sole cause and explanation methods them-
selves can contribute to these disparities.

5.5 Implications and Considerations for
Researchers and Practitioners

Although disparity results can vary between metrics, all ex-
planation methods under study consistently exhibit signif-
icant explanation disparities with considerable effect sizes
across all included metrics. These results underscore the
need for stakeholders (e.g., practitioners, developers, re-
searchers) to consider general and metric-specific explana-
tion disparities when using explanations for PLMs outputs
to make informed decisions, depending on their use case.

2 We refer to GECO as “unbiased” as it does not distinguish
between the two genders. Concretely, if the ground truth expla-
nation words were masked, it would be impossible to determine
which sentences were male sentences and which were female sen-
tences. This is because with the masked inputs, the two sentences
in each male-female pair appear identical, and there is no way to
distinguish between the two genders since the dataset is perfectly
balanced as well. This observation implies that there is no property
of the dataset besides the gender words that affect the labels in any
way. This is unlike a potentially biased dataset such as COMPAS
where even if the gender of each data point was masked, the re-
maining features’ statistics could be used to infer the masked gen-
ders to an extent.



Practitioners use explainability methods to interpret a
model’s decision-making process, debug the model, or im-
prove its performance. As previously discussed, the conve-
nience and ease of use provided by explainability frame-
works make them popular among developers seeking expla-
nations for real-world applications. However, directly apply-
ing post-hoc methods or relying on frameworks that support
them can mislead developers when evaluating the model,
particularly in gender-related tasks, leading to biased deci-
sions and critical outcomes for both the system under devel-
opment and any subsequent projects that utilize such frame-
works. Practitioners should therefore recognize that these
methods can exhibit significant gender disparities. We rec-
ommend they carefully consider such disparities based on
the explanation properties most relevant to their use case.
As discussed earlier, each explanation property has different
implications. Accordingly, practitioners must assess which
properties are most critical in their specific contexts.

For example, certain disparities in explanations can be
more critical for some stakeholder groups than for others.
For instance, explanations with complexity disparity might
not be critical for developers. However, it can be very rele-
vant for laypeople who often need simple and easily under-
standable explanations. On the other side, significant dispar-
ity in faithfulness represents a major concern for all stake-
holder groups as it implies explanations that inaccurately
reflect the model’s decision-making process between sub-
groups, which could result in critical consequences, similar
to the example presented in section[I} We urge practitioners
to thoroughly audit the properties of explanations for each
subgroup.

Researchers can benefit from our open-source pipeline
to develop new explanation methods and evaluation metrics
and identify the reasons behind the disparity we observe.
Practitioners can also use this pipeline to run tests to iden-
tify potential failure modes of the methods they are using.
For example, detecting that explanation quality varies signif-
icantly by gender in a task where it should be gender-neutral
raises a potential red flag, especially in gender-sensitive con-
texts. Thus, we call upon researchers and developers to ac-
count for gender disparities in post-hoc explanations when
introducing new libraries and frameworks that employ these
methods.

For developers of Al systems, particularly those integrat-
ing PLMs, employing explainability methods that exhibit
gender disparities in systems can lead to non-compliance
with transparency requirements outlined in regulations such
as the EU AI Act (Council of European Union|2024)). This
risk is particularly pronounced in high-risk settings, where
biased explanations can undermine the system’s fairness,
disadvantage certain subgroups, and impose significant lia-
bility on developers and deployers of such systems. As post-
hoc methods are widely used across various Al applications,
end-users, such as doctors, who receive explanations gener-
ated by these methods, should be aware that they may exhibit
gender disparities, particularly in gender-sensitive tasks or
use cases. For regulators and policymakers, our findings
emphasize the importance of explicitly integrating explana-
tion fairness as a requirement in both existing and future reg-

ulations alongside model and data fairness.

6 Conclusion

In this paper, we presented the first study investigating dis-
parities in the quality of post-hoc feature attribution methods
for language models across subgroups, focusing specifically
on gender as a protected attribute. We showed that every in-
vestigated explanation method presents a significant degree
of bias across various metrics, even when the models are
trained from scratch on an unbiased dataset, with the most
pronounced disparities emerging in faithfulness and sensi-
tivity. These results underscore the importance of going be-
yond model-level fairness and scrutinizing the fairness of
explanations themselves.

Despite the limitations discussed in Section [A] this work
can serve as an essential foundation for researchers and
practitioners seeking to evaluate existing and novel meth-
ods of interpreting language models. By unveiling potential
gaps in how explanation quality varies for different demo-
graphic groups and metrics, we highlight the broader need
for fairness-promoting algorithms that address explanation-
level bias. Building on recent efforts to mitigate model bias
(Brandl, Bugliarello, and Chalkidis|2024)), we advocate for
fairness-focused strategies aimed at reducing disparities in
explanation performance.

Looking forward, there are multiple avenues for future
work:

* Extending methods and metrics: Incorporate new ap-
proaches (Leemann et al.[|[2025} |Deiseroth et al.|2023)
or additional implementations of existing metrics.

* Broadening data coverage: Generate synthetic datasets or
augment existing textual datasets to capture protected at-
tributes beyond gender, ensuring compatibility with our
disparity measurement pipeline. Additionally, we plan
to expand our dataset collection by integrating further
datasets addressing gender bias in NLP tasks, such as
WinoBias (Zhao et al.|[2018)), while still being aware of
the shortcomings of such datasets (Blodgett et al.|2021]).

* Combining quantitative with human-based evaluation:
Complement the standard metrics with human-grounded
assessments to evaluate explanations (Nauta et al.|[2023
Longo et al.[2024) to capture nuanced disparities early.

Our findings point to the need for deeper theoretical and em-
pirical investigation into the causes of explanation bias and
the contribution of each cause, whether stemming from the
explanation methods themselves, the fine-tuning process, or
dataset design. A better understanding of these underlying
mechanisms will be pivotal for developing robust mitigation
strategies and ensuring that explanation fairness is upheld
alongside transparency and predictive fairness.
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A Limitations

The main limitation of our evaluation is that it is limited
to gender disparity and binary classification tasks. More in-
sights into the disparities amplified by the explanation meth-
ods can be gained by analyzing different sensitive attributes
such as race, as well as other tasks, such as text generation.
Our evaluations are also limited to transformer-based mod-
els, although such models currently see the highest use.

We also acknowledge that the design process for the syn-
thetic Stereotypes dataset could benefit from recommen-
dations in the literature to avoid potential pitfalls associ-
ated with evaluation corpus design (Blodgett et al.| 2020}
2021). Finally, evaluating explanations with respect to de-
sirable properties such as faithfulness and robustness is an

active research area itself, with new evaluation methods fre-
quently being proposed to address the shortcomings of ex-
isting methods (Jacovi and Goldberg|2020; Lyu, Apidianaki,
and Callison-Burch!|2024; Hsia et al.|[2024)). Thus, our anal-
ysis is also limited by the current state of the evaluation lit-
erature and would benefit from future developments.

B Definition and Formulation of Evaluation
Metrics

B.1 Comprehensiveness

Measures how relevant the tokens assigned high-importance
are for classification. Let f; be the output probability for the
correct class j. Top-k tokens r are removed and the differ-
ence f;(z) — f;(x \ r) is the comprehensiveness value. In
ferret, comprehensiveness is measured using the area over
perturbation curve (AOPC) that is computed by varying k
(the number of tokens to remove) by varying the thresh-
old such that the tokens with an importance score above the
threshold are removed, and averaging the resulting compre-
hensiveness values. The resulting values thus lie in the in-
terval [0,1]. We vary threshold from 0.1 to 1.0 in increments
of 0.1. A high value indicates a significant change in the
model’s output, which implies that the removed tokens were
important for classification. Then we conclude that an ex-
planation successfully captures the relevant tokens if it has a
high comprehensiveness value.

B.2 Sufficiency

As opposed to comprehensiveness, only the top-k tokens r
are input to the model and the sufficiency value is the dif-
ference f;(z) — f;(r) in the model’s output. A small value
indicates that only the tokens assigned high importance were
enough to obtain the same output, and hence that the expla-
nation was able to capture the most relevant tokens. Then the
number k is varied similar to the comprehensiveness metric,
except this time removing the tokens with importance scores
below the threshold, and the AOPC is computed by aver-
aging the resulting sufficiency values, with the final values
between 0 and 1.

B.3 Soft Sufficiency and Comprehensiveness

Removing tokens entirely can lead to out-of-distribution in-
puts, meaning that the explanations are evaluated on kinds
of inputs the model never saw during training and is unlikely
to see in real use. To reduce this difference between the ac-
tual inputs and those used in evaluation, (Zhao and Aletras
2023)) instead propose to mask a fraction of each token’s em-
beddings based on that token’s importance score. For a the
vector representation x of a token with importance score s
normalized between 0 and 1, the input is perturbed to obtain
x’ such that

x'=x@®e, e; ~Ber(q) (1)

with ¢ = s if the elements are to be retained (for sufficiency)
and ¢ = 1 — s if they are to be removed (for comprehensive-
ness). Finally for original and perturbed sentences X and X'



Table 2: Overview of the considered explanation properties and metrics used to evaluate explanation quality.

Property

Maetric

Definition

Faithfulness

Comprehensiveness
(DeYoung et al.[2020)

Measures whether the explanation captures all the evidence (i.e., to-
kens) used by the model to make a prediction by assessing the drop in
model probability when relevant tokens are removed

Sufficiency (DeYoung
et al.|2020)

Measures whether the tokens identified by the explanation are sufficient
for the model to make a prediction .

Soft  Comprehensive-
ness & Soft Sufficiency
(Zhao and Aletras
2023)

To prevent evaluating explanations on out-of-distribution inputs as a
result of removing tokens entirely as in comprehensiveness and suffi-
ciency, for the soft versions each token’s embedding is masked propor-
tionally to its importance score.

Complexity

Sparsity (Dai et al.
2022)

Counts the number of features with an attributed importance greater
than a given threshold.

Gini-index(Sithakoul,
Meftah, and Feutry
2024)

Measures the concentration of explanations on specific features by com-
puting the Gini index of attribution vector. A high value, close to 1, in-
dicates a greater concentration of attribution on fewer tokens, which is
more desirable compared to a low value, close to 0, where attribution is
more evenly distributed across multiple tokens. .

Robustness

Sensitivity (Yeh et al.
2019)

Measures the extent of change in the explanation when there is a slight
alteration in the input. High sensitivity in explanations can be prob-
lematic, as it may render the explanation method more susceptible to

adversarial attacks (Ghorbani, Abid, and Zou|[2019).

with true class y, soft sufficiency and comprehensiveness are
defined as

Soft-S = 1 — max(0, p(y|X) — p(y[X')) € 0,1] ()
Soft-C = max(0, p(y|X) — p(y[X')) € [0,1] 3)

where p denotes the model output logits.

B.4 Sparsity

For a given explanation vector (s, ..., 8, ), we compute the
share of scores exceeding a threshold 7 (0.1 for our experi-
ments) in absolute value:

1 n
Sparsity = — > 1lsi| > 7] €[0,1] )
i=1

where 1 denotes the indicator function. Lower non-zero val-
ues are preferred as they indicate only a few tokens were as-
signed high scores, which makes the explanation easier to
understand. Sparsity of zero is not desired since it means all
tokens were assigned relatively low scores with respect to
the threshold.

B.5 Gini Index

For the explanation vector s = (sy, ..., $,,) sorted in an as-
cending way with respect to the scores’ absolute values and
k = (k1,...,k,) denoting the indices of the original ele-
ments in the sorted vector, we compute

[Is[]x n

Gini Index :=1— 2 Z €0,1] (5
i=1

with higher values (more sparse) being preferred.

B.6 Sensitivity

Given input z and model f with explainer ®, we find the in-
put y within a ball of radius r around x such that the change
in the explanation is maximized (i.e. the worst-case pertur-
bation). A lower worst-case difference indicates the expla-
nation method is more robust to small perturbations:

9(f.9) ~S(h _
Gl < )('6)

We use a projected gradient descent (PGD) (Madry|2017)
attack in which the input is perturbed in the direction of the
gradient maximizing the prediction error, and projected back
onto the ball after each gradient step.

Sensitivity =
yille—yll<r

C Reproducibility

Our end-to-end pipeline is designed to be easily repro-
ducible. We base our experiments on the publicly avail-
able GECO (Wilming et al.|[2024) and COMPAS datasets
(Angwin et al|[2016), as well as the synthetic Stereotypes
dataset we create and make public. We use the publicly
available models from Huggingface (see Table [3)) running
on a single NVIDIA V100 GPU. Including fine-tuning, and
generating and evaluating explanations, one model/dataset
run takes between 40-60 minutes without the sensitivity met-
ric and 10 hours with sensitivity. We use the open source
ferret library (Attanasio et al.|2023) for implementations of
the explanation methods and metrics. For the metrics not
available in ferret, we either use and include in our code-
base other publicly available implementations with appro-
priate licenses, or provide our own implementations.



Table 3: Information about the models used in our experi-
ments. The names are hyperlinks directing to their respec-
tive HuggingFace Hub pages.

Name Type Num. Params
TinyBERT Encoder-only 14,350,874
FairBERTa Encoder-only 124,647,170
BERT Encoder-only 167,357,954
GPT-2 Decoder-only 124,442,112
RoBERTa-large Encoder-only 355,359,744

D Prompting Claude for the Stereotypes
Dataset

To create our Stereotypes dataset, we prompt Claude 3.5
Sonnet (Anthropic| [2024), the most recent version as of
November 2024. Rather than using a single prompt, we start
with an initial prompt, and then iterate in a few steps of con-
versation depending on the quality of the sentences gener-
ated. Once the sentences fulfill our requirements, we repeti-
tively ask Claude to generate a number of sentences.
The initial prompt is:
I want you to generate a small dataset. It will consist
of pairs of sentences. The only difference between the
sentences in each pair will be the subject’s gender.
E.g.:
* He is a doctor.
* She is a doctor.

The second characteristic of the dataset is that the
first sentence in each pair will express a stereotype to-
wards one gender. So the second sentence will be the
same, just with the gender flipped, and the stereotype
naturally won’t hold for that gender. E.g.

e She was a bad doctor, no surprises.
* He was a bad doctor, no surprises.

Do you understand? Generate one sentence pair so 1
can see if you get the task.

After this prompt, we give feedback for two steps until the
outputs are of desired quality. Our feedback consists of the
instructions

You get the point but the examples you generated are
not very good. Generate a few more and I will tell you
the best. Then we will refine.

and

But the stereotypes are not explicitly obvious in the
sentences. I want them to be more clear. Something
like "I was surprised to see a woman doctor articulate
herself so well.”

E Definition of Cohen’s d

To quantify the effect size in our experiments we use the
Cohen’s d metric defined as

_ = 2 2
d:M with S:”w 7N
S

with Z7, Z average male/female scores and o3, 0% the
variances.

F Bias Analysis

To ensure that the bias we observe is independent of the
model, we quantify the gender bias in each of our models
through a bias analysis after fine-tuning, with the results
displayed below. The true positive rate (TPR), true nega-
tive rate (TNR), and the average prediction difference (APD)
(Jentzsch and Turan|2022) defined as follows:

TPR — Accurately predicted male

®)

Total male
Accurately predicted female

TNR =
Total female ©)

APD = Eyp | fin (2ar) = fom (@) (10)

where x5, and x g are the male and female versions of the
same input, and D denotes the dataset, and f;y, the softmax
output probabilities of the model for the male (M) and fe-
male (F) classes.

Thus a discrepancy between the TPR and TNR values in-
dicate the model is better at identifying one gender than the
other, and while a high APD value can indicate a discrep-
ancy between the subgroup accuracies, it might also indicate
that the model is more certain (i.e. higher softmax probabil-
ities

when making predictions for one gender compared to the
other one.

Table [ displays the bias analysis results for our four
models averaged over 5 runs. The average predictions dif-
ferences are smaller for the ALL dataset compared to
the slightly harder SUBJ dataset. Nevertheless, all models
achieve almost-perfect accuracy on ALL and very high ac-
curacy on SUBJ. While accuracies for male sentences is
slightly higher for all models as the TPR values are higher
than TNR values, the very small differences often within +
one standard deviation and in in the order of 0.01 leads us
to believe there is no significant bias inherent in the models
after fine-tuning.

G Experimental Pipeline

To obtain our results, for each of our models and datasets,
we split the dataset into an 80/20 train/test split with bal-
anced classes. We download pre-trained model weights (As
discussed in section [5.4] for the experiments where we train
models from scratch, we initialize the models randomly and
then train them either on GECO-ALL or GECO-SUBJ for
50 epochs (1 epoch for RoOBERTa to ensure high test accu-
racy without overfitting)) from Huggingface, and update all
weights during training for 50 epochs for the GECO dataset,
5 for COMPAS, and 10 epochs for the Stereotypes dataset.
We use the AdamW optimizer (Loshchilov|2017) with initial
learning rate 0.001 and a linear learning rate schedule with
500 warm-up steps. Since our tasks are binary classification
tasks, we use the binary cross-entropy loss. We observed that
after one epoch of fine-tuning, the models perform hardly
better than random guessing, so we trained each model for


https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D
https://huggingface.co/facebook/FairBERTa
https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment
https://huggingface.co/openai-community/gpt2
https://huggingface.co/FacebookAI/roberta-large

Table 4: Bias analysis results after fine-tuning each model, averaged over 5 runs (TPR: true positive rate, TNR, true negative
rate, APD: average prediction difference).

Dataset Model TPR TNR APD
ALL BERT 0.9960.001  0.9919.001  0.0060.000
FairBERTa  0.9970.000  0.9960.001  0.0020.004
GPT2 0.9970.000  0.994) 000 0.0044 000
TinyBERT  0.9920.003  0.9880.001  0.013¢.001
RoBERTa  0.9790.020  0.9750.036  0.0540.031
SUBJ BERT 0.9850.001  0.9790.001  0.029¢.002
FairBERTa  0.9830.003  0.9600.00s  0.0500.005
GPT2 0.9790.003  0.9670.003  0.0460.005
TinyBERT 0.984 001 0.9710.004 0.0390.001
RoBERTa  0.8950.07¢  0.9730.000  0.1700.098
COMPAS BERT 0.6260.000  0.7200.000  0.2300.000
FairBERTa  0.6540.000  0.7200.000  0.2370.000
GPT2 0.5900.000  0.7350.000  0.249.000
TlnyBERT 0.595(!_(;1%5 O.749|)_(|~_)| 0.2441)_1) 17
RoBERTa  0.0000.000  1.0000.000  0.115¢.002
Stereotypes BERT 0.994[;_u(;() 0.9971]_[;()1) 0.0031._1)1)1;
FairBERTa  0.9940.000  1.0000.000  0.0060.000
GPT2 0.9970.000  1.0000.000  0.0020.000
TinyBERT  1.0000.000  1.0000.000  0.0000.000
RoBERTa 1.0000.000  0.8000.400  0.0010.003

a larger number of epochs to achieve a high test accuracy
without overfitting. We repeat this process 5 times for each
model and dataset pair to report aggregate results.

H Additional Results

We display further results from our experiments in the tables
and figures below. Tables[5] [6][7} and[8display further results
on the number of runs resulting in significant disparity as
well as the average effect sizes. Figures [3] [ [3] [6l and [7]
display box plots of the distributions of all evaluation scores
obtained over all runs, including the ones not resulting in
significant disparity for the remainder of our models.
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Figure 2: Box-plots of evaluation scores obtained over 5 runs for each using TinyBERT on GECO, Stereotypes, and COMPAS,
including the runs not resulting in statistically significant disparity.
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Table 9: Number of runs out of five resulting in statistically significant disparity on the GECO datasets. Cell colors indicate
which gender has better evaluation scores for each metric (blue: males, red: females). Bold font further indicates considerable
effect size (Cohen’s d, with |d| > 0.2). Metrics are grouped based on the evaluation property they measure.
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Table 10: Training from scratch. Counts of significant disparity with colors indicating direction of effect (red=female scores
higher, blue=male scores higher)
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Figure 3: Box-plots of the soft comprehensiveness and sufficiency metrics obtained over 5 runs for each using TinyBERT
on GECO-ALL, Stereotypes, and COMPAS, including the runs not resulting in statistically significant disparity.



Table 11: Number of runs out of five resulting in statistically significant disparity on the COMPAS and Stereotypes datasets.
Cell colors indicate which gender has better evaluation scores for each metric (blue: males, red: females). Bold font further
indicates considerable effect size (Cohen’s d, with |d| > 0.2). Metrics are grouped based on the evaluation property they
measure.
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Figure 4: Box-plots of evaluation scores obtained over 5 runs for each using BERT on our datasets, including the runs not
resulting in statistically significant disparity.
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Figure 5: Box-plots of evaluation scores obtained over 5 runs for each using FairBERTa on our datasets, including the runs

not resulting in statistically significant disparity.
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Figure 6: Box-plots of evaluation scores obtained over 5 runs for each using GPT-2 on our datasets, including the runs not
resulting in statistically significant disparity.
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Figure 7: Box-plots of evaluation scores obtained over 5 runs for each using RoOBERTa on our datasets, including the runs not
resulting in statistically significant disparity.
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