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Abstract

Reasoning has long been viewed as an emer-001
gent property of large language models (LLMs).002
However, recent studies challenge this as-003
sumption, showing that small language mod-004
els (SLMs) can also achieve competitive rea-005
soning performance. This paper introduces006
THINKSLM, the first extensive benchmark to007
systematically evaluate and study the reason-008
ing abilities of SLMs trained from scratch or009
derived from LLMs through quantization, prun-010
ing, and distillation. We first establish a reli-011
able evaluation criterion comparing available012
methods and LLM judges against our human013
evaluations. Then we present a study evalu-014
ating 72 diverse SLMs from six major model015
families across 17 reasoning benchmarks. We016
repeat all our experiments three times to en-017
sure a robust assessment. Our findings show018
that: 1) reasoning ability in SLMs is strongly019
influenced by training methods and data quality020
rather than solely model scale; 2) quantization021
preserves reasoning capability, while pruning022
significantly disrupts it; 3) larger models consis-023
tently exhibit higher robustness against adver-024
sarial perturbations and intermediate reasoning,025
but certain smaller models closely match or026
exceed the larger models’ performance. Our027
findings challenge the assumption that scal-028
ing is the only way to achieve strong reason-029
ing. Instead, we foresee a future where SLMs030
with strong reasoning capabilities can be de-031
veloped through structured training or post-032
training compression.1033

1 Introduction034

For a long time, reasoning in language models was035

considered an emergent property of large language036

models (LLMs), appearing at or above a certain037

scale (∼100B parameters). Early studies (Wei et al.,038

2022b; Chowdhery et al., 2023; Brown et al., 2020)039

suggested that multi-step reasoning only emerges040

1All evaluation results, custom datasets, and leaderboard
will be released after anonymous review.

in models exceeding 100B parameters, as shown by 041

models like GPT-4 (OpenAI et al., 2024) and Gem- 042

ini (Team et al., 2024). However, recent findings 043

challenge this assumption. Phi-3.5-mini (Abdin 044

et al., 2024a), with just 3.8B parameters, performs 045

comparably to GPT-3.5, which suggests that rea- 046

soning ability can be achieved in small language 047

models (SLMs) as well. 048

A more recent breakthrough, DeepSeek-R1 049

(DeepSeek-AI et al., 2025), has shown impressive 050

reasoning ability. While DeepSeek-R1 is a large 051

model (671B), its reasoning abilities were distilled 052

into smaller models (1.5B–70B parameters, Qwen 053

Family (Qwen et al., 2025)). This further chal- 054

lenges the assumption that reasoning ability only 055

comes from scaling and raises an important ques- 056

tion: Can SLMs also develop strong reasoning ca- 057

pabilities? Before answering this, we need first 058

to define what qualifies as an SLM. The definition 059

of SLM varies widely, depending on model size, 060

efficiency, and deployment constraints. 061

In this work, we define SLMs as models signifi-
cantly smaller than state-of-the-art LLMs, typ-
ically ranging from a few hundred million to
at most ∼30 billion parameters, or models that
achieve similar computational efficiency through
compression (e.g., quantization, pruning).

062

There has been growing interest in SLMs due 063

to their lower inference costs, reduced latency, and 064

local deployment feasibility. Unlike LLMs that 065

rely on cloud APIs for deployment, SLMs can be 066

deployed locally (Wang et al., 2024), mitigating 067

data exposure risks. However, their reasoning capa- 068

bilities remain underexplored, particularly in com- 069

pressed (Zhu et al., 2024b) variants. For example, 070

can a quantized LLaMA-70B outperform an 8B 071

variant? This raises another question: Can SLMs 072

retain reasoning ability after undergoing compres- 073

sion (e.g., Quantization)? And to what extent? 074
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Prior research has lacked a detailed benchmark-075

ing effort that quantifies how different SLM strate-076

gies impact reasoning. In this work, we aim to fill077

this gap by systematically benchmarking SLMs’078

reasoning ability and providing clear guidance for079

researchers developing or deploying SLMs.080

First, we establish a reliable evaluation metric081

for assessing reasoning performance. Since rea-082

soning is a generative task, defining an objective083

evaluation metric is non-trivial. Different methods084

often produce conflicting results compared to hu-085

man evaluation, which makes it difficult to assess086

the model’s actual reasoning ability. Manual evalu-087

ation is impractical, whereas rule-based evaluation088

expects the model to follow specific instructions089

(Huang et al., 2024). Sometimes, it can be unfair090

since we are testing the model’s "reasoning," not091

"instructions following" ability. Studies (Wei et al.,092

2022a) further show that this instruction follow-093

ing ability appears when scaled to ∼100B parame-094

ters. To determine the best evaluation framework,095

we systematically compare different parsing-based096

methods, LLM-as-a-Judge, and widely used bench-097

marks like lm-eval-harness to our human evalua-098

tion. Our results show that GPT-4-Turbo and GPT-099

4o align most closely with human judgment (98%100

agreement), which we use as the main evaluation101

metric to benchmark SLM reasoning.102

Second, we conduct a comprehensive eval-103

uation of 72 SLMs of six different families104

(such as Llama and Qwen), including their quan-105

tized, pruned, and distilled variants. We evaluate106

across eight widely used reasoning benchmarks:107

GSM8K, MATH, MathQA ARC-C, ARC-E, Com-108

monsenseQA, OpenBookQA, Hellaswag and six109

sorting tasks: 8, 16, 32 numbers with only positive110

and mixed randomly generated numbers to ensure111

that performance reflects the model’s actual reason-112

ing ability rather than memorization. We observed113

that all models do not respond similarly to differ-114

ent prompting strategies. Recent findings (Plaat115

et al., 2024; Qwen et al., 2025; Yang et al., 2024)116

suggest that some language models internally gen-117

erate step-by-step reasoning (Wei et al., 2022c),118

even when prompted directly. So, on GSM8K,119

we tested SLMs prompt sensitivity using 5 differ-120

ent prompting strategies: Direct I/O, COT, 5-Shot,121

COT 5-Shot, and 8-Shot. All experiments were122

done three times with mean and standard devia-123

tion reported, ensuring a robust evaluation of the124

models’ performance.125

Finally, we test the robustness of SLM reason-126

ing on three specialized benchmarks: MR-Ben, 127

which evaluates the ability to locate and analyze po- 128

tential errors in reasoning steps (Zeng et al., 2024b); 129

MR-GSM8K, which evaluates intermediate rea- 130

soning ability (Zeng et al., 2024a); and GSM-Plus, 131

which measures resilience to adversarial perturba- 132

tions (Li et al., 2024). To evaluate actual reasoning 133

and not memorization, we select these datasets, re- 134

leased after the models’ knowledge cut-off time, 135

to ensure no prior exposure. Our results indicate 136

that certain open-sourced SLMs like Qwen2.5-32B 137

rival proprietary LLMs like GPT-4-Turbo in inter- 138

mediate reasoning. This suggests that reasoning is 139

not solely a function of scale but also structured 140

training and optimization. 141

The remaining sections of this paper are struc- 142

tured as follows: Section 2 reviews the recent work 143

on SLMs’ reasoning and evaluation methodolo- 144

gies. Section 3 discusses our benchmarking setup, 145

evaluation process, and reasoning tasks. Section 146

4 presents experimental results and insights, ana- 147

lyzing reasoning performance and its robustness. 148

Finally, Section 5 concludes with key takeaways 149

and directions for future research. 150

2 Related Work 151

Recent Surveys on SLMs Recent surveys pro- 152

vide insights into SLM advancements. Some focus 153

on reasoning and task-specific improvements (Sub- 154

ramanian et al., 2025; Wang et al., 2024), while 155

others survey SLM performance across various ap- 156

plications (Lu et al., 2024; Nguyen et al., 2024). 157

These efforts highlight the increasing viability of 158

SLMs as efficient alternatives to LLMs, particu- 159

larly in resource-constrained settings. However, 160

existing surveys lack a systematic benchmarking of 161

diverse SLMs to quantify their performance across 162

multiple reasoning benchmarks. 163

SLM Reasoning Recent studies have explored 164

the reasoning abilities of SLMs, such as Hymba- 165

1.5B (Dong et al., 2025) and Llama-3-1B (Fedorov 166

et al., 2024), particularly for mathematical and 167

logical tasks. Some approaches train SLMs di- 168

rectly on reasoning tasks, such as rStar-Math (Guan 169

et al., 2025), which uses Monte Carlo Tree Search 170

(MCTS) and a process preference model. Special- 171

ization through fine-tuning on specific datasets also 172

enhances reasoning (Fu et al., 2023) but may re- 173

duce generalization. 174

Another line of research uses knowledge distilla- 175

tion (Gou et al., 2021; Phuong and Lampert, 2019) 176
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to transfer reasoning capabilities from LLMs to177

SLMs (Zhu et al., 2024a). Similarly, distillation178

strategies, like feedback-driven (Zhu et al., 2024c)179

and counterfactual distillation (Feng et al., 2024),180

refine reasoning abilities and improve generaliza-181

tion to out-of-distribution tasks. Instruction-tuning-182

CoT (Ranaldi and Freitas, 2024) and fine-tuning on183

CoT-generated outputs (Magister et al., 2023) have184

also shown improvements in multi-step reasoning.185

Furthermore, structural modifications, such as186

equation-only formats (Kim et al., 2024) and syn-187

thetic data training (e.g., Orca-Math (Mitra et al.,188

2024)), have also improved performance. Efficient189

architectures like Phi-3-mini (Abdin et al., 2024a)190

match the performance of larger models while be-191

ing deployable on edge devices. Self-correction192

mechanisms like SCORE (Zhang et al., 2024) en-193

hance reasoning reliability, while models like Orca194

2 (Mitra et al., 2023) and OpenELM (Mehta et al.,195

2024) optimize efficiency through improved train-196

ing strategies. In this paper, we evaluate a broad197

spectrum of SLMs, including trained-from-scratch,198

via different methods and their quantized, pruned,199

and distilled variants.200

Reasoning Evaluation Assessing reasoning in201

language models is challenging due to the open-202

ended, multi-step nature of responses. While rule-203

based parsing offers precise scoring, it often pe-204

nalizes correct answers due to formatting issues.205

Human evaluation, though reliable, is costly and206

subjective. Recently, LLM-as-a-Judge has emerged207

as a scalable alternative, with models like GPT-4208

Turbo and LLaMA-3.1 70B showing strong agree-209

ment with human judgments across tasks such as210

summarization, grammatical correction, and struc-211

tured reasoning (Thakur et al., 2024; Chiang and212

Lee, 2023; Sottana et al., 2023; Wang et al., 2023).213

Surveys further support its reliability (Gu et al.,214

2025; Chang et al., 2024). However, no prior work215

systematically compares these methods for eval-216

uating reasoning in SLMs. We fill this gap by217

benchmarking SLMs across reasoning tasks using218

rule-based parsing, human ratings, lm-eval-harness,219

and LLM-as-a-Judge—identifying which metrics220

best align with human judgment.221

3 THINKSLM Setup222

To study the reasoning capabilities of SLMs, we223

design a systematic experimental setup based on224

mutually exclusive and collectively exhaustive axes225

that influence reasoning.226

3.1 Dimensions Influencing SLM Reasoning 227

Our THINKSLM framework consists of six distinct 228

and interrelated dimensions to systematically study 229

and evaluate the reasoning capabilities of SLMs. 230

These dimensions are carefully selected, providing 231

an organized structure for our experiments. They 232

include: 1) model capacity and family (trained- 233

from-scratch, Qwen2.5, Llama-3, Mistral); 2) train- 234

ing and architecture choices (data scale, reinforce- 235

ment learning-based post-training, hybrid-head ar- 236

chitectures); 3) inference-time prompting strategies 237

(Direct I/O, Chain-of-Thought (CoT), few-shot sce- 238

narios); 4) post-compression methods (quantiza- 239

tion, pruning, distillation) 5) task domains (maths, 240

science, commonsense, algorithmic reasoning); 6) 241

robustness stressors (adversarial perturbations, in- 242

termediate reasoning steps, and error detection). 243

3.2 Tasks & Datasets 244

We curate an extensive collection of evaluation 245

tasks, grouped explicitly according to the domain 246

axis. Mathematical reasoning is assessed using 247

GSM8K (Cobbe et al., 2021), MATH (Hendrycks 248

et al., 2021), and the MathQA (Amini et al., 2019) 249

dataset, covering diverse arithmetic and algebraic 250

reasoning challenges. Science reasoning capa- 251

bilities are evaluated via ARC-Easy and ARC- 252

Challenge (Clark et al., 2018) datasets, each pro- 253

viding distinct complexities in factual recall and 254

nuanced inference. Commonsense reasoning 255

tasks incorporate CommonsenseQA (Talmor et al., 256

2019), OpenBookQA (Mihaylov et al., 2018a), and 257

HellaSwag (Zellers et al., 2019), presenting prob- 258

lems that test the model’s ability to reason about 259

everyday scenarios logically. For algorithmic rea- 260

soning, we introduce customized SORTING tasks 261

that systematically vary in complexity, length, and 262

numerical composition (including positive-only 263

and mixed positive-negative scenarios), designed 264

to test numerical and sequential reasoning. 265

3.3 Evaluation Protocol 266

Our first step was to select a reliable assessment 267

method. Instead of using standard parsing tech- 268

niques to compare model responses with ground 269

truth, we opted for LLM-as-a-Judge, using GPT-4 270

as the primary evaluator for most tasks. 271

Parsing Issues Standard parsing techniques rely 272

on fixed patterns, which can be challenging for 273

generative models to follow consistently. We ob- 274

served that smaller models, in particular, struggle 275
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Metric SmolLM2-1.7B-Instruct Llama-3.1-8B-Instruct

(GSM8K) (ARC-E) (ARC-C) (CommonsenseQA) (GSM8K) (ARC-E) (ARC-C) (CommonsenseQA)

Human Evaluation 43 75 56 62 81 93 82 69
lm-eval-harness 18 70 37 50 22 82 51 76
Parsing 37 8 16 9 84 3 6 7
Direct Answer 5 58 49 42 18 93 82 77

LLM-as-a-judge

gpt-3.5-turbo 49 (94) 75 (100) 55 (99) 62 (100) 83 (98) 91 (98) 81 (99) 66 (97)
gpt-4-turbo 42 (99) 75 (100) 56 (100) 61 (99) 81 (100) 93 (100) 82 (100) 69 (100)
gpt-4o 41 (98) 75 (100) 56 (100) 63 (97) 81 (100) 93 (100) 82 (100) 70 (99)
gpt-4o-mini 41 (98) 75 (100) 55 (99) 61 (99) 80 (99) 93 (100) 76 (94) 69 (100)

Table 1: Comparison of Human Evaluation with different evaluation metrics and LLM-as-a-judge on 100 randomly
sampled data points across four datasets with two models. Also, includes a comparison of four different GPTs as
judges. Scores are reported as [<Accuracy Score> (Human Agreement %)].

to follow strict output formats. This leads to cases276

where a model provides a correct answer but is277

penalized for deviating from the expected struc-278

ture. Prior work (Wei et al., 2022c) also shows279

that instruction-following capabilities improve with280

model scale (∼100B), making parsing an unfair281

metric for smaller models.282

To establish a more reliable evaluation metric,283

we conducted three rounds of human evaluation284

on 100 randomly sampled data points from the285

GSM8K, ARC-E, ARC-C, and CommonsenseQA286

datasets. Table 1 compares evaluation meth-287

ods, including standard parsing, the widely used288

lm-evaluation-harness framework, and GPT-based289

evaluation (LLM-as-a-judge).290

Choosing the Best Judge To select the most re-291

liable judge, we evaluated GPT models based on292

two factors: 1) Reliability (Correctness): How293

closely does the judge’s evaluation align with hu-294

man assessments? 2) Human Agreement: How295

often does the judge agree with human evaluators?296

Table 1 shows that GPT-4-Turbo provides the297

closest match to human evaluation, with GPT-4o298

performing nearly as well (only one point lower).299

Given its comparable accuracy and 50% lower300

cost, we selected GPT-4o as our primary evalu-301

ator for ARC-Easy, ARC-Challenge, and Common-302

senseQA. For GSM8K, we opted for GPT-4-Turbo303

due to its slightly higher reliability in mathematical304

reasoning tasks.305

Task-specific evaluators. For SORTING tasks,306

standard LLM-based evaluation was unsuitable due307

to the need for precise numerical ordering. Instead,308

we used a robust regex-based parsing approach,309

identifying 13 common response patterns (more310

details in Appendix C.3) to extract and validate311

the sorted lists against the ground truth. Unlike312

prior work (Besta et al., 2024), we did not apply 313

for partial credit. Our evaluation was strictly based 314

on whether the model returned the correct final 315

list. For ROBUSTNESS BENCHMARKS, we use the 316

original evaluation scripts with GPT-4o as judge 317

provided with those datasets. These choices affect 318

only the scoring axis; the reasoning procedure and 319

all other settings remain identical within a given 320

experiment. 321

3.4 Experimental Matrix 322

Our experimental matrix defines the interplay be- 323

tween key dimensions influencing reasoning. We 324

evaluate all models across tasks and prompting 325

strategies, applying compression methods (e.g., 326

quantization) to both small and large models. This 327

allows us to assess how compression affects mod- 328

els across the size spectrum. We also include larger 329

LLMs (e.g., 32B, 70B) as reference points to com- 330

pare with their compressed counterparts and eval- 331

uate how close post-compression SLMs approach 332

original LLM performance. 333

3.5 Implementation Details 334

Appendix C details all parsing scripts and prompt 335

templates, including those used for different 336

prompting strategies and GPT-based evaluations, 337

ensuring reproducibility and transparency in our 338

experimental setups. Unless stated otherwise, each 339

experiment was repeated three times, and we re- 340

ported the mean and standard deviation of model 341

performance across all datasets to ensure the relia- 342

bility of the results. 343

4 Results & Insights 344

This section explores the six key axes described in 345

Section 3. The reported accuracy differences (vari- 346

ance) across 3 evaluation runs are small (always 347

4



Models Computational Requirements (GB) GSM8K ARC CommonsenseQA Sorting_Avg

Model Param. Optimization GPU Memory Disk Space Easy Challenge

Qwen2.5 Family

Qwen2.5

0.5B None 2.02 0.95 46.80±0.77 62.50±0.21 44.28±1.03 46.90±1.49 2.61
1.5B None 6.68 2.9 70.00±0.53 87.58±0.21 73.81±0.30 71.85±0.48 29.11
3B None 12.42 5.8 84.74±0.28 93.49±0.07 83.73±0.38 76.25±0.29 39.89
7B None 30.05 15 91.76±0.20 96.03±0.17 90.53±0.12 82.66±0.14 57.67

14B
None 57.04 28 94.29±0.40 97.87±0.05 93.37±0.22 84.08±0.54 74.61

GPTQ 8-bit 17.24 16 94.49±0.25 97.90±0.12 93.71±0.24 84.22±0.14 74.78
GPTQ 4-bit 10.65 9.4 94.74±0.32 97.57±0.10 93.17±0.21 83.10±0.19 69.56

32B
None 125 62 95.40±0.29 98.26±0.10 95.25±0.18 87.11±0.37 87.17

GPTQ 8-bit 33.81 33 95.73±0.19 98.34±0.02 95.16±0.40 86.62±0.10 87.39
GPTQ 4-bit 52.42 19 95.73±0.09 98.09±0.05 95.19±0.11 87.06±0.58 87.28

Llama Family

Llama-3.2 1B None 4.73 2.4 36.39±0.47 67.23±1.40 47.50±0.22 48.38±0.45 7.83

Llama3.1 8B None 30.65 15 83.45±0.41 92.07±0.28 79.58±0.26 74.28±0.52 60.11
pruned (2of4) 30.65 15 51.86±0.34 – – – 15.94

Llama3.1 70B
None 269.17 132 95.10±0.28 98.34±0.05 94.43±0.28 83.73±0.58 97.33

W8A8 69.34 68 94.72±0.34 98.43±0.22 94.62±0.14 83.92±0.28 96.89
W4A16 107.34 38 95.15±0.33 98.26±0.08 94.51±0.26 82.77±0.19 95.28

Mistral Family

Mistralv0.3 7B None 27.67 14 54.84±0.56 88.99±0.34 76.82±0.29 69.83±0.10 23.11
pruned2.4 27.6 14 30.30±0.94 – – – 9.94

MistralNemo 12B None 57.89 23 86.76±0.57 92.79±0.07 83.70±0.32 72.78±0.78 60.89

Others

Phi-3.5 3.8B None 14.6 7.2 85.47±0.47 95.09±0.14 86.89±0.16 76.11±0.04 47.33
SmolLM2 1.7B None 6.55 3.2 46.17±0.41 75.04±0.18 54.21±1.07 53.18±1.27 16.83
Hymba 1.5B None – – 53.75±0.51 84.57±0.02 66.78±0.04 64.73±0.14 7.94

Table 2: Performance and computational requirements of models on different reasoning tasks. The table reports the
model size (in billions of parameters), optimization type (if any), computational requirements, and accuracy for
each benchmark. The Sorting_Avg column represents the average accuracy across 6 different sorting tasks.

under 1.49%), making the trends reliable. Raw348

scores are listed in Table 2.349

4.1 Model Capacity & Family Effects350

Our experiments reveal that the reasoning capa-351

bility of SLMs is not simply determined by352

their size but rather dependent on their family353

and training methodology. Firstly, Models like354

Qwen2.5 (7B) substantially outperform similarly-355

sized counterparts from other families, such as356

Mistral-7B, by margins exceeding 30% on com-357

plex tasks like GSM8K (Table 2). This differ-358

ence primarily arises from Qwen2.5’s extensive359

pre-training dataset (∼18 trillion tokens) and its360

strong alignment strategies involving multi-stage361

reinforcement learning and supervised fine-tuning362

(Qwen et al., 2025). Secondly, model performance363

does not scale linearly with size. For example,364

within the Qwen2.5 family, increasing from 0.5B365

→ 7B parameters improves GSM8K accuracy by366

45%. But doubling again to 14B gives +3 % in-367

crease. Beyond 14B, larger models improve more368

in coverage across tasks than in single-task scores.369

These insights underline that strategic training pro-370

cedures significantly influence reasoning perfor-371

mance, suggesting that robust training pipelines372

could potentially mitigate the limitations typically373

associated with smaller models.374

4.2 Training Recipe & Architecture Effects 375

Instruction tuning, high-quality teacher-driven 376

distillation, and architecture-level innovations 377

significantly boost reasoning performance, of- 378

ten outweighing raw model size. Our analysis 379

reveals: 1) instruction-tuned models substantially 380

outperform their base counterparts of the same ar- 381

chitecture. For instance, Qwen2.5-3B jumps from 382

77.91% (base) to 84.74% (instruction-tuned) on 383

GSM8K, and from 60.44% to 68.33% on GSM- 384

Plus (Table 3). 2) Model architecture also plays 385

a decisive role. Hymba-1.5B, despite introduc- 386

ing hybrid-head designs combining attention and 387

SSMs (Dong et al., 2025), achieves only 53.75% on 388

GSM8K—far behind Qwen2.5-1.5B’s 70%. This 389

gap reveals that novel architecture alone cannot 390

compensate for weak reasoning-specific training. 391

Hymba’s design, optimized for efficiency (via par- 392

allel memory heads and KV cache sharing) and 393

throughput, may under-optimize for deep reason- 394

ing, where rich pretraining and supervised align- 395

ment are more impactful (Qwen et al., 2025). 3) 396

The impact of distillation quality is most evident 397

in models like Phi, which achieves an impressive 398

85.47% on GSM8K—completely outperforming 399

Minitron-4B (27.95%) and even some larger open- 400

weight LLMs. This dramatic difference arises 401

from Phi’s teacher-forced distillation using curated, 402

5



Qwen
2.5

 (0
.5B

)

Lla
ma-3

.2 
(1B

)

Qwen
2.5

 (1
.5B

)

SmolL
M2 (

1.7
B)

Qwen
2.5

 (3
B)

Phi-
3.5

-m
ini

 (3
.8B

)

Qwen
2.5

 (7
B)

Lla
ma-3

.1 
(8B

)

Mist
ral

-N
em

o (
12

B)

Qwen
2.5

 (1
4B

)

Qwen
2.5

 (3
2B

)

Lla
ma-3

.1 
(70

B)

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

) 
(a) Overall Performance

GSM8K
ARC-E
ARC-C
CommonsenseQA

Qwen
2.5

 (0
.5B

)

Lla
ma-3

.2 
(1B

)

Qwen
2.5

 (1
.5B

)

SmolL
M2 (

1.7
B)

Qwen
2.5

 (3
B)

Phi-
3.5

-m
ini

 (3
.8B

)

Qwen
2.5

 (7
B)

Lla
ma-3

.1 
(8B

)

Mist
ral

-N
em

o (
12

B)

Qwen
2.5

 (1
4B

)

Qwen
2.5

 (3
2B

)

Lla
ma-3

.1 
(70

B)
0

20

40

60

80

100

(b) Sorting Performance

8 (+ve)
8 (mixed)
16 (+ve)
16 (mixed)
32 (+ve)
32 (mixed)

Qwen
2.5

 (0
.5B

)

Lla
ma-3

.2 
(1B

)

Qwen
2.5

 (1
.5B

)

SmolL
M2 (

1.7
B)

Qwen
2.5

 (3
B)

Phi-
3.5

-m
ini

 (3
.8B

)

Qwen
2.5

 (7
B)

Lla
ma-3

.1 
(8B

)

Mist
ral

-N
em

o (
12

B)

Qwen
2.5

 (1
4B

)

Qwen
2.5

 (3
2B

)

Lla
ma-3

.1 
(70

B)

30

40

50

60

70

80

90

(c) Prompting Effect

Direct I/O
COT
5-shot
COT 5-shot
8-shot

Model (Parameters) 

Figure 1: (a) Overall performance on 4 common reasoning benchmarks. (b) Performance on Sorting Tasks. The
x-axis represents different models (with parameters in billions), the y-axis represents the mean accuracy, and the bar
represents variance (3-folds). Each line corresponds to different sorting tasks (8 +ve, 8 mixed, 16 +ve, 16 mixed,
32 +ve, and 32 mixed numbers). (c) Effect of Prompts on SLM Performance on the GSM8K. Each line corresponds
to different prompting strategies (Direct I/O, Chain-of-Thought (CoT), 5-shot, 5-shot CoT, and 8-shot).

reasoning-focused synthetic data (Abdin et al.,403

2024b), whereas Minitron’s structured pruning404

(Sreenivas et al., 2024) with minimal adaptation405

leads to substantial performance degradation de-406

spite similar model sizes.407

4.3 Domain-Specific Performance408

Performance across domains reveals that com-409

plex reasoning tasks like sorting numbers re-410

main bottlenecks for both small and large mod-411

els, exposing a gap in genuine reasoning capabil-412

ities. Our analysis shows that reasoning perfor-413

mance is highly domain-sensitive. On simpler tasks414

such as ARC-Easy, many models—regardless of415

size—achieve near-saturation, with standard devia-416

tions as low as 6.4%. These tasks largely depend417

on pattern matching and factual recall, offering418

limited insight into a model’s reasoning depth. In419

contrast, math-focused benchmarks like GSM8K420

and GSM-Plus expose sharp performance differ-421

ences: the standard deviation on GSM8K rises to422

19.7%, indicating that these tasks better discrimi-423

nate between models based on reasoning skill. The424

harder variant, GSM-Plus, widens this gap further425

and provides a more reliable stress test for true426

mathematical reasoning.427

Sorting tasks also serve as an effective proxy for428

symbolic manipulation. When sequence complex-429

ity increases—through the introduction of negative430

numbers or longer list lengths—even the strongest431

models (e.g., LLaMA-3-70B) exhibit up to 12%432

performance drops. These failures suggest brit-433

tle reliance on shallow heuristics, rather than ro-434

bust algorithmic reasoning. Notably, sorting per-435

formance correlates strongly with GSM8K accu-436

racy (r = 0.78), reinforcing the hypothesis that 437

both tasks share core cognitive demands related 438

to numerical abstraction and stepwise reasoning. 439

Together, these results reveal that current model 440

architectures still face scalability limits in com- 441

plex reasoning domains. This points to the need 442

for targeted improvements, such as task-specific 443

optimization or external tools, to close the gap in 444

algorithmic and symbolic reasoning performance. 445

4.4 Prompting Effects 446

Our results show that detailed prompting strategies, 447

such as Chain-of-Thought (CoT) or few-shot exam- 448

ples, do not always improve reasoning performance 449

(Figure 1. In fact, simpler prompts, such as direct 450

input/output formats, often perform just as well or 451

better. This is especially true for models released 452

after 2024, where adding multiple reasoning steps 453

leads to only minor gains (around 2% on GSM8K). 454

In some cases, overly complex instructions may 455

even reduce accuracy, likely because the model fo- 456

cuses more on following the prompt format than 457

solving the task. These findings suggest that recent 458

models already learn strong reasoning abilities and 459

step-by-step reasoning during training, making tra- 460

ditional prompting strategies less effective. Instead, 461

simpler prompts may be more reliable, and future 462

improvements might come from domain-specific 463

approaches or external tools, rather than from in- 464

creasing prompt complexity. 465

4.5 Compression Effects 466

We compare three common model compression 467

techniques and observe striking differences in how 468

they affect reasoning performance. Quantiza- 469
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Figure 2: Impact of Quantization on Model Performance across Different Benchmarks. The figure shows the
performance of different models on GSM8K (Direct I/O), Average of ARC-E, and CommonsenseQA, and Average
of all sorting tasks with varying quantization levels. All results are from Qwen2.5 Family. The x-axis represents
the parameters size (in billions), and the y-axis represents the mean accuracy and bar represents variance (3-folds).

tion maintains reasoning capabilities remark-470

ably well (Figure 2), even in large models, while471

offering substantial memory and efficiency gains.472

For instance, 8-bit quantization shows almost no ac-473

curacy loss, and 4-bit GPTQ reduces performance474

by less than one point on GSM8K for Qwen2.5-475

14B, despite cutting memory usage by up to 80%.476

Notably, a 4-bit quantized 14B model still outper-477

forms its dense 7B counterpart, reinforcing the idea478

that compressing a strong model is more effective479

than training a smaller one.480

In contrast, pruning significantly degrades rea-481

soning, especially for complex tasks such as math-482

ematical problem-solving and logical reasoning.483

Pruned models often fail under stress, producing484

empty or nonsensical answers. For example, re-485

moving half the weights from Llama-8B causes a486

32% accuracy drop on GSM8K and complete fail-487

ure on ARC-Challenge. Although knowledge distil-488

lation can help recover some performance in math489

tasks, it does little for broader reasoning or com-490

monsense understanding. These findings suggest491

that quantization is a safer and more effective com-492

pression method for preserving reasoning ability,493

while pruning carries higher risk of performance494

loss and should be used with caution.495

4.6 Robustness Under Stressors496

Larger models show stronger robustness to ad-497

versarial perturbations, such as those in GSM-498

Plus, where accuracy typically drops by 11–17%499

but model rankings remain stable. This indicates500

that robustness scales with overall reasoning abil-501

ity rather than being a separate trait. Quantiza-502

tion has minimal impact on robustness. For ex-503

ample, a quantized Qwen-32B matches the full- 504

precision version on MR-GSM8K, scoring 55.6 505

(Zeng et al., 2024a), suggesting that preserving the 506

model’s structure is more important than numeri- 507

cal precision for complex reasoning. In contrast, 508

pruning significantly harms robustness and co- 509

herence. A pruned Llama-8B scores zero on the 510

same benchmark, underscoring the risks of struc- 511

tural sparsity in logic-intensive tasks. 512

The MR-Ben benchmark, which evaluates a 513

model’s ability to critique its own answers, further 514

illustrates domain-specific robustness. Models per- 515

form best in biology and basic math (median score: 516

22) but struggle with logic and programming (me- 517

dian score: 14), even at 70B scale. Interestingly, 518

well-aligned open-source models like Qwen-32B 519

can outperform proprietary systems such as GPT- 520

4-Turbo in step-by-step reasoning tasks, highlight- 521

ing the potential of transparent, targeted training. 522

These results emphasize that robustness and co- 523

herent reasoning depend heavily on model struc- 524

ture and training quality. While quantization sup- 525

ports efficient deployment without degrading per- 526

formance, pruning introduces critical vulnerabili- 527

ties that compromise reasoning under stress. 528

4.7 Cross-axis Interactions 529

Comprehensive evaluations across training, 530

prompting, and compression reveal that reasoning 531

performance in SLMs is influenced by a combi- 532

nation of factors beyond just model size. Two 533

consistent patterns emerge: First, quantization is 534

most effective when applied to larger models. For 535

example, the 4-bit quantized Qwen-14B consis- 536

tently outperforms the full-precision Qwen-7B 537

7



Models GSM-Plus Original
(GSM8K)

∆(↓)
(% drop)

MR-GSM8K
(MR Score)

Mr-Ben (MR-Score)

Bio. Math Phy. Medicine Code. Chem. Logic Avg

Model Param. Optimiza-
tion

Qwen2.5 3B None (B) 60.44 77.91 17.47 8.1 7.8 10.3 9 6.1 0.2 8.5 6.8 6.9
None (Ins) 68.33 84.74 16.41 11 10.1 11.2 10.4 7.8 3.5 10.6 8.4 8.8

Mistral 7B pruned2.4 25.44 30.30 4.89 4 0 1.3 2.3 0 0 1.8 0.3 0.8

Llama-3.1 8B
None 67.10 83.45 16.35 24.2 12.9 10.8 10.9 12.7 6 13.5 10 11

w8a16 66.78 83.95 17.17 23.3 12.7 11.9 11.2 13 6.6 12.8 9.3 11.1
pruned2of4 35.17 51.86 16.69 0 0 0 0 0 0 0 0 0

Qwen2.5 32B None 82.71 95.40 12.69 55.6 23.4 24.7 24.3 19.9 14.3 24.7 18.4 21.4
GPTQ-8 82.78 95.73 12.95 55.6 23.5 24.7 23.9 19.9 14.3 24.3 18.4 21.3

Llama-3.1 70B None 83.65 95.10 11.45 40.6 22 19.8 19.3 19.9 13.3 25 17.8 19.6
w8a16 80.03 92.92 12.89 44.2 20.1 17.4 14.9 15.1 11.6 21.2 14.6 16.4

Table 3: Performance of various SLMs on reasoning robustness, including adversarial robustness (GSM-Plus),
intermediate reasoning (MR-GSM8K), and identifying errors in reasoning (MR-Ben). The metrics reported include
accuracy scores, percentage drop in accuracy (∆), and MR-Scores, covering various models with different parameter
sizes and optimizations. Detailed individual task results for MR-GSM8K is reported in Appendix A.5.

across all tasks, while using the same memory.538

This highlights that compressing a strong model539

can be more effective than training a smaller540

one from scratch. Second, instruction tuning541

enhances the benefits of reflective prompting.542

Self-reflection prompts yield a 14% gain on the543

instruction-tuned Qwen-3B, compared to only544

4% on its reinforcement-aligned version. This545

suggests that models trained with human feedback546

may already internalize some reflective behaviors,547

reducing the added value of explicit prompting.548

These results emphasize that model quality now549

depends on more than parameter count. Training550

data quality, alignment techniques, and smart com-551

pression strategies, especially quantization, are crit-552

ical to enhance reasoning. In contrast, pruning553

consistently degrades performance, particularly on554

complex tasks, and should be avoided for models555

intended for reasoning under high-stakes or de-556

manding conditions.557

Effective reasoning in modern SLMs is shaped558

by multi-dimensional design choices. The most559

promising path involves training larger models on560

high-quality, reasoning-rich data, aligning them561

with human feedback, and then applying quan-562

tization for efficient deployment. The focus has563

shifted from pure scale to maximizing the quality-564

to-size ratio.565

5 Conclusions and Future Directions566

In this work, we systematically evaluated the rea-567

soning ability of 72 SLMs, including their com-568

pressed variant, across 14 benchmarks. We also ex-569

amine their robustness under adversarial conditions570

and intermediate reasoning. Overall, we observed: 571

1) LLMs tend to outperform SLMs in reasoning, 572

but certain SLMs, such as the Qwen2.5 family, 573

perform on par with LLMs. This is primarily at- 574

tributed to their extensive pre-training (18T tokens, 575

more than double that of Qwen2’s 7T) and a robust 576

post-training recipe using supervised fine-tuning 577

and multi-stage reinforcement learning. 578

2) Among compression techniques, quantization 579

proves to be a safer approach, preserving reason- 580

ing capabilities with minimal trade-offs. How- 581

ever, pruning drastically degrades performance, of- 582

ten leading to nonsensical or incomplete outputs. 583

This suggests that compressing pre-trained LLMs 584

is more effective than training SLMs from scratch. 585

3) LLMs exhibit stronger robustness in adver- 586

sarial settings and intermediate reasoning tasks. 587

However, quantization does not significantly im- 588

pact a model’s resilience in these scenarios, rein- 589

forcing its practicality as a compression method. 590

4) SLMs lag behind LLMs in instruction follow- 591

ing, which may limit their applicability in tasks 592

requiring precise adherence to input constraints. 593

We hope these insights provide practical guidance 594

for researchers in selecting an SLM. 595

Future Research Our findings challenge the as- 596

sumption that scaling is the only way to achieve 597

strong reasoning. Future research should focus on 598

improving the instruction-following capabilities of 599

SLMs and exploring compression strategies that 600

maintain reasoning performance while enhancing 601

efficiency and robustness. 602
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Limitations603

In this work, we tried our best to ensure a rigorous604

and fair evaluation, but we acknowledge that some605

limitations should be considered when interpreting606

the results. First, our reliance on GPT-4 as an eval-607

uator introduces potential biases and errors. While608

GPT-4 is a strong baseline for evaluation, it is not609

100% accurate and may misclassify responses, es-610

pecially in edge cases (shown in D.9). We observed611

instances where models producing many nonsen-612

sical responses were sometimes marked as correct613

by GPT-4, leading to potential overestimations of614

performance. Although we tried to mitigate this615

issue by limiting token generation and applying pre-616

evaluation parsing, it was not feasible to manually617

supervise the entire evaluation process.618

Second, our sorting task evaluations relied on619

regex-based parsing to assess correctness. There620

could be cases where a model’s response was cor-621

rect but misclassified due to parsing errors. Al-622

though we tried to account for most of the varia-623

tions in model outputs, ensuring 100% accuracy in624

automatic parsing remains a challenge. Addition-625

ally, our study focuses primarily on widely used626

benchmarks. However, reasoning abilities could be627

further assessed on more diverse datasets, includ-628

ing real-world problem-solving tasks and domain-629

specific reasoning benchmarks. Exploring these630

additional settings could provide a more compre-631

hensive understanding of how different compres-632

sion techniques impact model performance.633

Potential Risks Our work does not pose direct634

risks, but reliance on LLM-based evaluation may635

introduce biases, and model deployment in critical636

applications should consider robustness issues.637

Ethics Statement638

This study evaluates small language models using639

standardized benchmarks and publicly available640

datasets, ensuring transparency and reproducibil-641

ity. No private or sensitive data was used, and all642

models were assessed under fair conditions. We643

acknowledge potential biases in LLM-based evalua-644

tions and encourage further research for mitigation.645

AI Assistance: We used ChatGPT assistance646

for parts of the Appendix, such as generating La-647

TeX code for tables and refining text written by648

the authors. All AI-generated content was care-649

fully reviewed and revised by the authors to ensure650

accuracy and clarity.651
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A Detailed Results1042

A.1 [Task 1] GSM8K1043

In Table 4, we detail the results of 70 different1044

SLMs with their compressed versions on GSM8K1045

dataset. We report results with 5 different prompts1046

and we also report their computational require- 1047

ments: GPU Memory Usage and Disk Space re- 1048

quirements. 1049

Further Insights: Model size influences per- 1050

formance, with larger models like Llama-3.1 1051

(8B, 70B) outperforming smaller ones such as 1052

SmolLM2 (1.7B), Minitron (4B), and Hymba 1053

(1.5B). However, the performance gap between 1054

Llama-3.2 and Qwen2.5 (3B) suggests that in- 1055

creasing parameters alone does not guarantee pro- 1056

portional improvements—architectural design and 1057

training data are also crucial factors. 1058

Quantization, even with aggressive techniques 1059

like W4-A16, has minimal impact on mathematical 1060

reasoning. This suggests that compact models can 1061

be effectively deployed in resource-constrained en- 1062

vironments without significant performance degra- 1063

dation. Notably, Llama-3.1-8B retains strong accu- 1064

racy even with INT4/INT16 quantization. While 1065

quantization strategies such as FP8 and dynamic 1066

FP8 provide substantial memory savings, they 1067

maintain competitive performance. Figure 3, 4, 1068

5 shows an analysis of model performance across 1069

various tasks and the impact of quantization. 1070

A.2 [Task 2&3] ARC-E, ARC-C, 1071

CommonsenseQA 1072

In Table 5, we detail the results of 71 different 1073

SLMs with their compressed versions on ARC- 1074

Easy, ARC-Challenge, and CommonsenseQA 1075

datasets. We report results with direct prompting 1076

since COT or multi-shots does not help much here. 1077

1078

Further Insights: Findings from ARC-E, ARC- 1079

C, and CommonsenseQA align with GSM8K re- 1080

sults. Larger models, especially from the Qwen 1081

and LLama family, demonstrate superior reason- 1082

ing abilities in both scientific and commonsense 1083

tasks. On ARC-Easy and ARC-Challenge, per- 1084

formance scales predictably with model size, with 1085

Llama-3.1-70B achieving near-optimal scores. FP8 1086

quantization proves highly effective, maintaining 1087

performance parity with full-precision models up 1088

to 8B. 1089

A.3 [Task 4] Sorting Numbers 1090

In Table 5, we detail the results of 71 different 1091

SLMs along with their compressed versions on 6 1092

different sorting datasets. We report results with 1093

direct prompting also here. Sorting tasks (positive- 1094

only, mixed numbers, varying lengths of 8, 16, 1095

13



32) serve as a strong benchmark for evaluating1096

algorithmic reasoning, as they are unlikely to have1097

been seen in pre-training. Unlike GSM8K and1098

ARC, which may contain learned patterns, sorting1099

purely tests a model’s ability to reason and execute1100

structured tasks.1101

Further Insights: Larger models like Llama-1102

3.1-70B achieve near-perfect accuracy on positive-1103

only sorting and maintain strong performance on1104

mixed datasets. In contrast, smaller models such1105

as SmolLM2 (1.7B) struggle, especially as input1106

length increases, with accuracy dropping to near1107

zero on mixed datasets.1108

Quantization effects vary: Llama-3.2-8B with1109

FP8 quantization closely matches its full-precision1110

counterpart in positive-only sorting but sees per-1111

formance degradation in mixed datasets. More1112

aggressive compression (W4-A16) slightly weak-1113

ens performance. This highlights that fine-grained1114

reasoning tasks are more sensitive to precision re-1115

duction. Smaller models like Qwen2.5-7B and1116

Mistral-7B suffer significant accuracy drops under1117

4-bit quantization.1118

Also, as task complexity increases, even large1119

models struggle with longer sequences in mixed1120

datasets. This reveals a fundamental bottleneck1121

in current architectures for algorithmic reasoning.1122

This suggests the need for specialized training tech-1123

niques or architectural modifications to improve1124

structured problem-solving in SLMs.1125

A.4 [Task 5.1] GSM-PLUS: Perturbation1126

Analysis1127

In section ??, we saw the performance of models1128

across adversarial samples. In Table 6, we detail1129

the analysis of SLMs across various perturbations.1130

Mostly, we see that models struggle most with crit-1131

ical thinking variation.1132

Larger models, such as Qwen2.5-32B and1133

Llama-3.1-70B, exhibit strong resilience, achiev-1134

ing over 85% accuracy across most variations, par-1135

ticularly in numerical substitution and digit ex-1136

pansion. However, they show a notable drop in1137

performance for critical thinking, suggesting that1138

sheer scale does not entirely mitigate reasoning1139

challenges introduced by complex perturbations.1140

Smaller models, including Mistral-7B1141

(pruned2.4) and Llama-3.1-8B (2of4), strug-1142

gle significantly, especially in fraction conversions1143

and arithmetic operations, with performance1144

dropping below 40%. Quantized variants (GPTQ-8 1145

and w8a16) show marginal degradation compared 1146

to full-precision instruct models, suggesting 1147

quantization has a limited impact on robustness for 1148

well-trained models. 1149

A.5 [Task 5.2] MR-GSM8K: Intermediate 1150

reasoning test 1151

The MR-GSM8K benchmark evaluates models’ 1152

ability to perform intermediate reasoning, focusing 1153

on logical consistency across multi-step problems. 1154

In Table 7, we detail the results of 10 selected 1155

SLMs with their compressed versions on the MR- 1156

GSM8K dataset. 1157

About Metric: The MR-Score is a composite 1158

metric used to evaluate the meta-reasoning abili- 1159

ties of language models in the MR-GSM8K bench- 1160

mark. It combines the performance of LLMs 1161

across three tasks: determining solution correct- 1162

ness (measured by MCC), identifying the first error 1163

step (ACC_step), and explaining the error reason 1164

(ACC_reason). The final MR-Score is a weighted 1165

combination of these three metrics, with weights 1166

chosen empirically to balance the contribution of 1167

each task. This comprehensive evaluation provides 1168

a holistic assessment of LLMs’ meta-reasoning 1169

capabilities, going beyond simply solving math 1170

problems to assess their ability to reason about the 1171

reasoning process itself. 1172

Below are the different task descriptions, which 1173

are shown in Table 7: 1174

1. Task 1 TPR (k=0): This is the true positive 1175

rate for Task 1 in a zero-shot setting (k=0). 1176

Task 1 determines the correctness of a given 1177

solution to a math problem. The true positive 1178

rate measures the model’s ability to identify 1179

incorrect solutions correctly. 1180

2. Task 1 TNR (k=0): This is the true negative 1181

rate for Task 1 in a zero-shot setting. It mea- 1182

sures the model’s ability to identify correct 1183

solutions correctly. 1184

3. Task 1 MCC Score (k=0): This is the 1185

Matthews Correlation Coefficient (MCC) 1186

score for Task 1 in a zero-shot setting. MCC 1187

assesses the overall performance of a binary 1188

classification model, in this case, classifying 1189

solutions as correct or incorrect. 1190

4. Task 2 Accuracy (k=0): This represents the 1191

model’s accuracy in Task 2 under a zero-shot 1192
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MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

ACCstep =
Ncorrect_first_error_step

Nincorrect_sols

ACCreason =
Ncorrect_error_reason

Nincorrect_sols

MR− Score = w1 ×max(0,MCC) + w2 ×ACCstep + w3 ×ACCreason

setting. Task 2 identifies the first error step in1193

an incorrect solution.1194

5. Task 3 Accuracy (k=0): This is the model’s1195

accuracy in Task 3 under a zero-shot setting.1196

Task 3 requires the model to provide a reason1197

for the error identified in Task 2.1198

6. MR-Score (k=0): This is a composite score1199

that combines the model’s performance across1200

all three tasks in a zero-shot setting. It pro-1201

vides a holistic evaluation of the model’s meta-1202

reasoning abilities.1203

Further Insights: Larger models, such as1204

Qwen2.5-32B and Llama-3.1-70B, consistently1205

outperform smaller counterparts. For example,1206

Qwen2.5-32B achieves an MR-Score of 55.6, sig-1207

nificantly higher than smaller models like Mistral-1208

7B (4.0), which struggle to perform intermedi-1209

ate reasoning steps. Based on reported results,1210

Qwen2.5-32B outperforms GPT-4-turbo (53.0) on1211

intermediate reasoning. Quantization has minimal1212

impact on intermediate reasoning for larger models.1213

For instance, Qwen2.5-32B and its GPTQ-INT81214

variant achieve identical MR-Scores, retaining per-1215

formance despite the precision reduction.1216

Interestingly, intermediate reasoning perfor-1217

mance is not purely scale-dependent but also highly1218

architecture-specific. For example, Llama-3.1-70B1219

slightly underperforms Qwen2.5-32B despite hav-1220

ing more parameters. These findings highlight1221

the critical importance of model design choices1222

in achieving superior intermediate reasoning per-1223

formance.1224

A.6 Pruned/Distilled Models1225

In Table 8 and 9, we detail the results of pruned and1226

distilled variants of SLMs on the GSM8K dataset1227

and sorting tasks. We skipped the evaluation of1228

ARC-E, ARC-C, and CommonsenseQA since the1229

outputs were nonsensical and accuracy was nearly1230

0. CoT prompting significantly improved perfor- 1231

mance in these models, boosting scores by 10–20 1232

points. However, multi-shot prompts were less ef- 1233

fective, with some models failing to generate any 1234

output. 1235

These results highlight that pruning dispropor- 1236

tionately affects reasoning-intensive tasks, reduc- 1237

ing both logical consistency and robustness across 1238

diverse datasets. This emphasize the need for im- 1239

proved recovery strategies or alternative compres- 1240

sion techniques when applying pruning to models 1241

used for reasoning tasks. 1242
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Model Param. Quantization GPU
(GB)

Disk
(GB) Direct I/O COT 5-shot 5-shot COT 8-shot

Llama-3.2 Family (evaluator=gpt-4-turbo)

Llama3.2

1B

None 4.73 2.4 36.39±0.47 38.99±0.45 33.69±0.66 32.73±0.41 33.13±0.87
W: INT8 & A: INT8 1.53 1.9 36.87±0.68 39.63±1.03 32.07±0.22 30.58±0.70 32.88±0.87

FP8 2.47 1.9 36.42±1.37 39.63±0.64 31.16±0.63 30.88±1.01 31.87±0.54
FP8-dynamic 2.47 2.0 36.21±0.83 40.86±0.94 32.93±1.59 31.24±0.43 32.83±0.75

3B

None 13.21 6.0 73.54±0.06 75.18±1.14 74.02±0.78 72.73±0.61 72.61±0.40
W: INT8 & A: INT8 3.66 4.2 72.58±0.25 75.23±0.47 73.39±0.94 73.74±0.44 72.68±0.68

FP8 6.44 4.2 74.07±0.43 75.31±0.64 72.91±0.59 73.04±0.36 71.19±0.12
FP8-dynamic 6.44 4.2 73.49±1.22 75.13±0.62 72.71±0.84 73.34±0.77 72.05±0.66

Llama-3.1 Family (evaluator=gpt-4-turbo)

Llama3.1

8B

None 30.65 15 83.45±0.41 85.27±0.61 83.45±0.18 84.51±0.40 83.50±0.25
W: INT8 & A: INT8 8.98 8.5 83.37±0.46 85.27±0.37 83.45±0.09 84.41±0.37 83.32±0.31
W: INT8 & A: INT16 15.94 8.5 83.95±0.42 84.89±0.77 83.78±0.16 83.75±0.63 83.62±0.56
W: INT4 & A: INT16 12.6 5.4 82.21±0.40 83.80±0.31 82.13±1.03 80.74±0.47 81.70±0.36

FP8 14.44 8.5 82.89±0.40 84.63±0.19 83.42±0.75 84.94±0.75 83.83±0.72
FP8-dynamic 21.09 8.5 83.27±0.04 84.86±0.41 82.97±0.04 83.88±0.52 84.69±0.59

70B

None 269.17 132 95.10±0.28 95.27±0.50 94.72±0.62 94.44±0.09 94.64±0.19
W: INT8 & A: INT8 69.34 68 94.72±0.34 95.00±0.06 94.52±0.09 94.62±0.21 94.54±0.28
W: INT8 & A: INT16 138.64 68 92.92±0.13 94.36±0.07 93.96±0.47 94.39±0.51 93.51±0.31
W: INT4 & A: INT16 107.34 38 95.15±0.33 95.20±0.09 94.82±0.18 95.12±0.32 94.90±0.20

FP8 107.32 68 94.87±0.28 95.40±0.44 94.67±0.37 94.52±0.20 94.74±0.44
FP8-dynamic 176.63 68 94.64±0.23 95.38±0.19 95.00±0.55 95.10±0.35 94.52±0.19

Mistral-v0.3 and Nemo-2407 Family (evaluator=gpt-4-turbo)

Mistralv0.3 7B

None 27.67 14 54.84±0.56 55.98±0.50 54.76±0.29 57.90±0.99 54.23±0.66
W: INT8 & A: INT8 34.84 7.1 52.11±2.11 55.60±1.31 53.88±0.84 55.75±0.79 52.79±1.15
W: INT8 & A: INT16 14.36 7.1 54.26±0.77 55.85±0.56 54.13±0.34 56.86±0.93 52.82±0.53
W: INT4 & A: INT16 11.17 3.9 53.93±0.77 56.03±0.16 51.91±1.05 53.47±1.03 50.87±1.46

FP8 – – 54.13±0.64 54.99±1.09 53.96±0.56 57.67±1.00 53.85±0.32

MistralNemo 12B
None 57.89 23 86.76±0.57 86.08±0.20 85.57±0.13 84.94±0.56 85.34±0.26

W: INT4 & A: INT16 61.98 7.8 84.74±1.05 85.67±0.74 84.61±0.96 83.67±0.72 84.99±0.22
FP8 – – 87.31±0.40 86.58±0.39 85.67±0.49 85.77±0.41 85.29±0.79

Qwen2 Family (evaluator=gpt-4-turbo)

Qwen2

0.5B

None 2.02 0.95 37.25±0.58 38.31±1.53 26.38±1.12 28.46±0.95 26.76±0.63
GPTQ 8-bit 0.71 1.4 38.08±0.60 37.91±0.12 26.33±0.31 27.27±0.77 26.59±0.65
GPTQ 4-bit 1.12 0.71 21.51±1.11 25.32±0.11 14.38±0.40 16.76±0.34 14.23±0.50

W: INT8 & A: INT16 1.38 0.61 37.68±0.34 38.13±1.29 26.43±0.78 26.54±0.22 26.81±0.46
W: INT8 & A: INT8 1.38 0.87 37.60±0.79 37.50±0.70 26.23±1.50 26.99±0.33 25.78±0.11
W: INT4 & A: INT16 1.51 0.71 25.42±0.20 27.32±0.62 18.09±0.56 18.35±0.32 16.40±0.76

FP8 – – 35.20±1.10 35.94±0.67 23.17±0.81 25.25±0.71 22.52±0.43

1.5B

None 7.09 2.9 62.83±0.44 64.85±0.34 56.46±0.66 59.51±0.90 55.88±0.32
GPTQ 8-bit 2.54 3.1 62.85±0.70 63.86±0.92 57.16±0.59 59.79±0.41 57.24±0.19
GPTQ 4-bit 1.81 2.4 56.31±0.62 57.54±0.11 49.41±0.46 52.99±1.61 49.66±0.65

W: INT8 & A: INT16 2.51 1.7 62.98±0.99 64.04±0.92 56.41±0.86 59.72±0.64 57.19±0.34
W: INT8 & A: INT8 2.48 2.2 62.45±0.48 63.00±0.55 54.13±1.67 58.73±1.33 55.75±0.62
W: INT4 & A: INT16 3.14 1.6 57.90±0.84 58.55±0.46 48.40±0.41 53.10±0.70 48.29±0.11

FP8 – – 61.97±0.41 63.38±0.25 53.88±1.18 57.27±1.36 54.28±0.81

7B

None 30.05 15 87.14±0.18 87.34±0.11 86.58±0.57 85.82±0.12 86.40±0.18
GPTQ 8-bit 9.63 8.3 87.16±0.28 87.54±0.36 86.56±0.47 86.50±0.47 86.40±0.64
GPTQ 4-bit 6.48 5.3 85.54±0.46 86.35±0.16 85.92±0.41 84.96±0.29 85.42±0.50

W: INT8 & A: INT8 9.58 8.2 87.11±0.06 87.31±0.74 86.63±0.20 86.58±0.51 86.56±0.29
W: INT8 & A: INT16 9.42 8.2 86.40±0.64 87.06±0.23 86.15±0.14 85.97±0.16 86.38±0.04
W: INT4 & A: INT16 12.96 5.3 84.53±0.65 85.57±0.53 85.32±0.50 84.91±0.33 85.19±0.13

FP8 – – 86.66±0.38 87.14±0.66 86.05±0.63 86.56±0.59 86.13±0.70

Qwen2.5 Family (evaluator=gpt-4-turbo

Qwen2.5

0.5B
None 2.02 0.95 46.80±0.77 46.88±1.57 42.73±0.48 43.19±0.16 42.28±0.46

GPTQ 8-bit 0.71 0.62 46.85±0.37 47.18±0.99 42.20±0.63 44.20±0.34 42.25±0.62
GPTQ 4-bit 1.12 0.45 34.62±0.42 32.85±0.64 28.15±1.11 27.52±1.01 27.80±0.46

1.5B
None 6.68 2.9 70.00±0.53 70.20±0.65 69.72±0.38 68.46±0.54 69.90±0.79

GPTQ 8-bit 2.54 1.7 70.33±0.41 70.33±0.84 70.03±0.31 68.99±0.27 69.52±0.81
GPTQ 4-bit 1.81 1.1 64.92±0.84 64.92±0.50 62.40±0.77 63.28±0.62 62.42±0.68

3B
None 12.42 5.8 84.74±0.28 84.38±0.39 85.44±0.43 84.96±0.63 85.44±0.38

GPTQ 8-bit 4.21 3.3 85.17±0.29 84.99±0.11 84.38±0.11 84.38±0.06 84.71±0.50
GPTQ 4-bit 2.88 2.0 81.78±0.54 81.60±1.20 81.58±0.19 81.91±0.31 81.78±0.25

7B
None 30.05 15 91.76±0.20 92.19±0.11 91.05±0.33 91.89±0.43 91.33±0.31

GPTQ 8-bit 9.63 8.3 91.84±0.22 92.22±0.19 91.81±0.34 91.56±0.13 91.31±0.18
GPTQ 4-bit 6.48 5.3 90.62±0.13 91.23±0.29 90.65±0.26 90.73±0.58 90.85±0.09

14B
None 57.04 28 94.29±0.40 94.57±0.07 94.06±0.14 94.54±0.27 93.86±0.28

GPTQ 8-bit 17.24 16 94.49±0.25 94.95±0.04 93.71±0.27 94.59±0.04 94.11±0.34
GPTQ 4-bit 10.65 9.4 94.74±0.32 94.69±0.34 94.01±0.32 94.31±0.38 93.63±0.51

32B
None 125 62 95.40±0.29 95.78±0.25 95.20±0.07 95.55±0.18 94.92±0.41

GPTQ 8-bit 33.81 33 95.73±0.19 95.86±0.23 95.50±0.25 95.60±0.21 95.25±0.13
GPTQ 4-bit 52.42 19 95.73±0.09 95.73±0.26 94.92±0.16 95.43±0.56 95.12±0.34

Others (evaluator=gpt-4-turbo)

SmolLM2 1.7B None 6.55 3.2 46.17±0.41 43.75±1.40 44.23±0.66 41.47±0.71 44.78±0.44
Minitron 4B None 16.01 7.9 27.95±0.09 28.68±0.19 35.41±0.80 34.80±0.79 34.07±1.01
Hymba 1.5B None – 2.9 53.75±0.51 53.53±1.66 52.87±0.60 52.99±0.37 52.74±0.68

Phi-3.5-mini 3.8B None 14.6 7.2 85.47±0.47 87.14±0.41 82.97±0.07 80.74±0.54 82.89±0.72
Phi-3-small 7B None – 17.95 70.10±0.96 81.73±0.59 83.14±0.62 86.02±0.36 83.62±0.49

Table 4: Performance and Resource Usage of SLMs on GSM8K. The table reports the parameters size, quantization
type (if any), GPU memory and disk space usage (in GB), and accuracy scores for each prompt type.
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Model Param. Quantiza-
tion

ARC-E ARC-C Common-
senseQA

Sort-8
(+ve)

Sort-8
(mixed)

Sort-16
(+ve)

Sort-16
(mixed)

Sort-32
(+ve)

Sort-32
(mixed)

Llama-3.3 Family (evaluator=gpt-4o and parsing for sorting tasks)

Llama3.2

1B

None 67.23±1.40 47.50±0.22 48.38±0.45 44.67±5.64 1.33±1.30 1.00±1.13 0.00±0.00 0.00±0.00 0.00±0.00
W8-A8 67.45±0.67 47.90±0.63 48.10±0.76 50.33±5.67 1.67±1.45 1.33±1.30 0.00±0.00 0.00±0.00 0.00±0.00

FP8 67.03±0.26 48.01±0.98 48.48±1.05 42.67±5.61 1.33±1.30 0.67±0.92 0.00±0.00 0.00±0.00 0.00±0.00
FP8-D 67.02±0.17 48.69±0.59 48.40±0.72 45.67±5.65 2.00±1.59 2.67±1.83 0.00±0.00 0.00±0.00 0.00±0.00

3B

None 87.84±0.27 74.63±0.41 69.72±0.91 96.67±2.03 55.33±5.64 73.33±5.01 17.33±4.29 17.00±4.26 0.00±0.00
W8-A8 87.22±0.21 74.37±0.58 69.31±0.97 95.67±2.31 49.67±5.67 62.67±5.48 17.33±4.29 15.00±4.05 0.00±0.00

FP8 88.03±0.34 74.03±0.91 68.74±1.02 96.00±2.22 41.33±5.58 61.67±5.51 18.00±4.35 19.00±4.45 0.00±0.00
FP8-D 87.53±0.04 73.58±0.40 69.75±0.51 94.00±2.69 52.33±5.66 60.33±5.55 16.00±4.16 18.00±4.35 0.00±0.00

Llama-3.1 Family (evaluator=gpt-4o and parsing for sorting tasks)

Llama3.1

8B

None 92.07±0.28 79.58±0.26 74.28±0.52 86.00±3.93 78.67±4.64 74.67±4.93 56.33±5.62 59.67±5.56 5.33±2.55
W8-A8 92.33±0.14 79.98±0.11 73.63±0.20 82.33±4.32 77.00±4.77 70.67±5.16 58.00±5.59 62.33±5.49 4.67±2.39
W8-A16 92.34±0.23 80.32±0.44 73.87±0.00 86.33±3.89 79.00±4.62 73.67±4.99 56.00±5.63 65.00±5.41 5.67±2.62
W4-A16 90.49±0.36 76.62±0.69 73.57±0.65 82.67±4.29 66.67±5.34 69.67±5.21 52.00±5.66 56.67±5.62 6.67±2.83

FP8 92.17±0.40 79.52±0.61 73.93±0.62 81.00±4.45 81.33±4.42 72.00±5.09 51.67±5.66 61.00±5.53 6.00±2.69
FP8-D 92.33±0.24 81.00±0.59 74.09±0.56 81.67±4.39 74.67±4.93 74.33±4.95 53.00±5.66 65.33±5.39 5.00±2.47

70B

None 98.34±0.05 94.43±0.28 83.73±0.58 100.00±0.00 100.00±0.00 99.00±1.13 97.00±1.93 100.00±0.00 88.00±3.68
W8-A8 98.43±0.22 94.62±0.14 83.92±0.28 100.00±0.00 100.00±0.00 99.33±0.92 96.67±2.03 100.00±0.00 85.33±4.01
W8-A16 97.59±0.19 92.89±0.18 80.04±0.40 100.00±0.00 99.00±1.13 98.00±1.59 95.00±2.47 99.00±1.13 85.33±4.01
W4-A16 98.26±0.08 94.51±0.26 82.77±0.19 100.00±0.00 100.00±0.00 98.67±1.30 97.00±1.93 99.67±0.65 76.33±4.82

FP8 98.36±0.15 94.71±0.07 83.87±0.24 100.00±0.00 100.00±0.00 98.67±1.30 96.33±2.13 100.00±0.00 86.67±3.85
FP8-D 98.46±0.07 94.54±0.18 83.70±0.18 100.00±0.00 100.00±0.00 98.67±1.30 97.67±1.71 100.00±0.00 86.00±3.93

Mistral-v0.3 and Nemo-2407 Family (evaluator=gpt-4o and parsing for sorting tasks)

Mistralv0.3 7B

None 88.99±0.34 76.82±0.29 69.83±0.10 60.33±5.55 48.33±5.66 21.33±4.64 5.67±2.62 2.00±1.59 1.00±0.00
W8-A8 88.65±0.27 75.97±0.04 70.52±0.37 55.33±5.64 38.67±5.52 14.67±4.01 5.00±2.47 0.67±0.92 1.00±0.00
W8-A16 89.07±0.28 76.68±0.18 70.22±0.04 62.00±5.50 45.00±5.64 24.00±4.84 5.33±2.55 2.00±1.59 0.00±0.00
W4-A16 88.33±0.14 74.97±0.32 69.83±0.15 54.00±5.65 25.00±4.91 16.00±4.16 3.00±1.93 4.00±2.22 0.00±0.00

FP8 88.64±0.38 76.39±0.20 69.48±0.45 58.33±5.59 45.67±5.65 21.00±4.62 5.33±2.55 2.67±1.83 0.00±0.00

MistralNemo 12B
None 92.79±0.07 83.70±0.32 72.78±0.78 95.00±2.47 81.33±4.42 78.33±4.67 54.67±5.64 49.33±5.67 6.67±2.83

W4-A16 91.82±0.29 81.80±0.65 71.33±1.01 97.00±1.93 79.00±4.62 77.33±4.75 42.33±5.60 59.67±5.56 7.33±2.95
FP8 92.19±0.20 83.16±0.31 73.41±0.15 95.00±2.47 78.67±4.64 77.33±4.75 50.33±5.67 48.33±5.66 9.00±3.24

Qwen2 Family (evaluator=gpt-4o and parsing for sorting tasks)

Qwen2

0.5B

None 56.41±0.22 40.44±0.18 48.13±1.33 10.33±3.45 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
GPTQ-8 56.13±0.25 40.30±0.65 47.50±0.29 7.67±3.02 0.33±0.65 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
GPTQ-4 52.05±0.42 37.03±0.30 43.11±1.28 2.00±1.59 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
W8-A16 56.51±0.88 39.87±0.26 47.23±0.89 11.67±3.64 0.33±0.65 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
W8-A8 55.36±0.71 40.27±0.62 47.45±0.04 7.33±2.95 0.33±0.65 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
W4-A16 50.56±0.40 36.63±0.34 42.42±0.44 5.67±2.62 0.67±0.92 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

FP8 56.61±0.24 40.13±0.60 46.76±0.35 6.33±2.76 0.67±0.92 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

1.5B

None 84.34±0.27 67.29±0.36 69.78±0.18 44.67±5.64 21.33±4.64 7.33±2.95 0.00±0.00 0.00±0.00 0.00±0.00
GPTQ-8 84.19±0.07 66.55±0.39 69.97±0.14 46.33±5.65 20.00±4.53 7.33±2.95 0.00±0.00 0.00±0.00 0.00±0.00
GPTQ-4 82.03±0.15 63.99±0.56 68.99±0.51 33.00±5.33 13.00±3.81 3.33±2.03 0.00±0.00 0.00±0.00 0.00±0.00
W8-A16 83.96±0.12 66.84±0.53 70.19±0.57 47.67±5.66 21.33±4.64 5.67±2.62 0.00±0.00 0.00±0.00 0.00±0.00
W8-A8 83.64±0.17 66.84±0.24 69.72±0.25 46.33±5.65 21.33±4.64 5.67±2.62 0.00±0.00 0.00±0.00 0.00±0.00
W4-A16 81.64±0.20 63.51±0.45 66.42±0.64 43.00±5.61 17.67±4.32 6.00±2.69 0.33±0.65 0.00±0.00 0.00±0.00

FP8 83.77±0.21 66.33±0.59 68.93±0.51 42.33±5.60 19.33±4.48 7.00±2.89 0.00±0.00 0.00±0.00 0.00±0.00

7B

None 94.21±0.12 85.52±0.18 80.54±0.15 83.33±4.22 80.33±4.51 45.00±5.64 36.33±5.45 15.00±4.05 2.67±1.83
GPTQ-8 94.28±0.09 85.64±0.11 80.04±0.15 84.33±4.12 82.67±4.29 44.00±5.63 32.33±5.30 14.67±4.01 3.00±1.93
GPTQ-4 93.45±0.10 85.52±0.29 78.92±0.10 80.67±4.48 72.00±5.09 33.33±5.34 23.33±4.79 4.33±2.31 0.33±0.65
W8-A16 93.91±0.12 85.47±0.11 80.13±0.38 84.00±4.16 80.67±4.48 43.67±5.62 35.00±5.41 14.33±3.97 1.67±1.45
W8-A8 94.02±0.06 85.38±0.43 79.66±0.10 79.33±4.59 83.67±4.19 40.33±5.56 31.67±5.27 17.00±4.26 0.67±0.92
W4-A16 94.22±0.10 84.95±0.18 78.98±0.45 79.67±4.56 77.00±4.77 43.00±5.61 26.67±5.01 5.33±2.55 0.00±0.00

FP8 94.26±0.07 85.41±0.28 80.32±0.10 81.00±4.45 83.00±4.26 47.00±5.66 29.00±5.14 13.33±3.85 1.00±1.13

Qwen2.5 Family (evaluator=gpt-4o and parsing for sorting tasks)

Qwen2.5

0.5B
None 62.50±0.21 44.28±1.03 46.90±1.49 11.67±3.64 3.67±2.13 0.33±0.65 0.00±0.00 0.00±0.00 0.00±0.00

GPTQ-8 61.74±0.84 44.43±0.83 46.19±1.27 12.67±3.77 3.00±1.93 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
GPTQ-4 52.58±0.60 37.63±1.69 36.42±0.50 5.33±2.55 3.33±2.03 0.33±0.65 0.00±0.00 0.00±0.00 0.00±0.00

1.5B
None 87.58±0.21 73.81±0.30 71.85±0.48 66.33±5.36 65.33±5.39 34.33±5.38 7.33±2.95 1.33±1.30 0.00±0.00

GPTQ-8 87.78±0.20 73.72±0.21 72.10±0.27 68.33±5.27 65.33±5.39 36.67±5.46 8.00±3.08 1.33±1.30 0.00±0.00
GPTQ-4 86.25±0.05 70.25±0.16 69.10±0.50 60.00±5.55 46.67±5.65 12.67±3.77 7.33±2.95 0.00±0.00 0.00±0.00

3B
None 93.49±0.07 83.73±0.38 76.25±0.29 78.33±4.67 75.33±4.89 47.67±5.66 34.33±5.38 2.67±1.83 1.00±1.13

GPTQ-8 93.55±0.07 83.53±0.30 76.77±0.20 80.33±4.51 75.00±4.91 47.67±5.66 32.67±5.32 2.00±1.59 1.00±1.13
GPTQ-4 92.12±0.07 80.86±0.52 71.96±0.49 72.67±5.05 65.67±5.38 17.67±4.32 19.67±4.51 0.00±0.00 1.00±1.13

7B
None 96.03±0.17 90.53±0.12 82.66±0.14 94.33±2.62 90.00±3.40 69.67±5.21 47.00±5.66 39.33±5.54 5.67±2.62

GPTQ-8 96.03±0.10 90.64±0.15 82.58±0.32 94.00±2.69 92.00±3.08 71.33±5.13 49.00±5.67 41.33±5.58 5.67±2.62
GPTQ-4 95.62±0.00 89.19±0.21 82.69±0.28 80.67±4.48 15.00±4.05 58.33±5.59 15.67±4.12 31.67±5.27 1.00±1.13

14B
None 97.87±0.05 93.37±0.22 84.08±0.54 96.33±2.13 95.33±2.39 84.00±4.16 72.00±5.09 61.33±5.52 38.67±5.52

GPTQ-8 97.90±0.12 93.71±0.24 84.22±0.14 96.33±2.13 95.00±2.47 84.00±4.16 72.00±5.09 65.00±5.41 36.33±5.45
GPTQ-4 97.57±0.10 93.17±0.21 83.10±0.19 95.00±2.47 95.67±2.31 82.33±4.32 64.00±5.44 54.33±5.65 26.00±4.97

32B
None 98.26±0.10 95.25±0.18 87.11±0.37 99.00±1.13 99.33±0.92 93.33±2.83 92.33±3.02 79.00±4.62 60.00±5.55

GPTQ-8 98.34±0.02 95.16±0.40 86.62±0.10 99.00±1.13 99.00±1.13 93.33±2.83 92.33±3.02 79.67±4.56 61.00±5.53
GPTQ-4 98.09±0.05 95.19±0.11 87.06±0.58 100.00±0.00 100.00±0.00 98.33±1.45 91.67±3.13 77.33±4.75 56.33±5.62

Others (evaluator=gpt-4o and parsing for sorting tasks
SmolLM2 1.7B None 75.04±0.18 54.21±1.07 53.18±1.27 55.33±5.64 28.00±5.09 14.67±4.01 2.67±1.83 0.33±0.65 0.00±0.00
Hymba 1.5B None 84.57±0.02 66.78±0.04 64.73±0.14 34.67±5.39 12.00±3.68 1.00±1.13 0.00±0.00 0.00±0.00 0.00±0.00
Phi3.5m 3.8B None 95.09±0.14 86.89±0.16 76.11±0.04 90.33±3.35 77.33±4.75 68.67±5.26 18.33±4.39 29.00±5.14 0.33±0.65
Phi-3-s 7B None 97.12±0.11 91.38±0.18 79.85±0.35 98.00±1.59 93.33±2.83 69.00±5.24 52.00±5.66 9.33±3.30 0.67±0.92

Table 5: Performance of Various Language Models on ARC-E, ARC-C, CommonsenseQA, and Sorting Tasks. The
table reports the model size (in billions of parameters), optimization type (if any), and accuracy scores for each
benchmark.
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Figure 3: Performance of different models on GSM8K (Direct I/O), ARC, CommonsenseQA, and sorting tasks.
The x-axis represents the parameters size (in billions), and the y-axis represents the mean accuracy, with error bars
indicating the variance (3-folds).

Models
Numerical Variations Arithmetic Variation

Numerical
Substitution

Digit
Expansion

Integer-decimal-
fraction

Conversion

Adding
Operation

Reversing
Operation

Problem
Understanding

Distractor
Insertion

Critical
Thinking

Model Param. Optimiza-
tion

Qwen2.5 3B

None
(Base)

70.11±0.63 74.11±2.31 64.89±0.57 54.67±1.52 60.44±2.04 76.89±1.34 60.78±0.83 21.67±2.16

None
(Instruct)

78.11±1.13 82.44±0.68 75.78±1.66 66.33±1.89 72.00±1.96 84.11±1.66 71.78±2.79 16.11±2.35

Mistral 7B pruned2.4 32.56±1.34 31.44±1.26 20.89±2.18 19.22±0.96 26.00±2.16 40.67±1.19 28.44±0.57 4.33±0.27

Llama-3.1 8B
None 75.67±2.05 75.11±1.85 70.56±2.47 64.89±0.87 68.33±0.54 81.00±1.25 68.33±0.98 32.89±1.23

w8a16 76.11±2.44 74.78±3.25 71.00±0.27 62.11±0.79 66.00±0.94 82.33±0.47 68.33±0.27 33.56±0.96

pruned2of4 44.11±1.55 44.78±2.06 38.11±0.96 30.22±0.42 33.78±1.50 51.22±0.57 36.00±0.98 3.11±1.03

Qwen2.5 32B None 89.00±0.47 90.56±0.16 90.67±0.54 80.67±2.23 87.11±0.42 95.33±0.27 90.89±1.29 37.44±1.03

GPTQ-8 89.67±0.27 90.33±0.82 90.44±0.68 79.78±1.26 86.00±0.98 95.67±0.47 92.11±0.31 38.22±2.69

Llama-3.1 70B None 87.78±0.96 88.22±0.31 88.56±0.42 80.56±0.42 85.00±0.72 94.67±0.27 89.67±1.25 54.78±1.03

w8a16 85.78±0.63 86.56±1.03 84.11±0.16 77.22±0.42 80.89±1.10 93.22±1.13 88.11±0.42 44.33±0.72

Table 6: Performance of SLMs on 8 different Adversarial Perturbations of GSM-Plus dataset. Lower scores indicate
greater vulnerability to the specific perturbation.
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Figure 4: Impact of Quantization on Model Performance across Different Benchmarks.
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Figure 5: Impact of Quantization on Model Performance across Sorting Tasks.
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Models
Task 1
TPR
(k=0)

Task 1
TNR
(k=0)

Task 1
MCC Score

(k=0)

Task 2
Accuracy

(k=0)

Task 3
Accuracy

(k=0)

MR-Score
(k=0)

Model Param. Optimization

Qwen2.5 3B None (Base) 61.5 51 12.6 13.4 3.1 8.1
None (Instruct) 86.8 39.7 29.7 10 4 11

Mistral 7B pruned2.4 59.8 44.8 4.6 8.6 1 4

Llama-3.1 8B
None 16.8 94.8 18.7 34.6 20 24.2

w8a16 16.5 95.2 19.3 33.7 18.8 23.3
pruned2of4 0 0 -100 0 0 0

Qwen2.5 32B None 85.8 84.9 70.6 55.7 49.6 55.6
GPTQ-8 85.5 84.9 70.3 55.9 49.6 55.6

Llama-3.1 70B None 79.3 87.3 66.9 36.5 32.5 40.6
w8a16 86.5 77.4 63.9 42.5 37.3 44.2

Table 7: Detailed results on MR-GSM8K dataset with all the individual task scores as discussed in Section A.5.

Models GPU
(GB)

Disk
(GB) Direct I/O COT 5-shot 5-shot COT 8-shot

Model Param. Pruning type,
Method

No Knowledge Distillation

phi-2 - SparseGPT – – 36.52%±0.73% 40.38%±0.59% 30.22%±0.59% 32.47%±0.99% 22.21%±0.77%

TinyLlama 1.1B SparseGPT 4.2 – 0.48%±0.19% 0.51%±0.07% 1.01%±0.29% 1.09%±0.22% 1.09%±0.38%

Retrained by Cerebras with 50B tokens from SlimPajama

Llama-2 7B SparseGPT (70%) – – 2.38%±0.25% 4.60%±0.28% 4.14%±0.25% 3.18%±0.12% 4.37%±0.35%

Knowledge Distillation for 13B tokens using SquareHead Approach

Llama-3.1 8B 2of4 Sparsity,
SparseGPT

30.65 15 51.86%±0.34% 60.27%±0.66% 9.68%±0.31% 1.95%±0.36% 8.77%±0.50%

Fine-tuned on GSM8K

Llama-2 7B
No Pruning – 26 37.78%±0.93% 34.34%±1.21% 10.31%±0.89% 10.84%±0.65% 9.17%±0.45%

SparseGPT (50%) – 13 39.85%±0.07% 36.42%±0.50% 24.01%±0.36% 29.34%±0.90% 24.51%±1.09%

SparseGPT (70%) – 13 38.41%±0.70% 36.34%±0.29% 34.27%±0.65% 33.43%±0.92% 35.03%±0.60%

Sparse-Llama-3.1 8B
pruned-2of4 – 15 37.25%±0.39% 61.97%±0.28% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

pruned-2of4, INT4
Quant.

– 4.5 39.93%±0.36% 60.58%±0.49% 8.06%±0.46% 8.09%±0.74% 5.64%±0.60%

pruned-2of4, FP8
Quant.

– 8.5 37.45%±0.65% 61.36%±1.21% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

Mistral Fine-tuned

OpenHermes-
2.5

7B SparseGPT 27.65 14 30.30%±0.94% 40.79%±0.81% 35.63%±0.94% 36.04%±0.62% 35.71%±1.07%

Table 8: Performance and Resource Usage of Various Pruned and Distilled Models on GSM8K. The table reports
the model size (in billions of parameters), compression type, GPU memory and disk space usage (in GB), and
accuracy scores for each prompt type.
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Models Sorting-8
(+ve)

Sorting-8
(mixed)

Sorting-16
(+ve)

Sorting-16
(mixed)

Sorting-32
(+ve)

Sorting-32
(mixed)

Model Param. Optimization

No Knowledge Distillation

phi-2 - SparseGPT 19.67%±4.51% 6.67%±2.83% 0.67%±0.92% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

TinyLlama 1.1B SparseGPT 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

Retrained by Cerebras with 50B tokens from SlimPajama

Llama-2 7B SparseGPT (70%) 7.67%±3.02% 0.33%±0.65% 0.33%±0.65% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

Knowledge Distillation for 13B tokens using SquareHead Approach

Llama-3.1 8B 2of4 Sparsity,
SparseGPT

47.33%±5.66% 15.33%±4.08% 20.00%±4.53% 9.33%±3.30% 1.67%±1.45% 0.00%±0.00%

Fine-tuned on GSM8K

Llama-2 7B
No Pruning 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

SparseGPT (50%) 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

SparseGPT (70%) 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

Sparse-Llama-3.1 8B
pruned-2of4 28.33%±5.11% 17.67%±4.32% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

pruned-2of4, INT4
Quant.

50.67%±5.67% 23.33%±4.79% 0.00%±0.00% 1.67%±1.45% 0.00%±0.00% 0.00%±0.00%

pruned-2of4, FP8
Quant.

32.67%±5.32% 16.33%±4.19% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

Mistral Fine-tuned

OpenHermes-
2.5

7B SparseGPT 37.00%±5.47% 22.00%±4.70% 0.67%±0.92% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

Table 9: Performance of Various Pruned and Distilled Models on ARC-E, ARC-C, CommonsenseQA, and Sorting
Tasks. The table reports the model size (in billions of parameters), optimization type (if any), and accuracy scores
for each benchmark.

B Complete Results with lm-eval-harness1243

Here, we present the evaluations of all models1244

using the open-sourced framework – lm-eval-1245

harness. Table 10 reports the results for GSM8K1246

(5-shot), ARC Easy, and ARC Challenge. Table1247

11 contains the results for CommonsenseQA, Hel-1248

laSwag, MathQA, and OpenBookQA. Similarly,1249

the results for the pruned models across these seven1250

datasets are provided in Table 12 and Table 13.1251

Additionally, we observed that results for small1252

models are generally not reported on hard MATH1253

datasets. So, we also evaluated some SLMs on the1254

MATH dataset (Table 14).1255

Lm-eval-harness is a standardized tool to bench-1256

mark language models across diverse tasks, in-1257

cluding reasoning, common sense, and question-1258

answering. All other tasks were assessed in a zero-1259

shot configuration except for GSM8K, which was1260

evaluated using a 5-shot prompting strategy (the1261

framework’s default setting).1262

A notable discrepancy was observed between the1263

results from lm-eval-harness and our evaluations1264

using GPT-4. While larger models performed well1265

in both, smaller models fared worse under lm-eval-1266

harness. This variation could be from differences1267

in evaluation metrics, task design, or prompt struc- 1268

tures between the two frameworks. 1269
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Models
gsm8k (exact_match) arc_easy arc_challenge

(strict-match) (flexible-extract) (acc) (acc_norm) (acc) (acc_norm)

Model Param. Quantization

HF/SmolLM2 1.7B None (Base) 29.87±1.26 30.02±1.26 77.78±0.85 73.36±0.91 44.11±1.45 47.27±1.46
None (Instruct) 0.30±0.15 0.30±0.15 68.98±0.95 62.92±0.99 38.31±1.42 43.86±1.45

nvidia/Hymba 1.5B None (Base) 17.13±1.04 17.59±1.05 76.60±0.87 77.15±0.86 45.39±1.45 49.91±1.46
None (Instruct) 44.28±1.37 47.31±1.38 76.52±0.87 76.01±0.88 44.62±1.45 49.06±1.46

nvidia/Minitron 4B None (Base) 24.11±1.18 23.58±1.17 75.93±0.88 75.97±0.88 39.76±1.43 44.88±1.45

Qwen2.5 (Base)
0.5B None 34.72±1.31 35.33±1.32 64.65±0.98 58.21±1.01 29.27±1.33 32.34±1.37
1.5B None 62.32±1.33 62.62±1.33 75.38±0.88 71.63±0.92 41.30±1.44 44.97±1.45
3B None 70.74±1.25 76.19±1.17 77.36±0.86 73.15±0.91 44.54±1.45 47.01±1.46

Llama-3.2 (Base) 1B None 6.37±0.67 6.60±0.68 65.32±0.98 60.61±1.00 31.23±1.35 36.01±1.40

Llama-3.2-Instruct

1B

None 33.36±1.30 33.36±1.30 68.48±0.95 63.34±0.99 35.67±1.40 38.05±1.42
w8a8 33.51±1.30 33.59±1.30 68.73±0.95 63.30±0.99 35.49±1.40 37.80±1.42
FP8 31.54±1.28 30.86±1.27 67.80±0.96 62.50±0.99 35.07±1.39 37.88±1.42

FP8-dynamic 33.36±1.30 33.21±1.30 67.63±0.96 62.96±0.99 35.49±1.40 38.23±1.42

3B

None 64.97±1.31 65.73±1.31 73.91±0.90 67.97±0.96 43.77±1.45 45.90±1.46
w8a8 64.06±1.32 64.82±1.32 73.86±0.90 67.80±0.96 43.34±1.45 46.25±1.46
FP8 57.62±1.36 57.54±1.36 68.90±0.95 63.01±0.99 40.96±1.44 43.34±1.45

FP8-dynamic 62.85±1.33 63.46±1.33 73.48±0.91 67.09±0.96 42.49±1.44 45.05±1.45

Llama-3.1

8B

None 74.75±1.20 77.26±1.15 81.78±0.79 79.50±0.83 51.54±1.46 55.46±1.45
w8a8 75.51±1.18 77.94±1.14 81.65±0.79 79.63±0.83 51.96±1.46 55.12±1.45

w8a16 75.51±1.18 77.79±1.14 82.03±0.79 79.88±0.82 51.79±1.46 55.20±1.45
w4a16 70.58±1.26 70.58±1.26 78.70±0.84 75.88±0.88 47.27±1.46 51.71±1.46

FP8 71.57±1.24 73.16±1.22 80.72±0.81 78.49±0.84 51.37±1.46 53.67±1.46
FP8-dynamic 75.21±1.19 77.56±1.15 81.10±0.80 80.13±0.82 52.13±1.46 54.44±1.46

70B

Instruct 88.32±0.88 92.19±0.74 86.78±0.69 83.63±0.76 62.46±1.42 63.57±1.41
w8a8 88.32±0.88 92.34±0.73 86.57±0.70 83.59±0.76 62.37±1.42 63.05±1.41

w8a16 87.49±0.91 88.02±0.89 80.81±0.81 79.92±0.82 52.65±1.46 56.23±1.45
w4a16 89.23±0.85 91.81±0.76 86.49±0.70 83.71±0.76 61.60±1.42 63.82±1.40

FP8 89.31±0.85 90.60±0.80 85.02±0.73 83.21±0.77 59.30±1.44 61.86±1.42
FP8-dynamic 88.17±0.89 92.12±0.74 86.41±0.70 83.50±0.76 62.20±1.42 62.71±1.41

Mistralv0.3 7B

None 49.36±1.38 49.66±1.38 84.22±0.75 82.66±0.78 57.17±1.45 58.36±1.44
w8a8 49.20±1.38 49.43±1.38 84.18±0.75 82.83±0.77 57.00±1.45 58.36±1.44

w8a16 50.42±1.38 50.49±1.38 84.30±0.75 82.70±0.78 57.68±1.44 59.04±1.44
w4a16 44.05±1.37 44.12±1.37 82.53±0.78 81.44±0.80 53.92±1.46 56.91±1.45

MistralNemo 12B None 74.07±1.21 75.82±1.18 82.58±0.78 80.01±0.82 56.23±1.45 58.87±1.44
w4a16 70.81±1.25 72.63±1.23 81.78±0.79 79.00±0.84 54.52±1.46 58.11±1.44

Qwen2

0.5B

None 33.13±1.30 33.74±1.30 58.63±1.01 54.88±1.02 26.62±1.29 29.86±1.34
GPTQ-Int8 32.68±1.29 33.36±1.30 58.25±1.01 54.88±1.02 26.19±1.28 30.12±1.34
GPTQ-Int4 18.12±1.06 21.46±1.13 57.41±1.01 55.18±1.02 26.71±1.29 29.44±1.33

w8a16 37.98±1.34 38.21±1.34 58.46±1.01 54.92±1.02 26.28±1.29 30.29±1.34
w8a8 32.45±1.29 33.28±1.30 58.71±1.01 54.84±1.02 27.30±1.30 30.55±1.35
w4a16 27.75±1.23 28.81±1.25 52.86±1.02 48.86±1.03 26.71±1.29 27.82±1.31

1.5B

None 54.21±1.37 55.19±1.37 69.91±0.94 66.96±0.97 37.20±1.41 40.10±1.43
GPTQ-Int8 54.89±1.37 55.95±1.37 69.74±0.94 66.75±0.97 37.12±1.41 40.02±1.43
GPTQ-Int4 49.73±1.38 50.80±1.38 68.60±0.95 65.11±0.98 35.84±1.40 38.99±1.43

w8a16 57.85±1.36 58.45±1.36 69.65±0.94 66.58±0.97 37.12±1.41 39.85±1.43
w8a8 54.28±1.37 55.04±1.37 69.40±0.95 66.41±0.97 37.20±1.41 39.85±1.43
w4a16 54.66±1.37 54.89±1.37 68.27±0.96 64.98±0.98 34.56±1.39 38.05±1.42

7B

None 63.53±1.33 72.33±1.23 80.22±0.82 76.47±0.87 50.94±1.46 54.01±1.46
GPTQ-Int8 63.46±1.33 73.46±1.22 80.35±0.82 76.35±0.87 51.11±1.46 54.35±1.46
GPTQ-Int4 57.85±1.36 70.05±1.26 80.68±0.81 77.19±0.86 51.62±1.46 54.69±1.45

w8a16 68.39±1.28 75.74±1.18 80.43±0.81 76.18±0.87 51.02±1.46 54.01±1.46
w8a8 64.29±1.32 73.62±1.21 80.18±0.82 76.52±0.87 50.60±1.46 54.27±1.46
w4a16 66.19±1.30 74.75±1.20 79.76±0.82 75.88±0.88 52.05±1.46 54.35±1.46

Qwen2.5

0.5B
None 21.68±1.14 32.75±1.29 65.53±0.98 58.84±1.01 30.29±1.34 33.28±1.38

GPTQ-Int8 19.03±1.08 31.84±1.28 65.91±0.97 59.72±1.01 30.72±1.35 34.22±1.39
GPTQ-Int4 2.27±0.41 17.59±1.05 61.49±1.00 61.70±1.00 28.33±1.32 30.97±1.35

1.5B
None 30.48±1.27 50.87±1.38 76.60±0.87 76.01±0.88 43.86±1.45 46.84±1.46

GPTQ-Int8 31.16±1.28 51.93±1.38 76.81±0.87 75.97±0.88 43.34±1.45 46.16±1.46
GPTQ-Int4 32.75±1.29 49.05±1.38 75.93±0.88 75.67±0.88 42.58±1.44 45.39±1.45

3B
None 10.99±0.86 63.68±1.32 77.06±0.86 72.94±0.91 45.73±1.46 48.04±1.46

GPTQ-Int8 10.08±0.83 64.44±1.32 77.10±0.86 73.15±0.91 46.16±1.46 48.12±1.46
GPTQ-Int4 10.24±0.83 59.44±1.35 78.07±0.85 74.16±0.90 46.25±1.46 49.49±1.46

7B
None 76.04±1.18 81.80±1.06 81.52±0.80 81.40±0.80 52.90±1.46 55.20±1.45

GPTQ-Int8 76.12±1.17 82.71±1.04 81.57±0.80 81.06±0.80 52.30±1.46 54.69±1.45
GPTQ-Int4 71.49±1.24 79.30±1.12 81.44±0.80 80.05±0.82 51.62±1.46 54.35±1.46

14B
None 80.06±1.10 45.56±1.37 85.73±0.72 81.61±0.79 60.41±1.43 62.29±1.42

GPTQ-Int8 79.61±1.11 46.47±1.37 86.15±0.71 81.86±0.79 60.92±1.43 62.37±1.42
GPTQ-Int4 0.61±0.21 1.06±0.28 39.77±1.00 37.29±0.99 21.59±1.20 23.38±1.24

32B
None 75.13±1.19 69.60±1.27 82.24±0.78 77.31±0.86 57.76±1.44 58.79±1.44

GPTQ-Int8 75.21±1.19 69.75±1.27 82.15±0.79 77.19±0.86 58.11±1.44 58.79±1.44
GPTQ-Int4 74.91±1.19 81.27±1.07 81.52±0.80 76.14±0.87 56.74±1.45 57.68±1.44

Table 10: Performance Comparison on GSM8K, ARC-Easy, and ARC-Challenge with lm-eval-harness framework.
GSM8K is evaluated using exact match and flexible-extract string matching. ARC-Easy and ARC-Challenge are
evaluated using accuracy (acc) and normalized accuracy (acc_norm).

23



Models commonsense_qa
(acc)

hellaswag mathqa openbookqa

(acc) (acc_norm) (acc) (acc_norm) (acc) (acc_norm)

Model Param. Quantization

HF/SmolLM2 1.7B None (Base) 41.85±1.41 53.36±0.50 71.43±0.45 34.47±0.87 34.07±0.87 32.20±2.09 43.80±2.22

None (Instruct) 50.53±1.43 53.48±0.50 71.80±0.45 31.12±0.85 31.96±0.85 33.80±2.12 45.80±2.23

nvidia/Hymba 1.5B None (Base) 63.31±1.38 53.49±0.50 71.49±0.45 28.94±0.83 27.97±0.82 32.40±2.10 41.60±2.21

None (Instruct) 63.55±1.38 53.57±0.50 71.06±0.45 29.18±0.83 29.25±0.83 31.00±2.07 42.00±2.21

nvidia/Minitron 4B None (Base) 71.01±1.30 53.89±0.50 72.29±0.45 31.49±0.85 31.36±0.85 30.80±2.07 42.60±2.21

Qwen2.5 (Base)
0.5B None 54.79±1.42 40.53±0.49 52.20±0.50 28.88±0.83 29.45±0.83 24.80±1.93 35.40±2.14

1.5B None 74.61±1.25 50.20±0.50 67.86±0.47 34.57±0.87 35.34±0.88 31.80±2.08 40.40±2.20

3B None 77.07±1.20 55.02±0.50 73.68±0.44 37.22±0.88 37.42±0.89 29.40±2.04 42.80±2.21

Llama-3.2 (Base) 1B None 46.93±1.43 47.69±0.50 63.78±0.48 29.11±0.83 29.21±0.83 26.00±1.96 36.80±2.16

Llama-3.2 (Instruct)

1B

None 55.45±1.42 45.15±0.50 60.76±0.49 33.30±0.86 32.86±0.86 24.20±1.92 34.80±2.13

w8a8 55.36±1.42 45.15±0.50 60.61±0.49 33.13±0.86 32.56±0.86 24.20±1.92 34.80±2.13

FP8 54.63±1.43 44.88±0.50 60.07±0.49 32.66±0.86 32.46±0.86 23.60±1.90 33.80±2.12

FP8-dynamic 55.45±1.42 45.00±0.50 60.68±0.49 32.93±0.86 32.63±0.86 24.80±1.93 35.00±2.14

3B

None 67.73±1.34 52.29±0.50 70.55±0.45 34.71±0.87 34.44±0.87 27.60±2.00 36.20±2.15

w8a8 67.49±1.34 52.25±0.50 70.53±0.45 34.81±0.87 34.71±0.87 28.20±2.01 36.40±2.15

FP8 62.16±1.39 50.40±0.50 68.87±0.46 35.28±0.87 34.71±0.87 27.40±2.00 37.20±2.16

FP8-dynamic 67.73±1.34 52.16±0.50 70.25±0.46 34.84±0.87 34.77±0.87 28.60±2.02 37.60±2.17

Llama-3.1 (Instruct)

8B

None 77.40±1.20 59.13±0.49 79.17±0.41 39.43±0.89 39.53±0.90 33.20±2.11 43.20±2.22

w8a8 76.99±1.21 58.98±0.49 79.28±0.40 39.97±0.90 39.97±0.90 33.00±2.10 42.80±2.21

w8a16 76.99±1.21 59.14±0.49 79.21±0.40 39.77±0.90 39.77±0.90 33.20±2.11 43.20±2.22

w4a16 68.39±1.33 58.03±0.49 77.79±0.41 38.02±0.89 37.96±0.89 31.80±2.08 42.40±2.21

FP8 76.58±1.21 58.91±0.49 78.12±0.41 38.86±0.89 39.16±0.89 32.80±2.10 44.40±2.22

FP8-dynamic 77.15±1.20 59.07±0.49 79.10±0.41 39.87±0.90 39.77±0.90 34.40±2.13 43.60±2.22

70B

None 80.92±1.13 65.22±0.48 84.66±0.36 56.05±0.91 54.67±0.91 37.20±2.16 47.40±2.24

w8a8 80.59±1.13 65.10±0.48 84.59±0.36 56.01±0.91 54.67±0.91 36.60±2.16 46.40±2.23

w8a16 69.04±1.32 64.56±0.48 84.06±0.37 44.92±0.91 44.96±0.91 32.20±2.09 44.00±2.22

w4a16 79.93±1.15 64.55±0.48 84.04±0.37 54.97±0.91 54.24±0.91 35.40±2.14 45.40±2.23

FP8 78.79±1.17 63.03±0.48 83.16±0.37 51.89±0.91 50.99±0.92 37.00±2.16 47.40±2.24

FP8-dynamic 80.51±1.13 65.11±0.48 84.54±0.36 55.78±0.91 54.54±0.91 36.00±2.15 47.20±2.23

Mistralv0.3 (Instruct) 7B

69.29±1.32 64.91±0.48 82.86±0.38 37.39±0.89 38.56±0.89 36.00±2.15 47.20±2.23

w8a8 69.62±1.32 64.70±0.48 82.88±0.38 37.62±0.89 38.32±0.89 35.40±2.14 47.00±2.23

w8a16 69.94±1.31 64.78±0.48 83.01±0.37 38.16±0.89 39.26±0.89 35.80±2.15 46.60±2.23

w4a16 62.49±1.39 62.69±0.48 81.46±0.39 37.25±0.89 37.59±0.89 33.60±2.11 43.00±2.22

MistralNemo (Instruct) 12B None 70.52±1.31 63.27±0.48 82.35±0.38 39.36±0.89 39.90±0.90 37.40±2.17 46.40±2.23

w4a16 69.12±1.32 62.00±0.48 81.37±0.39 38.36±0.89 38.76±0.89 36.80±2.16 46.20±2.23

Qwen2 (Instruct)

0.5B

None 52.74±1.43 39.01±0.49 49.79±0.50 25.93±0.80 26.83±0.81 24.00±1.91 33.40±2.11

GPTQ-Int8 52.99±1.43 39.07±0.49 49.92±0.50 25.63±0.80 26.43±0.81 24.00±1.91 33.80±2.12

GPTQ-Int4 47.75±1.43 38.33±0.49 48.05±0.50 25.76±0.80 26.13±0.80 20.60±1.81 33.20±2.11

w8a16 53.24±1.43 39.08±0.49 49.77±0.50 25.70±0.80 26.50±0.81 24.40±1.92 33.60±2.11

w8a8 53.15±1.43 39.19±0.49 49.95±0.50 25.76±0.80 26.67±0.81 24.00±1.91 32.60±2.10

w4a16 46.44±1.43 37.86±0.48 48.14±0.50 25.26±0.80 25.53±0.80 21.00±1.82 32.80±2.10

1.5B

None 70.19±1.31 49.28±0.50 66.03±0.47 32.90±0.86 32.80±0.86 27.80±2.01 37.20±2.16

GPTQ-Int8 70.19±1.31 49.28±0.50 65.89±0.47 33.10±0.86 32.96±0.86 28.00±2.01 37.00±2.16

GPTQ-Int4 69.62±1.32 48.15±0.50 64.83±0.48 31.26±0.85 32.19±0.86 26.80±1.98 36.60±2.16

w8a16 69.78±1.31 49.29±0.50 66.02±0.47 33.00±0.86 33.00±0.86 28.00±2.01 37.00±2.16

w8a8 70.11±1.31 49.39±0.50 66.01±0.47 33.03±0.86 32.83±0.86 27.80±2.01 36.40±2.15

w4a16 68.39±1.33 48.15±0.50 64.46±0.48 32.63±0.86 33.10±0.86 26.40±1.97 38.00±2.17

7B

None 80.75±1.13 61.05±0.49 80.67±0.39 44.15±0.91 41.98±0.90 35.40±2.14 46.20±2.23

GPTQ-Int8 81.00±1.12 61.04±0.49 80.75±0.39 44.29±0.91 42.21±0.90 35.20±2.14 46.60±2.23

GPTQ-Int4 79.03±1.17 60.21±0.49 79.34±0.40 43.48±0.91 42.48±0.90 34.80±2.13 43.60±2.22

w8a16 80.84±1.13 61.04±0.49 80.53±0.40 44.15±0.91 42.28±0.90 34.40±2.13 46.40±2.23

w8a8 80.67±1.13 61.08±0.49 80.55±0.39 43.58±0.91 41.51±0.90 34.80±2.13 46.20±2.23

w4a16 79.44±1.16 59.93±0.49 79.79±0.40 43.32±0.91 42.38±0.90 33.40±2.11 46.40±2.23

Qwen2.5 (Instruct)

0.5B
None 56.92±1.42 40.53±0.49 52.53±0.50 28.98±0.83 29.65±0.84 23.80±1.91 34.40±2.13

GPTQ-Int8 57.08±1.42 40.53±0.49 52.39±0.50 28.78±0.83 29.85±0.84 24.00±1.91 34.60±2.13

GPTQ-Int4 47.26±1.43 38.91±0.49 49.33±0.50 27.91±0.82 28.27±0.82 23.80±1.91 33.20±2.11

1.5B
None 74.53±1.25 50.89±0.50 68.28±0.46 33.63±0.86 34.07±0.87 31.60±2.08 41.00±2.20

GPTQ-Int8 75.51±1.23 50.86±0.50 68.37±0.46 33.23±0.86 33.84±0.87 31.80±2.08 40.20±2.19

GPTQ-Int4 71.42±1.29 49.38±0.50 65.93±0.47 31.26±0.85 32.53±0.86 31.20±2.07 40.60±2.20

3B
None 78.79±1.17 56.35±0.49 74.94±0.43 35.18±0.87 35.28±0.87 32.60±2.10 42.00±2.21

GPTQ-Int8 78.79±1.17 56.34±0.49 75.02±0.43 35.58±0.88 35.78±0.88 32.80±2.10 41.80±2.21

GPTQ-Int4 76.74±1.21 55.24±0.50 73.27±0.44 36.78±0.88 37.39±0.89 29.40±2.04 42.00±2.21

7B
None 82.64±1.08 62.04±0.48 80.50±0.40 40.57±0.90 40.13±0.90 34.60±2.13 48.80±2.24

GPTQ-Int8 82.64±1.08 62.00±0.48 80.52±0.40 40.57±0.90 40.17±0.90 34.60±2.13 48.40±2.24

GPTQ-Int4 81.82±1.10 60.98±0.49 79.73±0.40 40.30±0.90 39.80±0.90 35.40±2.14 47.20±2.23

14B
None 84.03±1.05 65.56±0.47 84.38±0.36 49.78±0.92 48.41±0.91 36.20±2.15 47.80±2.24

GPTQ-Int8 83.87±1.05 65.67±0.47 84.50±0.36 48.94±0.92 47.67±0.91 37.20±2.16 47.20±2.23

GPTQ-Int4 19.41±1.13 31.46±0.46 36.94±0.48 21.98±0.76 22.48±0.76 14.60±1.58 27.60±2.00

32B
None 86.73±0.97 66.88±0.47 85.22±0.35 57.02±0.91 54.67±0.91 35.60±2.14 45.60±2.23

GPTQ-Int8 87.06±0.96 66.77±0.47 85.24±0.35 57.15±0.91 54.91±0.91 35.40±2.14 45.40±2.23

GPTQ-Int4 86.49±0.98 66.40±0.47 84.74±0.36 54.27±0.91 52.76±0.91 36.00±2.15 46.00±2.23

Table 11: Performance Comparison on CommonsenseQA, HellaSwag, MATHQA, and OpenBookQA with lm-eval-
harness framework. CommonsenseQA is evaluated using accuracy (acc). HellaSwag, OpenBookQA, and MATHQA
are evaluated using both accuracy (acc) and normalized accuracy (acc_norm).
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Models
gsm8k (exact_match) arc_easy arc_challenge

(strict-match) (flexible-extract) (acc) (acc_norm) (acc) (acc_norm)

Model Param. Pruning type, Method

No Knowledge Distillation

phi-2 - SparseGPT 43.97±1.37 44.05±1.37 77.31±0.86 75.08±0.89 47.10±1.46 48.63±1.46

TinyLlama 1.1B SparseGPT 0.76±0.24 1.97±0.38 45.66±1.02 42.00±1.01 22.10±1.21 25.60±1.28

Retrained by Cerebras with 50B tokens from SlimPajama

Llama-2 7B SparseGPT (70%) 7.88±0.74 8.19±0.76 72.52±0.92 69.74±0.94 38.57±1.42 41.21±1.44

Knowledge Distillation for 13B tokens using SquareHead Approach

Llama-3.1 8B 2of4 Sparsity, SparseGPT 61.49±1.34 61.56±1.34 77.23±0.86 66.88±0.97 45.56±1.46 47.95±1.46

Fine-tuned on GSM8K

Llama-2 7B
No Pruning 37.30±1.33 37.53±1.33 74.58±0.89 70.62±0.93 41.47±1.44 43.77±1.45

SparseGPT (50%) 36.54±1.33 36.54±1.33 73.06±0.91 69.15±0.95 36.69±1.41 40.27±1.43

SparseGPT (70%) 34.19±1.31 34.19±1.31 70.71±0.93 66.12±0.97 35.58±1.40 37.71±1.42

Sparse-Llama-3.1 8B pruned-2of4 57.24±1.36 57.24±1.36 81.06±0.80 78.58±0.84 51.19±1.46 53.07±1.46

pruned-2of4, FP8 Quant. 62.55±1.33 62.70±1.33 77.44±0.86 67.09±0.96 45.22±1.45 47.53±1.46

Mistral Fine-tuned

OpenHermes-2.5 7B SparseGPT 19.79±1.10 34.19±1.31 73.86±0.90 73.02±0.91 41.81±1.44 44.28±1.45

Table 12: Performance Comparison of Pruned and Distilled models on GSM8K, ARC-Easy, and ARC-Challenge
with lm-eval-harness framework.

Models commonsense_qa
(acc)

hellaswag mathqa openbookqa

(acc) (acc_norm) (acc) (acc_norm) (acc) (acc_norm)

Model Param. Pruning type, Method

No Knowledge Distillation

phi-2 - SparseGPT 59.21±1.41 48.75±0.50 65.71±0.47 30.79±0.85 30.15±0.84 36.60±2.16 46.20±2.23

TinyLlama 1.1B SparseGPT 18.92±1.12 33.00±0.47 40.43±0.49 23.82±0.78 23.28±0.77 16.60±1.67 29.80±2.05

Retrained by Cerebras with 50B tokens from SlimPajama

Llama-2 7B SparseGPT (70%) 24.24±1.23 53.69±0.50 72.25±0.45 27.74±0.82 27.27±0.82 31.60±2.08 40.20±2.19

Knowledge Distillation for 13B tokens using SquareHead Approach

Llama-3.1 8B 2of4 Sparsity, SparseGPT 74.45±1.25 58.84±0.49 77.60±0.42 38.09±0.89 37.82±0.89 34.80±2.13 45.40±2.23

Fine-tuned on GSM8K

Llama-2 7B
No Pruning 41.44±1.41 57.56±0.49 75.31±0.43 26.06±0.80 25.86±0.80 31.20±2.07 43.60±2.22

SparseGPT (50%) 32.19±1.34 56.07±0.50 71.02±0.45 26.33±0.81 26.03±0.80 29.20±2.04 39.40±2.19

SparseGPT (70%) 30.38±1.32 54.40±0.50 68.47±0.46 24.99±0.79 24.99±0.79 29.00±2.03 40.80±2.20

Sparse-Llama-3.1 8B
pruned-2of4 39.72±1.40 60.24±0.49 78.84±0.41 26.73±0.81 27.87±0.82 36.00±2.15 46.00±2.23

pruned-2of4, FP8 Quant. 40.70±1.41 60.04±0.49 78.63±0.41 26.57±0.81 27.60±0.82 36.20±2.15 45.80±2.23

Mistral Fine-tuned

OpenHermes-2.5 7B SparseGPT 64.54±1.37 46.78±0.50 62.36±0.48 32.13±0.85 32.73±0.86 23.40±1.90 36.00±2.15

Table 13: Performance Comparison of Pruned and Distilled models on CommonsenseQA, HellaSwag, MATHQA,
and OpenBookQA with lm-eval-harness framework.
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Models
MATH Dataset

Pre-
algebra Algebra Number

Theory

Counting
&

Probability
Geometry Intermediate

Algebra
Pre-

calculus Average

Model Param. Optimiza-
tion

SmolLM2 1.7B None (Base) 8.27±0.93 5.31±0.65 4.81±0.92 6.12±1.10 3.13±0.80 4.76±0.71 2.75±0.70 5.26±0.32

None
(Instruct)

1.72±0.44 1.10±0.30 0.74±0.37 0.84±0.42 0.00±0.00 1.77±0.44 0.73±0.37 1.12±0.15

Minitron
(Base)

4B None 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Qwen2.5 (Base) 0.5B None 1.49±0.41 0.84±0.27 0.19±0.19 0.42±0.30 1.04±0.46 0.66±0.27 1.47±0.51 0.90±0.13

3B None 1.95±0.47 1.85±0.39 0.93±0.41 0.84±0.42 1.25±0.51 1.22±0.37 1.28±0.48 1.44±0.17

Llama-3.2

1B
None 0.23±0.16 0.17±0.12 0.19±0.19 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.04

w8a8 0.11±0.11 0.00±0.00 0.19±0.19 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.04±0.03

FP8 0.46±0.23 0.08±0.08 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.04

3B
None 0.23±0.16 0.34±0.17 0.00±0.00 0.21±0.21 0.00±0.00 0.00±0.00 0.00±0.00 0.14±0.05

w8a8 0.23±0.16 0.25±0.15 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.04

FP8 0.23±0.16 0.17±0.12 0.19±0.19 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.04

Llama-3.1 8B None 0.69±0.28 0.08±0.08 0.00±0.00 0.00±0.00 0.00±0.00 0.11±0.11 0.18±0.18 0.18±0.06

FP8 1.15±0.36 0.17±0.12 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.37±0.26 0.28±0.07

Mistral-v0.3 7B
None 3.44±0.62 0.93±0.28 1.11±0.45 0.63±0.36 1.46±0.55 0.55±0.25 0.18±0.18 1.26±0.16

w8a8 3.67±0.64 0.93±0.28 1.11±0.45 0.63±0.36 1.25±0.51 0.44±0.22 0.00±0.00 1.24±0.16

w8a16 3.33±0.61 0.76±0.25 1.30±0.49 0.63±0.36 1.46±0.55 0.55±0.25 0.00±0.00 1.20±0.15

Qwen2

0.5B

None 0.69±0.28 0.67±0.24 0.19±0.19 0.21±0.21 0.21±0.21 0.22±0.16 0.18±0.18 0.40±0.09

GPTQ-8 1.03±0.34 0.76±0.25 0.37±0.26 0.00±0.00 0.63±0.36 0.11±0.11 0.00±0.00 0.48±0.10

GPTQ-4 0.34±0.20 0.42±0.19 0.00±0.00 0.21±0.21 0.00±0.00 0.00±0.00 0.18±0.18 0.20±0.06

w8a16 1.03±0.34 0.84±0.27 0.00±0.00 1.48±0.55 0.21±0.21 0.22±0.16 0.00±0.00 0.58±0.11

w8a8 0.69±0.28 0.84±0.27 0.37±0.26 0.84±0.42 0.63±0.36 0.22±0.16 0.18±0.18 0.56±0.11

w4a16 0.80±0.30 0.17±0.12 0.19±0.19 0.42±0.30 0.00±0.00 0.00±0.00 0.00±0.00 0.24±0.07

1.5B

None 0.92±0.32 0.67±0.24 0.19±0.19 0.21±0.21 0.42±0.29 0.00±0.00 0.18±0.18 0.42±0.09

GPTQ-8 1.03±0.34 0.59±0.22 0.19±0.19 0.21±0.21 0.21±0.21 0.11±0.11 0.18±0.18 0.42±0.09

GPTQ-4 1.03±0.34 0.51±0.21 0.56±0.32 0.21±0.21 0.00±0.00 0.00±0.00 0.18±0.18 0.40±0.09

w8a16 0.69±0.28 0.08±0.08 0.56±0.32 0.21±0.21 0.00±0.00 0.11±0.11 0.18±0.18 0.26±0.07

w8a8 1.15±0.36 0.59±0.22 0.37±0.26 0.00±0.00 0.42±0.29 0.00±0.00 0.00±0.00 0.42±0.09

w4a16 0.57±0.26 0.25±0.15 0.37±0.26 0.42±0.30 0.00±0.00 0.11±0.11 0.55±0.32 0.32±0.08

7B None 1.95±0.47 1.52±0.35 0.56±0.32 1.69±0.59 0.00±0.00 0.00±0.00 0.37±0.26 0.96±0.14

Qwen2.5

0.5B
None 0.80±0.30 0.67±0.24 0.00±0.00 0.84±0.42 0.21±0.21 0.22±0.16 1.65±0.55 0.62±0.11

GPTQ-8 0.69±0.28 0.59±0.22 0.00±0.00 0.63±0.36 0.21±0.21 0.22±0.16 1.10±0.45 0.50±0.10

GPTQ-4 0.57±0.26 0.34±0.17 0.37±0.26 0.00±0.00 0.00±0.00 0.22±0.16 0.37±0.26 0.30±0.08

1.5B
None 1.03±0.34 0.59±0.22 0.56±0.32 0.42±0.30 3.13±0.80 1.44±0.40 2.38±0.65 1.24±0.16

GPTQ-8 0.92±0.32 0.59±0.22 0.37±0.26 0.63±0.36 2.92±0.77 1.44±0.40 1.65±0.55 1.12±0.15

GPTQ-4 0.46±0.23 0.42±0.19 0.19±0.19 1.48±0.55 0.42±0.29 0.55±0.25 1.65±0.55 0.66±0.11

3B None 1.95±0.47 1.43±0.35 0.19±0.19 1.27±0.51 1.46±0.55 0.33±0.19 0.55±0.32 1.08±0.15

7B None 0.23±0.16 0.25±0.15 0.00±0.00 0.63±0.36 0.42±0.29 0.33±0.19 0.37±0.26 0.30±0.08

14B None 2.41±0.52 2.27±0.43 2.59±0.68 3.16±0.80 6.26±1.11 3.88±0.64 7.69±1.14 3.68±0.27

32B None 1.95±0.47 2.61±0.46 2.22±0.63 3.80±0.88 4.38±0.94 2.55±0.52 2.75±0.70 2.74±0.23

Table 14: Performance Comparison on MATH dataset with lm-eval-harness framework. MATH is evaluated using
exact match.
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C Prompts and Scripts1270

In this section we provide all the prompts template1271

we used in this work.1272

C.1 Model Prompts (1-9)1273

Here, we provide the complete prompts to elicit1274

model responses from Prompt 1 to Prompt 9. We1275

used several prompts, including direct I/O, COT,1276

and few-shot, to encourage reasoning responses1277

from the models. These nine carefully designed1278

prompts aimed to elicit diverse reasoning behav-1279

iors, ranging from simple questions to multi-step1280

reasoning tasks. This ensures a thorough evalua-1281

tion of the models’ reasoning capabilities across1282

different datasets.1283

Prompt 1: Direct I/O
Prompt Template
< question >

1284

Prompt 2: Direct I/O + ####
Prompt Template
< question >

Please solve the following question step-by-step
and provide the final numerical answer after
’####’.

1285

Prompt 3: Direct I/O + Final Answer
Prompt Template
< question >

Provide only the final numerical answer to this
question without any explanation.

1286

Prompt 4: Chain-of-thought (COT)

Prompt Template
< question >

Let’s think step by step.
1287

Prompt 5: COT + ####
Prompt Template
< question >

Let’s think step by step. In the end, please pro-
vide the final numerical answer after ’####’.

1288

Prompt 6: 5-Shot
Prompt Template
Question: < question1 >
Answer: < answer1 >
Question: < question2 >
Answer: < answer2 >
Question: < question3 >
Answer: < answer3 >
Question: < question4 >
Answer: < answer4 >
Question: < question5 >
Answer: < answer5 >

Solve the following question using the provided
examples for reference

Question: < question >

Can you solve this question?
1289

Prompt 7: Complex Reasoning

Prompt Template
< question >

To solve this problem, follow these instructions
step by step:
1. Break the problem into smaller parts.
2. Solve each part logically and explain your
reasoning in detail.
3. Combine the results to arrive at the final an-
swer.
4. Double-check your solution to ensure its ac-
curacy.
Please provide your solution with detailed rea-
soning and clarity."

1290
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Prompt 8: COT + 5-Shot
Prompt Template
Question: < question1 >
Answer: < answer1 >
Question: < question2 >
Answer: < answer2 >
Question: < question3 >
Answer: < answer3 >
Question: < question4 >
Answer: < answer4 >
Question: < question5 >
Answer: < answer5 >

Let’s think step by step. Solve the following
question using step-by-step reasoning as
demonstrated in the above examples.

Question: < question >

Can you solve this question?
1291

Prompt 9: 8-Shot
Prompt Template
Question: < question1 >
Answer: < answer1 >
Question: < question2 >
Answer: < answer2 >
Question: < question3 >
Answer: < answer3 >
Question: < question4 >
Answer: < answer4 >
Question: < question5 >
Answer: < answer5 >
Question: < question6 >
Answer: < answer6 >
Question: < question7 >
Answer: < answer7 >
Question: < question8 >
Answer: < answer8 >

Solve the following question using the provided
examples for reference:

Question: < question >

Can you solve this question?
1292

C.2 GPT-4 Evaluation Prompts1293

In this section, we provide the prompt used for1294

our judge (GPT). We used GPT-4 as the LLM-as-a-1295

judge, using carefully designed prompts to guide its1296

evaluation of responses generated by SLMs. These 1297

prompts were chosen to ensure consistency and 1298

minimize potential biases in the evaluation process. 1299

Prompt 10: Evaluation Prompt for GSM8K

Prompt Template
Your role is to compare the student’s answer to
the provided ground truth answer and determine
its correctness. Carefully read both the ground
truth answer and the student’s answer. Provide
your assessment using one of the following
responses:

- ’Correct’: If the student’s final answer matches
the ground truth answer.
- ’Incorrect’: If the student’s final answer
contradicts the ground truth answer.

Focus solely on the final answer or conclusion,
disregarding any reasoning or intermediate
student’s steps. Be aware that the ground truth
and student answers may be preceded by ’####’
symbols. Respond with exactly one word
’Correct’ or ’Incorrect’.

Question: < question >
Ground truth answer: < ground_truth >
Student answer: < model_response >

1300
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Prompt 11: Evaluation Prompt for ARC

Prompt Template
Your role is to evaluate the student’s multiple-
choice answer compared to the ground truth
answer and determine its correctness. Carefully
read the question, the answer choices, the
ground truth answer, and the student’s answer.
Provide your assessment using one of the
following responses:

- ’Correct’: If the student’s chosen answer
matches the ground truth answer.
- ’Incorrect’: If the student’s chosen answer does
not match the ground truth answer.

Focus on whether the student’s final answer
aligns with the intent and content of the ground
truth answer. Disregard minor variations
in wording or format and any reasoning or
explanation. Respond with exactly one word:
’Correct’ or ’Incorrect’.

Question: < question >
Ground truth answer: < ground_truth >
Student answer: < model_response >

1301

C.3 Sorting Parsing Script: 13 Variations1302

Here’s a list of scenarios that Parsing Script is de-1303

signed to handle, categorized by the parsing strat-1304

egy employed:1305

Bracketed Lists (High Confidence)1306

1. [1, 2, 3, 4]: Standard, comma-separated list1307

within square brackets.1308

2. [ 1, 2, 3,4]: List with extra spaces between1309

elements and brackets.1310

3. [-1, 0, 2, 5]: List containing negative num-1311

bers.1312

4. [1,2,3,4]: List with no spaces between ele-1313

ments.1314

5. [ 1 , 2 , 3 , 4 ]: List with spaces before1315

and after the brackets.1316

Textual Lists (Medium Confidence)1317

6. "The sorted list is: 3, 5, 9, 12":1318

Standard textual list with commas and spaces.1319

7. "The sorted list is: 3,5,9,12": Textual1320

list with commas but no spaces.1321

8. "The Sorted List Is: -1, 0, 4, 7":1322

Case-insensitive matching of the key phrase.1323

9. "The sorted list is:3, 5, 9": Handles1324

missing space immediately after the colon.1325

Numbered Lists (Medium Confidence) 1326

10. 1. 9 1327

2. 13 1328

3. 29: Standard numbered list format. (Note: 1329

Represented with line breaks using \\) 1330

11. 1. 9 1331

2. 13 1332

3. 29: Numbered list with extra spaces after the 1333

numbering. (Note: Represented with line breaks). 1334

12. 1.9 1335

2.13 1336

3.29: Numbered List with no space. (Less robust, 1337

covered by Fallback) (Note: Represented with line 1338

breaks). 1339

Fallback (Lowest Confidence) 1340

13. If none of the above formats are found, the 1341

script extracts all numbers present in the response 1342

after removing potential numbered list prefixes. Ex- 1343

ample: If the response is "The initial list was 1344

5, 1, 4. The sorted version, however, is 1345

1, 4, 5.", this fallback would extract [5, 1, 4, 1346

1, 4, 5]. 1347
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Prompt 12: Parsing Script for Sorting Responses

def parse_sorted_list(response):

try:
# Step 1: Extract bracketed list if present
bracketed_list_match = re.search(r'\[.*?\] ', response)
if bracketed_list_match:

# Extract numbers from the bracketed content
bracket_content = bracketed_list_match.group (0)
numbers = [int(num) for num in re.findall(r' -?\d+', bracket_content)]
return numbers

# Step 2: Clean up numbered list prefixes (e.g., "1. 9", "2. 13")
cleaned_response = re.sub(r'^\s*\d+\.\s*', '', response , flags=re.

MULTILINE)

# Step 3: Extract the textual list (e.g., "9, 13, 29...")
textual_list_match = re.search(r'(?<=\ bThe sorted list is:)[^\n]*',

cleaned_response , re.IGNORECASE)
if textual_list_match:

textual_content = textual_list_match.group (0)
numbers = [int(num) for num in re.findall(r' -?\d+', textual_content)]
return numbers

# Step 4: Fallback - Extract all numbers in order from the cleaned
response

numbers = [int(num) for num in re.findall(r' -?\d+', cleaned_response)]
return numbers

except Exception as e:
print(f"Error parsing response: {response }. Error: {e}")
return []

1348
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D Further Analysis/Insights1349

D.1 Why explicit chain-of-thought does not1350

Elicit Reasoning?1351

We observed that COT prompting does not sig-1352

nificantly improve the reasoning performance of1353

SLMs. Recent models often generate intermediate1354

reasoning steps even when presented with direct1355

questions. For instance, models frequently pref-1356

ace their responses with phrases like, "Let’s break1357

this down into steps" or "Here’s how we solve this1358

step-by-step." This behavior implies that CoT-like1359

reasoning processes are already internalized dur-1360

ing pretraining, reducing the explicit need for CoT1361

prompting.1362

While the original CoT paper demonstrated clear1363

benefits, the marginal gains observed here likely1364

reflect advancements in training corpora and model1365

architectures, which incorporate reasoning capabil-1366

ities intrinsically. These findings suggest that for1367

modern SLMs, CoT prompting may offer diminish-1368

ing returns, as they already employ such techniques1369

implicitly during reasoning tasks. These response1370

demonstrates how CoT-style reasoning emerges or-1371

ganically, even without explicit prompting.1372

1373
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Qwen2.5-7B: Direct I/O

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?

Ground Truth: It takes 2/2 =<< 2/2 = 1 >> 1 bolt of white fiber. So the total amount of fabric
is 2 + 1 =<< 2 + 1 = 3 >> 3 bolts of fabric.
#### 3

Model Response: To determine the total number of bolts of fiber needed for the robe, let’s break it
down step by step.
1. **Blue Fiber:** The robe requires 2 bolts of blue fiber.
2. **White Fiber:** The problem states that the robe requires half as much white fiber as blue fiber.
Therefore, we need to calculate half of 2 bolts:

White fiber =
1

2
× 2 = 1 bolt

3. **Total Fiber:** To find the total number of bolts of fiber needed, we add the bolts of blue fiber
and white fiber together:

Total bolts = 2 (blue) + 1 (white) = 3 bolts

So, the total number of bolts of fiber needed for the robe is **3 bolts**.

Figure 6: Example of Direct (I/O) Reasoning with Qwen2.5-7B-Instruct. We can observe model is generating
reasoning step with no explicit chain-of-thought prompting.

1374 1375
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Qwen2.5-7B: COT

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?

Let’s think step by step.

Ground Truth: It takes 2/2 =<< 2/2 = 1 >> 1 bolt of white fiber. So the total amount of fabric
is 2 + 1 =<< 2 + 1 = 3 >> 3 bolts of fabric.
#### 3

Model Response: Certainly! Let’s break down the problem step by step.
1. **Identify the amount of blue fiber needed:** - The problem states that the robe takes 2 bolts of
blue fiber.
2. **Determine the amount of white fiber needed:** - The problem also states that the robe takes half
as much white fiber as blue fiber. - Since 2 bolts of blue fiber are needed, half of that amount would
be:

2 bolts
2

= 1 bolt

3. **Calculate the total amount of fiber needed:** - To find the total amount of fiber, we add the bolts
of blue fiber and the bolts of white fiber:

2 bolts (blue) + 1 bolt (white) = 3 bolts

So, in total, it takes 3 bolts of fiber to make the robe.

Figure 7: Example of Chain-of-thought Prompt with Qwen2.5-7B-Instruct.
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D.2 Poor Performance of Pruned Models1376

Pruned models exhibit significant performance1377

degradation on reasoning-intensive datasets like1378

ARC-E, ARC-C, and CommonsenseQA. Their re-1379

sponses often lack coherence and logic, with out-1380

puts like "Let me know in the comments" or "Sure,1381

I can solve this problem." This was mostly evident1382

in multi-shots prompting in Pruned Model. We1383

hypothesize that pruning disrupts the internal rep-1384

resentations responsible for reasoning, particularly1385

in tasks requiring complex thought processes.1386

Additionally, many pruned models are fine-tuned1387

on datasets like GSM8K to recover lost accuracy,1388

which may limit their generalization to other do-1389

mains. This recovery strategy prioritizes mathe-1390

matical reasoning tasks but does not address the1391

broader reasoning challenges posed by datasets like1392

ARC-C and CommonsenseQA. These results un-1393

derscore the importance of using diverse recovery1394

datasets during fine-tuning to preserve performance1395

across varied tasks.1396

1397
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Sparse-Llama-3.1-8B-2of4: 5-shot

Question: Kelian has two recipes for preparing dishes, one having 20 instructions and the second one
having twice as many instructions as the first one. How many instructions does Kelian have to read to
prepare the two dishes?

Ground Truth: The second recipe has 2 * 20 instructions = << 2∗20 = 40 >> 40 instructions. The
total for the two dishes is 40 instructions + 20 instructions = << 40 + 20 = 60 >> 60 instructions.
#### 60

Input Prompt: Question: After scoring 14 points, Erin now has three times more points than Sara,
who scored 8. How many points did Erin have before?
Answer: Erin now has three times more points than Sara, which is 3× 8 = 24 more points than Sara.
This means Erin has a total of 8 + 24 = 32 points now. Before, Erin had 32− 14 = 18 points. ####
18
Question: Maggie spent a quarter of her money, while Riza spent one-third of her money. They each
had $60. How much money do the two of them have left?
Answer: Maggie spent $60/4 = $15. So, Maggie is left with $60 − $15 = $45. Riza spent
$60/3 = $20. So, Riza is left with $60 − $20 = $40. Thus, they have a total of $45 + $40 = $85
left. #### 85
Question: Johnny is picking up the toys on the floor of his room. He’d dumped a lego boxed set with
500 pieces on the floor, and another one that had 3 times more pieces than the 500 piece one, and
another one that had 1/4 the number of pieces. How many blocks does Johnny pick up if he picks up
all the legos?
Answer: The first set had 500 pieces, and the second set had 3 times as many as the first set, so the
second set has 500× 3 = 1500 pieces. The third set had one-quarter of the 500 pieces, so that means
it had 500 × 0.25 = 125 pieces. In total, that means Johnny picked up 500 + 1500 + 125 = 2125
blocks. #### 2,125
Question: A DVD can be played 1000 times before it breaks. There are two DVDs in the public
library, one has been played 356 times and the other has been played 135 times. How many total
times can both DVDs be played before they break?
Answer: 1000− 356 = 644 times. 1000− 135 = 865 times. 644 + 865 = 1509 times. #### 1509
Question: On Easter Sunday Cindy went to the city park to participate in the Easter Egg Hunt, and
ended up with a basket full of eggs. She had 5 green ones, twice as many blue ones as green ones,
one fewer pink eggs than blue eggs, and one-third as many yellow eggs as pink eggs. How many eggs
did Cindy have altogether?
Answer: She has twice as many blue eggs as green eggs, so she has 5× 2 = 10 blue eggs. She has
one fewer pink eggs than blue eggs, so she has 10− 1 = 9 pink eggs. And finally, she has a third as
many yellow eggs as pink eggs, so she has 9/3 = 3 yellow eggs. Added all together, she has 5 green
+ 10 blue + 9 pink + 3 yellow = 27 eggs. #### 27

Solve the following question using the provided examples for reference:
Question: Kelian has two recipes for preparing dishes, one having 20 instructions and the second one
having twice as many instructions as the first one. How many instructions does Kelian have to read to
prepare the two dishes?
Can you solve this question?

Model Response: "Let me know in the comments below!"

Figure 8: Pruned model "Sparse-Llama-3.1-8B-2of4" providing Nonsensical response when prompted with 5-shots
on GSM8K
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Sparse-Llama-3.1-8B-2of4: 5-shot

Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many
total meters does he run a week?

Ground Truth: He sprints 3*3=<< 3 ∗ 3 = 9 >> 9 times So he runs 9*60=<< 9 ∗ 60 = 540 >>
540 meters #### 540

Input Prompt: Question: A 76-star flag has three rows of 8 stars, two rows of 6 stars and the rest are
5-star rows. How many rows of 5 stars are there altogether on the flag?
Answer: The rows of 8 stars have a total of: 3 rows * 8 stars/row = << 3 ∗ 8 = 24 >> 24 stars. The
rows of 6 stars have a total of: 2 rows * 6 stars/row = << 2 ∗ 6 = 12 >> 12 stars. Including the
rows of 8 and 6 stars, we have 24 stars + 12 stars = << 24 + 12 = 36 >> 36 stars. Now we need
to know how many stars are missing, 76 stars - 36 stars = << 76− 36 = 40 >> 40 stars. Now we
need to distribute the missing stars in rows of 5 stars, 40 stars/5 rows = << 40/5 = 8 >> 8 rows of
5 stars. #### 8
Question: A pen costs as much as a pencil and eraser combined. A pencil costs $1.20 and an eraser
costs $0.30. How much will 8 pens cost?
Answer: A pen costs $1.20 + $0.30 = << 1.20 + 0.30 = 1.50 >> 1.50. So, 8 pens cost $1.50 x 8 =
<< 8 ∗ 1.5 = 12 >> 12. #### 12
Question: A farm has 10 2-legged animals and 15 4-legged animals. If all animals are healthy, how
many pairs of animal legs in total are on the farm?
Answer: 2-legged animals have 2 legs. Therefore 10 2-legged animals will have 10*2=<< 10 ∗
2 = 20 >> 20 legs 4-legged animals have 4 legs. Therefore 15 4-legged animals will have
15*4=<< 15 ∗ 4 = 60 >> 60 legs In total there are 20+60= << 20 + 60 = 80 >> 80 legs A pair
of legs equals 2 legs. If there are 80 legs on the farm, there will be 80/2= << 80/2 = 40 >> 40
pairs of legs #### 40
Question: A house and a lot cost $120,000. If the house cost three times as much as the lot, how
much did the house cost?
Answer: Since the house costs 3 times as much as the lot, the ratio of lot price to the house price is 1 : 3.
This also means 1/4 of the cost is for the lot and 3/4 of the cost is for the house. The cost of the house
is 3/4 of the total cost, which is $120,000. 3/4 * $120,000 = << 3/4 ∗ 120000 = 90000 >> 90, 000.
#### 90000
Question: An apple orchard sells apples in bags of 10. The orchard sold a total of 2000 apples one
day. How much did an orchard earn for selling this at $5 per bag?
Answer: There were 2000/10 = << 2000/10 = 200 >> 200 bags of apples sold. Therefore, the
orchard earned 200 x $5 = << 200 ∗ 5 = 1000 >> 1000. #### 1000

Solve the following question using the provided examples for reference:

Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many
total meters does he run a week?

Can you solve this question?

Model Response: "Yes, I can solve this question."

Figure 9: Pruned model "Sparse-Llama-3.1-8B-2of4" providing Nonsensical response when prompted with 5-shots
on GSM8K
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D.3 Pruned Models: No response or1398

Nonsensical response1399

A recurring issue with pruned models is their ten-1400

dency to produce nonsensical or empty responses.1401

Even for simple questions like "What is 2+2?"1402

pruned models may respond with irrelevant state-1403

ments or fail to provide an answer altogether. This1404

indicates that pruning can disrupt key reasoning1405

pathways, rendering models unreliable in generat-1406

ing meaningful outputs.1407

The instability of pruned models emphasizes the1408

need for post-pruning fine-tuning strategies that pri-1409

oritize reasoning tasks. By using more diverse and1410

challenging datasets, it may be possible to mitigate1411

these issues and improve the robustness of pruned1412

models.1413

1414
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Sparse-Llama-3.1-8B-2of4: 5-shot
Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She sells the remainder at the farmers’ market daily for
$2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?
Ground Truth: Janet sells 16 - 3 - 4 = << 16− 3− 4 = 9 >> 9 duck eggs a day. She makes 9 * 2
= << 9 ∗ 2 = 18 >> 18 every day at the farmer’s market. #### 18

Input Prompt: Question: Carson lives in an old house where the pipes will freeze if the temperature
inside the house falls below 32 degrees. Every log of wood Carson burns heats the house up by 5
degrees. If it was 45 degrees during the day, and it’s 33 degrees colder during the night compared to
the day, how many logs does Carson need to burn to prevent the pipes from freezing?
Answer: First find the night-time temperature: 45 degrees - 33 degrees = << 45− 33 = 12 >> 12
degrees Then find how much Carson needs to heat his house to avoid the pipes freezing: 32 degrees -
12 degrees = << 32− 12 = 20 >> 20 degrees Then divide the amount of heat Carson needs by the
amount of heat each log produces: 20 degrees / 5 degrees/log = << 20/5 = 4 >> 4 logs #### 4
Question: Every hour, Paige can bake 2 banana bread loaves in the oven. Each banana bread loaf is
cut into 8 slices and wrapped individually for sale. Each slice is sold for 50 cents for a fundraiser. If
she baked from 1:00 PM - 6:00 PM straight, and sold all the slices, how much did she raise in dollars?
Answer: From 1pm - 6pm, there are 6 - 1 = << 6 − 1 = 5 >> 5 hours. In 5 hours, Paige baked
5 x 2 = << 5 ∗ 2 = 10 >> 10 banana bread loaves. When they are sliced, there are 10 x 8 =
<< 10 ∗ 8 = 80 >> 80 banana bread slices. By selling all the slices, Paige has raised 80 x 0.50 =
<< 80 ∗ 0.50 = 40 >> 40. #### 40
Question: Dan plants 3 rose bushes. Each rose bush has 25 roses. Each rose has 8 thorns. How many
thorns are there total?
Answer: First find the total number of roses: 3 bushes * 25 roses/bush = << 3 ∗ 25 = 75 >> 75
roses Then multiply the number of roses by the number of thorns per rose: 75 roses * 8 thorns/rose =
<< 75 ∗ 8 = 600 >> 600 thorns #### 600
Question: 48 people are riding a bus. On the first stop, 8 passengers get off, and 5 times as many
people as the number who got off from the bus get into the bus. On the second stop 21, passengers
get off and 3 times fewer passengers get on. How many passengers are riding the bus after the second
stop?
Answer: At the first stop, 5 * 8 = << 5 ∗ 8 = 40 >> 40 passengers get on the bus. After the first
stop the bus has ( 48 - 8 ) + 40 = << 48− 8 + 40 = 80 >> 80 passengers. At the second stop, 21 /
3 = << 21/3 = 7 >> 7 passengers get on the bus. After the second stop there are ( 80 - 21 ) + 7 =
<< 80− 21 + 7 = 66 >> 66 passengers. #### 66
Question: Ben bought a car for $20000 in 2007. The price of the car depreciates at a constant rate of
21% per year. Find the price of the car in the year 2010.
Answer: The price of the car depreciates of 20000 * 21Ben had the car for 2010 - 2007
= << 2010 − 2007 = 3 >> 3 years. The price of the car depreciates 4200 * 3 =
<< 4200 ∗ 3 = 12600 >> 12600 from 2007 to 2010. So the price of the car in the year
2010 is $20000 - $12600 = << 20000− 12600 = 7400 >> 7400. #### 7400

Solve the following question using the provided examples for reference:
Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She sells the remainder at the farmers’ market daily for
$2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?
Can you solve this question?

Model Response: ""

Figure 10: Pruned model "Sparse-Llama-3.1" providing No response when prompted with 5-shots on GSM8K
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Sparse-Llama-3.1-8B-2of4: 5-shot

Input Prompt: Question: An astronomer observes that a planet rotates faster after a meteorite impact.
Which is the most likely effect of this increase in rotation?
Choices:
A: Planetary density will decrease.
B: Planetary years will become longer.
C: Planetary days will become shorter.
D: Planetary gravity will become stronger.
Answer the question by selecting the best choice (e.g., A, B, C, etc.).

Ground Truth: Planetary days will become shorter.

Model Response:
= input_ids.to_list()
for id in input_ids:
print(id) # Outputs: 0, 1, 2, ...
}
Output:
{
0
1
2
...
}
In this code, we first convert the input_ids variable to a list using the to_list() method. Then,
we iterate over each element in the list using a for loop. Within the loop, we print each element
to the console using the print() function. The output will be a list of all the unique values in the
input_ids variable.

Figure 11: Pruned model "Sparse-Llama-3.1-8B-2of4" providing Nonsensical response on ARC dataset.
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Llama-3.1 (8B) SmolLM2 (1.7B)

Total Responses 100 100
Correct Answers 18 5
Incorrect Answers 82 95
Instruction Not Followed 54 23
Unable to Follow Instruction
but Correct 17 3

Unable to Follow Instruction
and Incorrect 37 20

Accuracy 18.00% 5.00%

Table 15: Instruction Following Capability of SLMs

D.4 Instructions following capability of SLMs1415

SLMs exhibit variability in their ability to follow1416

instructions, particularly when the instructions are1417

complex or lengthy. When instructions are pre-1418

sented before the question, models often fail to1419

comply, whereas placing the instructions after the1420

question improves adherence in most cases. How-1421

ever, this improvement is inconsistent, especially1422

in smaller models.1423

Interestingly, when models are given an exces-1424

sive number of instructions, they occasionally solve1425

previously unsolved problems, possibly due to trig-1426

gering alternative reasoning pathways. Conversely,1427

this can also lead to more mistakes. These obser-1428

vations highlight the importance of designing clear1429

and concise instruction templates that align with1430

the model’s processing capabilities to improve per-1431

formance and reliability.1432

We did a small experiment to see how good an1433

SLM is in following instructions. As shown in1434

Table 15, we can see that although large models1435

are good at following instructions, sometimes they1436

provide unnecessary extra information than asked1437

for.1438

D.5 Sorting Incorrect Examples1439

In this section, we present cases where the models1440

occasionally include extra numbers, exclude exist-1441

ing numbers, output the exact same list, or produce1442

the correct sorting but with different numbers.1443

1444
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Llama-3.1-8B: 32-Mixed

Generated Numbers: 30, -17, -87, -81, -88, -25, -24, 81, -91, -57, -73, -5, -10, -28, 91, 16, 68, 9,
-52, 66, -38, -77, -69, 6, -60, 27, 51, 32, 85, 38, 34, -55

Ground Truth (Merge Sort): 91, -88, -87, -81, -77, -73, -69, -60, -57, -55, -52, -38, -28, -25, -24,
-17, -10, -5, 6, 9, 16, 27, 30, 32, 34, 38, 51, 66, 68, 81, 85, 91

Prompt: Sort the following list of numbers in ascending order:
[30, -17, -87, -81, -88, -25, -24, 81, -91, -57, -73, -5, -10, -28, 91, 16, 68, 9, -52, 66, -38, -77, -69, 6,
-60, 27, 51, 32, 85, 38, 34, -55]
Provide the sorted list.

Model Response: To sort the list in ascending order, I will arrange the numbers from smallest to
largest: 1. -91 2. -88 3. -87 4. -85 5. -81 6. -77 7. -73 8. -69 9. -60 10. -57 11. -55 12. -52 13. -38 14.
-34 15. -28 16. -25 17. -24 18. -17 19. -10 20. -5 21. 6 22. 9 23. 16 24. 27 25. 30 26. 32 27. 34 28.
38 29. 51 30. 66 31. 68 32. 81 33. 85 34. 91
The sorted list in ascending order is:
-91, -88, -87, -85, -81, -77, -73, -69, -60, -57, -55, -52, -38, -34, -28, -25, -24, -17, -10, -5, 6, 9, 16, 27,
30, 32, 34, 38, 51, 66, 68, 81, 85, 91
Parsed Sorted List: -91, -88, -87, -85, -81, -77, -73, -69, -60, -57, -55, -52, -38, -34, -28, -25, -24,
-17, -10, -5, 6, 9, 16, 27, 30, 32, 34, 38, 51, 66, 68, 81, 85, 91,
Accuracy: 0

Figure 12: Incorrect Sorting Example: Model sometimes include extra numbers (-91 and -85 here).

Llama-3.1-8B: 32-Mixed

Generated Numbers: 81, 33, 91, -47, 59, -33, -12, -38, 0, 94, 38, -4, -18, -16, 70, 11, 3, -26, -41, 65,
37, 79, -73, -29, -79, -13, 17, -63, 80, 24, 39, 76

Ground Truth (Merge Sort): -79, -73, -63, -47, -41, -38, -33, -29, -26, -18, -16, -13, -12, -4, 0, 3,
11, 17, 24, 33, 37, 38, 39, 59, 65, 70, 76, 79, 80, 81, 91, 94

Prompt: Sort the following list of numbers in ascending order:
[81, 33, 91, -47, 59, -33, -12, -38, 0, 94, 38, -4, -18, -16, 70, 11, 3, -26, -41, 65, 37, 79, -73, -29, -79,
-13, 17, -63, 80, 24, 39, 76]
Provide the sorted list.

Model Response: To sort the list in ascending order, I will arrange the numbers from smallest to
largest. Here’s the sorted list:
-79, -79, -73, -63, -47, -41, -38, -33, -33, -26, -18, -16, -13, -4, 0, 3, 11, 17, 24, 33, 37, 38, 39, 59, 65,
70, 76, 80, 81, 91, 94
Alternatively, you can use a computer algorithm to sort the list, but in this case, it’s easier to do it
manually.

Parsed Sorted List: -79, -79, -73, -63, -47, -41, -38, -33, -33, -26, -18, -16, -13, -4, 0, 3, 11, 17, 24,
33, 37, 38, 39, 59, 65, 70, 76, 80, 81, 91, 94
Accuracy: 0

Figure 13: Incorrect Sorting Example: Model exclude existing numbers (repeated -79 two times and skipped -29
and -12)
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Llama-3.1-8B: 32-Mixed

Generated Numbers: -83, 79, -25, -53, -31, 90, -38, 70, -78, -76, 46, -52, -92, -23, 11, -35, -79, 30,
55, 88, -96, -67, 93, -41, 84, 8, 99, 51, 82, -11, -81, -48

Ground Truth (Merge Sort): -96, -92, -83, -81, -79, -78, -76, -67, -53, -52, -48, -41, -38, -35, -31,
-25, -23, -11, 8, 11, 30, 46, 51, 55, 70, 79, 82, 84, 88, 90, 93, 99

Prompt: Sort the following list of numbers in ascending order:
[-83, 79, -25, -53, -31, 90, -38, 70, -78, -76, 46, -52, -92, -23, 11, -35, -79, 30, 55, 88, -96, -67, 93,
-41, 84, 8, 99, 51, 82, -11, -81, -48]
Provide the sorted list.

Model Response: To sort the given list of numbers in ascending order, we need to first remove the
negative sign from the numbers and then sort them. Here’s the step-by-step process:
1. Remove the negative sign from the numbers:-83 -> 83 -25 -> 25 -53 -> 53 -31 -> 31 -38 -> 38 -78
-> 78 -76 -> 76 -52 -> 52 -92 -> 92 -23 -> 23 -35 -> 35 -79 -> 79 -11 -> 11 -81 -> 81 -48 -> 48 -67 ->
67 -96 -> 96
The list becomes: [83, 25, 53, 31, 38, 78, 76, 52, 92, 23, 35, 79, 11, 81, 48, 67, 96, 90, 70, 46, 30, 55,
8, 99, 84, 51, 82, 93, 88]
2. Sort the numbers in ascending order:
8, 23, 25, 30, 31, 35, 38, 46, 48, 51, 52, 53, 55, 67, 70, 76, 78, 79, 81, 82, 83, 84, 88, 90, 92, 93, 96, 99
The sorted list is: [-83, 79, -25, -53, -31, 90, -38, 70, -78, -76, 46, -52, -92, -23, 11, -35, -79, 30, 55,
88, -96, -67, 93, -41, 84, 8, 99, 51, 82, -11, -81, -48]

Parsed Sorted List: -83, 79, -25, -53, -31, 90, -38, 70, -78, -76, 46, -52, -92, -23, 11, -35, -79, 30, 55,
88, -96, -67, 93, -41, 84, 8, 99, 51, 82, -11, -81, -48
Accuracy: 0

Figure 14: Incorrect Sorting Example: Model sometimes outputs exact same list
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D.6 Evaluating the Evaluators1445

Our first step was to select a reliable assessment1446

method. Instead of using standard parsing tech-1447

niques to compare model responses with ground1448

truth, we opted for LLM-as-a-Judge, using GPT-41449

as the primary evaluator for most tasks.1450

Parsing Issues Standard parsing techniques rely1451

on fixed patterns, which can be challenging for1452

generative models to follow consistently. We ob-1453

served that smaller models, in particular, struggle1454

to follow strict output formats. This leads to cases1455

where a model provides a correct answer but is1456

penalized for deviating from the expected struc-1457

ture. Prior work (Wei et al., 2022c) also shows1458

that instruction-following capabilities improve with1459

model scale (∼100B), making parsing an unfair1460

metric for smaller models.1461

To establish a more reliable evaluation metric,1462

we conducted three rounds of human evaluation1463

on 100 randomly sampled data points from the1464

GSM8K, ARC-E, ARC-C, and CommonsenseQA1465

datasets. Table 1 compares evaluation meth-1466

ods, including standard parsing, the widely used1467

lm-evaluation-harness framework, and GPT-based1468

evaluation (LLM-as-a-judge).1469

Choosing the Best Judge To select the most re-1470

liable judge, we evaluated GPT models based on1471

two factors: 1) Reliability (Correctness): How1472

closely does the judge’s evaluation align with hu-1473

man assessments? 2) Human Agreement: How1474

often does the judge agree with human evaluators?1475

Table 1 shows that GPT-4-Turbo provides the1476

closest match to human evaluation, with GPT-4o1477

performing nearly as well (only one point lower).1478

Given its comparable accuracy and 50% lower1479

cost, we selected GPT-4o as our primary evalu-1480

ator for ARC-Easy, ARC-Challenge, and Common-1481

senseQA. For GSM8K, we opted for GPT-4-Turbo1482

due to its slightly higher reliability in mathematical1483

reasoning tasks.1484

D.7 LLM-as-a-judge: TPR and TNR1485

In Table 17, we present the True Positive Rate1486

(TPR) and True Negative Rate (TNR) for our LLM-1487

as-a-judge evaluation. TPR measures the propor-1488

tion of cases where both the GPT model and human1489

judge agree on a correct decision. TNR reflects the1490

cases where both agree on a correct rejection of an1491

incorrect decision. These rates help better evaluate1492

the model’s accuracy in aligning with human judg-1493

ment, considering both when the LLM correctly 1494

matches human decisions and when it diverges. 1495
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Metric SmolLM2-1.7B-Instruct Llama-3.1-8B-Instruct

(GSM8K) (ARC-E) (ARC-C) (CommonsenseQA) (GSM8K) (ARC-E) (ARC-C) (CommonsenseQA)

Human Evaluation 43 75 56 62 81 93 82 69
lm-eval-harness 18 70 37 50 22 82 51 76
Parsing 37 8 16 9 84 3 6 7
Direct Answer 5 58 49 42 18 93 82 77

LLM-as-a-Judge [Accuracy (Human-Agreement %)]

gpt-3.5-turbo 49 (94) 75 (100) 55 (99) 62 (100) 83 (98) 91 (98) 81 (99) 66 (97)
gpt-4-turbo 42 (99) 75 (100) 56 (100) 61 (99) 81 (100) 93 (100) 82 (100) 69 (100)
gpt-4o 41 (98) 75 (100) 56 (100) 63 (97) 81 (100) 93 (100) 82 (100) 70 (99)
gpt-4o-mini 41 (98) 75 (100) 55 (99) 61 (99) 80 (99) 93 (100) 76 (94) 69 (100)

Table 16: Detailed comparison of evaluation metrics and four GPT-based judges on 100 randomly sampled items
per dataset. Results are reported as Accuracy (Human-Agreement %). Closer to human scores is better.

Dataset Model
gpt-3.5-turbo gpt-4-turbo gpt-4o gpt-4o-mini

Agree-
ment

TPR TNR Agree-
ment

TPR TNR Agree-
ment

TPR TNR Agree-
ment

TPR TNR

gsm8k Llama-3.1-
8B

98.00 100.00 89.47 100.00 100.00 100.00 100.00 100.00 100.00 99.00 98.77 100.00

SmolLM2-
1.7B

94.00 100.00 89.47 98.00 95.35 100.00 98.00 95.35 100.00 98.00 95.35 100.00

arc-e Llama-3.1-
8B

98.00 97.85 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

SmolLM2-
1.7B

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

arc-c Llama-3.1-
8B

99.00 98.78 100.00 100.00 100.00 100.00 100.00 100.00 100.00 94.00 92.68 100.00

SmolLM2-
1.7B

99.00 98.21 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.00 98.21 100.00

commonsenseqa Llama-3.1-
8B

97.00 95.65 100.00 100.00 100.00 100.00 99.00 100.00 96.77 100.00 100.00 100.00

SmolLM2-
1.7B

100.00 100.00 100.00 99.00 98.39 100.00 97.00 98.39 94.74 99.00 98.39 100.00

Table 17: LLM-as-a-judge Agreement with human as well as True positive rate (TPR) and True Negative Rate
(TNR) for different Models and Datasets

1496 D.8 Sorting Incorrect Evaluations 1497

Here, we provide instances where we were unable 1498

to accurately parse the sorted lists produced by the 1499

models, resulting in incorrect evaluations. 1500

44



Llama-3.1-8B: 32-Mixed

Generated Numbers: -96, -35, -77, -73, -40, 36, 91, 47, -18, -42, -58, 25, 5, -70, -10, -88, 98, -61,
-69, 97, -2, 24, 80, -56, -19, 26, -94, 95, -51, -21, -16, 50

Ground Truth (Merge Sort): -96, -94, -88, -77, -73, -70, -69, -61, -58, -56, -51, -42, -40, -35, -21,
-19, -18, -16, -10, -2, 5, 24, 25, 26, 36, 47, 50, 80, 91, 95, 97, 98

Prompt:
Sort the following list of numbers in ascending order:
[-96, -35, -77, -73, -40, 36, 91, 47, -18, -42, -58, 25, 5, -70, -10, -88, 98, -61, -69, 97, -2, 24, 80, -56,
-19, 26, -94, 95, -51, -21, -16, 50]
Provide the sorted list.

Model Response: To sort the list of numbers in ascending order, I’ll use the following steps:
1. Start with the original list:
[-96, -35, -77, -73, -40, 36, 91, 47, -18, -42, -58, 25, 5, -70, -10, -88, 98, -61, -69, 97, -2, 24, 80, -56,
-19, 26, -94, 95, -51, -21, -16, 50]
2. Arrange the numbers in ascending order:
- First, place the smallest numbers first. The smallest numbers are -96, -94, -88, -77, -73, -70, -69, -71
is not in the list, -69 is, -69 is smaller than -70, -73, -77, -88, -94, and -96, so we place them first.
- Next, we look at the remaining numbers. The next smallest numbers are -58, -56, -51, -42, -40, -35,
-34 is not in the list, -35 is, -35 is smaller than -42, -40, -51, -56, and -58, so we place them next.
- Next, we look at the remaining numbers. The next smallest numbers are -21, -19, -18, -16, -10, -2,
-2 is smaller than -10, -16, -18, -19, and -21, so we place them next.
- Next, we look at the remaining numbers. The next smallest numbers are 5, 24, 25, 26, 36, 47, 50, 80,
95, 97, 98, so we place them next.
- Finally, we look at the remaining number, which is 91.
The sorted list in ascending order is:
-96, -94, -88, -77, -73, -70, -69, -58, -56, -51, -42, -40, -35, -21, -19, -18, -16, -10, -2, 5, 24, 25, 26,
36, 47, 50, 80, 91, 95, 97, 98

Parsed Sorted List: -96, -35, -77, -73, -40, 36, 91, 47, -18, -42, -58, 25, 5, -70, -10, -88, 98, -61, -69,
97, -2, 24, 80, -56, -19, 26, -94, 95, -51, -21, -16, 50

Accuracy: 0

Figure 15: Example of Incorrect parsing/sorting evaluations: Here, although final answer is incorrect (-61 is missing).
But our parsing script did not work properly here.
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1501 D.9 GPT-4 Incorrect Evaluations 1502

In this section, we present instances where GPT-4’s 1503

evaluations were incorrect. For example, in one 1504

case, the ground truth was "stand in line," but the 1505

model chose option B, "get in line," and GPT-4 1506

incorrectly labeled the evaluation as correct instead 1507

of incorrect. 1508

Additionally, most incorrect evaluations by GPT- 1509

4 were observed when model responses were non- 1510

sensical or excessively long. In these cases, GPT-4 1511

sometimes classified incorrect answers as correct, 1512

likely due to the presence of partially correct rea- 1513

soning in the responses. 1514

To mitigate this, we parsed the model’s re- 1515

sponses before sending them to GPT-4 for evalua- 1516

tion, especially when the responses were lengthy. 1517
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Llama-3.1-8B: CQA 33

Prompt:
Question: Where would a person be doing when having to wait their turn?
Choices: A: have patience B: get in line C: sing D: stand in line E: turn left
Answer the question by selecting the best choice (e.g., A, B, C, etc.).

Ground Truth: stand in line

Model Response: B: get in line

Evaluation: Correct

Figure 16: GPT-4o Incorrect Evaluation on CommonsenseQA dataset where it got confused between Model response
("get in line") and ground truth ("stand in line").

1518 E Model Compression Techniques 1519

Explained 1520

Deep learning models, particularly large-scale lan- 1521

guage models, require significant computational 1522

resources. To make these models more efficient, 1523

various model compression techniques are used, 1524

including quantization, pruning, and distillation. 1525

These methods reduce model size and computa- 1526

tional requirements while attempting to preserve 1527

accuracy. This section provides an in-depth expla- 1528

nation of these techniques. 1529

E.1 Quantization 1530

Quantization reduces the precision of model pa- 1531

rameters (weights and activations) to lower-bit rep- 1532

resentations, thereby reducing memory footprint 1533

and accelerating inference. Instead of using full- 1534

precision floating-point numbers (e.g., FP32), quan- 1535

tization represents values using lower-bit formats 1536

such as INT8, INT4, or FP8. 1537

Mathematically, given a full-precision weight 1538

matrix W ∈ Rm×n, quantization maps each 1539

weight w ∈ W to a lower-precision representa- 1540

tion ŵ: 1541

ŵ = S · round
(w
S

)
, (1) 1542

where S is a scaling factor that determines how 1543

real-valued weights are mapped to discrete levels. 1544

There are various quantization schemes used in 1545

our experiments: 1546

Here, FP8-Dynamic refers to an adaptive 1547

floating-point scheme where scaling factors change 1548

dynamically based on tensor statistics. GPTQ 1549

(Generalized Post-Training Quantization) applies 1550
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Scheme Weight Precision Activation Precision

W8A8 8-bit weights 8-bit activations
W8A16 8-bit weights 16-bit activations
W4A16 4-bit weights 16-bit activations

FP8 8-bit floating point weights 8-bit floating point activations
FP8-Dynamic 8-bit floating point (dynamic scaling) 8-bit floating point activations
GPTQ 8-bit 8-bit quantization using GPTQ (post-training) -
GPTQ 4-bit 4-bit quantization using GPTQ (post-training) -

Table 18: Quantization Schemes referred in this paper.

quantization-aware optimization post-training to1551

minimize performance loss.1552

E.2 Pruning1553

Pruning eliminates less significant parameters from1554

the model to reduce its size while preserving essen-1555

tial computations. Formally, given a weight matrix1556

W, pruning removes elements below a threshold τ ,1557

setting them to zero:1558

Ŵi,j =

{
Wi,j , if |Wi,j | ≥ τ

0, otherwise
(2)1559

Different types of pruning exist:1560

• Unstructured Pruning: Individual weights1561

below τ are removed.1562

• Structured Pruning: Entire rows, columns,1563

or channels are removed, leading to more1564

hardware-efficient reductions.1565

• Magnitude Pruning: Weights with the small-1566

est magnitudes are pruned first.1567

• Gradient-Based Pruning: Pruning is based1568

on the impact of removing a weight on the1569

loss function.1570

Pruning helps in reducing memory usage and im-1571

proving inference speed, especially for deployment1572

on edge devices. However, aggressive pruning can1573

degrade model accuracy, requiring fine-tuning to1574

recover performance.1575

E.3 Distillation1576

Distillation compresses a large, pre-trained model1577

(teacher) into a smaller model (student) by transfer-1578

ring knowledge. The student model learns not only1579

from ground-truth labels but also from the teacher’s1580

softened output probabilities.1581

Given a teacher model output zT and a student1582

model output zS , distillation minimizes the loss:1583

L = αLCE(z
S , y) + (1− α)LKD(z

S , zT ), (3) 1584

where LCE is the standard cross-entropy loss, 1585

LKD is the knowledge distillation loss: 1586

LKD =
∑
i

pTi log pSi , (4) 1587

and pTi , pSi are the softened class probabilities 1588

from the teacher and student, respectively. The 1589

temperature parameter T controls how much the 1590

logits are softened before computing probabilities: 1591

pi =
exp(zi/T )∑
j exp(zj/T )

. (5) 1592

Distillation enables smaller models to achieve 1593

near-state-of-the-art performance with significantly 1594

fewer parameters, making them ideal for deploy- 1595

ment in resource-constrained environments. 1596

F Implementation Details 1597

We conducted all model inferences using NVIDIA 1598

H100-80GB, A100-80GB, L40-48GB, and A40- 1599

48GB GPUs. For efficient inference, we used the 1600

vLLM library (Kwon et al., 2023) 2, dynamically 1601

allocating the required number of GPUs to load 1602

each model. Multi-GPU utilization was enabled us- 1603

ing Hugging Face Accelerate 3 for model sharding 1604

and speed optimization. We use the default hyper- 1605

parameters settings mentioned in the huggingface 1606

repo for a fair comparison. We only adjusted the 1607

max input tokens (4096 for multi-shot prompts). 1608

All the computational requirements (GPU Mem- 1609

ory Usage) reported are on NVIDIA-A100-80GB. 1610

All Quantized and Pruned models used are from 1611

2https://docs.vllm.ai/en/latest/
3https://github.com/huggingface/accelerate
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Neural Magic 4 and Qwen 5 Hugging Face reposi-1612

tory. All models are open-sourced and hosted on1613

Hugging Face 6. In addition to GPT-4, we also use1614

open-sourced framework lm-eval-harness 7 for the1615

evaluation of SLMs.1616

G Human Evaluation Details1617

All human evaluations in this study were conducted1618

by a computer science graduate student who has1619

worked in the field of NLP and LLMs for more1620

than three years. The evaluations were performed1621

independently three times to ensure consistency1622

and correctness. The authors then verified the re-1623

sults to minimize errors. No external annotators1624

or crowdsourcing platforms were involved, and no1625

compensation was provided. Due to the double-1626

blind review process, further identifying details1627

cannot be disclosed.1628

H Datasets Statistics1629

We evaluate our approach on seven benchmarks1630

of different reasoning. In the following we briefly1631

describe each dataset along with their splits. In this1632

paper, we use test split to evaluate all SLMs. Table1633

19 summarizes the splits for each datasets.1634

Dataset Train Validation Test

GSM8K 7,473 – 1,319
ARC-Easy 2,251 570 2,376
ARC-Challenge 1,119 299 1,172
CommonsenseQA 9,741 1,221 1,140
HellaSwag 39,905 10,042 10,003
MathQA 29,837 4,475 2,985
OpenBookQA 4,957 500 500
MATH 10,000 – 5,000

Table 19: Dataset splits and example counts. Note that
GSM8K and MATH are provided with only training and
test splits.

GSM8K (Cobbe et al., 2021) is a collection of1635

high-quality grade school math word problems that1636

require multi-step reasoning. In the main configura-1637

tion, the dataset contains a total of 8,790 examples,1638

4https://huggingface.co/collections/
neuralmagic/

5https://huggingface.co/collections/Qwen/
6https://huggingface.co/models
7https://github.com/EleutherAI/

lm-evaluation-harness

with 7,473 examples in the training split and 1,319 1639

examples in the test split. 1640

ARC (Clark et al., 2018) comprises two subsets 1641

of multiple-choice science questions: 1642

• ARC-Easy: Contains 2251 train, 570 valida- 1643

tion, and 2376 test splits. 1644

• ARC-Challenge: Contains 1119 train, 299 1645

validation, and 1172 test splits. 1646

CommonsenseQA (Talmor et al., 2019) requires 1647

using commonsense reasoning to answer multiple- 1648

choice questions. It has 9,741 training examples, 1649

1,221 validation examples, and 1,140 test exam- 1650

ples. 1651

HellaSwag (Zellers et al., 2019) is designed to 1652

evaluate commonsense inference by selecting the 1653

most plausible continuation of a given context. The 1654

default split comprises 39,905 for training, 10,042 1655

for validation, and 10,003 for testing. 1656

MathQA (Amini et al., 2019) focuses on in- 1657

terpretable math word problem solving using 1658

operation-based formalism. The default split com- 1659

prises 29,837 for training, 4475 for validation, and 1660

2985 for testing. 1661

OpenBookQA (Mihaylov et al., 2018b) tests the 1662

ability to combine a small “open book” of core sci- 1663

ence facts with additional commonsense reasoning. 1664

The default split comprises 4957 for training, 500 1665

for validation, and 500 for testing. 1666

MATH (Hendrycks et al., 2021) is a challeng- 1667

ing dataset of competition-level math problems de- 1668

signed to measure advanced mathematical problem 1669

solving. It contains a total of 12,500 examples, 1670

split into 10,000 training, 5,000 test problems. 1671
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