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ABSTRACT

Recent one-stage transformer-based methods achieve notable gains in the Human-
object Interaction Detection (HOI) task by leveraging the detection of DETR.
However, the current methods redirect the detection target of the object decoder,
and the box target is not explicitly separated from the query embeddings, which
leads to long and hard training. Furthermore, matching the predicted HOI instances
with the ground-truth is more challenging than object detection, simply adapting
training strategies from the object detection makes the training more difficult. To
clear the ambiguity between human and object detection, we propose a novel one-
stage framework (SOV), which consists of a subject decoder, an object decoder,
and a well-designed verb decoder. Three split decoders with explicitly defined box
queries share the prediction burden and accelerate the training convergence. To
further improve the training efficiency, we propose a novel Split Target Guided
(STG) DeNoising strategy, which leverages learnable object label embeddings and
verb label embeddings to guide the training. In addition, for the prediction part,
the label-specific information is directly fed into the decoders by initializing the
query embeddings from the learnable label embeddings. Extensive experiments
show that our method (SOV-STG) achieves 3× fewer training epochs and 4.68%
higher accuracy than the state-of-the-art method.

1 INTRODUCTION

Recent Human-Object Interaction (HOI) detection studies are mainly built on the object detection
framework. The most widely used datasets, HICO-DET (Chao et al., 2018) and V-COCO (Gupta &
Malik, 2015), share the same object categories as the MS-COCO dataset (Lin et al., 2014). Following
the definition of the HOI instance, which is a tuple of the subject (human), the object, and the verb,
detecting methods are split into one-stage and two-stage methods. In the beginning, a multi-stream
architecture built on top of a CNN-based object detector is commonly adopted in the two-stage
methods (Chao et al., 2018; Gkioxari et al., 2018; Qi et al., 2018; Gao et al., 2018). Multi-stream
methods resolve the HOI detection problem in split parts and have a good potential to improve. By
introducing the human pose information (Kim et al., 2020b; Li et al., 2020; Zhong et al., 2021a), the
language priors (Gao et al., 2020; Zhong et al., 2021a), or graph structure (Gao et al., 2020; Ulutan
et al., 2020; Zhang et al., 2021b), CNN-based two-stage methods achieve considerable accuracy. On
the other hand, CNN-based one-stage methods (Liao et al., 2020; Zhong et al., 2021b; Wang et al.,
2020) leverage interaction points to detect possible interaction between the subject and object and
achieve promising performance.

The attention mechanism of the transformer is more flexible than the CNN architecture in handling
the relationships of features at different locations in the feature map and extracting global context
information (Dosovitskiy et al., 2021). At first, the transformer-based methods (Tamura et al., 2021;
Zou et al., 2021; Chen et al., 2021; Kim et al., 2021) show the advantage of the attention mechanism
by adopting DETR (Carion et al., 2020) in the HOI detection task. QPIC (Tamura et al., 2021)
and HOITrans (Zou et al., 2021) follow the same training pipeline as the DETR by viewing the
HOI detection problem as a set prediction problem. Without the matching process in one-stage and
two-stage CNN-based methods, QPIC and HOITrans adopt a compact encoder-decoder architecture
to predict the HOI instances directly. However, the compact architecture with a single decoder binds
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the feature of the subject and object localization and interaction recognition together. Even though the
following one-stage methods (Zhang et al., 2021a; Liao et al., 2022; Yuan et al., 2022; Iftekhar et al.,
2022; Zhou et al., 2022) improve the single decoder design by disentangling the object localization
and the interaction recognition in a cascade manner, the subject detection and object detection are
still tangled in an instance decoder. By construct, the two-stage transformer-based methods (Zhang
et al., 2022; Liu et al., 2022b) stack additional interaction pair detection modules on top of the object
decoder without modifying the subject and object detection part. Thus, two-stage methods can focus
on filtering the interaction pairs and achieve higher accuracy than the one-stage transformer-based
methods.

Both the studies of one-stage (Zhong et al., 2021b) and two-stage (Zhang et al., 2021b) methods show
that better detection results promote the final performance a lot. Different from previous one-stage
methods (Zhang et al., 2021a; Zhou et al., 2022), which focus on how to disentangle the detection
and recognition. In this paper, we start by reviewing the definition of the HOI instance and split the
decoding process into three parts, the subject decoding, the object decoding, and the verb decoding,
according to the composition of the HOI instance. By doing so, the object decoder maintains the
object detection capability from the beginning of the training and accelerates the training convergence.
Besides, we introduce subject-object (S-O) attention in the verb decoder to fuse the subject and object
information and improve the verb representation learning capabilities.

Recently, the variant (Liu et al., 2022a) of DETR formulates explicit learnable anchor boxes as the box
queries to improve the connection between query and feature and accelerate the training convergence.
Profiting from the explicitly formulated anchor boxes, DN-DETR (Li et al., 2022) introduces the
denoising strategy to improve training efficiency and detection performance. DN-DETR uses the
coordinates of ground-truth boxes with noise as the anchor boxes and generates object class label
queries by encoding the randomly flipped ground-truth object class labels. This work extends the
anchor box formulation and denoising strategy to the HOI detection task. Firstly, we split the subject
anchor box and object anchor box from the HOI query and introduce an adaptive shifted minimum
bounding rectangle (MBR) as the verb anchor box to represent the interaction region between the
subject and object. Then, we propose a novel Split Target Guided (STG) DeNoising strategy, which
leverages learnable object label embeddings and verb label embeddings to initialize the label queries,
both the denoising part and the inference part. With the STG denoising strategy, the matching process
between the predicted HOI instances and the ground-truth HOI instances is guided by the denoising
queries, and the training is more efficient.

In summary, our contributions are mainly in two aspects: (1) we propose a novel one-stage framework
(SOV) to enable the model to concentrate on what to detect and what to recognize during decoding; (2)
we propose a novel training strategy (STG) to allow the model to learn the label-specific information
between the queries and the results during training. After combining the decoding optimization
design and the HOI-specific training strategy, we achieve a new state-of-the-art performance on the
HOI detection benchmark with 3× fewer training epochs than the current state-of-the-art method.

2 REPRESENTING AN HOI INSTANCE IN ANCHOR BOXES

Learning to localize the interaction region. Before the transformer-based methods represent the
HOI detection as a set prediction problem, the difficulties for one-stage methods (Liao et al., 2020;
Wang et al., 2020; Kim et al., 2020a) lie in how to aggregate the interaction information from a proper
region and allocate it to a pair of subject and object. PPDM (Liao et al., 2020) and IP-Net (Wang
et al., 2020) use the interaction points and vectors from heatmaps to represent the interaction and
require a post-process to match the interaction and the pair of subject and object. UnionDet (Kim
et al., 2020a) predicts the union box to represent the interaction and matches the union box with the
subject and object pair.

Predicting interactions based on point priors. Transformer-based methods (Tamura et al., 2021;
Zou et al., 2021; Chen & Yanai, 2021; Kim et al., 2022) also adopt different ways to represent the
HOI instance according to the attention mechanism of the transformer decoders. A simple way is
to use query embedding to represent all the elements of the HOI instance (Tamura et al., 2021; Zou
et al., 2021). However, the query embedding is learned to represent the localization and recognition
information simultaneously, leading to slow convergence and low accuracy. Subsequent studies (Chen
& Yanai, 2021; Kim et al., 2022) attempt to leverage the deformable attention mechanism (Zhu et al.,
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(a) QAHOI (b) MSTR (c) SOV

Figure 1: The comparison of recent one-stage transformer-based methods.

2020) to guide the decoding by reference points. In Figure 1a, QAHOI (Chen & Yanai, 2021) views
the deformable transformer decoder’s reference point as the HOI instance’s anchor and uses the
anchor to guide the subject and object detection. Although QAHOI splits the embedding for reference
points from the HOI query embeddings, the HOI query embeddings are still used to predict all the
elements of the HOI instance. In Figure 1b, MSTR (Kim et al., 2022) proposes to use the subject,
object, and context reference points to represent the HOI instance and predicts the subject, object, and
verb based on the reference points. The context reference point is defined as the center of the subject
and object reference point, which follows the idea of the interaction point (Liao et al., 2020; Wang
et al., 2020; Zhong et al., 2021b). Nevertheless, the query embedding in MSTR is used to predict the
final boxes and labels of the HOI instance and still suffers from ambiguous representations. Besides,
QAHOI and MSTR use x-y coordinates as the positional priors to guide the decoding, while the box
size priors are not considered.

2.1 ADAPTIVE SHIFTED MBR FOR INTERACTION DETECTION

Figure 2: Illustration of adaptive shifted
MBR.

To clarify the query embeddings for specific us-
age, we leverage the attention mechanism of DAB-
Deformable-DETR (Liu et al., 2022a) to construct
our framework and directly use learnable subject and
object anchor boxes to predict the subject and object
boxes. The anchor boxes are updated layer by layer
during the decoding process, and the subject and ob-
ject boxes from the last layer are used to form the
verb box. As shown in Figure 1c, we introduce the
adaptive shifted minimum bounding rectangle (MBR)
to generate the verb box while considering the spatial
relationship between the subject and object boxes.
Unlike the UnionDet, which uses the union box to
guide the verb recognition, the verb box of SOV is
not learned from any additional module but directly
from the subject and object boxes. As shown in Fig-
ure 2, given the final subject box Bs = (xs, ys, ws, hs) and object box Bo = (xo, yo, wo, ho), where
(x, y) indicates the box center, the adaptive shifted MBR (verb box) of the two boxes is defined as:

Bv =

(
xs + xo

2
,
ys + yo

2
,
ws + wo

2
+ |xs − xo|,

hs + ho

2
+ |ys − yo|

)
(1)

With the intention of balancing the attention between the subject and object, we shift the center of
the MBR to the center of the subject and object boxes. Considering the boxes will overlap with
each other, we shrink the width and height of the MBR according to the spatial relationship between
the two boxes. Finally, the verb box can constrain the interaction region for sampling points of the
deformable attention and extract interaction information from specific subject and object pairs.
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Figure 3: The overall architecture of SOV-STG. SOV is composed of the feature extractor and
SOV decoders. The learnable anchor boxes and the label embeddings provide HOI-specific priors for
inference and denoising training. The entire network follows an encoder-decoder design and can be
trained end-to-end.

3 HOI EFFICIENT DECODING AND TRAINING

Figure 3 shows the overall architecture of our framework. In this section, we first introduce the HOI
efficient decoding architecture, which includes the design of the split decoder in Section 3.1 and the
initialization of the label queries in Section 3.2. Then, the STG denoising training strategy built on
the efficient decoding architecture is introduced in Section 3.3. Finally, the training and inference
details are presented in Section 3.4.

3.1 HOI SPLIT DECODERS

Subject Decoder and Object Decoder. The same as QAHOI (Chen & Yanai, 2021) and
MSTR (Kim et al., 2022), we leverage a CNN backbone and deformable transformer encoder (Zhu
et al., 2020) to extract the multi-scale global features fg ∈ RNg×D, where Ng is the number of the
total pixels of the multi-scale feature maps and D is the hidden dimension of the embeddings in the
whole transformer architecture. As shown in Figure 3, the global features are fed into the subject and
object decoder with the learnable anchor boxes. To maintain the detection capability of the object
detector, the object decoder with the feed-forward heads is the same as the one trained in the detection
task. Furthermore, we clone the object decoder to initialize the subject decoder and alleviate the
learning burden of the subject decoder. The subject and object decoder updates the subject anchor
box Bs and object anchor box Bo and query embeddings e layer by layer in a parallel manner. Then,
the object embedding eo from the object decoder is used to predict the object class, and the subject
box and object box are used to generate the verb box Bv . Finally, the object and subject embeddings
with the verb box are fed into the verb decoder to predict the verb class.

Figure 4: Illustration of S-O atten-
tion.

Verb Decoder with S-O attention. Since our architecture
disentangles the detection of subject and object and extracts the
object embedding and subject embedding separately, we de-
sign a verb decoder to fuse the subject and object embeddings.
In the verb decoder, we replace the original self-attention with
our Subject-Object (S-O) attention, which is illustrated in Fig-
ure 4. Following the idea of two-stage methods (Zhang et al.,
2021b; Ulutan et al., 2020) use element-wise multiplication
to fuse different features from different streams, we adopt the
multi-branch element-wise multiplication (Zhang et al., 2021b)
as the multiplication attention in our S-O attention. However,
unlike the two-stage method, we fuse two embeddings in a
multi-layer manner and share the weight in the multiplica-
tion attention module across different layers. Moreover, we
introduce a bottom-up path in S-O attention to integrate the
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information from the bottom to the top layer. Given the subject embedding esi ∈ RNq×D and object
embedding eoi ∈ RNq×D from the i-th layer (i > 1), where Nq is the number of queries, the verb
embedding evi after the bottom-up path can be defined as:

evi =
MulAttn(esi−1 , eoi−1) + MulAttn(esi , eoi)

2
(2)

Then, the verb embedding output from the top layer is fed into the cross-attention module to further
extract the global semantic information based on the global feature fg and the verb box.

3.2 SPLIT LABEL EMBEDDINGS

As shown in Figure 3, two kinds of learnable label embeddings are used to initialize the query
embeddings for SOV decoders. Different from the original denoising method (Li et al., 2022), we
use the label embeddings both in the denoising and inference parts and enable the inference part
obtain the input query with label-specific information from the beginning. We define the object label
embeddings to ∈ RCo×D as the object label priors, which consist of Co vectors with D dimensions,
where Co is the number of object classes and D is the hidden dimension of the transformer. Similarly,
the verb label embeddings tv ∈ RCa×D are defined as the verb label priors. With the object label and
verb label priors, we first initialize the query embeddings of object label qo ∈ RNq×D and verb label
qv ∈ RNq×D by linear combining the object label and verb label embeddings with two learnable
coefficient matrices Ao ∈ RNq×Co and Av ∈ RNq×Cv , respectively. Then, we add the object and
verb label embeddings to obtain the inference query embeddings qov ∈ RNq×D. The initialization of
qo, qv , and qov is defined as follows:

qo = Aoto, qv = Avtv

qov = qo + qv
(3)

3.3 SPLIT TARGET GUIDED DENOISING

Figure 5: Illustration of DN query
initialization.

As the object and verb labels are the targets of HOI detection,
the two label embeddings can be viewed as the split target pri-
ors. Since the denoising query embeddings are generated from
the split target priors and used to guide the denoising training,
thus, we call our denoising strategy as Split Target Guided
(STG) denoising. In Figure 5, we show the initialization of
the DN query embeddings and visualize the process of adding
noise to one of the ground truth HOI instances. Given the
ground-truth object label set Ogt = {oi}ki=1 and verb label set
Vgt = {vi}ki=1 of an image, where oi and vi are the one-hot
label of the object and verb classes, k is the number of ground-
truth HOI instances, two kinds of label DN query embeddings
are initialized. Following the DN-DETR (Li et al., 2022), for
the k-th ground-truth HOI instance, the noised object label o′

k
is obtained by randomly flipping the ground-truth index of the
object label ok to another object class index, and Np groups
of noised labels are generated. Next, the object DN query
embeddings q

(o)
dn ∈ RNp·k×D are gathered from the object

label embeddings to according to the indexes of the noised object labels O′
gt. Because the verb

label consists of co-occurrence ground-truth classes, to keep the co-occurrence ground-truth indexes
appearing in the noised verb label, we randomly flip the other indexes of the ground-truth verb label
to generate the noised verb label v′

k. Then, the verb label DN query embeddings q(v)
dn ∈ RNp·k×D are

the sum of the verb label DN embeddings selected from the verb label embeddings tv according to the
indexes of the noised verb labels V ′

gt. Finally, we concatenate the object DN query embeddings and
verb DN query embeddings to form the DN query embeddings qdn ∈ R2Np·k×D for the denoising
training. In this way, the split target priors can be learned by the denoising training separately and
can be used to guide the inference part of SOV.
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3.4 TRAINING AND INFERENCE

Our proposed framework SOV-STG is trained in an end-to-end manner. For inference query embed-
dings, the Hungarian algorithm (Kuhn, 1955) is used to matching the ground-truth HOI instances with
the predicted HOI instances, and the matching cost and the training loss are the same as QAHOI (Chen
& Yanai, 2021). Moreover, the denoising and inference parts are trained with the same loss function.
With the basic concept that the same ground-truth label flip rate is difficult for the model to denoise
at the beginning of the training but becomes acceptable during the training, we further improve the
denoising strategy by introducing a dynamic DN scale factor γ ∈ (0, 1) to control the object label
flip rate ηo ∈ (0, 1) and the verb label flip rate ηv ∈ (0, 1) according to the training epochs. With the
dynamic DN scale strategy, the label flip rate η will be set to γ · η at the beginning of the training and
linearly increase to η during the training. The box denoising is the same as the DN-DETR (Li et al.,
2022). However, the dynamic DN scale strategy is also implemented to the box noising rate δb to
improve the denoising performance. As our STG moves the label encoding embeddings out of the
denoising part as the split target priors, SOV-STG uses all of the parameters in training and inference.

4 EXPERIMENTS

We evaluate our proposed SOV-STG on the HICO-DET (Chao et al., 2018) and V-COCO (Gupta &
Malik, 2015) datasets to compare with current SOTA methods and conduct extensive ablation studies
to analyze the contributions of each component and show the effectiveness of our proposed method.

4.1 EXPERIMENTAL SETTINGS

Dataset and Metric. The HICO-DET (Chao et al., 2018) dataset contains 38,118 images for
training and 9,658 images for the test. The 117 object and 80 verb classes in HICO-DET form 600
HOI classes. According to the number of HOI instances appearing in the dataset, the HOI classes
are divided into three categories: Full, Rare, and Non-Rare. Moreover, considering HOI instances
including or not including the unknown objects, the evaluation of HICO-DET is divided into two
settings: Default and Known Object. The V-COCO (Gupta & Malik, 2015) dataset contains 5,400
images for training and 4,946 images for the test. In V-COCO, 80 object classes and 29 verb classes
are annotated, and two scenarios are considered: scenario 1 with 29 verb classes and scenario 2 with
25 verb classes. We follow the standard evaluation (Chao et al., 2018) and report the mAP scores.

Implementation Details. We adopt the DAB-Deformable-DETR trained on the COCO (Lin et al.,
2014) dataset to initialize the weight of the feature extractor, the subject decoder, and the object
decoder. The feature extractor consists of a ResNet-50 (He et al., 2016) backbone and a 6-layer
deformable transformer encoder. The subject decoder and the object decoder are both 6-layer
deformable transformer decoders, and the cross-attention in the verb decoder also has six layers. The
hidden dimension of the transformer is D = 256, and the number of the query is set to Nq = 64. For
the DN part, 2Np = 6 groups of noised labels are generated for each ground-truth HOI instance and
follow the DN-DETR. The dynamic DN scale is set to γ = 2

3 , and we maintain the same denoising
level as the DN-DETR at the start of the training by setting the noising rate of the box to δb = 0.6, the
object flip rate to ηo = 0.3, and the verb flip rate to ηv = 0.6. We train the model with the AdamW
optimizer (Loshchilov & Hutter, 2018) with a learning rate of 2e-4 (except for the backbone, which
is 1e-5) and a weight decay of 1e-4 for the HICO-DET dataset. The batch size is set to 32 (4 images
per GPU), and the training epochs are 30 (learning rate drops at the 20th epoch), which is one-third
of the CDN (Zhang et al., 2021a), and one-fifth of the QPIC (Tamura et al., 2021) and QAHOI (Chen
& Yanai, 2021). For the V-COCO dataset, we freeze the backbone to prevent overfitting and set
the learning rate to 1e-4 and the batch size to 16 (2 images per GPU). All of the experiments are
conducted on 8 NVIDIA A6000 GPUs.

4.2 COMPARISON TO STATE-OF-THE-ARTS

In Table 1, we compare our proposed SOV-STG with the recent SOTA methods on the HICO-DET
dataset. Our SOV-STG with ResNet-50 backbone achieves 33.57 mAP on the Full category of the
Default setting. Compared with the transformer-based one-stage methods, QAHOI and MSTR, which
are based on the reference point, SOV-STG benefits from the anchor box priors and label priors and
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Default Known Object
Method Backbone Full Rare Non-Rare Full Rare Non-Rare

Two-stage
IP-Net (Wang et al., 2020) Hourglass-104 19.56 12.79 21.58 22.05 15.77 23.92
VSGNet (Ulutan et al., 2020) ResNet-152 19.80 16.05 20.91 - - -
ACP (Kim et al., 2020b) ResNet-152 20.59 15.92 21.98 - - -
DJ-RN (Li et al., 2020) ResNet-50 21.34 18.53 22.18 23.69 20.64 24.60
PD-Net (Zhong et al., 2021a) ResNet-152 22.57 17.61 23.79 26.86 21.70 28.44
DRG (Gao et al., 2020) ResNet-50-FPN 24.53 19.47 26.04 27.98 23.11 29.43
SCG (Zhang et al., 2021b) ResNet-50-FPN 31.33 24.72 33.31 34.37 27.18 36.52
CATN (Dong et al., 2022) ResNet-50 31.86 25.15 33.84 34.44 27.69 36.45
UPT (Zhang et al., 2022) ResNet-101-DC5 32.62 28.62 33.81 36.08 31.41 37.47
One-stage
UnionDet (Kim et al., 2020a) ResNet-50-FPN 17.58 11.72 19.33 19.76 14.68 21.27
PPDM (Liao et al., 2020) Hourglass-104 21.73 13.78 24.10 24.58 16.65 26.84
GGNet (Zhong et al., 2021b) Hourglass-104 23.47 16.48 25.60 27.36 20.23 29.48
HOITrans (Zou et al., 2021) ResNet-101 26.61 19.15 28.84 29.13 20.98 31.57
HOTR (Kim et al., 2021) ResNet-50 25.10 17.34 27.42 - - -
QAHOI (Chen & Yanai, 2021) ResNet-50 26.18 18.06 28.61 - - -
AS-Net (Chen et al., 2021) ResNet-50 28.87 24.25 30.25 31.74 27.07 33.14
QPIC (Tamura et al., 2021) ResNet-101 29.90 23.92 31.69 32.58 26.06 34.27
MSTR (Kim et al., 2022) ResNet-50 31.17 25.31 32.92 34.02 28.83 35.57
(Zhou et al., 2022) ResNet-50 31.75 27.45 33.03 34.50 30.13 35.81
CDN-L (Zhang et al., 2021a) ResNet-101 32.07 27.19 33.53 34.79 29.48 36.38
SOV-STG ResNet-50 33.57 29.82 34.69 36.04 31.79 37.30

Table 1: Comparison to state-of-the-arts on the HICO-DET.

Method APS1
role APS2

role

UnionDet (Kim et al., 2020a) 47.5 56.2
SCG (Zhang et al., 2021b) 54.2 60.9
GGNet (Zhong et al., 2021b) 54.7 -
HOTR (Kim et al., 2021) 55.2 64.4
QPIC (Tamura et al., 2021) 58.8 61.0
UPT (Zhang et al., 2022) 61.3 67.1
SOV-STG 61.5 63.0

Table 2: Comparison on V-COCO.

Method Default
Full Rare Non-Rare

SOV-STG 33.57 29.82 34.69
-STG 33.18 28.71 34.52
-Subject Decoder 32.53 28.31 33.53
-Verb Decoder 32.41 28.04 33.72
-DN 26.39 20.87 28.04

Table 3: Contributions of each
module in SOV-STG.

achieves 28.23% and 7.70% mAP improvements, respectively. Compared with the transformer-based
two-stage method, UPT, which uses ResNet-101-DC5 as the backbone, SOV-STG outperforms UPT
by 2.91%. Although we do not optimize the hyper-parameters of the architecture and the denoising
strategy, we only adjust the learning rate and the batch size and freeze the backbone for the training
on the V-COCO dataset. Similarly, in Table 2, SOV-STG achieves 61.5 mAP on APS1

role and surpasses
QPIC and UPT by 4.59% and 0.33%, respectively.

4.3 ABLATION STUDY

We conduct all the ablation experiments on the HICO-DET dataset, and if not explicitly noticed, the
same training setup is used as the training of our SOTA model.

Contributions of proposed modules. SOV-STG is composed of flexible decoding architecture
and training strategies. To clarify the contributions of each proposed module, in Table 3, we remove
the proposed modules one by one and conduct ablation studies on the HICO-DET dataset. Line
2 indicates the experiment replacing the STG strategy with the standard DN strategy, which uses
the label embeddings only in the DN part and initializes the inference query embeddings from
independent learnable embeddings. From the result, the STG strategy improves the performance by
1.18% in the Full category. Next, in Line3, we remove the subject decoder of Line 2 and replace the
verb decoder with a deformable transformer decoder. In this way, the experiment of Line 3 forms
a similar architecture as CDN-B (Zhang et al., 2021a). However, from the result of Line 4, which
removes the verb decoder of Line 3, with the DN strategy, the pure DAB-Deformable-DETR model
performs better than adding an additional verb decoder. With the standard DN strategy, Line 2, SOV
architecture outperforms Line 4, pure DAB-Deformable-DETR architecture, by 2.58%. In Line 5,
we remove the DN strategy of Line 4, which is similar to the QAHOI (ResNet-50) (Chen & Yanai,
2021), and this experiment is viewed as the base model of our framework. The result of Line 5 shows
that SOV-STG achieves a 27.21% gain by improving the architecture designs and training strategies.

Verb Box Default
Full Rare Non-Rare

Subject Box 32.90 28.04 34.35
Object Box 32.62 27.02 34.29

MBR 32.29 26.66 33.97
Shifted MBR 32.63 26.64 34.41

Adaptive Shifted MBR 33.57 29.82 34.69

Table 4: Different designs for the verb
box.

Verb Decoder Designs Default

#
S-O Attention Cross-attention

last layer multi-layer Feature w/o with Full Rare Non-RareFuse self-attn self-attn
(1) ✓ S-O Fuse ✓ 33.57 29.82 34.69
(2) ✓ S-O Fuse ✓ 33.24 28.17 34.75
(3) ✓ Mul Fuse ✓ 32.68 28.29 33.99
(4) ✓ Sum Fuse ✓ 33.30 28.70 34.67
(5) ✓ Sum Fuse ✓ 32.53 29.97 33.30
(6) ✓ Sum Fuse ✓ 32.51 28.45 33.46
(7) ✓ Sum Fuse 31.98 27.39 33.36

Table 5: Ablation studies for verb decoder designs.

Formulations of the verb box. The proposed adaptive shifted MBR is a flexible verb box that
dynamically considers the spatial relationship between the subject and object box and guides the verb
decoder to extract semantic features from the corresponding region. To verify the effectiveness of the
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proposed adaptive shifted MBR, we use the verb box degraded from the adaptive shifted MBR to
conduct ablation studies, and the results are shown in Table 4. From Line 3 to Line 5 of the results,
the adaptive and shift operations for the MBR promote the performance of the verb box, by 3.96% in
the Full category and 11.85% in the Rare category. Furthermore, in Line 1 and 2, we directly use the
object or subject box as the verb box, and the results show that the region of the subject plays a more
critical role in the verb prediction.

Verb Decoder. The verb decoder is the core module of the SOV model, which is responsible for
verb prediction. To illustrate the strength of the verb decoder in SOV, different variants of the verb
decoder we have attempted are shown in Table 5. Line 1 indicates the verb decoder used in SOV,
where the last layer means using the fused embeddings from the last last layer of the S-O Attention.
In Line 2, we restore the self-attention in cross-attention module, however, the accuracy on Full
and Non-Rare categories dropped. In line 3, we also attempt to use multiplication attention without
bottom-up. From the results of Line 1 and 3, the bottom-up path increases the performance of the
multiplication attention by 2.72%. Moreover, in Line 4, we find that simple sum attention can also
achieve a good performance. Furthermore, in Line 5 and 6, similar to Yue et al. Liao et al. (2022),
we initialize learning verb query embeddings for the cross-attention module and add the multi-layer
fused embeddings after the sum attention to the verb query embeddings on corresponding layers. As
the results of Line 4, 5, and 6, for our framework, using the last-layer fused embeddings is better. In
Line 7, we also explore the contribution of the cross-attention module. Compared with Line 7 and 4,
with the cross-attention module, the performance increased by 4.13%.

Denoising Strategies Default
# Box Obj Verb Full Rare Non-Rare

(1) 32.55 27.99 33.66
(2) ✓ 33.05 27.97 34.57
(3) ✓ ✓ 33.13 29.08 34.34
(4) ✓ ✓ 32.75 27.59 34.29
(5) ✓ ✓ 32.27 27.56 33.68
(6) ✓ ✓ ✓ 33.57 29.82 34.69

Table 6: Ablation studies for denois-
ing strategies.

Denoising Strategies. In Table 6, we investigate the de-
noising strategies of three parts of the targets, i.e., the box
coordinates, the object labels, and the verb labels. In Line 1,
we set the noise rate of box coordinates to δb = 0, the object
label filp rate to ηo = 0, and the verb label filp rate to ηv = 0,
thus, the ground-truth box coordinates, object labels, and verb
labels are directly fed into the model without any noise. From
the result, the accuracy drops by 3.13% compared with the
full denoising training in Line 6. From the results between
Line 1 and 2 and Line 5 and 6, by using the box denoising, the
accuracy increased by 1.54% and 4.03%, respectively. For the results of Line 3 and 4, only denoising
the object labels is better than only denoising the verb labels, and by adding the denoising of the
object labels to Line 4, in Line 6, the accuracy increase by 2.50%.

(a) Different verb flip rates (ηv). (b) Different dynamic DN scales (γ).

Figure 6: The effects of the verb flip rate and the dynamic noise scale.

Different verb flip rates and dynamic DN scales. In Figure 6a, we fix the noising rate of the box
and the object label flip and adjust the verb flip rate to investigate the effects of the verb flip rates
(ηv) on the accuracy without the dynamic DN scale. From the results, ηv = 0.6 is an appropriate
value for the verb flip rate, and the verb flip rate boosts the accuracy of the Rare category. Next,
in Figure 6, we fix all the noise rate parameters and adjust the dynamic DN scale (γ) to reveal the
effects of different dynamic DN scales. As the dynamic DN scale increases, the denoising training
becomes more difficult at the beginning, and while using the γ = 2

3 , the accuracy on all the categories
is highest.

4.4 QUALITATIVE RESULTS

Because our method offers each element of the HOI instance a particular representation, we can
easily analyze the inference results from an HOI-specific perspective. Thus, to better understand the
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(a) (b) (c) (d) (e)

Figure 7: The visualization of sampling points in the last layer of the verb decoder’s cross-attention.
We visualize the sampling points of the top-1 score query and draw all the sampling points from
different scales and attention heads in one image. The sampling points with high attention weights
are colored in red.

strength of our proposed method, we visualize the inference results on the samples from the test set
of the HICO-DET dataset in this section.

Figure 8: Part of Anchor box
priors.

HOI-specific priors. In our framework, following the definition
of the HOI instance, three kinds of priors are learned after the train-
ing: the box prior, the object label prior and the verb label prior.
During the inference, these priors are updated gradually to represent
specific HOI instances according to the global features from the
feature extractor. As the box priors are used to obtain the spatial
representation of pairs of objects and subjects, we visualize the box
priors in Figure 8 to show the relationships between the objects and
subjects in the same box priors. We visualize the first eight pairs
of object and subject anchor boxes, every two boxes in the same
color represent one pair of object and subject. From the results, the
subject and object anchor boxes in the same pair are almost the same
after the training. We doubt that the layer-by-layer decoding process
requires the object and subject boxes to start from the same position
to ensure they are in the same pair and share the same semantic
feature to recognize the verb label. Moreover, we also visualize the object and verb label priors in
Appendix A.1.

Sampling points in the verb decoder. In the verb decoder, the multi-scale deformable cross-
attention is used to aggregate the features from the global semantic feature according to the verb box.
In Figure 7, we visualize the attention based on the verb box in several typical cases. From all of
the images, the sampling points mainly locate inside the verb box and concentrate on the interaction
region of the subject and object. Besides, in Figure 7a and 7d, when the object is smaller than the
subject, the sampling points can aggregate the features outside the verb box or evenly cover the verb
box to get more information. Moreover, in Figure 7c and 7e, the sampling points on the interaction
part of the subject and object are more densely distributed. In Figure 7b, when the object is far larger
than the subject, the verb box obtained by the adaptive shifted MBR shrinks the attention region, then
the sampling points are more concentrated on the subject, which is the smaller one.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposes a novel one-stage framework, SOV with HOI split decoders for target-
specific decoding and a split target-guided denoising strategy, STG, for target-specific training. Our
framework SOV-STG adopts a new format to represent HOI instances in boxes and learns HOI-
specific priors for decoding. With the well-designed architecture and efficient training strategy,
our framework achieves state-of-the-art performance with less training cost. Since our architecture
disentangles the HOI detection by specific priors and decoders, it is easy to improve any one of
them. In the future, we are going to explore the object and verb label priors initialized from language
models to improve performance.
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A APPENDIX

A.1 LABEL PRIORS

(a) The object label embeddings to. (b) The verb label embeddings tv .

(c) The object label coefficient matrix Ao. (d) The object label coefficient matrix Av .

Figure 9: The label priors of object and verb labels visualized according to the Principal Component
Analysis (PCA) algorithm.

As shown in Figure 9a and 9b, we visualize the object and verb label embeddings. From the results,
the object labels are evenly divided in the embedding space, and the verb labels are clustered in some
small groups in the embedding space. The coefficient matrices Ao and Av control the combination of
the object label embeddings to and the verb label embeddings tv for Nq queries, respectively. Thus,
we split the coefficient matrices Ao and Av by the first dimension and visualize them in Figure 9c and
9d. As shown in Figure 9c, the vectors in the first dimension of Ao locate sparse in the embedding
space, which means the combination of each query for the object label is not similar. However, in
Figure 9d, the vectors in the first dimension of Av are gathered in some small groups, which means
the combination of each query for the verb label is similar due to the co-occurrence of the verb labels.

A.2 QUALITATIVE RESULTS

In Figure 10, we show the inference process starting from the box priors to the final HOI detection
results. From the results, the subject and object decoder can localize the subject and object in the first
layer and refine the box within the after two layers. Even in Column 6 and 8, the anchor boxes are
not accurate, the subject and object decoder can still localize the subject and object in the first two
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(1)

(2)

(3)
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(a) box priors (b) layer 1 (c) layer 2 (d) layer 3 (e) last layer

Figure 10: Visualization of the inference process. We show the box updating and the attentions of the
query with the highest score.

layers. Furthermore, in Column 7 when the object and subject are small and close, the subject and
object decoder can distinguish the subject and object in the first layer.
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