
FLOWING THROUGH STATES: NEURAL ODE REGULARIZATION FOR REINFORCEMENT LEARNING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Neural networks applied to sequential decision-making tasks typically rely on la-
012 tent representations of environment states. While environment dynamics dictate
013 how semantic states evolve, the corresponding latent transitions are usually left
014 implicit, leaving room for misalignment between the two. We propose to model
015 latent dynamics explicitly by drawing an analogy between Markov decision pro-
016 cess (MDP) trajectories and ordinary differential equation (ODE) flows: in both
017 cases, the current state fully determines its successors. Building on this view,
018 we introduce a neural ODE-based regularization method that enforces latent em-
019 beddings to follow consistent ODE flows, thereby aligning representation learn-
020 ing with environment dynamics. Although broadly applicable to deep learning
021 agents, we demonstrate its effectiveness in reinforcement learning by integrating
022 it into Actor–Critic algorithms, where it results in major performance gains across
023 various standard Atari benchmarks for A2C as well as gridworld environments for
024 PPO.

1 INTRODUCTION

028 A central distinction in machine learning lies between the *semantic* representation of an object and
029 its *latent* representation. Neural networks do not directly manipulate the semantics of an object but
030 instead operate on latent embeddings learned from data. Much of the research in representation
031 learning has therefore focused on designing embedding processes that faithfully encode the *local*
032 properties of objects. For instance, convolutional neural networks (LeCun et al., 1989) incorporate
033 inductive biases such as translation equivariance, spatial locality, and approximate invariance to scale
034 and rotation. These architectural choices encode object-level regularities, ensuring that embeddings
035 reflect structural properties intrinsic to individual objects.

036 While such local representations are powerful for perception tasks, *sequential decision-making* in-
037 troduces a different challenge: the need for a more *global* understanding of how objects and states
038 relate to one another over time. In this setting, the relevant inductive biases emerge not from isolated
039 objects but from the dynamics that connect them. For example, in the context of Markov Decision
040 Processes (MDPs), the latent embeddings of a state and its successor should be consistently related
041 by the transition dynamics. Concretely, if s_1 and s_2 are states with s_2 reachable from s_1 under a
042 transition rule R , then their embeddings should satisfy a relation of the form

$$h(s_2) = g(h(s_1), R),$$

044 where $h(\cdot)$ denotes the embedding function, and g is an arbitrary function. While the existence of
045 such a mapping is trivial in principle, the structural properties it imposes on the latent space—such as
046 smoothness, consistency, and determinism—are far from trivial and are crucial for reasoning tasks.

047 This paper proceeds from the intuition that embeddings of *semantic trajectories* can be understood
048 as discretizations of continuous latent flows. In other words, each trajectory in the semantic space
049 should correspond to a smooth path in the latent space. We argue that regularizing latent embeddings
050 to respect this path structure captures an inherent property of transition dynamics, and enhances the
051 model’s ability to learn the task on a more global level. To operationalize this idea, we define la-
052 tent flows using neural ordinary differential equations (neural ODEs) (Chen et al., 2018), which
053 guarantee unique continuous trajectories under mild regularity assumptions such as Lipschitz con-
tinuity (Coddington & Levinson, 1955). In reasoning contexts, this uniqueness naturally subsumes

054 *the Markov property*: an initial condition (i.e., a state) completely determines the flow path of sub-
055 sequent conditions.

056 However, directly using neural ODEs for inference is impractical. Their reliance on numerical
057 integration makes them significantly slower than standard forward passes, and their application to
058 sequential inference is further complicated by the discontinuities introduced by evolving semantic
059 states (Du et al., 2020; Jia & Benson, 2019; Rubanova et al., 2019). To overcome these limitations,
060 we propose to train the agent’s semantic embedder to *mimic* the flows of a neural ODE through
061 an alignment penalty. This approach enables the learned embeddings to inherit the topological
062 structure of smooth ODE flows, while avoiding the computational and design burdens of ODE-
063 based inference. Our method thus combines the expressivity of continuous-time dynamics with the
064 efficiency of conventional neural architectures. Moreover, it adds a layer of global guidance to the
065 agent in the form of a neural ODE that learns to model the latent agent-environment dynamics in an
066 unsupervised fashion.

067 The relevance of this perspective is particularly pronounced in *discrete-state* MDPs. In continuous-
068 state environments, the inherent continuity of the state space naturally induces smoothness in the
069 latent representations: small changes in the input state often correspond to small changes in the
070 embedding. By contrast, in discrete domains the semantic space consists of isolated states with
071 no *a priori* notion of proximity or smooth transitions. As a result, continuity must be imposed in
072 the latent space rather than inherited from the state space itself. Embedding discrete trajectories as
073 smooth latent flows therefore provides a principled way to recover structural regularities that are
074 otherwise absent, enabling latent dynamics to reflect the transition constraints of the underlying
075 MDP.

076 **Contributions.** In this paper, we introduce flow regularization (FlowReg), an unsupervised reg-
077 ularization technique for sequential Markov decision-making models that aligns the agent’s latent
078 representation field with the underlying semantic environment dynamics. It does so by learning a
079 neural ODE that acts as a latent surrogate for the environment and aligning its flows with the lat-
080 ent trajectories of the agent’s state embedder. To showcase our technique, we evaluate FlowReg
081 in the reinforcement learning settings of Advantage Actor-Critic (A2C) on 11 Atari environments.
082 Our experiments show that FlowReg notably improves the baseline model performance across all
083 environments. We further examine the resulting latent trajectories and demonstrate their desirable
084 smoothness properties as a result of flow-regularization. Lastly, we also show the FlowReg boost to
085 PPO on gridworld environments.

086 2 RELATED WORK

087 **Neural ODEs as continuous-depth networks.** It has been noted in several existing works that
088 ResNets (He et al., 2016) can be viewed as an Euler discretization of a continuous differential flow
089 (Balázs et al., 2021; Lu et al., 2018; Haber & Ruthotto, 2017). An implication of this is that an ODE
090 can in theory be used to model an infinite-depth ResNet with a finite number of parameters – making
091 them more parameter efficient (Chen et al., 2018). In this paper, we take a wider look at sequence
092 transformations modeled by the whole network as an embedder as opposed to the transformations
093 modeled by the individual layers within the model. That is, instead of looking at the embedder
094 network as a discretized transformation of an object, we look at the latent trajectories that result
095 from applying the network to a sequence of objects that are sequentially related under well-defined
096 environment dynamics.

097 **Neural ODEs for continuous control.** Neural ODEs can model the continuous evolution between
098 discrete events while coupling with event-triggered mechanisms or classifiers to detect and handle
099 abrupt transitions, e.g., collisions or control mode changes (Jia & Benson, 2019; Auzina et al., 2023).
100 By integrating traditional neural networks, these models can infer both the continuous flow and the
101 timing or conditions of discrete switches directly from data, bypassing rigid analytical formulations.
102 The work of Alvarez et al. (2020) bears a partial resemblance to ours in that it involves training an
103 ODE to learn entire trajectories of continuous-space environments. However, both works fundamen-
104 tally differ from our approach in that our neural ODE operates on latent trajectories while theirs aim
105 to predict semantic trajectories, which makes them rather cumbersome to apply to discrete-space
106 tasks since the network’s output is continuous. Similar to Du et al. (2020), it uses the neural ODE
107 as the main inference model, while we only use the neural ODE as a decoupled regularizer.

108 **Shaping representations by predictive coding.** Enhancing temporal consistency across trajectories
109 requires moving beyond static state discriminators to objectives that model long-horizon dynamics.
110 By fusing predictive coding with contrastive learning, representations can be shaped to maximize the
111 mutual information between past history and future outcomes, effectively smoothing the latent space
112 against high-frequency noise (Agarwal et al., 2021; Schwarzer et al., 2020). Methods like TACO
113 Zheng et al. (2023) enforce a robust temporal structure in the latent space, where state transitions
114 are predictable from their immediate predecessors, preventing the representation from drifting due
115 to task-irrelevant environmental stochasticity. Our method enforces a stricter notion of temporal
116 consistency by leveraging the uniqueness of ODE flows at any intermediate point, ensuring that
117 states are predictable given *any* of their predecessors, not only the immediate ones.
118

119 **3 PRELIMINARIES**

120 **3.1 MARKOV DECISION PROCESSES**

121 We model reinforcement learning (RL) problems as *Markov decision processes* (MDPs), defined by
122 the tuple

$$123 \quad \mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, \gamma), \quad (1)$$

124 where \mathcal{S} is the state space, \mathcal{A} the action space, $P(s' | s, a)$ the transition kernel, $r(s, a)$ the expected
125 immediate reward, and $\gamma \in [0, 1]$ a discount factor. An agent samples actions $a_t \in \mathcal{A}$ according to a
126 policy $\pi(a | s)$, inducing a trajectory $\tau = (s_0, a_0, r_0, \dots)$. The objective is to maximize the expected
127 return

$$128 \quad J(\pi) = \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] \quad (2)$$

129 We define the following key functions:

130

131 - The state-value function: $V^\pi(s) = \mathbb{E}_\pi [\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s]$
132 - The action-value function: $Q^\pi(s, a) = \mathbb{E}_\pi [\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s, a_0 = a]$
133 - The advantage function: $A^\pi(s, a) = Q^\pi(s, a) - V^\pi(s)$

134 **3.2 POLICY GRADIENT METHODS**

135 Policy gradient algorithms directly optimize a parametric policy $\pi_\theta(a | s)$. The policy gradient
136 theorem (Sutton et al., 1999) states:

$$137 \quad \nabla_\theta J(\pi_\theta) = \mathbb{E}_{s \sim d^{\pi_\theta}, a \sim \pi_\theta} [\nabla_\theta \log \pi_\theta(a | s) Q^{\pi_\theta}(s, a)] \quad (3)$$

138 where d^{π_θ} denotes the stationary state distribution under π_θ . In practice, Q^{π_θ} is approximated and
139 variance is reduced by subtracting a baseline such as $V^\pi(s)$.

140 **3.3 ADVANTAGE ACTOR–CRITIC (A2C)**

141 Actor–critic methods (Mnih et al., 2016) couple a policy model (the actor) with a value function
142 estimator (the critic). The actor updates its parameters θ via the policy gradient, while the critic
143 learns to estimate $V^\pi(s)$ (or $Q^\pi(s, a)$) using temporal-difference learning.

144 The *Advantage Actor–Critic (A2C)* algorithm improves stability by using an advantage estimator.
145 The policy gradient update is given by

$$146 \quad \nabla_\theta J(\pi_\theta) \approx \mathbb{E} [\nabla_\theta \log \pi_\theta(a_t | s_t) \hat{A}_t] \quad (4)$$

147 with empirical advantage

$$148 \quad \hat{A}_t = r_t + \gamma V_\theta(s_{t+1}) - V_\theta(s_t) \quad (5)$$

149 where V_θ is the critic parameterized by θ . The critic is trained by minimizing the squared error

$$150 \quad \mathcal{L}_{\text{critic}}(\theta) = \mathbb{E}_{s_t \sim \pi_\theta} [(r_t + \gamma V_\theta(s_{t+1}) - V_\theta(s_t))^2] \quad (6)$$

$$151 \quad \mathcal{L}_{\text{actor}}(\theta) = -\mathbb{E}_{s_t, a_t \sim \pi_\theta} [\log \pi_\theta(a_t | s_t) \hat{A}_t] \quad (7)$$

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

Figure 1: Illustration of the flow regularization landscape.

3.4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

A Neural Ordinary Differential Equation is defined by the continuous transformation of the hidden state $h(t)$ given by the differential equation:

$$\frac{dh(t)}{dt} = f_\phi(h(t), t), \quad h(t) = h(t_0) + \int_{t_0}^t f_\phi(h(s), s) ds \quad (8)$$

where f is a neural network parameterized by ϕ . As such, neural ODEs differs from classical deep learning in that the neural network is used to model the system dynamics (through the state derivative) at a given time instead of modeling the entire system directly. This framework can be used to model functions that evolve over time. To seamlessly integrate neural ODEs into traditional deep learning pipeline, a differentiable numeric solver (e.g., TORCHDIFFEQ (Chen et al., 2018) or DIFFRAX (Kidger, 2021)) is typically used to evaluate the latent state function at given time points. The continuous-depth nature of Neural ODEs allows adaptive computation (e.g., varying solver step sizes), offering memory efficiency and flexible trade-offs between precision and computational cost compared to fixed-depth architectures.

A key mathematical property of Neural ODEs is their invertibility and exact gradient calculation via the adjoint state, which ensures stable training even with long integration intervals. The framework inherently accommodates irregularly sampled or continuous-time data, making them suitable for tasks like time-series modeling and dynamical systems. However, their performance hinges on numerical solver choices: explicit methods (e.g., Euler) are computationally light but may struggle with stiff systems, while implicit methods (e.g., backward differentiation) enhance stability at higher computational cost. This interplay between numerical precision, stability, and efficiency underscores the importance of solver selection in practice. Additionally, Neural ODEs enable novel architectures, such as continuous normalizing flows for density estimation, by enforcing invertibility through Lipschitz constraints on f . By bridging deep learning with differential equations, they provide a principled framework for understanding neural networks as dynamical systems, opening avenues for interpretability and integration with scientific machine learning.

4 APPROACH

In this section, we outline the mathematical formulation of our flow regularization technique for a general target model. As illustrated in Figure 1, our setting involves three principal fields: (1) the semantic state field defined by the environment, (2) the latent observation vector field induced by the semantic state embedder on the environment, and where each point is a vector representation of the corresponding semantic state, and (3) the latent flow vector field defined by the neural ODE

(i.e., flow model). Field (2) is utilized for carrying task information from Field (1) into the latent space, while Field (3) is utilized for imposing a global latent structure that underpins Field (1). The essence of our approach is that by aligning (2) and (3), we get the best of both worlds: a latent field that captures local (state-level) and global (trajectory-level) aspects of the environment.

4.1 MODEL SETUP

Generally, there are two models involved in our framework, namely a target agent model θ and a flow regularizer model ϕ . The target model comprises a state embedder network \mathbf{h}_θ that converts semantic states into their latents, and a downstream head F_θ that produces the final task-related actions. For a state trajectory $\mathbf{s} = s_0, s_1, \dots, s_{N-1}$, semantic embeddings are computed as $\mathbf{H}_\theta(\mathbf{s}) = \{\mathbf{h}_\theta(s_i)\}_{i=0}^{N-1}$, while flow embeddings are obtained by solving the initial value problem on $\mathbf{h}_\phi(0) = \mathbf{h}_\theta(s_0)$:

$$\mathbf{H}_\theta(\mathbf{s}) = \{\mathbf{h}_\theta(s_i)\}_{i=0}^{N-1} = \mathbf{h}_\theta(\{s_i\}_{i=0}^{N-1}) \quad (9)$$

$$\mathbf{H}_\phi(\mathbf{s}) = \{\mathbf{h}_\phi(s_i)\}_{i=1}^{N-1} = \text{ODESolve}(f_\phi, \mathbf{h}_\theta(s_0), \{\tau_i\}_{i=0}^{N-1}) \quad (10)$$

where τ_i is the integration time index for state s_i , and f_ϕ is a neural network that parameterizes the derivative of the latent state. MDP states generally do not have timestamps, so we impose a time sampling scheme to associate each state in the trajectory with a time index. Note that due to the Markov property, the underlying ODE is autonomous (i.e., time-invariant). However, the choice of the integration times still significantly influences the ODE solver, and our experiments show that it is indeed fairly consequential for performance. An intuitive option for time sampling would be the step index of the state, i.e., $\tau_i = i$. Another simple approach is using a discounted time horizon with the same discounting factor γ used by the agent’s algorithm, i.e., $\tau_i = \gamma^i$ where $0 < \gamma < 1$. This guarantees that integration times are in $[0, 1]$ to avoid arbitrarily large integration times, which might lead to gradient instability.

4.2 PATH ALIGNMENT

In essence, the flow model defines a smooth latent path that starts at a given semantic state embedding point, whereas the semantic embedder defines a discrete point sequence in the latent space. Typically, this latent point sequence is topologically unconstrained, which means that the topological structure of the latent space has to be implicitly learned over the course of the training. The key idea here is that we can speed up this process by imposing a topological structure that we already know to be compatible with the domain.

Our approach proceeds from the rationale that initially, the flow model carries pure curvature information while the semantic embedder carries task information. Ideally, we want to fuse both signals into the target model. To that end, we align the semantic embedding trajectory with the discretized latent flow. In doing so, each network adapts the information carried by the other. One straightforward way to incentivize this alignment is by minimizing the MSE between the latent point sequence \mathbf{H}_θ and the sampled flow path \mathbf{H}_ϕ . As such, we can compute the flow regularization loss as follows:

$$\mathcal{L}_{\text{flow}}(\mathbf{s}) := \frac{\|\mathbf{H}_\theta(\mathbf{s}) - \mathbf{H}_\phi(\mathbf{s})\|_2^2}{N} \quad (\text{FlowReg}) \quad (11)$$

4.3 OVERALL TRAINING OBJECTIVE

Having computed the flow loss on the latent trajectory, this loss is then added to the label-based task loss:

$$\mathcal{L}(s, y) = \mathcal{L}_{\text{task}}(F_\theta(\mathbf{H}_\theta(s)), y) + \lambda \mathcal{L}_{\text{flow}}(\mathbf{s}) \quad (12)$$

where λ is the flow-loss weighting factor. Note that $\mathcal{L}_{\text{flow}}(\mathbf{s})$ involves both the semantic embedder θ and the neural ODE network ϕ . This trains θ to follow the continuous ODE flow while optimizing ϕ to indirectly adapt to the underlying task modeled by θ .

For an Advantage Actor-Critic agent, the overall training loss would be:

$$\mathcal{L}(s, y) = \mathcal{L}_{\text{actor}}(s, y) + \beta \mathcal{L}_{\text{critic}}(s, y) + \lambda \mathcal{L}_{\text{flow}}(\mathbf{s}) \quad (13)$$

270 A relevant hyperparameter here is the FlowReg update frequency relative to the agent policy updates.
 271 It is also important to note that the neural ODE is not used for inference, only as a training-time
 272 adaptive regularizer.
 273

274 5 EXPERIMENTS

277 We evaluate our method on 11 Atari environments from the Arcade Learning Environment (ALE)
 278 library (Bellemare et al., 2013). This is mainly due to A2C being a reasonably simple actor-critic
 279 formulation, which is a cornerstone for many state-of-the-art algorithms like PPO (Schulman et al.,
 280 2017) and SAC (Haarnoja et al., 2018). We build on the Stable-baselines3 A2C implementation
 281 (Raffin et al., 2021) to incorporate our regularization loss. We use the same set of A2C hyperparam-
 282 eters for all environments and agents. The agent networks for both baseline and flow-regularized
 283 variants are identical for all experiments. The ultimate goal of our evaluation is to show that flow
 284 regularization effectively reduces the training search space by imposing an ODE flow field on the
 285 latent space of the agent’s state embedder, hence greatly reducing variance during training, allowing
 286 the agent to learn better policies with the same training steps.
 287

288 5.1 ATARI BENCHMARKS

308 Figure 2: Episodic rewards of baseline and flow-regularized A2C on 8 different Atari environments
 309 with a rolling average window of 100 episodes.
 310

311
 312 **Hyperparameters.** We performed 5 independent runs for every RL agent across all environments
 313 for 10 million timesteps each. Our semantic embedder for both baseline and flow-regularized agents
 314 is a commonly used Nature CNN (Mnih et al., 2015) feature extractor that embeds game state
 315 (frames) into a 512-dimensional vector space. The ODE flow (and loss) is computed on the extracted
 316 state feature vectors. For the FlowReg ODE network, we use a two-layer MLP with a tanh activa-
 317 tion on the first layer. All models are optimized by RMSProp (Ruder, 2016) with an initial learning
 318 rate of 7×10^{-4} and a linear decay scheduler. We apply a global-norm gradient clipping ratio of
 319 0.5 (Pascanu et al., 2012). We use the TORCHDIFFEQ (Chen et al., 2018) library together with PY-
 320 TORCH for solving neural ODEs with relative tolerance = 10^{-4} , and absolute tolerance = 10^{-5} . For
 321 FlowReg variants, we experiment with both index-based ($\tau_i = i$) and exponential decay ($\tau_i = \gamma^i$)
 322 time sampling, along with a regularization frequency (relative to agent updates) of $\{5, 10, 20\}$, and
 323 take the best configuration averaged over 3 seeds dedicated for hyperparameter search and separate
 324 from the 10 seeds of the final comparison runs. For simplicity, we set $\lambda = 1$ for all environments.

324 **Flow-regularized agents consistently outperform the baseline on Atari environments.** Figure
 325 2 highlights the notable performance gap between flow-regularized A2C and the baseline. The
 326 learning curves on all 11 environments can be found in Figure 5 (Appendix A). Figure 3 shows
 327 the overall performance percent gains achieved by applying FlowReg on all 11 environments¹. We
 328 also find that most FlowReg configurations outperform the baseline across all environments, which
 329 means that finding good values for the two FlowReg hyperparameters (time sampling and update
 330 frequency) is fairly easy.

344 Figure 3: Trade-off between performance gain achieved by FlowReg and its runtime overhead.
 345
 346

347 **FlowReg performance gains are robust under time sampling modes.** As shown in Table 1,
 348 FlowReg largely improves the baseline performance under both *Index* and *Exp-Decay* time sampling
 349 modes. The choice between them, in all likelihood, depends on the granularity of the environment
 350 dynamics. We generally expect *Exp-Decay* to work better on environments with swifter or more
 351 fine-grained state transitions. Table 4 (Appendix B) shows the specific FlowReg configurations that
 352 performed best on each environment along with the corresponding runtimes.

353 Table 1: Best mean episode rewards of different time sampling modes. Each variant was evaluated
 354 on 16 episodes averaged across 10 different training seeds. *Index* is where $\tau_i = i$ and *Exp-Decay* is
 355 where $\tau_i = \gamma^i$.

A2C AGENT	QBERT	RIVERRAID	BEAMRIDER
BASE	4374.30 ± 958.42	1862.27 ± 2399.58	960.66 ± 748.23
FLOWREG (INDEX)	8306.05 ± 1752.71	2946.34 ± 2788.17	1590.96 ± 1033.30
FLOWREG (EXP-DECAY)	6903.15 ± 2157.71	2947.95 ± 2798.64	1593.11 ± 961.77

364 Table 2: Mean episode rewards of different FlowReg update frequencies relative to agent updates on
 365 Atari Qbert. Each variant was evaluated on 16 episodes averaged across 10 different training seeds.
 366 **U-m** means the FlowReg loss is applied once every **m** agent updates.

A2C AGENT	QBERT (INDEX)	QBERT (EXP-DECAY)
BASE	4374.30 ± 958.42	4374.30 ± 958.42
FLOWREG U-5	8306.05 ± 1752.71	5286.60 ± 1269.76
FLOWREG U-10	6569.51 ± 2645.71	6903.15 ± 2157.71
FLOWREG U-20	5985.70 ± 2756.17	6782.70 ± 1877.13

377 ¹The hatched strip in Figure 3 indicates values exceeding the y-axis limit, which was capped for visual
 378 clarity to avoid overly downscaling other values.

378 **FlowReg loss is still effective under a much lower update frequency compared to the agent**
 379 **loss.** Table 2 points to it being more ideal to apply FlowReg loss once every 10 agent updates
 380 under both time sampling modes. The fourth row (U-20) also shows that FlowReg still results in
 381 notable performance gains with half as many updates. This is good news for runtime as it means
 382 the FlowReg loss does not need to be aggressively optimized to improve over the baseline, which
 383 allows it to run in a comparable training time. By contrasting the time-overhead margins with the
 384 performance gains in Figure 3, it shows that FlowReg is an overall cost-effective choice. Figure 6
 385 and Table 4 (Appendix B) show the runtime comparison between the baseline and FlowReg in terms
 386 of absolute values.

387 Table 3: Latent path smoothness measures normalized by trajectory length.
 388
 389

ENV	METRIC FORMULA	PATH LENGTH $\sum_{t=0}^{N-1} \ \Delta \mathbf{h}_\theta(\mathbf{s}_t)\ $	NET DISPLACEMENT $\ \mathbf{h}_\theta(\mathbf{s}_{N-1}) - \mathbf{h}_\theta(\mathbf{s}_0)\ $	ACCEL. ENERGY $\sum_{t=0}^{N-2} \ \Delta^2 \mathbf{h}_\theta(\mathbf{s}_t)\ $	REWARD $\sum_{t=0}^N R_t$
QBERT	A2C	34.39 ± 2.14	0.44 ± 0.17	4424.75 ± 521.76	4374.30 ± 958.42
	A2C+TACO	6.13 ± 0.42	0.03 ± 0.01	106.38 ± 9.86	2434.05 ± 2474.44
	A2C+FLOWREG	4.20 ± 0.44	0.10 ± 0.02	64.17 ± 7.05	8306.05 ± 1752.71
BREAKOUT	A2C	104.09 ± 2.44	0.74 ± 0.28	31432.59 ± 1698.82	19.40 ± 1.86
	A2C+TACO	13.09 ± 1.08	0.13 ± 0.05	461.75 ± 125.72	11.12 ± 2.42
	A2C+FLOWREG	4.92 ± 0.23	0.06 ± 0.02	94.98 ± 9.51	24.03 ± 0.84
RIVERRAID	A2C	75.36 ± 2.72	0.53 ± 0.07	18298.55 ± 1487.28	1862.27 ± 2399.58
	A2C+TACO	50.35 ± 1.26	0.36 ± 0.04	7599.32 ± 404.50	2943.47 ± 1616.30
	A2C+FLOWREG	6.35 ± 0.29	0.06 ± 0.02	137.25 ± 10.11	2947.95 ± 2798.64

400
 401 **5.2 LATENT PATH SMOOTHNESS**
 402

403 In addition to the performance results, we set out to investigate some geometric properties of the
 404 latent paths (trajectories) of flow-regularized models compared to the baseline. In particular, we
 405 are interested in whether FlowReg induces smoother paths as a result of the ODE alignment. We
 406 measure 3 different smoothness metrics as shown in Table 3. All 3 metrics are computed on the full
 407 dimensionality of the latent space without any reduction, and $\|\cdot\|$ is the Euclidean norm. To control
 408 for trajectory length variations, all 3 metrics are normalized by trajectory length, so they correspond
 409 to average speed, velocity, and acceleration, respectively.

410 Path length measures total segment length along the path, which reflects the jump step size between
 411 consecutive states in the latent space. Ideally, latent representations of consecutive states should be
 412 in close proximity, so the smaller the path length, the better the state embedder is from a purely
 413 topological standpoint. Lower net path displacement is desirable for similar reasons, as it indicates
 414 that individual trajectories lie in tightly packed regions of the latent space. Acceleration energy,
 415 computed the second-difference in position: $\Delta^2 \mathbf{h}_\theta(s_i) = \mathbf{h}_\theta(s_{i+2}) - 2\mathbf{h}_\theta(s_{i+1}) + \mathbf{h}_\theta(s_i)$, is a more
 416 local measure roughness (lower is better).

417 **FlowReg results in much smoother latent trajectories while improving overall performance.**
 418 Table 3 shows that ODE flow alignment notably changes the basic geometric properties of the agent’s
 419 latent trajectories, making them much smoother and more tightly wound, consistently across environ-
 420 ments. Naturally, we do not attribute the performance improvement solely to the latent trajectory
 421 smoothing effect, since there are many ways to smooth the space while destroying the semantic
 422 structure, as evident by the fact that although TACO produces smoother paths than baseline over all
 423 3 environments, it leads to a considerable performance degradation on two of them. The key dis-
 424 tinction in this case is restricting the latent field while respecting the underlying transition dynamics.
 425 In our case, this is achieved by the mutual alignment loss that imposes a diffeomorphic structure on
 426 the latent space, resulting in reduced variance as abrupt jumps and crossings are naturally penalized
 427 because they violate ODE flows.

428 Another takeaway from Table 3 is that smoothness and temporal predictability are notably cor-
 429 related. Despite the differences in mechanism between TACO and FlowReg, they both aim to instate a
 430 notion of predictive temporal structure on the latent representations. The results of Table 3 suggest
 431 that this common feature explains the notable reduction in their latent path roughness compared to
 the baseline.

432 5.3 MINIGRID ENVIRONMENTS
433

434 We evaluate FlowReg on PPO (Schulman et al., 2017) in Minigrid environments (Chevalier-Boisvert
435 et al., 2023). These experiments serve the purposes of showing FlowReg’s efficacy on another major
436 RL algorithm (PPO) while also exploring a more radically discrete environment domain than Atari
437 games. Similar to A2C, we use a modified implementation of the Stable-Baselines-3 PPO (Dhariwal
438 et al., 2017). We use the *Index-U20* FlowReg configuration for all 3 environments. We performed
439 10 runs per agent for 1M timesteps each.

450 Figure 4: Episodic rewards of baseline and flow-regularized PPO on Minigrid environments with a
451 rolling average window of 100 episodes.
452

453 As shown in Figure 7, flow-regularized PPO has a clear advantage on *FourRooms* and *Dynamic-Obstacles*
454 while matching the baseline in *DoorKey*, where both agents practically solve the environment.
455

456 6 CONCLUSION
457

458 **Summary.** In this paper, we presented FlowReg, an unsupervised regularization technique that
459 aims to induce an alignment between MDP semantic trajectories and their latent counterpart. We re-
460 alized this goal by adding an unsupervised loss term that incentivizes the semantic trajectory embed-
461 dings to act like discretizations of a neural ODE flow. We chose actor-critic reinforcement learning
462 on Atari environments to showcase the benefits of applying FlowReg to a target model. Our results
463 have shown that using FlowReg notably boosts the overall performance of the target agent across
464 almost all attempted environments and results in a more constrained path structure on the learned
465 embedding space.
466

467 **Limitations.** Although FlowReg does not require full episodes, it still requires trajectory informa-
468 tion to align it with the learned ODE flow. This means the training pipeline needs to keep track of
469 the episode ID for each state-action pair. This was not a significant challenge for the classical RL
470 pipeline structure, where each batch resumes from the environment state after the previous batch.
471 However, this might impose more implementation demands on more complex pipelines that do not
472 place as much emphasis on episodic structure. A more fundamental limitation of FlowReg is the fact
473 that ODE flows are unique both forwards and backwards, so flow paths do not intersect themselves
474 or each other. This can be beneficial for discouraging looping behavior where an agent returns to a
475 previously visited state. However, this property could present a burden in environments where there
476 are intermediate bottleneck states that need to be passed from different starting states. An example
477 of that is a maze solver game where the target destination lies in a chamber with only one opening.
478 Fortunately, this is often not the case for environments with a very large state space (like Atari).
479

480 **Future Work.** Since experiments demonstrate the efficacy of FlowReg on a standard on-policy
481 RL algorithm, it would be of great interest to see how it fares in the off-policy settings such as DQN
482 (Mnih et al., 2013), as well as model-based algorithms like Dreamer (Okada & Taniguchi, 2021).
483 Although the scope of our evaluation pertains to RL, the method itself still lends itself to MDPs
484 in other learning paradigms such as imitation learning or semi-supervised learning. As such, these
485 investigations would be a very promising research direction.

486 REFERENCES

487

488 Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive
489 behavioral similarity embeddings for generalization in reinforcement learning. *arXiv preprint*
490 *arXiv:2101.05265*, 2021.

491 Victor M Martinez Alvarez, Rareş Roşca, and Cristian G Fălcuţescu. Dynode: Neural or-
492 ordinary differential equations for dynamics modeling in continuous control. *arXiv preprint*
493 *arXiv:2009.04278*, 2020.

494 Ilze Amanda Auzina, Çağatay Yıldız, Sara Magliacane, Matthias Bethge, and Efstratios Gavves.
495 Modulated neural odes. *Advances in Neural Information Processing Systems*, 36:44572–44594,
496 2023.

497 István Balázs, Philipp Getto, and Gergely Röst. A continuous semiflow on a space of lipschitz
498 functions for a differential equation with state-dependent delay from cell biology. *Journal of*
499 *Differential Equations*, 304:73–101, 2021.

500 Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
501 ment: An evaluation platform for general agents. *Journal of artificial intelligence research*, 47:
502 253–279, 2013.

503 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
504 differential equations. *Advances in neural information processing systems*, 31, 2018.

505 Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
506 Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
507 Modular & customizable reinforcement learning environments for goal-oriented tasks. *CoRR*,
508 abs/2306.13831, 2023.

509 Earl A Coddington and Norman Levinson. *Theory of ordinary differential equations*. McGraw-Hill
510 New York, 1955.

511 Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
512 John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. <https://github.com/openai/baselines>, 2017.

513 Jianzhun Du, Joseph Futoma, and Finale Doshi-Velez. Model-based reinforcement learning for
514 semi-markov decision processes with neural odes. *Advances in Neural Information Processing*
515 *Systems*, 33:19805–19816, 2020.

516 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
517 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-
518 ence on machine learning*, pp. 1861–1870. Pmlr, 2018.

519 Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. *Inverse problems*,
520 34(1):014004, 2017.

521 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
522 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
523 770–778, 2016.

524 Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. *Advances in Neural*
525 *Information Processing Systems*, 32, 2019.

526 Patrick Kidger. *On Neural Differential Equations*. PhD thesis, University of Oxford, 2021.

527 Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
528 bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
529 *Neural computation*, 1(4):541–551, 1989.

530 Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
531 Bridging deep architectures and numerical differential equations. In *International conference on*
532 *machine learning*, pp. 3276–3285. PMLR, 2018.

540 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
541 stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint*
542 *arXiv:1312.5602*, 2013.

543 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
544 mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
545 control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

546 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
547 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
548 learning. In *International conference on machine learning*, pp. 1928–1937. PMLR, 2016.

549 Masashi Okada and Tadahiro Taniguchi. Dreaming: Model-based reinforcement learning by la-
550 tent imagination without reconstruction. In *2021 ieee international conference on robotics and*
551 *automation (icra)*, pp. 4209–4215. IEEE, 2021.

552 Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gradient prob-
553 lem. *CoRR, abs/1211.5063*, 2(417):1, 2012.

554 Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
555 Dormann. Stable-baselines3: Reliable reinforcement learning implementations. *Journal of*
556 *Machine Learning Research*, 22(268):1–8, 2021. URL <http://jmlr.org/papers/v22/20-1364.html>.

557 Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
558 irregularly-sampled time series. *Advances in neural information processing systems*, 32, 2019.

559 Sebastian Ruder. An overview of gradient descent optimization algorithms. *arXiv preprint*
560 *arXiv:1609.04747*, 2016.

561 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
562 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

563 Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
564 man. Data-efficient reinforcement learning with self-predictive representations. *arXiv preprint*
565 *arXiv:2007.05929*, 2020.

566 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
567 methods for reinforcement learning with function approximation. In S. Solla, T. Leen, and
568 K. Müller (eds.), *Advances in Neural Information Processing Systems*, volume 12. MIT Press,
569 1999. URL https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

570 Ruijie Zheng, Xiyao Wang, Yanchao Sun, Shuang Ma, Jieyu Zhao, Huazhe Xu, Hal Daumé III, and
571 Furong Huang.

572 \texttt{tac0} : Temporal latent action–driven contrastive loss for visual reinforcement learning. *Advances in Neural*
573 *Information Processing Systems*, 35:48203–48225, 2023.

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 A APPENDIX

595

596 A.1 LEARNING CURVES ON ALL ENVIRONMENTS

597

Figure 5: Episodic rewards of baseline and flow-regularized A2C on all 11 Atari environments with a rolling average window of 100 episodes.

648 B FLOWREG CONFIGURATIONS AND RUNTIME

649
650 Table 4: FlowReg configurations used for each environment and their corresponding runtimes.
651
652

ENVIRONMENT	TIME SAMPLING	REL. UPDATE FREQUENCY	A2C RUNTIME (MIN.)	A2C+FLOWREG RUNTIME (MIN.)	RUNTIME OVERHEAD (%)
DEMONATTACK	EXP-DECAY	10	487.37	554.00	13.67
ATLANTIS	EXP-DECAY	10	603.44	652.00	8.05
BEAMRIDER	EXP-DECAY	20	561.82	567.00	0.92
TENNIS	EXP-DECAY	20	617.68	621.00	0.54
RIVERRAID	EXP-DECAY	5	632.40	699.00	10.53
ASTERIX	EXP-DECAY	5	414.66	478.02	15.28
MsPACMAN	EXP-DECAY	5	538.13	629.70	17.02
QBERT	INDEX	5	510.13	565.70	10.89
BREAKOUT	INDEX	5	775.07	791.00	2.05
DOUBLEDUNK	INDEX	5	1011.86	1202.00	18.79
ALIEN	INDEX	5	691.99	811.00	17.20

Figure 6: Total Training Runtime Comparison (for 10M timesteps).

702
703

C HYPERPARAMETER TUNING EXPERIMENTS

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

721 Figure 7: Performance of different FlowReg loss weights (λ).
722