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ABSTRACT

Neural networks applied to sequential decision-making tasks typically rely on la-
tent representations of environment states. While environment dynamics dictate
how semantic states evolve, the corresponding latent transitions are usually left
implicit, leaving room for misalignment between the two. We propose to model
latent dynamics explicitly by drawing an analogy between Markov decision pro-
cess (MDP) trajectories and ordinary differential equation (ODE) flows: in both
cases, the current state fully determines its successors. Building on this view,
we introduce a neural ODE–based regularization method that enforces latent em-
beddings to follow consistent ODE flows, thereby aligning representation learning
with environment dynamics. Although broadly applicable to deep learning agents,
we demonstrate its effectiveness in reinforcement learning by integrating it into an
Actor–Critic algorithm, where it results in major performance gains across various
standard Atari benchmarks.

1 INTRODUCTION

A central distinction in machine learning lies between the semantic representation of an object and
its latent representation. Neural networks do not directly manipulate the semantics of an object but
instead operate on latent embeddings learned from data. Much of the research in representation
learning has therefore focused on designing embedding processes that faithfully encode the local
properties of objects. For instance, convolutional neural networks LeCun et al. (1989) incorporate
inductive biases such as translation equivariance, spatial locality, and approximate invariance to scale
and rotation. These architectural choices encode object-level regularities, ensuring that embeddings
reflect structural properties intrinsic to individual objects.

While such local representations are powerful for perception tasks, sequential decision-making in-
troduces a different challenge: the need for a more global understanding of how objects and states
relate to one another over time. In this setting, the relevant inductive biases emerge not from isolated
objects but from the dynamics that connect them. For example, in the context of Markov Decision
Processes (MDPs), the latent embeddings of a state and its successor should be consistently related
by the transition dynamics. Concretely, if s1 and s2 are states with s2 reachable from s1 under a
transition rule R, then their embeddings should satisfy a relation of the form

h(s2) = g(h(s1), R),

where h(·) denotes the embedding function. While the existence of such a mapping is trivial in
principle, the structural properties it imposes on the latent space—such as smoothness, consistency,
and determinism—are far from trivial and are crucial for reasoning tasks.

This paper proceeds from the intuition that embeddings of semantic trajectories can be understood
as discretizations of continuous latent flows. In other words, each trajectory in the semantic space
should correspond to a smooth path in the latent space. We argue that regularizing latent embeddings
to respect this path structure captures an inherent property of transition dynamics, and enhances the
model’s ability to learn the task on a more global level. To operationalize this idea, we define la-
tent flows using neural ordinary differential equations (neural ODEs) (Chen et al., 2018), which
guarantee unique continuous trajectories under mild regularity assumptions such as Lipschitz con-
tinuity (Coddington & Levinson, 1955). In reasoning contexts, this uniqueness naturally subsumes
the Markov property: an initial condition (i.e., a state) completely determines the flow path of sub-
sequent conditions.
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However, directly using neural ODEs for inference is impractical. Their reliance on numerical
integration makes them significantly slower than standard forward passes, and their application to
sequential inference is further complicated by the discontinuities introduced by evolving semantic
states (Du et al., 2020; Jia & Benson, 2019; Rubanova et al., 2019). To overcome these limitations,
we propose to train the agent’s semantic embedder to mimic the flows of a neural ODE through
an alignment penalty. This approach enables the learned embeddings to inherit the topological
structure of smooth ODE flows, while avoiding the computational and design burdens of ODE-
based inference. Our method thus combines the expressivity of continuous-time dynamics with the
efficiency of conventional neural architectures. Moreover, it adds a layer of global guidance to the
agent in the form of a neural ODE that learns to model the latent agent-environment dynamics in an
unsupervised fashion.

The relevance of this perspective is particularly pronounced in discrete-state MDPs. In continuous-
state environments, the inherent continuity of the state space naturally induces smoothness in the
latent representations: small changes in the input state often correspond to small changes in the
embedding. By contrast, in discrete domains the semantic space consists of isolated states with
no a priori notion of proximity or smooth transitions. As a result, continuity must be imposed in
the latent space rather than inherited from the state space itself. Embedding discrete trajectories as
smooth latent flows therefore provides a principled way to recover structural regularities that are
otherwise absent, enabling latent dynamics to reflect the transition constraints of the underlying
MDP.

Contributions. In this paper, we introduce flow regularization (FlowReg), an unsupervised reg-
ularization technique for sequential Markov decision-making models that aligns the agent’s latent
representation field with the underlying semantic environment dynamics. It does so by learning a
neural ODE that acts as a latent surrogate for the environment and aligning its flows with the la-
tent trajectories of the agent’s state embedder. To showcase our technique, we evaluate FlowReg
in reinforcement learning settings of Advantage Actor-Critic (A2C) on 10 Atari environments. Our
experiments show that FlowReg notably improves the baseline model performance across all en-
vironments. We further examine the resulting latent trajectories and demonstrate their desirable
smoothness properties as a result of flow-regularization.

2 RELATED WORK

Neural ODEs as continuous-depth networks. It has been noted in several existing works that
ResNets (He et al., 2016) can be viewed as an Euler discretization of a continuous differential flow
(Balázs et al., 2021; Lu et al., 2018; Haber & Ruthotto, 2017). An implication of this is that an ODE
can in theory be used to model an infinite-depth ResNet with a finite number of parameters – making
them more parameter efficient (Chen et al., 2018). In this paper, we take a wider look at sequence
transformations modeled by the whole network as an embedder as opposed to the transformations
modeled by the individual layers within the model. That is, instead of looking at the embedder
network as a discretized transformation of an object, we look at the latent trajectories that result
from applying the network to a sequence of objects that are sequentially related under well-defined
environment dynamics.

Neural ODEs for discrete processes. Despite the continuous nature of neural ODEs, they have
seen wide use in discrete domains. For instance, continuous graph neural networks (Xhonneux et al.,
2020) use a neural ODE to model message-passing for graph embedding by making the time variable
a surrogate for the layer/round index. This is in line with the spirit of our work which employs
smooth continuous flows to model discrete trajectories. Other examples include using neural ODEs
for planning in robotics (Das et al., 2023) and semi-Markov decision processes (SMDPs) (Du et al.,
2020) for reinforcement learning. The work of (Du et al., 2020) has some similarity to our work in
that it involves training a neural ODE to predict future states. However, there is a two-fold difference
between them. Firstly, the state predictor is trained through a decoding function that reconstructs
the semantic state from the latent one while we optimize it directly in the latent form by aligning
its predictions with those obtained from the semantic embedder. Secondly, the latent state predictor
is used for planning (inference) while ours is used for regularizing the latent space topology during
training.
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Neural ODEs for continuous control. Neural ODEs can model the continuous evolution between
discrete events while coupling with event-triggered mechanisms or classifiers to detect and handle
abrupt transitions, e.g., collisions or control mode changes (Jia & Benson, 2019; Auzina et al., 2023).
By integrating traditional neural networks, these models can infer both the continuous flow and the
timing or conditions of discrete switches directly from data, bypassing rigid analytical formulations.
The work of Alvarez et al. (2020) bears a partial resemblance to ours in that it involves training an
ODE to learn entire trajectories of continuous-space environments. However, both works fundamen-
tally differ from our approach in that our neural ODE operates on latent trajectories while theirs aim
to predict semantic trajectories, which makes them rather cumbersome to apply to discrete-space
tasks since the network’s output is continuous. Similar to (Du et al., 2020), it uses the neural ODE
as the main inference model, while we only use the neural ODE as a decoupled regularizer.

3 PRELIMINARIES

3.1 MARKOV DECISION PROCESSES

We model reinforcement learning (RL) problems as Markov decision processes (MDPs), defined by
the tuple

M = (S,A, P, r, γ), (1)
where S is the state space, A the action space, P (s′ | s, a) the transition kernel, r(s, a) the expected
immediate reward, and γ ∈ [0, 1) a discount factor. An agent samples actions at ∈ A according to a
policy π(a | s), inducing a trajectory τ = (s0, a0, r0, . . .) The objective is to maximize the expected
return

J(π) = Eπ

[ ∞∑
t=0

γtr(st, at)

]
(2)

We define the following key functions:

• The state-value function: V π(s) = Eπ [
∑∞

t=0 γ
tr(st, at) | s0 = s]

• The action-value function: Qπ(s, a) = Eπ [
∑∞

t=0 γ
tr(st, at) | s0 = s, a0 = a]

• The advantage function: Aπ(s, a) = Qπ(s, a)− V π(s)

3.2 POLICY GRADIENT METHODS

Policy gradient algorithms directly optimize a parametric policy πθ(a | s). The policy gradient
theorem (Sutton et al., 1999) states

∇θJ(πθ) = Es∼dπθ , a∼πθ
[∇θ log πθ(a | s)Qπθ (s, a)] (3)

where dπθ denotes the stationary state distribution under πθ. In practice, Qπθ is approximated and
variance is reduced by subtracting a baseline such as V π(s).

3.3 ADVANTAGE ACTOR–CRITIC (A2C)

Actor–critic methods Mnih et al. (2016) couple a policy model (the actor) with a value function
estimator (the critic). The actor updates its parameters θ via the policy gradient, while the critic
learns to estimate V π(s) (or Qπ(s, a)) using temporal-difference learning.

The Advantage Actor–Critic (A2C) algorithm improves stability by using an advantage estimator.
The policy gradient update is given by

∇θJ(πθ) ≈ E
[
∇θ log πθ(at | st) Ât

]
(4)

with empirical advantage
Ât = rt + γVθ(st+1)− Vθ(st) (5)

where Vθ is the critic parameterized by θ. The critic is trained by minimizing the squared error

Lcritic(θ) = Est∼πθ

[(
rt + γVθ(st+1)− Vθ(st)

)2]
(6)
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Lactor(θ) = −Est,at∼πθ

[
log πθ(at | st) Ât

]
(7)

In practice, A2C often employs multi-step returns and averages gradients across multiple syn-
chronously running environments, improving both sample efficiency and training stability.

3.4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

A Neural Ordinary Differential Equation is defined by the continuous transformation of the hidden
state h(t) given by the differential equation:

dh(t)

dt
= f(h(t), t, ϕ), h(t) = h(t0) +

∫ t

t0

f(h(s), s) ds (8)

where f is a neural network parameterized by ϕ. As such, neural ODEs differs from classical
deep learning in that the neural network is used to model the system dynamics (through the state
derivative) at a given time instead of modeling the entire system directly. This framework can be
used to model functions that evolve over time. To seamlessly integrate neural ODEs into traditional
deep learning pipeline, a differentiable numeric solver (e.g., TORCHDIFFEQ (Chen et al., 2018) or
DIFFRAX (Kidger, 2021)) is typically used to evaluate the latent state function at given time points.
The continuous-depth nature of Neural ODEs allows adaptive computation (e.g., varying solver step
sizes), offering memory efficiency and flexible trade-offs between precision and computational cost
compared to fixed-depth architectures.

A key mathematical property of Neural ODEs is their invertibility and exact gradient calculation
via the adjoint state, which ensures stable training even with long integration intervals. The frame-
work inherently accommodates irregularly sampled or continuous-time data, making them suitable
for tasks like time-series modeling and dynamical systems. However, their performance hinges on
numerical solver choices: explicit methods (e.g., Euler) are computationally light but may strug-
gle with stiff systems, while implicit methods (e.g., backward differentiation) enhance stability at
higher computational cost. This interplay between numerical precision, stability, and efficiency un-
derscores the importance of solver selection in practice. Additionally, Neural ODEs enable novel
architectures, such as continuous normalizing flows for density estimation, by enforcing invertibil-
ity through Lipschitz constraints on f . By bridging deep learning with differential equations, they
provide a principled framework for understanding neural networks as dynamical systems, opening
avenues for interpretability and integration with scientific machine learning.

4 APPROACH

In this section, we outline the mathematical formulation of our flow regularization technique for a
general target model. As illustrated in Figure 1, our setting involves three principal fields: (1) the
semantic state field defined by the environment, (2) the latent observation vector field induced by
the semantic state embedder on the environment, and where each point is a vector representation
of the corresponding semantic state, and (3) the latent flow vector field defined by the neural ODE
(i.e., flow model). Field (2) is utilized for carrying task information from Field (1) into the latent
space, while Field (3) is utilized for imposing a global latent structure that underpins Field (1). The
essence of our approach is that by aligning (2) and (3), we get the best of both worlds: a latent field
that captures local (state-level) and global (trajectory-level) aspects of the environment.

4.1 MODEL SETUP

Generally, there are two models involved in our framework, namely a target agent model θ and
a flow regularizer model ϕ. The target model comprises a state embedder network hθ that con-
verts semantic states into their latents, and a downstream head Fθ that produces the final task-
related actions. For a state trajectory s = s0, s1, ..., sN−1, semantic embeddings are computed as
Hθ(s) = hθ(s0),hθ(s1), ...,hθ(sN−1), while flow embeddings are obtained by solving the initial
value problem on hϕ(0) = hθ(s0):

Hθ(s) = {hθ(si)}N−1
i=0 = hθ({si}N−1

i=0 ) (9)

Hϕ(s) = {hϕ(si)}N−1
i=1 = ODESolve(fϕ,hθ(s0), {τi}N−1

i=0 ) (10)
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Figure 1: Illustration of the flow regularization landscape.

where τi is the integration time index for state si, and fϕ is a neural network that parameterizes the
derivative of the latent state. MDP states generally do not have timestamps, so we impose a time
sampling scheme to associate each state in the trajectory with a time index. Note that due to the
Markov property, the underlying ODE is autonomous (i.e., time-invariant). However, the choice of
the integration times still significantly influences the ODE solver, and our experiments show that it
is indeed fairly consequential for performance. An intuitive option for time sampling would be the
step index of the state, i.e., τi = i. Another simple approach is using a discounted time horizon
with the same discounting factor γ used by the agent’s algorithm, i.e., τi = γi where 0 < γ < 1.
This guarantees that integration times are in [0, 1] to avoid arbitrarily large integration times, which
might lead to gradient instability.

To further enhance the stability of the ODE against uncontrolled trajectory growth over large inte-
gration times, we incorporate a simple negative feedback mechanism by negating the hidden state
before passed to the derivative network fϕ.

dhϕ(si) = fϕ(hϕ(si)) := MLP(−hϕ(si);ϕ) (11)

This is a simpler version of De Brouwer et al. (2019) where we do not maintain an additional
recurrent state in a GRU but only use a stateless MLP.

4.2 PATH ALIGNMENT

In essence, the flow model defines a smooth latent path that starts at a given semantic state embed-
ding point, whereas the semantic embedder defines a discrete point sequence in the latent space.
Typically, this latent point sequence is topologically unconstrained, which means that the topologi-
cal structure of the latent space has to be implicitly learned over the course of the training. The key
idea here is that we can speed up this process by imposing a topological structure that we already
know to be compatible with the domain.

Our approach proceeds from the rationale that initially, the flow model carries pure curvature infor-
mation while the semantic embedder carries task information. Ideally, we want to fuse both signals
into the target model. To that end, we align the semantic embedding trajectory with the discretized
latent flow. In doing so, each network adapts the information carried by the other. One straightfor-
ward way to incentivize this alignment is by minimizing the MSE between the latent point sequence
Hθ and the sampled flow path Hϕ. As such, we can compute the flow regularization loss as follows:

Lflow(s) :=
∥Hθ(s)−Hϕ(s)∥22

N
(FlowReg) (12)

5
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4.3 OVERALL TRAINING OBJECTIVE

Having computed the flow loss on the latent trajectory, this loss is then added to the label-based task
loss:

L(s, y) = Ltask(Fθ(Hθ(s)), y) + λLflow(s) (13)

where λ is the flow-loss weighting factor. Note that Lflow(s) involves both the semantic embedder θ
and the neural ODE network ϕ. This trains θ to follow the continuous ODE flow while optimizing
ϕ to indirectly adapt to the underlying task modeled by θ.

For an Advantage Actor-Critic agent, the overall training loss would be:

L(s, y) = Lactor(s, y) + βLcritic(s, y) + λLflow(s) (14)

A relevant hyperparameter here is the FlowReg update frequency relative to the agent policy updates.
It is also important to note that the neural ODE is not used for inference, only as a training-time
adaptive regularizer.

5 EXPERIMENTS

We evaluate our method on 10 Atari environments from the Arcade Learning Environment (ALE)
library Bellemare et al. (2013). This is mainly due to A2C being a reasonably simple actor-critic
formulation, which is a cornerstone for many state-of-the-art algorithms like PPO Schulman et al.
(2017) and SAC Haarnoja et al. (2018). We build on the OpenAI A2C implementation Dhariwal
et al. (2017) to incorporate our regularization loss. We use the same set of A2C hyperparameters for
all environments and agents. The agent networks for both baseline and flow-regularized variants are
identical for all experiments. The ultimate goal of our evaluation is to show that flow regularization
effectively reduces the training search space by imposing an ODE flow field on the latent space of
the agent’s state embedder, hence greatly reducing variance during training, allowing the agent to
learn better policies with the same training steps.

5.1 OVERALL PERFORMANCE

Figure 2: Episodic rewards of baseline and flow-regularized A2C on 8 different Atari environments
with a rolling average window of 100 episodes.
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Hyperparameters. We performed 5 independent runs for every RL agent across all environments
for 10 million timesteps each. Our semantic embedder for both baseline and flow-regularized agents
is a commonly used Nature CNN Mnih et al. (2015) feature extractor that embeds game state
(frames) into a 512-dimensional vector space. The ODE flow (and loss) is computed on the ex-
tracted state feature vectors. For the FlowReg ODE network, we use a two-layer MLP with a tanh
activation on the first layer. All models are optimized by RMSProp Ruder (2016) with an initial
learning rate of 7 × 10−4 and a linear decay scheduler. We apply a global-norm gradient clipping
ratio of 0.5 (Pascanu et al., 2012). We use the TORCHDIFFEQ (Chen et al., 2018) library together
with PYTORCH for solving neural ODEs (Euler method with 10−4 tolerance). For FlowReg vari-
ants, we experiment with both index-based (τi = i) and exponential decay (τi = γi) time sampling,
along with a regularization frequency (relative to agent updates) of {5, 10, 20}, and take the best
configuration.

Figure 3: Overall relative performance gain achieved by flow-regularization.

Flow-regularized agents consistently outperform the baseline on Atari environments. Figure
2 highlights the notable performance gap between flow-regularized A2C and the baseline. The
learning curves on all 10 environments can be found in Figure 4 (Appendix A). Figure 3 shows the
overall performance percent gains achieved by applying FlowReg on all 10 environments. We also
find that almost all FlowReg configurations outperform the baseline across all environments, which
means that finding good values for the two FlowReg hyperparameters (time sampling and update
frequency) is fairly easy.

Table 1: Best mean episode rewards of different time sampling modes. Each variant was evaluated
on 16 episodes averaged across 5 different training runs. Index is where τi = i and Exp-Decay is
where τi = γi.

A2C AGENT QBERT RIVERRAID BEAMRIDER

BASE 6098.80± 912.10 3956.50± 4622.36 1271.27± 616.77

FLOWREG (INDEX) 11250.19± 2857.62 6541.29± 505.28 2283.76± 1217.59

FLOWREG (EXP-DECAY) 7770.67± 2188.47 6639.15± 912.73 2459.48± 770.04

The choice of the FlowReg time sampling mode is subject to the environment. As shown
in Table 1, there is no clear winner between Index and Exp-Decay time sampling modes across
all environments. The choice between them, in all likelihood, depends on the granularity of the
environment dynamics. We generally expect Exp-Decay to work better on environments with swifter
or more fine-grained state transitions. In our suite of 10 environments, we find that Exp-Decay
outperforms Index more often than otherwise.
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Table 2: Best mean episode rewards of different FlowReg update frequencies relative to agent up-
dates on Atari Qbert. Each variant was evaluated on 16 episodes averaged across 5 different training
runs. U-m means the FlowReg loss is applied once every m agent updates.

A2C AGENT QBERT (INDEX) QBERT (EXP-DECAY)

BASE 6098.80± 912.10 6098.80± 912.10

FLOWREG U-5 7313.03± 1961.21 5425.31± 1656.66

FLOWREG U-10 11250.19± 2857.62 7770.67± 2188.47

FLOWREG U-20 9941.25± 935.15 7712.50± 3265.32

FlowReg loss is still effective under a much lower update frequency compared to the agent
loss. Table 2 points to it being more ideal to apply FlowReg loss once every 10 agent updates
under both time sampling modes. The fourth row (U-20) also shows that FlowReg still results in
notable performance gains with half as many updates. This is good news for runtime as it means
the FlowReg loss does not need to be aggressively optimized to improve over the baseline, which
allows it to run in a comparable training time.

Table 3: Latent path smoothness measures normalized by trajectory length.

ENV
METRIC PATH LENGTH NET DISPLACEMENT ACCEL. ENERGY

FORMULA
∑N−1

i=0 ∥∆hθ(si)∥ ∥hθ(sN−1)− hθ(s0)∥
∑N−2

i=0 ∥∆2hθ(si)∥

QBERT
A2C 34.39± 2.14 0.44± 0.17 4424.75± 521.76

A2C+FLOWREG 4.20± 0.44 0.10± 0.02 64.17± 7.05

BREAKOUT
A2C 104.09± 2.44 0.74± 0.28 31432.59± 1698.82

A2C+FLOWREG 4.92± 0.23 0.06± 0.02 94.98± 9.51

RIVERRAID
A2C 75.36± 2.72 0.53± 0.07 18298.55± 1487.28

A2C+FLOWREG 6.35± 0.29 0.06± 0.02 137.25± 10.11

5.2 LATENT PATH SMOOTHNESS

In addition to the performance results, we set out to investigate some geometric properties of the
latent paths (trajectories) of flow-regularized models compared to the baseline. In particular, we
are interested in whether FlowReg induces smoother paths as a result of the ODE alignment. We
measure 3 different smoothness metrics as shown in Table 3. All 3 metrics are computed on the full
dimensionality of the latent space without any reduction, and ∥·∥ is the Euclidean norm. To control
for trajectory length variations, all 3 metrics are normalized by trajectory length, so they correspond
to average speed, velocity, and acceleration, respectively.

Path length measures total segment length along the path, which reflects the jump step size between
consecutive states in the latent space. Ideally, latent representations of consecutive states should be
in close proximity, so the smaller the path length, the better the state embedder is from a purely
topological standpoint. Lower net path displacement is desirable for similar reasons, as it indicates
that individual trajectories lie in tightly packed regions of the latent space. Acceleration energy,
computed the second-difference in position: ∆2hθ(si) = hθ(si+2)−2hθ(si+1)+hθ(si), is a more
local measure roughness (lower is better).

FlowReg results in far smoother latent trajectories. Table 3 shows that ODE flow alignment
notably changes the basic geometric properties of the agent’s latent trajectories, making them much
smoother and more tightly wound, consistently across environments. Naturally, we do not attribute
the performance improvement solely to the latent trajectory smoothing effect. It is rather more due to
the fact that latent trajectories learn to follow the environment’s semantic trajectory along a smooth,
well-defined path from an ODE that mimics the environment in the latent space.
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6 CONCLUSION

Summary. In this paper, we presented FlowReg, an unsupervised regularization technique that
aims to induce an alignment between MDP semantic trajectories and their latent counterpart. We re-
alized this goal by adding an unsupervised loss term that incentivizes the semantic trajectory embed-
dings to act like discretizations of a neural ODE flow. We chose actor-critic reinforcement learning
on Atari environments to showcase the benefits of applying FlowReg to a target model. Our results
have shown that using FlowReg notably boosts the overall performance of the target agent across all
attempted environments and results in a more constrained path structure on the learned embedding
space.

Limitations. Although FlowReg does not require full episodes1, it still requires trajectory infor-
mation to align it with the learned ODE flow. This means the training pipeline needs to keep track
of the episode ID for each state-action pair. This was not a significant challenge for the classical RL
pipeline structure, where each batch resumes from the environment state after the previous batch.
However, this might impose more implementation demands on more complex pipelines that do not
place as much emphasis on episodic structure. A more fundamental limitation of FlowReg is the fact
that ODE flows are unique both forwards and backwards, so flow paths do not intersect themselves
or each other. This can be beneficial for discouraging looping behavior where an agent returns to a
previously visited state. However, this property could present a burden in environments where there
are intermediate bottleneck states that need to be passed from different starting states. An example
of that is a maze solver game where the target destination lies in a chamber with only one opening.
Fortunately, this is often not the case for environments with a very large state space (like Atari),
which are generally the ones where regularization is warranted in the first place.

Future Work. Since experiments demonstrate the efficacy of FlowReg on a standard on-policy
RL algorithm, it would be of great interest to see how it fares in the off-policy settings with po-
tentially more complex agents like SAC or PPO. Although the scope of our evaluation pertains to
RL, the method itself still lends itself to MDPs in other learning paradigms such as imitation learn-
ing or semi-supervised learning. As such, such investigations would be a very promising research
direction.
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A APPENDIX

A.1 LEARNING CURVES ON ALL ENVIRONMENTS

Figure 4: Episodic rewards of baseline and flow-regularized A2C on all 10 Atari environments with
a rolling average window of 100 episodes.
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