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ABSTRACT

Neural networks applied to sequential decision-making tasks typically rely on la-
tent representations of environment states. While environment dynamics dictate
how semantic states evolve, the corresponding latent transitions are usually left
implicit, leaving room for misalignment between the two. We propose to model
latent dynamics explicitly by drawing an analogy between Markov decision pro-
cess (MDP) trajectories and ordinary differential equation (ODE) flows: in both
cases, the current state fully determines its successors. Building on this view,
we introduce a neural ODE–based regularization method that enforces latent em-
beddings to follow consistent ODE flows, thereby aligning representation learn-
ing with environment dynamics. Although broadly applicable to deep learning
agents, we demonstrate its effectiveness in reinforcement learning by integrating
it into Actor–Critic algorithms, where it results in major performance gains across
various standard Atari benchmarks for A2C as well as gridworld environments for
PPO.

1 INTRODUCTION

A central distinction in machine learning lies between the semantic representation of an object and
its latent representation. Neural networks do not directly manipulate the semantics of an object but
instead operate on latent embeddings learned from data. Much of the research in representation
learning has therefore focused on designing embedding processes that faithfully encode the local
properties of objects. For instance, convolutional neural networks (LeCun et al., 1989) incorporate
inductive biases such as translation equivariance, spatial locality, and approximate invariance to scale
and rotation. These architectural choices encode object-level regularities, ensuring that embeddings
reflect structural properties intrinsic to individual objects.

While such local representations are powerful for perception tasks, sequential decision-making in-
troduces a different challenge: the need for a more global understanding of how objects and states
relate to one another over time. In this setting, the relevant inductive biases emerge not from isolated
objects but from the dynamics that connect them. For example, in the context of Markov Decision
Processes (MDPs), the latent embeddings of a state and its successor should be consistently related
by the transition dynamics. Concretely, if s1 and s2 are states with s2 reachable from s1 under a
transition rule R, then their embeddings should satisfy a relation of the form

h(s2) = g(h(s1), R),

where h(·) denotes the embedding function, and g is an arbitrary function. While the existence of
such a mapping is trivial in principle, the structural properties it imposes on the latent space—such as
smoothness, consistency, and determinism—are far from trivial and are crucial for reasoning tasks.

This paper proceeds from the intuition that embeddings of semantic trajectories can be understood
as discretizations of continuous latent flows. In other words, each trajectory in the semantic space
should correspond to a smooth path in the latent space. We argue that regularizing latent embeddings
to respect this path structure captures an inherent property of transition dynamics, and enhances the
model’s ability to learn the task on a more global level. To operationalize this idea, we define la-
tent flows using neural ordinary differential equations (neural ODEs) (Chen et al., 2018), which
guarantee unique continuous trajectories under mild regularity assumptions such as Lipschitz con-
tinuity (Coddington & Levinson, 1955). In reasoning contexts, this uniqueness naturally subsumes
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the Markov property: an initial condition (i.e., a state) completely determines the flow path of sub-
sequent conditions.

However, directly using neural ODEs for inference is impractical. Their reliance on numerical
integration makes them significantly slower than standard forward passes, and their application to
sequential inference is further complicated by the discontinuities introduced by evolving semantic
states (Du et al., 2020; Jia & Benson, 2019; Rubanova et al., 2019). To overcome these limitations,
we propose to train the agent’s semantic embedder to mimic the flows of a neural ODE through
an alignment penalty. This approach enables the learned embeddings to inherit the topological
structure of smooth ODE flows, while avoiding the computational and design burdens of ODE-
based inference. Our method thus combines the expressivity of continuous-time dynamics with the
efficiency of conventional neural architectures. Moreover, it adds a layer of global guidance to the
agent in the form of a neural ODE that learns to model the latent agent-environment dynamics in an
unsupervised fashion.

The relevance of this perspective is particularly pronounced in discrete-state MDPs. In continuous-
state environments, the inherent continuity of the state space naturally induces smoothness in the
latent representations: small changes in the input state often correspond to small changes in the
embedding. By contrast, in discrete domains the semantic space consists of isolated states with
no a priori notion of proximity or smooth transitions. As a result, continuity must be imposed in
the latent space rather than inherited from the state space itself. Embedding discrete trajectories as
smooth latent flows therefore provides a principled way to recover structural regularities that are
otherwise absent, enabling latent dynamics to reflect the transition constraints of the underlying
MDP.

Contributions. In this paper, we introduce flow regularization (FlowReg), an unsupervised reg-
ularization technique for sequential Markov decision-making models that aligns the agent’s latent
representation field with the underlying semantic environment dynamics. It does so by learning a
neural ODE that acts as a latent surrogate for the environment and aligning its flows with the la-
tent trajectories of the agent’s state embedder. To showcase our technique, we evaluate FlowReg
in the reinforcement learning settings of Advantage Actor-Critic (A2C) on 11 Atari environments.
Our experiments show that FlowReg notably improves the baseline model performance across all
environments. We further examine the resulting latent trajectories and demonstrate their desirable
smoothness properties as a result of flow-regularization. Lastly, we also show the FlowReg boost to
PPO on gridworld environments.

2 RELATED WORK

Neural ODEs as continuous-depth networks. It has been noted in several existing works that
ResNets (He et al., 2016) can be viewed as an Euler discretization of a continuous differential flow
(Balázs et al., 2021; Lu et al., 2018; Haber & Ruthotto, 2017). An implication of this is that an ODE
can in theory be used to model an infinite-depth ResNet with a finite number of parameters – making
them more parameter efficient (Chen et al., 2018). In this paper, we take a wider look at sequence
transformations modeled by the whole network as an embedder as opposed to the transformations
modeled by the individual layers within the model. That is, instead of looking at the embedder
network as a discretized transformation of an object, we look at the latent trajectories that result
from applying the network to a sequence of objects that are sequentially related under well-defined
environment dynamics.

Neural ODEs for continuous control. Neural ODEs can model the continuous evolution between
discrete events while coupling with event-triggered mechanisms or classifiers to detect and handle
abrupt transitions, e.g., collisions or control mode changes (Jia & Benson, 2019; Auzina et al., 2023).
By integrating traditional neural networks, these models can infer both the continuous flow and the
timing or conditions of discrete switches directly from data, bypassing rigid analytical formulations.
The work of Alvarez et al. (2020) bears a partial resemblance to ours in that it involves training an
ODE to learn entire trajectories of continuous-space environments. However, both works fundamen-
tally differ from our approach in that our neural ODE operates on latent trajectories while theirs aim
to predict semantic trajectories, which makes them rather cumbersome to apply to discrete-space
tasks since the network’s output is continuous. Similar to Du et al. (2020), it uses the neural ODE
as the main inference model, while we only use the neural ODE as a decoupled regularizer.
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Shaping representations by predictive coding. Enhancing temporal consistency across trajectories
requires moving beyond static state discriminators to objectives that model long-horizon dynamics.
By fusing predictive coding with contrastive learning, representations can be shaped to maximize the
mutual information between past history and future outcomes, effectively smoothing the latent space
against high-frequency noise (Agarwal et al., 2021; Schwarzer et al., 2020). Methods like TACO
Zheng et al. (2023) enforce a robust temporal structure in the latent space, where state transitions
are predictable from their immediate predecessors, preventing the representation from drifting due
to task-irrelevant environmental stochasticity. Our method enforces a stricter notion of temporal
consistency by leveraging the uniqueness of ODE flows at any intermediate point, ensuring that
states are predictable given any of their predecessors, not only the immediate ones.

3 PRELIMINARIES

3.1 MARKOV DECISION PROCESSES

We model reinforcement learning (RL) problems as Markov decision processes (MDPs), defined by
the tuple

M = (S,A, P, r, γ), (1)
where S is the state space, A the action space, P (s′ | s, a) the transition kernel, r(s, a) the expected
immediate reward, and γ ∈ [0, 1) a discount factor. An agent samples actions at ∈ A according to a
policy π(a | s), inducing a trajectory τ = (s0, a0, r0, . . .) The objective is to maximize the expected
return

J(π) = Eπ

[ ∞∑
t=0

γtr(st, at)

]
(2)

We define the following key functions:

• The state-value function: V π(s) = Eπ [
∑∞

t=0 γ
tr(st, at) | s0 = s]

• The action-value function: Qπ(s, a) = Eπ [
∑∞

t=0 γ
tr(st, at) | s0 = s, a0 = a]

• The advantage function: Aπ(s, a) = Qπ(s, a)− V π(s)

3.2 POLICY GRADIENT METHODS

Policy gradient algorithms directly optimize a parametric policy πθ(a | s). The policy gradient
theorem (Sutton et al., 1999) states:

∇θJ(πθ) = Es∼dπθ , a∼πθ
[∇θ log πθ(a | s)Qπθ (s, a)] (3)

where dπθ denotes the stationary state distribution under πθ. In practice, Qπθ is approximated and
variance is reduced by subtracting a baseline such as V π(s).

3.3 ADVANTAGE ACTOR–CRITIC (A2C)

Actor–critic methods (Mnih et al., 2016) couple a policy model (the actor) with a value function
estimator (the critic). The actor updates its parameters θ via the policy gradient, while the critic
learns to estimate V π(s) (or Qπ(s, a)) using temporal-difference learning.

The Advantage Actor–Critic (A2C) algorithm improves stability by using an advantage estimator.
The policy gradient update is given by

∇θJ(πθ) ≈ E
[
∇θ log πθ(at | st) Ât

]
(4)

with empirical advantage
Ât = rt + γVθ(st+1)− Vθ(st) (5)

where Vθ is the critic parameterized by θ. The critic is trained by minimizing the squared error

Lcritic(θ) = Est∼πθ

[(
rt + γVθ(st+1)− Vθ(st)

)2]
(6)

Lactor(θ) = −Est,at∼πθ

[
log πθ(at | st) Ât

]
(7)
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Figure 1: Illustration of the flow regularization landscape.

3.4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

A Neural Ordinary Differential Equation is defined by the continuous transformation of the hidden
state h(t) given by the differential equation:

dh(t)

dt
= fϕ(h(t), t), h(t) = h(t0) +

∫ t

t0

f
ϕ
(h(s), s) ds (8)

where f is a neural network parameterized by ϕ. As such, neural ODEs differs from classical
deep learning in that the neural network is used to model the system dynamics (through the state
derivative) at a given time instead of modeling the entire system directly. This framework can be
used to model functions that evolve over time. To seamlessly integrate neural ODEs into traditional
deep learning pipeline, a differentiable numeric solver (e.g., TORCHDIFFEQ (Chen et al., 2018) or
DIFFRAX (Kidger, 2021)) is typically used to evaluate the latent state function at given time points.
The continuous-depth nature of Neural ODEs allows adaptive computation (e.g., varying solver step
sizes), offering memory efficiency and flexible trade-offs between precision and computational cost
compared to fixed-depth architectures.

A key mathematical property of Neural ODEs is their invertibility and exact gradient calculation
via the adjoint state, which ensures stable training even with long integration intervals. The frame-
work inherently accommodates irregularly sampled or continuous-time data, making them suitable
for tasks like time-series modeling and dynamical systems. However, their performance hinges on
numerical solver choices: explicit methods (e.g., Euler) are computationally light but may strug-
gle with stiff systems, while implicit methods (e.g., backward differentiation) enhance stability at
higher computational cost. This interplay between numerical precision, stability, and efficiency un-
derscores the importance of solver selection in practice. Additionally, Neural ODEs enable novel
architectures, such as continuous normalizing flows for density estimation, by enforcing invertibil-
ity through Lipschitz constraints on f . By bridging deep learning with differential equations, they
provide a principled framework for understanding neural networks as dynamical systems, opening
avenues for interpretability and integration with scientific machine learning.

4 APPROACH

In this section, we outline the mathematical formulation of our flow regularization technique for a
general target model. As illustrated in Figure 1, our setting involves three principal fields: (1) the
semantic state field defined by the environment, (2) the latent observation vector field induced by
the semantic state embedder on the environment, and where each point is a vector representation
of the corresponding semantic state, and (3) the latent flow vector field defined by the neural ODE
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(i.e., flow model). Field (2) is utilized for carrying task information from Field (1) into the latent
space, while Field (3) is utilized for imposing a global latent structure that underpins Field (1). The
essence of our approach is that by aligning (2) and (3), we get the best of both worlds: a latent field
that captures local (state-level) and global (trajectory-level) aspects of the environment.

4.1 MODEL SETUP

Generally, there are two models involved in our framework, namely a target agent model θ and
a flow regularizer model ϕ. The target model comprises a state embedder network hθ that con-
verts semantic states into their latents, and a downstream head Fθ that produces the final task-
related actions. For a state trajectory s = s0, s1, ..., sN−1, semantic embeddings are computed as
Hθ(s) = hθ(s0),hθ(s1), ...,hθ(sN−1), while flow embeddings are obtained by solving the initial
value problem on hϕ(0) = hθ(s0):

Hθ(s) = {hθ(si)}N−1
i=0 = hθ({si}N−1

i=0 ) (9)

Hϕ(s) = {hϕ(si)}N−1
i=1 = ODESolve(fϕ,hθ(s0), {τi}N−1

i=0 ) (10)

where τi is the integration time index for state si, and fϕ is a neural network that parameterizes the
derivative of the latent state. MDP states generally do not have timestamps, so we impose a time
sampling scheme to associate each state in the trajectory with a time index. Note that due to the
Markov property, the underlying ODE is autonomous (i.e., time-invariant). However, the choice of
the integration times still significantly influences the ODE solver, and our experiments show that it
is indeed fairly consequential for performance. An intuitive option for time sampling would be the
step index of the state, i.e., τi = i. Another simple approach is using a discounted time horizon
with the same discounting factor γ used by the agent’s algorithm, i.e., τi = γi where 0 < γ < 1.
This guarantees that integration times are in [0, 1] to avoid arbitrarily large integration times, which
might lead to gradient instability.

4.2 PATH ALIGNMENT

In essence, the flow model defines a smooth latent path that starts at a given semantic state embed-
ding point, whereas the semantic embedder defines a discrete point sequence in the latent space.
Typically, this latent point sequence is topologically unconstrained, which means that the topologi-
cal structure of the latent space has to be implicitly learned over the course of the training. The key
idea here is that we can speed up this process by imposing a topological structure that we already
know to be compatible with the domain.

Our approach proceeds from the rationale that initially, the flow model carries pure curvature infor-
mation while the semantic embedder carries task information. Ideally, we want to fuse both signals
into the target model. To that end, we align the semantic embedding trajectory with the discretized
latent flow. In doing so, each network adapts the information carried by the other. One straightfor-
ward way to incentivize this alignment is by minimizing the MSE between the latent point sequence
Hθ and the sampled flow path Hϕ. As such, we can compute the flow regularization loss as follows:

Lflow(s) :=
∥Hθ(s)−Hϕ(s)∥22

N
(FlowReg) (11)

4.3 OVERALL TRAINING OBJECTIVE

Having computed the flow loss on the latent trajectory, this loss is then added to the label-based task
loss:

L(s, y) = Ltask(Fθ(Hθ(s)), y) + λLflow(s) (12)

where λ is the flow-loss weighting factor. Note that Lflow(s) involves both the semantic embedder θ
and the neural ODE network ϕ. This trains θ to follow the continuous ODE flow while optimizing
ϕ to indirectly adapt to the underlying task modeled by θ.

For an Advantage Actor-Critic agent, the overall training loss would be:

L(s, y) = Lactor(s, y) + βLcritic(s, y) + λLflow(s) (13)

5
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A relevant hyperparameter here is the FlowReg update frequency relative to the agent policy updates.
It is also important to note that the neural ODE is not used for inference, only as a training-time
adaptive regularizer.

5 EXPERIMENTS

We evaluate our method on 11 Atari environments from the Arcade Learning Environment (ALE)
library (Bellemare et al., 2013). This is mainly due to A2C being a reasonably simple actor-critic
formulation, which is a cornerstone for many state-of-the-art algorithms like PPO (Schulman et al.,
2017) and SAC (Haarnoja et al., 2018). We build on the Stable-baselines3 A2C implementation
(Raffin et al., 2021) to incorporate our regularization loss. We use the same set of A2C hyperparam-
eters for all environments and agents. The agent networks for both baseline and flow-regularized
variants are identical for all experiments. The ultimate goal of our evaluation is to show that flow
regularization effectively reduces the training search space by imposing an ODE flow field on the
latent space of the agent’s state embedder, hence greatly reducing variance during training, allowing
the agent to learn better policies with the same training steps.

5.1 ATARI BENCHMARKS

Figure 2: Episodic rewards of baseline and flow-regularized A2C on 8 different Atari environments
with a rolling average window of 100 episodes.

Hyperparameters. We performed 5 independent runs for every RL agent across all environments
for 10 million timesteps each. Our semantic embedder for both baseline and flow-regularized agents
is a commonly used Nature CNN (Mnih et al., 2015) feature extractor that embeds game state
(frames) into a 512-dimensional vector space. The ODE flow (and loss) is computed on the extracted
state feature vectors. For the FlowReg ODE network, we use a two-layer MLP with a tanh activa-
tion on the first layer. All models are optimized by RMSProp (Ruder, 2016) with an initial learning
rate of 7 × 10−4 and a linear decay scheduler. We apply a global-norm gradient clipping ratio of
0.5 (Pascanu et al., 2012). We use the TORCHDIFFEQ (Chen et al., 2018) library together with PY-
TORCH for solving neural ODEs with relative tolerance =10−4, and absolute tolerance =10−5. For
FlowReg variants, we experiment with both index-based (τi = i) and exponential decay (τi = γi)
time sampling, along with a regularization frequency (relative to agent updates) of {5, 10, 20}, and
take the best configuration averaged over 3 seeds dedicated for hyperparameter search and separate
from the 10 seeds of the final comparison runs. For simplicity, we set λ = 1 for all environments.
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Flow-regularized agents consistently outperform the baseline on Atari environments. Figure
2 highlights the notable performance gap between flow-regularized A2C and the baseline. The
learning curves on all 11 environments can be found in Figure 5 (Appendix A). Figure 3 shows
the overall performance percent gains achieved by applying FlowReg on all 11 environments1. We
also find that most FlowReg configurations outperform the baseline across all environments, which
means that finding good values for the two FlowReg hyperparameters (time sampling and update
frequency) is fairly easy.

Figure 3: Trade-off between performance gain achieved by FlowReg and its runtime overhead.

FlowReg performance gains are robust under time sampling modes. As shown in Table 1,
FlowReg largely improves the baseline performance under both Index and Exp-Decay time sampling
modes. The choice between them, in all likelihood, depends on the granularity of the environment
dynamics. We generally expect Exp-Decay to work better on environments with swifter or more
fine-grained state transitions. Table 4 (Appendix B) shows the specific FlowReg configurations that
performed best on each environment along with the corresponding runtimes.

Table 1: Best mean episode rewards of different time sampling modes. Each variant was evaluated
on 16 episodes averaged across 10 different training seeds. Index is where τi = i and Exp-Decay is
where τi = γi.

A2C AGENT QBERT RIVERRAID BEAMRIDER

BASE 4374.30± 958.42 1862.27± 2399.58 960.66± 748.23

FLOWREG (INDEX) 8306.05± 1752.71 2946.34± 2788.17 1590.96± 1033.30

FLOWREG (EXP-DECAY) 6903.15± 2157.71 2947.95± 2798.64 1593.11± 961.77

Table 2: Mean episode rewards of different FlowReg update frequencies relative to agent updates on
Atari Qbert. Each variant was evaluated on 16 episodes averaged across 10 different training seeds.
U-m means the FlowReg loss is applied once every m agent updates.

A2C AGENT QBERT (INDEX) QBERT (EXP-DECAY)

BASE 4374.30± 958.42 4374.30± 958.42

FLOWREG U-5 8306.05± 1752.71 5286.60± 1269.76

FLOWREG U-10 6569.51± 2645.71 6903.15± 2157.71

FLOWREG U-20 5985.70± 2756.17 6782.70± 1877.13

1The hatched strip in Figure 3 indicates values exceeding the y-axis limit, which was capped for visual
clarity to avoid overly downscaling other values.
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FlowReg loss is still effective under a much lower update frequency compared to the agent
loss. Table 2 points to it being more ideal to apply FlowReg loss once every 10 agent updates
under both time sampling modes. The fourth row (U-20) also shows that FlowReg still results in
notable performance gains with half as many updates. This is good news for runtime as it means
the FlowReg loss does not need to be aggressively optimized to improve over the baseline, which
allows it to run in a comparable training time. By contrasting the time-overhead margins with the
performance gains in Figure 3, it shows that FlowReg is an overall cost-effective choice. Figure 6
and Table 4 (Appendix B) show the runtime comparison between the baseline and FlowReg in terms
of absolute values.

Table 3: Latent path smoothness measures normalized by trajectory length.

ENV
METRIC PATH LENGTH NET DISPLACEMENT ACCEL. ENERGY REWARD

FORMULA
∑N−1

t=0 ∥∆hθ(st)∥ ∥hθ(sN−1)− hθ(s0)∥
∑N−2

t=0 ∥∆2hθ(st)∥
∑N

t=0 Rt

QBERT

A2C 34.39± 2.14 0.44± 0.17 4424.75± 521.76 4374.30± 958.42

A2C+TACO 6.13± 0.42 0.03± 0.01 106.38± 9.86 2434.05± 2474.44

A2C+FLOWREG 4.20± 0.44 0.10± 0.02 64.17± 7.05 8306.05± 1752.71

BREAKOUT

A2C 104.09± 2.44 0.74± 0.28 31432.59± 1698.82 19.40± 1.86

A2C+TACO 13.09± 1.08 0.13± 0.05 461.75± 125.72 11.12± 2.42

A2C+FLOWREG 4.92± 0.23 0.06± 0.02 94.98± 9.51 24.03± 0.84

RIVERRAID

A2C 75.36± 2.72 0.53± 0.07 18298.55± 1487.28 1862.27± 2399.58

A2C+TACO 50.35± 1.26 0.36± 0.04 7599.32± 404.50 2943.47± 1616.30

A2C+FLOWREG 6.35± 0.29 0.06± 0.02 137.25± 10.11 2947.95± 2798.64

5.2 LATENT PATH SMOOTHNESS

In addition to the performance results, we set out to investigate some geometric properties of the
latent paths (trajectories) of flow-regularized models compared to the baseline. In particular, we
are interested in whether FlowReg induces smoother paths as a result of the ODE alignment. We
measure 3 different smoothness metrics as shown in Table 3. All 3 metrics are computed on the full
dimensionality of the latent space without any reduction, and ∥·∥ is the Euclidean norm. To control
for trajectory length variations, all 3 metrics are normalized by trajectory length, so they correspond
to average speed, velocity, and acceleration, respectively.

Path length measures total segment length along the path, which reflects the jump step size between
consecutive states in the latent space. Ideally, latent representations of consecutive states should be
in close proximity, so the smaller the path length, the better the state embedder is from a purely
topological standpoint. Lower net path displacement is desirable for similar reasons, as it indicates
that individual trajectories lie in tightly packed regions of the latent space. Acceleration energy,
computed the second-difference in position: ∆2hθ(si) = hθ(si+2)−2hθ(si+1)+hθ(si), is a more
local measure roughness (lower is better).

FlowReg results in much smoother latent trajectories while improving overall performance.
Table 3 shows that ODE flow alignment notably changes the basic geometric properties of the agent’s
latent trajectories, making them much smoother and more tightly wound, consistently across envi-
ronments. Naturally, we do not attribute the performance improvement solely to the latent trajectory
smoothing effect, since there are many ways to smooth the space while destroying the semantic
structure, as evident by the fact that although TACO produces smoother paths than baseline over all
3 environments, it leads to a considerable performance degradation on two of them. The key dis-
tinction in this case is restricting the latent field while respecting the underlying transition dynamics.
In our case, this is achieved by the mutual alignment loss that imposes a diffeomorphic structure on
the latent space, resulting in reduced variance as abrupt jumps and crossings are naturally penalized
because they violate ODE flows.

Another takeaway from Table 3 is that smoothness and temporal predictability are notably corre-
lated. Despite the differences in mechanism between TACO and FlowReg, they both aim to instate a
notion of predictive temporal structure on the latent representations. The results of Table 3 suggest
that this common feature explains the notable reduction in their latent path roughness compared to
the baseline.
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5.3 MINIGRID ENVIRONMENTS

We evaluate FlowReg on PPO (Schulman et al., 2017) in Minigrid environments (Chevalier-Boisvert
et al., 2023). These experiments serve the purposes of showing FlowReg’s efficacy on another major
RL algorithm (PPO) while also exploring a more radically discrete environment domain than Atari
games. Similar to A2C, we use a modified implementation of the Stable-Baselines-3 PPO (Dhariwal
et al., 2017). We use the Index-U20 FlowReg configuration for all 3 environments. We performed
10 runs per agent for 1M timesteps each.

Figure 4: Episodic rewards of baseline and flow-regularized PPO on Minigrid environments with a
rolling average window of 100 episodes.

As shown in Figure 7, flow-regularized PPO has a clear advantage on FourRooms and Dynamic-
Obstacles while matching the baseline in DoorKey, where both agents practically solve the environ-
ment.

6 CONCLUSION

Summary. In this paper, we presented FlowReg, an unsupervised regularization technique that
aims to induce an alignment between MDP semantic trajectories and their latent counterpart. We re-
alized this goal by adding an unsupervised loss term that incentivizes the semantic trajectory embed-
dings to act like discretizations of a neural ODE flow. We chose actor-critic reinforcement learning
on Atari environments to showcase the benefits of applying FlowReg to a target model. Our results
have shown that using FlowReg notably boosts the overall performance of the target agent across
almost all attempted environments and results in a more constrained path structure on the learned
embedding space.

Limitations. Although FlowReg does not require full episodes, it still requires trajectory informa-
tion to align it with the learned ODE flow. This means the training pipeline needs to keep track of
the episode ID for each state-action pair. This was not a significant challenge for the classical RL
pipeline structure, where each batch resumes from the environment state after the previous batch.
However, this might impose more implementation demands on more complex pipelines that do not
place as much emphasis on episodic structure. A more fundamental limitation of FlowReg is the fact
that ODE flows are unique both forwards and backwards, so flow paths do not intersect themselves
or each other. This can be beneficial for discouraging looping behavior where an agent returns to a
previously visited state. However, this property could present a burden in environments where there
are intermediate bottleneck states that need to be passed from different starting states. An example
of that is a maze solver game where the target destination lies in a chamber with only one opening.
Fortunately, this is often not the case for environments with a very large state space (like Atari).

Future Work. Since experiments demonstrate the efficacy of FlowReg on a standard on-policy
RL algorithm, it would be of great interest to see how it fares in the off-policy settings such as DQN
(Mnih et al., 2013), as well as model-based algorithms like Dreamer (Okada & Taniguchi, 2021).
Although the scope of our evaluation pertains to RL, the method itself still lends itself to MDPs
in other learning paradigms such as imitation learning or semi-supervised learning. As such, these
investigations would be a very promising research direction.
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István Balázs, Philipp Getto, and Gergely Röst. A continuous semiflow on a space of lipschitz
functions for a differential equation with state-dependent delay from cell biology. Journal of
Differential Equations, 304:73–101, 2021.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of artificial intelligence research, 47:
253–279, 2013.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

Earl A Coddington and Norman Levinson. Theory of ordinary differential equations. McGraw-Hill
New York, 1955.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Jianzhun Du, Joseph Futoma, and Finale Doshi-Velez. Model-based reinforcement learning for
semi-markov decision processes with neural odes. Advances in Neural Information Processing
Systems, 33:19805–19816, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. Pmlr, 2018.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse problems,
34(1):014004, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. Advances in Neural
Information Processing Systems, 32, 2019.

Patrick Kidger. On Neural Differential Equations. PhD thesis, University of Oxford, 2021.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In International conference on
machine learning, pp. 3276–3285. PMLR, 2018.

10

https://github.com/openai/baselines
https://github.com/openai/baselines


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PmLR, 2016.

Masashi Okada and Tadahiro Taniguchi. Dreaming: Model-based reinforcement learning by la-
tent imagination without reconstruction. In 2021 ieee international conference on robotics and
automation (icra), pp. 4209–4215. IEEE, 2021.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gradient prob-
lem. CoRR, abs/1211.5063, 2(417):1, 2012.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In S. Solla, T. Leen, and
K. Müller (eds.), Advances in Neural Information Processing Systems, volume 12. MIT Press,
1999. URL https://proceedings.neurips.cc/paper_files/paper/1999/
file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Ruijie Zheng, Xiyao Wang, Yanchao Sun, Shuang Ma, Jieyu Zhao, Huazhe Xu, Hal Daumé III, and
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A APPENDIX

A.1 LEARNING CURVES ON ALL ENVIRONMENTS

Figure 5: Episodic rewards of baseline and flow-regularized A2C on all 11 Atari environments with
a rolling average window of 100 episodes.
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B FLOWREG CONFIGURATIONS AND RUNTIME

Table 4: FlowReg configurations used for each environment and their corresponding runtimes.

ENVIRONMENT
TIME REL. UPDATE A2C A2C+FLOWREG RUNTIME

SAMPLING FREQUENCY RUNTIME (MIN.) RUNTIME (MIN.) OVERHEAD (%)

DEMONATTACK EXP-DECAY 10 487.37 554.00 13.67

ATLANTIS EXP-DECAY 10 603.44 652.00 8.05

BEAMRIDER EXP-DECAY 20 561.82 567.00 0.92

TENNIS EXP-DECAY 20 617.68 621.00 0.54

RIVERRAID EXP-DECAY 5 632.40 699.00 10.53

ASTERIX EXP-DECAY 5 414.66 478.02 15.28

MSPACMAN EXP-DECAY 5 538.13 629.70 17.02

QBERT INDEX 5 510.13 565.70 10.89

BREAKOUT INDEX 5 775.07 791.00 2.05

DOUBLEDUNK INDEX 5 1011.86 1202.00 18.79

ALIEN INDEX 5 691.99 811.00 17.20

Figure 6: Total Training Runtime Comparison (for 10M timesteps).
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C HYPERPARAMETER TUNING EXPERIMENTS

Figure 7: Performance of different FlowReg loss weights (λ).
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