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Abstract
Semantic parsing considers the task of map-001
ping a natural language sentence into a target002
formal representation, where various sophis-003
ticated sequence-to-sequence (seq2seq) mod-004
els have been applied with promising results.005
Generally, these target representations follow006
a syntax formalism that limits permitted forms.007
However, it is neither easy nor flexible to ex-008
plicitly integrate this syntax formalism into009
a neural seq2seq model. In this paper, we010
present a structure-aware self-attention lan-011
guage model to capture structural information012
of target representations and propose a knowl-013
edge distillation based approach to incorporat-014
ing the target language model into a seq2seq015
model, where grammar rules, sketches or ex-016
tra corpus are not required in the training pro-017
cess. An ablation study shows that the pro-018
posed language model can notably improve019
the performance of the baseline model. The020
experiments show that our method achieves021
new state-of-the-art performance among neu-022
ral approaches on four semantic parsing (ATIS,023
GEO) and Python code generation (Django,024
CoNaLa) tasks.025

1 Introduction026

Semantic parsing aims to map a natural language027

sentence into a machine executable formal repre-028

sentation, which has been considered as one of the029

prime challenges nowadays in natural language pro-030

cessing (NLP). These target formal representations031

can generally be divided into three categories (Ka-032

math and Das, 2018), i.e., logical forms, like first033

order sentences or λ-calculus expressions (Zettle-034

moyer and Collins, 2005), programming language035

statements, like Python code or SQL programs, and036

graph-based forms, like labeled graphs in Abstract037

Meaning Representation (AMR) (Banarescu et al.,038

2013). In this paper, we focus on semantic parsing039

that yields logical forms.040

Target logical forms often follow a syntax for-041

malism that limits permitted formulas, which can042

be used to filter the output and improve the perfor- 043

mance of semantic parsing. For example, in the pre- 044

neural era, CCG based approaches (Kwiatkowski 045

et al., 2013) achieved significant performance gains 046

by introducing a linguistically motivated gram- 047

mar induction scheme. Some neural semantic 048

parsers (Yin and Neubig, 2018; Sun et al., 2020) 049

first transduce the natural language utterance into 050

an Abstract Syntax Tree (AST), then serve it as 051

an intermediate meaning representation to incor- 052

porate with grammar rules for the target logical 053

form. Semantic parsing can also be considered as a 054

seq2seq transduction problem, where the decoder 055

can leverage structural features of target represen- 056

tations. In particular, hierarchical tree decoders 057

are applied in (Dong and Lapata, 2016; Alvarez- 058

Melis and Jaakkola, 2017; Sun et al., 2019) to take 059

into account the tree structure of the logical expres- 060

sion. Decoders constrained by a grammar model 061

are applied in (Xiao et al., 2016; Yin and Neu- 062

big, 2017; Krishnamurthy et al., 2017; Dong and 063

Lapata, 2018). The uncertainty-driving adaptive 064

decoding is used to guide the decoder in (Zhang 065

et al., 2019). Relatively sizeable monolingual cor- 066

pus of the target programming language is used 067

in (Norouzi et al., 2021) to improve performance. 068

Note that, manually specified grammar rules, 069

sketches and extra corpus for target logical forms 070

are required in most of these approaches, which 071

limits their adaptabilities and scalabilities to a new 072

semantic parsing task with updated target logical 073

forms. In this paper, we consider using a structure- 074

aware language model to capture formal patterns 075

for target representations and incorporating the lan- 076

guage model into seq2seq models for semantic pars- 077

ing. 078

We first train the structure-aware language model 079

on target logical forms to capture structural infor- 080

mation. Then, we incorporate the language model 081

to a seq2seq model for semantic parsing. 082

Integrating a language model into a seq2seq 083
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model has been considered in automatic speech084

recognition (ASR) and neural machine translation085

(NMT). In particular, shallow fusion and deep086

fusion (Gulcehre et al., 2015) are two such ap-087

proaches in NMT. Cold fusion (Sriram et al., 2018)088

is tested on ASR tasks. (Bai et al., 2019) proposes089

a knowledge distillation based training approach090

to transferring knowledge from a language model091

to a seq2seq model for ASR. Here, we follow the092

knowledge distillation structure to integrate the lan-093

guage model to the baseline seq2seq model for094

semantic parsing.095

We evaluate our approach on two semantic096

parsing datasets, ATIS (Dahl et al., 1994) and097

GEO (Zelle and Mooney, 1996) datasets, where098

target logical forms are λ-calculus expressions and099

two code generation tasks, Django(Oda et al., 2015)100

and CoNaLa(Yin et al., 2018), where target logical101

forms are Python code. We train the target language102

model based on target logical forms appeared in103

the training sets of each datasets without involving104

extra corpus. The experimental results show that105

our approach achieves state-of-the-art performance106

among neural network based approaches on ATIS,107

GEO, Django and CoNaLa datasets.108

In this paper, we show that the proposed lan-109

guage model can be used to capture structural fea-110

tures of target logical forms and the knowledge dis-111

tillation structure can be used to transfer knowledge112

to a seq2seq model for semantic parsing, where113

manually specified grammar rules or sketches, or114

extra corpus are no longer required. Notice that,115

this approach can be applied to various sophisti-116

cated seq2seq models, which results a more flexible117

and scalable method for neural semantic parsers118

to leverage structural features of target represen-119

tations. The main contributions of the paper are120

summarized as follows:121

• We propose a structure-aware self-attention122

language model to capture structural informa-123

tion of target logical forms.124

• We propose a knowledge distillation structure125

to transfer knowledge from target language126

model to a seq2seq model, which suggests127

a more flexible and scalable method for neu-128

ral semantic parsers to leverage structural fea-129

tures of target representations.130

• We implement the approach on baseline131

seq2seq models, which achieves new state-of-132

the-art performance among neural semantic133

parsers on ATIS, GEO, Django and CoNaLa 134

datasets. 135

2 Related Work 136

2.1 Neural Semantic Parsing 137

Neural semantic parsing has achieved promising 138

results in recent years. In particular, AST based 139

parsers (Yin and Neubig, 2018; Sun et al., 2020, 140

2019) first map a nature language sentence into 141

an abstract syntax tree (AST), then parse the AST 142

to the corresponding target logic form. On the 143

other hand, seq2seq based semantic parsers often 144

leverage structural features of natural language 145

sentences or target representations to improve 146

the performance. Specifically, a sequence-to-tree 147

(seq2tree) model (Dong and Lapata, 2016) updates 148

the decoder into a hierarchical LSTM tree, which 149

helps the model to utilize the hierarchical structure 150

of logical forms. A graph-to-sequence (graph2seq) 151

model (Xu et al., 2018) updates the encoder into a 152

graph encoder. Graph neural networks (GNNs) are 153

also used in semantic parsing (Shaw et al., 2019) 154

to incorporate information about relevant entities 155

and their relations during the parsing. A sequence- 156

to-action (seq2action) model (Chen et al., 2018) 157

considers semantic parsing as an end-to-end se- 158

mantic graph generation process. A coarse-to-fine 159

(coarse2fine) model (Dong and Lapata, 2018) de- 160

composes the decoding process into two stages. 161

The first stage predicates a rough sketch of the 162

meaning representation and the second stage fills 163

in missing details conditioning on the natural lan- 164

guage input and the sketch itself. The AdaNSP 165

model (Zhang et al., 2019) proposes an adaptive 166

decoding method to avoid intermediate represen- 167

tations in the parsing process, where the decoder 168

is guided by the model uncertainty. TAE (Norouzi 169

et al., 2021) exploit a relatively sizeable monolin- 170

gual corpus of the target programming language to 171

improve performance. 172

Notice that, manually specified grammar rules 173

or sketches, or extra corpus are required in most 174

of these neural semantic parsing approaches to 175

leverage structural features of natural language sen- 176

tences or target representations. In this paper, we 177

consider using the proposed target language model 178

to capture these formal patterns and incorporating 179

the language model into seq2seq models for seman- 180

tic parsing. 181
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2.2 Integrating Language Model into182

Seq2Seq Models183

Integrating a language model into a seq2seq model184

has been considered in multiple NLP tasks, like185

automatic speech recognition (ASR) and neural186

machine translation (NMT). In particular, shal-187

low fusion and deep fusion (Gulcehre et al., 2015)188

are proposed to integrate a language model into189

a seq2seq model. Both methods first train a lan-190

guage model and a translation model separately,191

then use the language model in the inference step.192

Specifically, shallow fusion performs a log-linear193

interpolation between the decoder and the language194

model to re-weight the translation model’s scores195

during the beam search. Deep fusion concatenates196

the language model and decoder’s hidden states197

next to each other, then uses the the hidden states198

to fine-tune the model. Cold fusion (Sriram et al.,199

2018) is tested on AST tasks. Cold fusion uses200

the logic outputs of the trained language model as201

features to train the translation model. Simple fu-202

sion (Stahlberg et al., 2018) uses the output of a203

trained language model together with the output of204

a translation model to train the translation model.205

Component fusion (Shan et al., 2019) first trains206

a source language model, later freezes the source207

language model and trains the translation model,208

then replaces the source language model with a209

target language model in the inference process.210

The LST (Learning Spelling from Teachers) ap-211

proach (Bai et al., 2019) proposes a knowledge212

distillation based training approach to transferring213

knowledge from a language model to a seq2seq214

model for ASR. It first trains a recurrent neural215

network based language model (RNNLM) on large216

scale external text, then considers the RNNLM as217

the teacher to generate soft labels of speech tran-218

scriptions to train the decoder in the seq2seq model.219

In this paper, we follow the knowledge distilla-220

tion structure to transfer knowledge from target lan-221

guage model to the decoder of a baseline seq2seq222

model for semantic parsing. Different from LST, a223

new Transformer-based structure-aware language224

model is considered here, which can capture struc-225

tural information of formal patterns for target rep-226

resentations, and the language model is trained227

only on target logical forms in the training set of228

the datasets, where extra corpus is not required.229

We show that the approach achieves new state-of-230

the-art performance on ATIS, GEO, Django and231

CoNaLa datasets.232

3 Preliminaries 233

3.1 A Seq2Seq Model for Semantic Parsing 234

The training procedure of a baseline seq2seq model 235

for semantic parsing is illustrated in Figure 1. The 236

parsing model maps natural language sentences 237

into target expression. 238

First, a natural language sentence is pre- 239

processed into a sequence of word indexes x = 240

{x1, . . . , xm} and the labeled logical form is pre- 241

processed into a sequence of word indexes y∗ = 242

{y∗1, . . . , y∗n}. Then, the encoder network pro- 243

duces the sequence x = {x1, . . . , xm} into a high 244

level contextual representation h = {h1, . . . , hm}. 245

Later, the decoder network generates the target out- 246

put y = {y1, . . . , yn} from h. 247

𝒚𝟏
∗ , 𝒚𝟐

∗ , … , 𝒚𝒏
∗

Encoder Decoder

LPAR 
𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎

𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏

Figure 1: A basic seq2seq model for semantic parsing.

At time step t, current token yt is generated by 248

the following equation: 249

PPAR(yt) = p(yt | y<t,x), (1) 250

where y<t = y1 . . . yt−1, x represents the input 251

word indexes. 252

The training criterion is cross entropy: 253

LPAR = −
T∑
i=t

|V |∑
k=1

1{yt = k} logPPAR (yt = k)

(2) 254

where PPAR is computed from Equation (1), T is 255

the length of the target sequence, |V | is the size of 256

the vocabulary, 1 is the indicator function. 257

3.2 Self-Attention 258

The multi-head self-attention module is a key com- 259

ponent in Transformer (Vaswani et al., 2017). In 260

particular, transformer’s sub-layers employ h atten- 261

tion heads to perform self-attention. The results 262

from each attention heads are concatenated and 263

transformed to form the output of the sub-layer. 264

Given a sequence x = (x1, . . . , xn) as input, 265

each attention head uses scaled dot-product atten- 266
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tion to compute a new sequence z = (z1, . . . , zn)267

of the same length, i.e.,268

zi =

n∑
j=1

αij

(
xjW

V
)
, (3)269

where W V is a matrix of parameters and αij are270

normalized by a softmax function, i.e.,271

αij =
exp (eij)∑n
k=1 exp (eik)

, (4)272

where eij is computed using a compatibility func-273

tion that compares two input elements, i.e.,274

eij =

(
xiW

Q
) (
xjW

K
)>

√
dz

, (5)275

where WQ,WK are parameters to be learned.276

4 Method277

In this section, we specify details of our method,278

i.e., using a knowledge distillation based structure279

to transfer knowledge from a structure-aware tar-280

get language model to a seq2seq model. We first281

introduce the architecture of the new model. Then,282

we describe the proposed target language model.283

At last, we provide details of the method in the284

training process.285

4.1 Model Overview286

An overview of the new model’s architecture is287

shown in Figure 2. Note that, the new model is288

generated from the basic seq2seq model in Fig-289

ure 1 by introducing a knowledge distillation struc-290

ture where the pretrained structure-aware language291

model serves as the teacher to guide the parsing292

model.293

In specific, the structure-aware language model294

is pre-trained on target logical forms. The language295

model contains a structure-aware self-attention296

transformer encoder to explicitly capture the struc-297

tural information. It is used to provide soft labels as298

prior knowledge to “teach” the parsing model in the299

training process, where the Kullback-Leibler diver-300

gence between estimated probabilities is intended301

to be minimized.302

Notice that, there is no specific requirement for303

the seq2seq model in the architecture. Then, be-304

sides the basic seq2seq model, this knowledge dis-305

tillation structure can be applied to other sophisti-306

cated seq2seq models to leverage structural features307

of target representations.308

4.2 Target Language Model 309

Here we specify details of the proposed target lan- 310

guage model, i.e., structure-aware self-attention 311

language model. Architecture of the language 312

model is shown in Figure 3. 313

Since the target logical forms can all be seen as 314

bracket trees, they’re tree-structured. Self attention 315

in Transformer learns how much attention to put 316

on words in a sequence, but it ignores the syntactic 317

information of trees. The siblings of tree nodes 318

may have long distance in a sequence position, 319

but they’re related closely. Therefore, we propose 320

structure-aware self-attention encode the depth in- 321

formation of sibling nodes into self-attention to 322

capture this information. 323

Motivated by (Shaw et al., 2018), we extend 324

the self-attention architecture to explicitly encode 325

the relation between an element pair (xi, xj) by 326

modifying Equation (5) to 327

eij =
xiW

Q
(
xjW

K + aKij

)>
√
dz

. (6) 328

Different from (Shaw et al., 2018), we redefine the 329

relation representations aij . 330

We assume that the depth information is less 331

useful when it is too deep. We define the maximum 332

s as a constant k: 333

aKij = wK
clip(s(i,j),k),

clip(x,m) = min(m,x),
(7) 334

where s(i, j) is defined as follows: 335

s(i, j) =

{
dep(i), father(i) = father(j),
0, otherwise,

(8) 336

where dep(i) is the depth of node i in a tree, 337

father(i) means the father of node i. 338

Figure 4 shows an example we chose in GEO 339

dataset for demonstration. 340

We replace the original self-attention architec- 341

ture of transformer encoder with our structure- 342

aware self-attention. The encoder is bidirectional, 343

so we add the subsequent mask (originally applied 344

in the transformer decoder) to it to specify it as 345

a language model. The subsequent mask creates 346

a diagonal matrix where the elements above the 347

diagonal will be modified to zero and the elements 348

below the diagonal will be set to whatever the input 349

tensor is. Therefore, the prediction for position i 350

will depend only on the known outputs at positions 351

less than i. 352
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𝒚𝟎
∗ , 𝒚𝟏

∗ , … , 𝒚𝒏
∗

Encoder Decoder

Structure-

aware  LM

LPAR + LKD

𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎

𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏

𝒚𝟏
𝑺 , 𝒚𝟐

𝑺 , … , 𝒚𝒏
𝑺

Figure 2: An overview of the proposed model’s architecture.

Embedding

Structure-aware
Self-attention

Feed-
forward

linear

Positional
Encoding

+

inputs

Outputs

Figure 3: An overview of structure-aware language
model’s architecture.

The generation of the language model is deter-353

mined by:354

PLM(yt) = p(yt | y<t). (9)355

In our experiments, the language model is356

trained based on λ-calculus expressions and python357

codes appeared in the training sets of the ATIS,358

GEO, Django and CoNaLa datasets respectively.359

The training objective of the language model is to360

minimize the cross-entropy with target expressions:361

362

LLM = −
N∑
i=1

|V |∑
k=1

1{yt = k} logPLM (yt = k) ,

(10) 363

where N is the length of the target sequence, LLM 364

denote the training objective functions for the lan- 365

guage model, PLM is computed by Equation (9) 366

respectively. 367

Given a sequence of preprocessed logic form 368

indexes y∗ = {y∗0, . . . , y∗n−1} obtained from a la- 369

beled logical form (y∗0 is the start symbol, y∗n is the 370

end symbol), the language model produce likeli- 371

hoods of the target distribution as soft labels, i.e., 372

it generates yS = {yS1 , . . . , ySn}. 373

4.3 Training 374

In the training process, we need to combine the loss 375

from the seq2seq model, LPAR, and the loss from 376

knowledge distillation, LKD. 377

In specific, to make the seq2seq model learn 378

the knowledge from the language model, we put 379

target sequences into the language model to get 380

estimated probabilities, then we minimize the 381

Kullback-Leibler (KL) divergence between output 382

of the language model and output of the decoder. 383

The loss from knowledge distillation is: 384

LKD = −
T∑
i=t

|V |∑
k=1

KL
(
PPAR(yt = k)PLM(yt = k)

)
(11) 385

where PLM denotes the output of the language 386

model computed by by Equation (9) and the func- 387

tion KL computes the KL divergence. 388

At last, the loss for the entire model is the com- 389
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lambda $0 e

and

from $0 ci0 to $0 ci1

(a)

lambda $0 e and from $0 ci0 to $0 ci1

1 1 1 2 3 3 3 3 3 3

(b)

lambda $0 e and from $0 ci0 to $0 ci1

lambda 1 1 1 0 0 0 0 0 0 0

$0 1 1 1 0 0 0 0 0 0 0

e 1 1 1 0 0 0 0 0 0 0

and 0 0 0 2 0 0 0 0 0 0

from 0 0 0 0 3 3 3 0 0 0

$0 0 0 0 0 3 3 3 0 0 0

ci0 0 0 0 0 3 3 3 0 0 0

to 0 0 0 0 0 0 0 3 3 3

$0 0 0 0 0 0 0 0 3 3 3

ci1 0 0 0 0 0 0 0 3 3 3

(c)

Figure 4: (a): An example of
the tree structure of logical form
( lambda $0 e ( and ( from $0 ci0 ) ( to $0 ci1 ) ) ).
(b): depth of (a). (c): the structure of (a), which is the
input of the structure-aware self-attention.

bination:390

L = ηLPAR + (1− η)LKD (12)391

where η is a coefficient between 0 and 1.392

5 Experiments393

In this section, we evaluate our approach on ATIS,394

GEO, Django and CoNaLa datasets and compare it395

with other approaches. We also conduct an ablation396

study to explore the effectiveness of the proposed397

structure-aware language model.398

We first specify details of our implementation399

including the datasets, the hyperparameters, hard-400

ware, and software for training and testing net-401

works. Then we present the experimental results,402

which show that our model achieves new state-of-403

the-art performance among various neural semantic404

parsers on all four datasets.405

5.1 Datasets 406

We evaluate our approach on four semantic parsing 407

and code generation benchmarks: 408

ATIS contains natural language questions of a 409

flight dataset paired with a lambda calculus query. 410

We follow the standard train-dev-test split of the 411

datasets in (Zettlemoyer and Collins, 2007), which 412

is 4434/491/448. 413

GEO contains natural language questions about 414

US geography paired with Prolog database queries. 415

We use the corresponding λ-calculus expressions 416

with the same meaning as in (Kwiatkowski et al., 417

2011). We follow the standard train-dev-test split 418

of the datasets in (Zettlemoyer and Collins, 2005), 419

which is 600/0/280. 420

Django contains lines of Python source code 421

extracted from the Django framework paried with 422

an NL description. We follow the standard train- 423

dev-test split of the datasets in (Oda et al., 2015) , 424

which is 16000/1000/1805. 425

CoNaLa contains mannully annotated NL ques- 426

tions paired with python solution on STACKOVER- 427

FLOW. We follow the standard train-dev-test split 428

of the datasets in (Yin et al., 2018), which is 429

2379/0/500. 430

Model ATIS GEO

ZC07(Zettlemoyer and Collins, 2007) 84.6 86.1
FUBL(Kwiatkowski et al., 2011) 82.8 88.6
KCAZ13(Kwiatkowski et al., 2013) - 89.0

Neural network models

Seq2Seq(Dong and Lapata, 2016) 84.2 84.6
Seq2Tree(Dong and Lapata, 2016) 84.6 87.1
JL16(Jia and Liang, 2016) 83.3 89.3
TranX(Yin and Neubig, 2018) 86.2 88.2
Coarse2fine(Dong and Lapata, 2018) 87.7 88.2
Seq2Act(Chen et al., 2018) 87.7 88.2
Graph2Seq(Xu et al., 2018) 85.5 88.9
AdaNSP (Zhang et al., 2019) 88.6 88.9
GNN(Shaw et al., 2019) 87.1 89.3
TreeGen(Sun et al., 2020) 89.1 89.6
PASCAL+CA(Xie et al., 2021) 90.2 90.7

Ours

Baseline 88.6 88.9
+ SLM KD fusion 90.4 91.1
- structure-aware 88.8 89.3

Table 1: Results on ATIS and GEO datasets

5.2 Implementation Details 431

We use AdaNSP(Zhang et al., 2019), a competi- 432

tive seq2seq semantic parsing model built on Al- 433

lenNLP(Wallace et al., 2019), as our base model for 434
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Model Django

TranX(Yin and Neubig, 2018) 73.7
Coarse2fine(Dong and Lapata, 2018) 74.1
TranX2 (Yin and Neubig, 2019) 77.3±0.4
TranX2+BERT 79.7±0.42
TAE (Norouzi et al., 2021) 81.03±0.14
Ours

Baseline 81.03
+ SLM KD fusion 81.83
- structure-aware 81.16

Table 2: Results on Django dataset

Model CoNaLa

TranX(Yin and Neubig, 2018) 24.3
EK (Xu et al., 2020) 27.20
EK+100k (Xu et al., 2020) 28.14
EK+100K+API (Xu et al., 2020) 32.26
TAE (Norouzi et al., 2021) 32.57±0.3
Ours

Baseline 32.57
+ SLM KD fusion 33.10
- structure-aware 32.62

Table 3: Results on CoNaLa dataset

two semantic parsing tasks. The model uses adap-435

tive decoding method that guide the decoder by436

model uncertainty and automatically uses deeper437

computations when necessary. The AdaNSP model438

is not the state-of-the-art model now, but it is based439

on seq2seq architecture and open-sourced so it is440

easy to implement our method. We adapt the same441

hypeparameters as in (Zhang et al., 2019). We use442

TAE (Norouzi et al., 2021), a seq2seq code genera-443

tion model as our base model for two code genera-444

tion tasks. The model exploit a relatively sizeable445

monolingual corpus of the target programming lan-446

guage to a transformer-based seq2seq model and447

reach a superior performance.448

We trained our model with the hyperparameters449

listed in Table 5, which was chosen based on the450

performance of the model on the validation set for451

ATIS, Django and on the randomly selected train-452

ing set for GEO, CoNaLa, where the validation453

set is not provided. For structures of the language454

model, we set the number of layers 3, positional455

feed forward dimensions 512, and attention heads456

8.We trained the parsing model with the original457

settings of the baseline system. We trained the lan-458

guage model for 100 epochs respectively, and the459

entire model for 200 epochs on an Nvidia GeForce460

RTX 3090 GPU, which takes around 5 hours. Ta-461

ble 4 summarizes numbers of parameters on four462

Datasets Numbers of parameters(M)

ATIS 6.68
GEO 6.62

Django 9.52
CoNaLa 9.52

Table 4: Numbers of parameters of the SLM for each
datasets.

HYperparameter Value

learning rate 0.0005
batch size 256
dropout 0.1
η 0.8
k 10

Table 5: Hyperparameters.

datasets for our model. 463

5.3 Evaluation 464

We use logical form accuracy as the evaluation 465

metric for ATIS and GEO datasets, which is com- 466

puted with pared trees of the predictions and gold 467

logical forms. The order of the children can be 468

changed within conjunction nodes. We use STree 469

parser code from (Dong and Lapata, 2018) to parse 470

the target lambda expressions and predictions into 471

bracket trees and compare them. We use exact 472

match accuracy as the evaluation metric for Django 473

dataset and corpus-level BLEU for CoNaLa. We 474

report the max results across 5 random seeds. 475

5.4 Results 476

We compare our method with state-of-the-art se- 477

mantic parsers on ATIS, GEO, Django and CoNaLa 478

datasets. Table 1- 3 show the results of our model 479

and existing semantic parsers on four datasets. Our 480

model achieves the state-of-the-art performance on 481

four datasets. 482

We also performed an ablation study by remov- 483

ing the proposed structure-aware self-attention. In 484

specific, we use an original transformer encoder as 485

the language model and integrate it into the parsing 486

model by knowledge distillation. The results show 487

that the model using the structure-aware language 488

model outperforms the one using only original lan- 489

guage model. 490
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6 Conclusion491

In this paper, we present a structure-aware self-492

attention language model to capture structural in-493

formation of target representations and propose a494

knowledge distillation based approach to incorpo-495

rating the target language model into a seq2seq496

model. We show that using knowledge distilla-497

tion from a target language model provides a flex-498

ible and scalable way for neural semantic parsers499

to leverage structural features of target represen-500

tations. Our method achieves strong results and501

doesn’t need any manually designed rules, sketches502

or extra corpus.503

For future direction, we are interested in explor-504

ing other datasets to verify the model’s ability for505

structural data. We will also attempt to integrate506

grammar rules to this model to have a better perfor-507

mance on semantic parsing tasks.508
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