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Abstract

Deep neural networks (DNNs) have shown to perform very well on large scale
object recognition problems and lead to widespread use for real-world applications,
including situations where DNN are implemented as “black boxes”. A promising
approach to secure their use is to accept decisions that are likely to be correct while
discarding the others. In this work, we propose DOCTOR, a simple method that
aims to identify whether the prediction of a DNN classifier should (or should not)
be trusted so that, consequently, it would be possible to accept it or to reject it. Two
scenarios are investigated: Totally Black Box (TBB) where only the soft-predictions
are available and Partially Black Box (PBB) where gradient-propagation to perform
input pre-processing is allowed. Empirically, we show that DOCTOR outperforms
all state-of-the-art methods on various well-known images and sentiment analysis
datasets. In particular, we observe a reduction of up to 4% of the false rejection
rate (FRR) in the PBB scenario. DOCTOR can be applied to any pre-trained model,
it does not require prior information about the underlying dataset and is as simple
as the simplest available methods in the literature.

1 Introduction

With the advancement of state-of-the-art Deep Neural Networks (DNNs), there has been rapid
adoption of these technologies in a broad range of applications to critical systems, such as autonomous
driving vehicles or industrial robots, including–but not limited to–classification and decision making
tasks. Nevertheless, these solutions still exhibit unwanted behaviors as they tend to be overconfident
even in presence of wrong decisions [17]. Developing methods and tools to make these algorithms
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reliable, in particular for non-specialists who may treat them as “black boxes” with no further checks,
constitutes a core challenge. Recently, the study of safety AI methods has gained ground, and many
efforts have been made in several areas [7, 8, 9, 11, 26, 35, 36]. In this paper, we investigate a simple
method capable of detecting whether a prediction of a classifier is likely to be correct, and therefore
should be trusted, or it is not, and should be rejected.

Deep learning pursues the idea of learning effective representations from the data itself by training
with the implicit assumption that the test data distribution should be similar to the training data
distribution. However, when applied to real-world tasks, this assumption does not hold true, leading to
a significant increase of misclassification errors. Although classic approaches to Out-Of-Distribution
(OOD) detection [1, 12, 21, 23, 33] are not directly concerned with detecting misclassification
errors, they are intended to prevent those errors indirectly by identifying potential drifts of the
testing distribution. What the above ODD methods have in common with our work is that samples
drawn from the in-distribution are more likely to be correctly classified than those from a different
distribution. Indeed, the model’s soft-predictions for in-distribution samples tend to be generally
peaky in correspondence to the correct class label while they tend to be less peaky for input samples
drawn from a different distribution [12]. In general, most of these works consider white-box scenarios,
where the hidden layers of the architecture are accessible or the corresponding weights are tuned
during the training phase. A very effective approach to OOD detection is ODIN [23] which involves
the use of temperature scaling and the addition of small perturbations to input samples. A related
solution is introduced in [6] where the maximum soft-probability is called softmax response. Within
this approach, the softmax response decides whether the classifier is confident enough in its prediction
or not. A different approach to OOD detection is given by the use of the Mahalanobis distance [14, 22],
which consists in calculating how much the observed out-distribution sample deviate from the in-
distribution ones but assuming the latter are given.

1.1 Summary of contributions

Our work tackles the problem of identifying whether the prediction of a classifier should or should
not be trusted, no matter if they are made on out or in-distribution samples, and advances the
state-of-the-art in multiple ways.

• From the theoretical point of view, we derive the trade-off between two types of error
probabilities: Type-I, that refers to the rejection of the classification for an input that would
be correctly classified, and Type-II, that refers to the acceptance of the classification for an
input that would not be correctly classified (Proposition 3.1). The characterization of the
optimal discriminator in eq. (10) allows us to devise a feasible implementation of it, based
on the softmax probability (Proposition 3.2).

• From the algorithmic point of view, inspired by our theoretical analysis, we propose DOCTOR
a new discriminator (Definition 2), which yields a simple and flexible framework to detect
whether a decision made by a model is likely to be correct or not. We distinguish two
scenarios under which DOCTOR can be deployed: Totally Black Box (TBB) where only the
soft-predictions are available, hence gradient-propagation to perform input pre-processing is
not allowed, and Partially Black Box (PBB) where we further allow method-specific inputs
perturbations.

• From the experimental point of view, we show that DOCTOR outperforms comparable state-
of-the-art methods (e.g., ODIN [23], softmax response [6] and Mahalanobis distance [22])
on datasets including both in-distribution and out-of-distribution samples, and different
architectures with various expressibilities, under both TBB and PBB. A key ingredient of
DOCTOR is to fully exploit all available information contained in the soft-probabilities of
the predictions (not only their maximum).

1.2 Related works

Recent works have shown that the accuracy of a classifier and its ability to output soft-predictions
that represent the true posteriors estimate can be totally disjointed [9, 19, 20]. Furthermore, models
often tend to be overconfident about their decision even when their predictions fail [11, 17]. This
motivates a novel research area that strives to develop methods to assess when decisions made by
classifiers should or should not be trusted. Although the detection of OOD samples is a different
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(domain) problem, it is naturally expected that samples from a distribution that is significantly
different from the training one cannot be correctly classified. In [23], the authors propose a method
which increases the peakiness of the softmax output by perturbing the input samples and applying
temperature scaling [9, 13, 29] to the classifier logits in order to better detect in-distribution samples.
It is worth noticing that this method requires additional information on the internal structure of the
latent code of the model. A very different approach [14, 22] tackles OOD detection by using the
Mahalanobis distance. Although this approach appears to be more powerful, it also requires additional
samples to learn the mean by class and the covariance matrix of the in-distribution. In [4], classifiers
are trained to output calibrated confidence estimates that are used to perform OOD detection. A
related line of research is concerned with the problem of selective predictions (aka reject options)
in deep neural networks. The main motivation for selective prediction is reducing the error rate by
abstaining from prediction when in doubt, while keeping the number of correctly classified samples
as high as possible [5, 6, 7]. The idea is to combine classifiers with rejection functions by observing
the classifiers’ output, without using any supervision, to decide whether to accept or to reject the
classification outcome. In [6], the authors introduce softmax response, a rejection function which
compares the maximum soft-probability to a pre-determined threshold to decide whether to accept or
reject the class prediction given by the model.

2 Main Definitions and Preliminaries

2.1 Basic definitions

We start by introducing some definitions and background; then, we describe our statistical model
and some useful properties about the underlying detection problem. Let X ⊆ Rd be the (possibly
continuous) feature space and let Y = {1, . . . , C} denote the concept of the label space related to
some task of interest. Moreover, let pXY be the underlying (unknown) probability density function
(pdf) over X × Y . Let Dn =

{
(x1, y1), . . . , (xn, yn)

}
∼ pXY be a random realization of n i.i.d.

samples according to pXY denoting the training set, where xi ∈ X is the input (feature), yi ∈ Y
is the output class among C possible classes and n denotes the size of the training set. A predictor
fDn : X → Y uses the inferred model PŶ |X ≡ PŶ |X(y|x;Dn) based on the training set,

fDn(x) ≡ fn(x;Dn) =∆ arg max
y∈Y

PŶ |X(y|x;Dn),

and tries to approximate the optimal (Bayes) decision rule f?(x) =∆ arg max
y∈Y

PY |X(y|x). Notice

that PŶ |X can be interpreted as the prediction of the class (label) posterior probability given a sample
(e.g., PŶ |X(y |x) ≡ softmax(x)y), while PY |X is the true (unknown) probability. In several practical
scenarios PŶ |X does not perfectly match PY |X and still fDn ≈ f? (cf. [9]).

2.2 Error variable

Let E(x) =∆ 1 [Y 6= fDn(x)] denote the error variable for a given x ∈ X corresponding to fDn , i.e.,
where we denote with 1[E ] the indicator vector which outputs 1 if the event E is true and 0 otherwise.
Similarly, we can define the self-error variable Ê(x) =∆ 1

[
Ŷ 6= fDn(x)

]
also corresponding to the

inferred predictor fDn but based on the prediction model PŶ |X of the class posterior probability.

Notice that Ê(x) is observable since the underlying distribution is known. However, E(x) cannot be
observed and in general these binary variables do not coincide.

At this stage, it is convenient to introduce the notions of probability of classification error for a given
x ∈ X w.r.t. both the true class posterior and the predicted probabilities:

Pe(x) =∆ E [E(x)|x] = 1− PY |X (fDn(x)|x) , (1)

P̂e(x) =∆ E
[
Ê(x)|x

]
= 1− PŶ |X (fDn(x)|x) . (2)

Notice that P̂e(x) represents the probability of misclassification of the sample x with respect to
the softmax probability PŶ |X , which can be interpreted as the model’s approximation of nature
PY |X . Such approximation is close when the model is well-calibrated. Obviously, Pe?(x) ≤
Pe(x) for all x ∈ X , where Pe?(x) corresponds to the minimum error of the Bayes classifier:
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Pe?(x) = 1− PY |X (f?(x)|x). It is worth mentioning that, by averaging (1) over the data distribu-
tion, we obtain the error rate of the classifier fDn . Although P̂e(x) provides a valuable candidate to
infer the unknown error variable E(x), it is easy to check that

max
{

Pe(x), P̂e(x)
}
− Pr

(
Ŷ = Y |x

)
≤ Pr

{
Ê(x) 6= E(x)|x

}
≤ Pr

(
Ŷ 6= Y |x

)
, (3)

which in particular implies that the error incurred in using Ê(x) to predict E(x) is lower bounded by
the classification error per sample (1). The proofs are in Supplementary material (Appendix A.3).

In this paper, we aim at identifying a discriminator capable of distinguishing between inputs x for
which we can trust the predictions of the classifier fDn(x) (i.e., E(x) = 0) and those for which we
should not trust predictions (i.e., E(x) = 1). In the next section, we will show that the function
Pe(x) : X 7→ [0, 1] plays a central role in the characterization of the optimal discriminator. However,
Pe(x) is not available in practical scenarios and the direct estimation (e.g., based on pairs of inputs and
labels) of the true class posterior probability PY |X cannot be performed. Notice that it is not possible
to sample the conditional pdf PY |X for each input x ∈ X . As a matter of fact, it is well-known that
the application of direct methods for this estimation will lead to ill-posed problems, as shown in [32].

2.3 Statistical model for detection

Given a data sample x ∈ X and an unobserved random label y ∈ Y drawn from the unknown
distribution pXY , we wish to predict the realization of the unobserved error variable E =∆ 1[Y 6=
fDn(X)]. To this end, we will model the data distribution as a mixture pdfs,

pXY (x, y) ≡ PE(1)pXY |E(x, y|1) + PE(0)pXY |E(x, y|0),

where pXY |E(x, y|1) denotes the pdf truncated to the error event {E = 1} (i.e., the hard decision
fails) and pXY |E(x, y|0) is the pdf truncated to the success event {E = 0} (i.e., the hard decision
succeeds). By taking the marginal of pXY over the labels, we obtain: pX(x) = PE(1)pX|E(x|1) +
PE(0)pX|E(x|0). First, observe that the problem at hand is to infer E from (x, PŶ |X) since Y is
not observed. Second, we further emphasize that in the present framework we assume that there
are no available (extra) samples for training a discriminator to distinguish between pX|E(x|0) and
pX|E(x|1). It is worth mentioning that a well-trained classifier would imply PE(1)� PE(0), since
in that case we should have very few classification errors. However, this also implies that it would be
very unlikely to have enough samples available to train a good enough discriminator.

3 Performance Metrics and Discriminators

3.1 Performance metrics and optimal discriminator

We aim to distinguish between samples for which the predictions cannot be trusted and samples for
which predictions should be trusted. We first state the optimal rejection region, given by (4), where
we suppose the existence of an oracle who knows all the involved probability distributions.
Definition 1 (Most powerful discriminator). For any 0 < γ <∞, define the decision region:

A(γ) =∆
{
x ∈ X : pX|E(x|1) > γ · pX|E(x|0)

}
. (4)

The most powerful (Oracle) discriminator at threshold γ is defined by setting D(x, γ) = 1 for all
x ∈ A(γ) for which the prediction is rejected (i.e., Ê = 1) and otherwise D(x, γ) = 0 for all
x /∈ A(γ) for which the prediction is accepted.

In Proposition 3.1, we establish the characterization of the fundamental performance of the most
powerful (Oracle) discriminator by providing a lower bound on the error achieved by any discriminator
and show that this bound is achievable by setting γ = 1. Furthermore, we connect this result to the
Bayesian error rate of this optimal discriminator.
Proposition 3.1 (Performance of the discriminator). For any given decision region A ⊂ X , let

ε0(A) =∆
∫
A
pX|E(x|0)dx, and ε1(Ac) =∆

∫
Ac
pX|E(x|1)dx , (5)
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be the Type-I (rejection of the class prediction of an input x that would be correctly classified) and
Type-II (acceptance of the class prediction of an input x that would not be correctly classified) error
probability, respectively. Then,

ε0(A) + ε1(Ac) ≥ 1−
∥∥pX|E=1 − pX|E=0

∥∥
TV

(6)

= 1− 1

2

∫
X
|pX|E=1(x)− pX|E=0(x)|dx. (7)

Equality is achieved by choosing the optimal decision region A? ≡ A(1) in Definition 1. If the
hypotheses are equally distributed, the minimum Bayesian error satisfies:

2 Pr {D(X) 6= E(X)} ≥ 1−
∥∥pX|E=1 − pX|E=0

∥∥
TV

. (8)
Equality is achieved by using the optimal decision region.

Expressions (7) and (8) provide lower bounds for the total error of an arbitrary discriminator. The
proof of this proposition is relegated to the Supplementary material (Appendix A.1). Using Bayes we
can rewrite (4) via the posteriors as:

A(γ) =
{
x ∈ X : PE|X(1|x)PE(0) > γ ·

(
1− PE|X(1|x)

)
PE(1)

}
. (9)

From (9), it is easy to check that PE|X(1|x) = 1 − PY |X (fDn(x)|x) = Pe(x), and hence, the
decision region A(γ) can be reformulated as:

A(γ′) =

{
x ∈ X :

Pe(x)

1− Pe(x)
> γ′

}
=

{
x ∈ X : Pe(x) >

γ′

(γ′ + 1)

}
, (10)

where γ′ =∆ γ · PE(1)
PE(0) and 0 < γ′ < ∞. According to (10) and Proposition (3.1), the optimal

discriminator is given by D?(x, γ′) = 1, whenever x ∈ A(γ′), and D?(x, γ′) = 0, otherwise. The
main difficulty arises here since the error probability function of an input: x 7→ Pe(x) is not known
and in general cannot be learned from training samples.

3.2 DOCTOR discriminator

We start by deriving an approximation to the unknown function x 7→ Pe(x) which can be used to
devise the decision region in expression (10). First, we state the following:
Proposition 3.2. Let ĝ(x) be defined by

1− ĝ(x) =∆
∑
y∈Y

PŶ |X(y|x) Pr
(
Ŷ 6= y|x

)
= 1−

∑
y∈Y

P 2
Ŷ |X(y|x), (11)

for each x ∈ X , which indicates the probability of incorrectly classifying a feature x if it was
randomly labeled according to the model distribution PŶ |X trained based on the dataset. Then,

(1−
√

ĝ(x))−∆(x) ≤ Pe(x) ≤ (1− ĝ(x)) + ∆(x), (12)

where ∆(x) =∆ 2
√

2 KL
(
PY |X(·|x)‖PŶ |X(·|x)

)
and denotes the Kullback–Leibler (KL) divergence

(further details are provided in Supplementary material Appendix A.2).

3.3 Discussion

It is worth emphasizing that expressions in (12) provide bounds to the unknown function x 7→ Pe(x)
using a known statistics x 7→ 1− ĝ(x), which is based on the soft-probability of the predictor. On
the other hand, 0 ≤ ĝ(x) ≤

√
ĝ(x) ≤ 1, for all x ∈ X , which simply follows using the subadditive

of the function t 7→
√
t and the definition of ĝ(x). By Markov’s inequality,

Pr
(
∆(X) ≥ ε(η)

)
≤ η with ε(η) = 2

√
2EXY

[
− logPŶ |X(Y |X)

]
/η, (13)

for any η > 0, where EXY

[
− logPŶ |X(Y |X)

]
in (13) is the cross-entropy risk. The latter is

expected to be small provided that the model generalizes well. Thus, ε(η) can be expected to be
small for a desired confidence η > 0. Interestingly, (11) turns out to be related to the uncertainty of
the classifier via the quadratic Rényi entropy [31]: − log2

(
ĝ(x)

)
= 2H2(Ŷ |x) ≤ 2H(Ŷ |x), where

the latter is the Shannon entropy, i.e., the self-uncertainty of the classifier.
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3.4 From the theory to a practical discriminator

Our previous discussion suggests that P̂e(x) in (2) may be a valuable candidate to approximate Pe(x)
in the definition of the optimal discriminator (10). On the other hand, Proposition 3.2 suggests that
1 − ĝ(x) can also be a valuable candidate yielding another discriminator. These discriminators,
referred to as DOCTOR, are introduced below.
Definition 2 (DOCTOR). For any 0 < γ <∞ and x ∈ X , define the following discriminators:

Dα(x, γ) =∆ 1 [1− ĝ(x) > γ · ĝ(x)] , Dβ(x, γ) =∆ 1
[
P̂e(x) > γ · (1− P̂e(x))

]
. (14)

Notice that because of Definition 2 and (11), Dα(x, γ) = 1[1 −
∑
y∈Y softmax2(x)y >

γ ·
∑
y∈Y softmax2(x)y]; similarly because of Definition 2 and eq. (2), Dβ(x, γ) = 1[1 −

maxy∈Y softmax(x)y > γ ·maxy∈Y softmax(x)y]. The performance of these discriminators will
be investigated and compared to state-of-the-art methods in the next section. In the supplementary
material (Appendix B), we illustrate how DOCTOR and the optimal discriminator (Definition 1) work
on a synthetic data model that is a mixture of two spherical Gaussians with one component per class.

4 Experimental Results

In this section we present a collection of experimental results to investigate the effectiveness of
DOCTOR, by applying it to several benchmark datasets. We provide publicly available code1 to
reproduce our results, and we give further details on the environment, the parameter setting and the
experimental setup in the Supplementary material (Appendix C). We propose a comparison with
state-of-the-art methods using similar information. Though we are not concerned with the OOD
detection problem, we are confident it is appropriate to compare DOCTOR to methods which use
soft-probabilities or at most the output of the latent code, e.g., ODIN [23], softmax response (SR) [6]
and Mahalanobis distance (MHLNB) [22]. Since we are focusing on misclassification detection, it is
expected that OOD samples should be also detected as classification errors.

Totally Black Box (TBB) and Partially Black Box (PBB). We address two different scenarios with
respect to the available information about the network. In the TBB only the output of the last layer of
the network is available, hence gradient-propagation to perform input pre-processing is not allowed.
In the PBB we allow method-specific inputs perturbations. When considering DOCTOR in PBB, for
each testing sample x, we calculate the pre-processed sample x̃ by adding a small perturbation:

x̃α = x− ε× sign
[
−∇x log

(
1− ĝ(x)

ĝ(x)

)]
, and x̃β = x− ε× sign

[
−∇x log

(
P̂e(x)

1− P̂e(x)

)]
.

We will write directly x̃ when it is clear from the context which input pre-processing we are referring
to. In Supplementary material (Appendix C.2) we further analyze the equations above. When ODIN
or MHLNB are used, we pre-process the inputs as in [23] and in [22], respectively.

4.1 Review of related methods

PBB. We compare DOCTOR (using input pre-processing and temperature scaling) with ODIN and
MHLNB. ODIN [23] comprises temperature scaling and input pre-processing via perturbation.
Temperature scaling is applied to its scoring function, which has fi(x̃) for the logit of the i-th class.
Formally, given an input sample x:

SODIN(x̃) = max
i=[1:C]

exp(fi(x̃)/T )∑C
j=1 exp(fj(x̃)/T )

, ODIN(x̃; δ, T, ε) =

{
out, if SODIN(x̃) ≤ δ
in, if SODIN(x̃) > δ,

where x̃ represents a magnitude ε perturbation of the original x; T is the temperature scaling
parameter; δ ∈ [0, 1] is the threshold value; in indicates the acceptance decision while out indicates
the rejection decision. Notice, however, γ in DOCTOR and δ in ODIN, respectively, are defined over
two different domains: if δ denotes a probability, γ is a ratio between probabilities. Although ODIN

1https://github.com/doctor-public-submission/DOCTOR/
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originally required tuning the hyper-parameter T with out-of-distribution data, it was also shown that
a large value for T is generally desirable, suggesting that this gain is achieved at 1000. Anyway, in
this framework, we notice an improvement of ODIN in performance for low values of T . Thus we
report the best results obtained by ODIN considering the range of hyper-parameters values tested also
for DOCTOR (cf. section 4.3). ENERGY [24] comprises the denominator of the softmax activation:

ES(x) = −T · log

C∑
j=1

exp(fj(x)/T ), ENERGY(x; ξ, T ) =

{
out, if − ES(x) ≤ ξ
in, if − ES(x) > ξ,

where ξ ∈ R is the threshold value. Unlike all the methods considered in this paper, MHLNB [22]
requires the knowledge of the training set Dn which the pre-trained network was trained on to
compute its empirical class mean µ̂c for each class c and its empirical covariance Σ̂:

µ̂c =
1

nc

∑
i: yi=c

f(x̃i); Σ̂ =
1

n

∑
c∈Y

∑
∀i: yi=c

(f(x̃i)− µ̂c)(f(x̃i)− µ̂c)>,

where nc denotes the number of training samples with label c and f(x̃) the logits vector. As MHLNB
directly uses the vector of logits, it does not comprise temperature scaling. Given an input sample x:

M(x̃) = max
c∈Y

− (f(x̃)− µ̂c)>Σ̂−1(f(x̃)− µ̂c), MHLNB(x̃; ζ, ε) =

{
out, if M(x̃) > ζ

in, if M(x̃) ≤ ζ,

as mentioned above, x̃ represents a magnitude ε perturbation of the original x; ζ ∈ R+ is the
threshold value; in indicates the acceptance decision while out indicates the rejection decision.

TBB. We compare DOCTOR (without input pre-processing and temperature scaling) with MHLNB
(without input pre-processing and with the softmax output layer in place of the logits) and SR.
Although both DOCTOR and SR have access to the softmax output of the predictor, a fundamental
difference is that, while the former utilizes the softmax output in its entirety, the latter only uses the
maximum value, therefore discarding potentially useful information. As it will be shown, this leads
to better results for DOCTOR on several datasets (see table 1). We emphasize that, by setting T = 1
and ε = 0, ODIN reduces to softmax response [6] since SR(x) ≡ SODIN(x).

4.2 Detection of misclassification errors, experimental setup and evaluation metrics

Before digging into the detailed discussion of our numerical results, we present an empirical analysis
of the behavior of DOCTOR, ODIN, SR and MHLNB when faced with the task of choosing whether
to accept or reject the prediction of a given classifier for a certain sample. In Figure 1, we propose a
graphical interpretation of the discrimination performance, considering the labeled samples in the
dataset TinyImageNet and the ResNet network as the classifier. We separate correctly and incorrectly
classified samples according to their true labels in blue and in red, respectively. We remind that the
label information is not necessary for the discriminators to define acceptance and rejection regions.
Then, for each sample we compute the corresponding discriminators’ output. These values are binned
and reported on the horizontal axis of Figure 1a and Figure 1b for Dα, Figure 1c and Figure 1d for
Dβ , Figure 1e for SR, Figure 1f for ODIN, Figure 1g and Figure 1h for MHLNB. In each each plot,
and according to the corresponding discriminator, the bins’ heights represent the frequency of the
samples whose value falls within that bin. The intuition is that, if moving along the horizontal axis
it is possible to pick a threshold value such that, w.r.t. this value, blue bars are on one side of the
plot and red bars on the other, this threshold would correspond to the optimal discriminator, i.e. the
discriminator that chooses the optimal acceptance and rejection regions.

In Figure 1g through Figure 1h, we observe that, for MHLNB, no matter how well we choose
the threshold value, it is hard to fully separate red and blue bars both in TBB and PBB, i.e. the
discriminator fails at defining acceptance and rejection regions so that all the hits can be assigned
to the first one and all the mis-classification to the second one. The samples distribution for SR
and ODIN in Figure 1e and Figure 1f, respectively, does not look significantly different from the
one related to Dα and Dβ in TBB (Equation (14)). However, the discrimination between samples
becomes evident in PBB. This is shown in Figure 1d for Dβ (eq. (14)) and even more in Figure 1b
for Dα (eq. (14)) where, quite clearly, rightly classified samples are clustered on the left-end side
of the plot and incorrectly classified samples tend to cluster on the right-end side. This intuition is
supported by the results in Table 1.
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(a) Dα - TBB (b) Dα - PBB (c) Dβ - TBB (d) Dβ - PBB

(e) SR - TBB (f) ODIN - PBB (g) MHLNB - TBB (h) MHLNB - PBB

Figure 1: DOCTOR, ODIN, SR and MHLNB to split data samples in TinyImageNet both under TBB
and PBB: (a) - (b) show the results for expressions (2); (c) - (d) show the results for (11); (e) shows
the results for SR; (f) shows the results for ODIN; (g) - (h) show the results for MHLNB. Histograms
for wrongly classified samples (red) and correctly classified samples (blue).

Datasets and pre-trained networks. We run experiments on both image and textual datasets. We
use CIFAR10 and CIFAR100 [18], TinyImageNet [16] and SVHN [27] as image datasets; IMDb [25],
AmazonFashion and AmazonSoftware [28] as textual datasets. Note that, for all the aforementioned
datasets, we consider only the test set since we rely on pre-trained models. Along the same lines
of [23], we use the pre-trained DenseNet models [15] for CIFAR10, CIFAR100 and SVHN. In
addition, we use a pre-trained ResNet model [10] for TinyImageNet, and BERT [3, 34] for the
Amazon datasets and IMDb. The accuracy achieved by the aforementioned networks on the test sets
is showed in Table 1. According to the invariant properties of the discriminator (see Def. 2) with
respect to the soft-probability of the underlying model, permutations of the posterior probabilities
vector, due different initialization of the models before the training, do not change the output of
Eq. (10), as it is a sum of squared values of the softmax probabilities. This variety of models/datasets
characterizes the performance of the proposed method in scenarios with different accuracy levels.

Evaluation metrics. We will evaluate the performance according to Proposition (3.1) via the
empirical estimates of Type-I and Type-II errors in expressions (5). Throughout this section, when
the model’s decision for a sample is correct (hit) but is rejected by the discriminator, we refer to such
event as false rejection; when the model’s decision for a sample is not correct (miss) and is rejected
by the discriminator, we refer to such event as true rejection. Similarly, we refer to a false acceptance
when a miss is not rejected and to a true acceptance when a hit is not rejected. More specifically,
let Tm = {(x1, y1), . . . , (xm, ym)} ∼ pXY be the testing set, where xi ∈ X is the input sample,
yi ∈ {1, . . . , C} is the true class of xi, and m denotes the size of the testing set. With j ∈ {α, β}:

FRj(γ) = {(x, y) ∈ Tm : y = fDn(x), Dj(x, γ) = 1}, (15)
T Rj(γ) = {(x, y) ∈ Tm : y 6= fDn(x), Dj(x, γ) = 1}, (16)
FAj(γ) = {(x, y) ∈ Tm : y 6= fDn(x), Dj(x, γ) = 0}, (17)
T Aj(γ) = {(x, y) ∈ Tm : y = fDn(x), Dj(x, γ) = 0} . (18)

We measure the performance of the test in terms of:

• FRR versus TRR. The false rejection rate (FRR) represents the probability that a hit is
rejected, while the true rejection rate (TRR) is the probability that a miss is rejected.

• AUROC. The area under the Receiver Operating Characteristic curve (ROC) [2] depicts the
relationship between TRR and FRR. The perfect detector corresponds to a score of 100%.

• FRR at 95 % TRR. This is the probability that a hit is rejected when the TRR is at 95 %.

4.3 Experimental results: comparison between different discriminators

DOCTOR: comparison between Dα and Dβ . We compare the discriminators Dα and Dβ introduced
in (14) to show how the AUROCs for CIFAR10, CIFAR100, TinyImageNet and SVHN change when
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varying the parameters T and ε. It is observed that Dα is less sensitive to the selection of T : for all
the datasets, Dα outperforms Dβ achieving the best AUROCs by setting T = 1. Contrary to Dα,
Dβ is more sensitive to the value selected for T in the sense that small changes may result in very
different values for the measured AUROCs (cf. Appendix C.4.1). In contrast,the best results are
obtained for the same epsilon values of Dα and Dβ across all the datasets.

Comparison in TBB. We compare DOCTOR with MHLNB (without input pre-processing and with
the softmax output in place of the logits) and SR. It is worth to emphasize that Dα does not coincide
(in general) with SR since the former consists in the sum of squared values of all probabilities involved
in the softmax. To complete the comparison, we include the results for both methods in Table 1.

(a) CIFAR10 - PBB (b) CIFAR100 - PBB (c) TinyImageNet - PBB (d) SVHN - PBB

Figure 2: ROC curves. Comparison between Dα (Tα = 1 and εα = 0.00035), Dβ (Tβ = 1.5 and
εα = 0.00035), ODIN (TODIN = 1.3 and εODIN = 0), MHLNB (TMHLNB = 1 and εMHLNB = 0.0002)
and ENERGY (TENERGY = 1 and εENERGY = 0). Red dashed lines mark the 95% threshold of TRR.

Comparison in PBB. We compare DOCTOR with ODIN, MHLNB and ENERGY. We keep the same
parameter setting for all the methods. In the case of DOCTOR and ODIN where temperature scaling
is allowed, we test, for each dataset, 24 different values of ε for each of the 11 different values of T ,
see (Appendix C.4.2) for the set of ranges. In the case of MHLNB, which directly uses the logits,
we keep T = 1 and we vary ε for each dataset. In the case of ENERGY, where no perturbation
is allowed, we keep ε = 0 and we maintain T = 1 (as in [24]). According to our framework, no
validation samples are available; consequently, in order to be consistent across the datasets, we only
report the experimental settings and values for which, on average, we obtain favorable results for all
the considered domains (cf. Figure 2). In order to be fair, we update ODIN’s parameters from those
in [23] to new values which are more suitable to the task at hand (cf. plots in Appendix C.4.2).

DOCTOR’s performance compared to ODIN’s, MHLNB’s and ENERGY’s, are collected in Table 1
and in Figure 2. The results in the table show that noise further improves the performance of DOCTOR
(cf. PBB) up to 1% over our previous experiments without noise (cf. TBB) in terms of AUROC. The
improvement is even more significant in terms of FRR at 95% TRR: a 4% decrease is obtained in
terms of predictions incorrectly rejected for DOCTOR when passing from TBB to PBB. Note that
only the softmax output is available when we consider the pre-trained models for AmazonFashion,
AmazonSoftware and IMDb datasets; therefore, we cannot access any internal layer and test DOCTOR
for values of T which differ from the default value T = 1. Consequently, temperature scaling and
input pre-processing cannot be applied in these cases and thus these datasets cannot be tested in PBB.
Moreover, even in TBB, these datasets cannot be tested through MHLNB and ENERGY since the
dataset on which the network was trained is not available. We provide simulations on how the range
of interval for the different thresholds can affect the results in Appendix C.3.

Misclassification detection in presence of OOD samples. We evaluate DOCTOR’s performance in
misclassifcation detection considering a mixture of both in (DATASET-IN) and out-of-distribution
(OOD) samples (DATASET-OUT), i.e. input samples for which the decision should not be trusted. The
results are compared with ODIN. We test the two methods when one sample to reject out of five (♣),
three (♦) or two (♠) is OOD. The details of the simulations, the considered dataset, and the complete
experimental results are relegated Appendix C.4.3. In Table 2 we report an extract of the results for
the PBB scenario in terms of mean / standard deviation: DOCTOR achieves, and most of the time
outperforms ODIN’s performance. We emphasize that, even though DOCTOR is not tuned for the
OOD detection problem, it represents the best choice for deciding whether to accept or reject the
prediction of the classifier also on mixed data scenarios where the percentage of OOD samples, as
long as it is not dominant, can sensitively vary.
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Table 1: For all methods, in TBB, we set T = 1 and ε = 0; in PBB we set : εα = εβ = 0.00035,
Tα = 1, Tβ = 1.5, εODIN = 0 and TODIN = 1.3, εMHLNB = 0.0002 and TMHLNB = 1, εENERGY = 0
and TENERGY = 1. In TBB, ODIN and SR coincide (T = 1 and ε = 0).

DATASET METHOD AUROC % FRR % (95 % TRR)
TBB PBB TBB PBB

CIFAR10
Acc. 95%

Dα 94 95.2 17.9 13.9

Dβ 68.5 94.8 18.6 13.4
ODIN 93.8 94.2 18.2 18.4

SR 93.8 - 18.2 -

MHLNB 92.2 84.4 30.8 44.6

ENERGY - 91.1 - 34.7

CIFAR100
Acc. 78%

Dα 87 88.2 40.6 35.7
Dβ 84.2 87.4 40.6 36.7

ODIN 86.9 87.1 40.5 40.7

SR 86.9 - 40.5 -

MHLNB 82.6 50 66.7 94

ENERGY - 78.7 - 65.4

TINY
IMAGENET
Acc. 63%

Dα 84.9 86.1 45.8 43.3
Dβ 84.9 85.3 45.8 45.1

ODIN 84.9 84.9 45.8 45.3

SR 84.9 - 45.8 -

MHLNB 78.4 59 82.3 86

ENERGY - 78.2 - 63.7

DATASET METHOD AUROC % FRR % (95 % TRR)
TBB PBB TBB PBB

SVHN
Acc. 96%

Dα 92.3 93 38.6 36.6
Dβ 92.2 92.8 39.7 38.4

ODIN 92.3 92.3 38.6 40.7

SR 92.3 - 38.6 -

MHLNB 87.3 88 85.8 54.7

ENERGY - 88.9 - 49.4

AMAZON
FASHION
Acc. 85%

Dα 89.7 - 27.1 -

Dβ 89.7 - 26.3 -

SR 87.4 - 50.1 -

AMAZON
SOFTWARE
Acc. 73%

Dα 68.8 - 73.2 -

Dβ 68.8 - 73.2 -

SR 67.3 - 86.6 -

IMDB
Acc. 90%

Dα 84.4 - 54.2 -

Dβ 84.4 - 54.4 -

SR 83.7 - 61.7 -

Table 2: Same parameter setting as in table 1 (PBB) for Dα, Dβ , ODIN, ENERGY; as in [23] for
ODINOOD and as in [22] for MHLNBWB. Results presented in terms of mean / standard deviation.

DATASET-
IN

DATASET-
OUT

AUROC % FRR % (95 % TRR)
Dα Dβ ODIN ODINOOD ENERGY MHLNBWB Dα Dβ ODIN ODINOOD ENERGY MHLNBWB

CIFAR10
♣

ISUN 95.4 / 0.1 95.1 / 0.1 94.6 / 0.1 89.6 / 0 92.4 / 0.1 54.5 / 0.1 14 / 0.5 13.5 / 0.4 17.2 / 0.3 38.9 / 0 32.2 / 0.1 92 / 0.1

TINY (RES) 95.2 / 0.1 94.9 / 0 94.6 / 0.1 89.6 / 0 92.3 / 0.1 56.2 / 0 14 / 0.4 14 / 0.5 17.8 / 0.4 38.9 / 0 32.2 / 0.1 90.3 / 0.2

CIFAR10
♦

ISUN 95.5 / 0.1 95.3 / 0.1 94.9 / 0.1 91.5 / 0 92.9 / 0 54.5 / 0.1 14.4 / 0.6 13.4 / 0.2 16.8 / 0.5 34/ 0.1 27 / 1 92 / 0.2

TINY (RES) 95.4 / 0.1 95 / 0.1 94.8 / 0.1 91.4 / 0 92.8 / 0 56.2 / 0.1 15 / 0.1 14.8 / 0.7 17 / 0.5 34.5 / 0.9 28.8 / 1.9 90 / 0.3

CIFAR10
♠

ISUN 95.6 / 0.1 95.6 / 0 95.4 / 0 93.5 / 0 93.6 / 0.1 54.6 / 0 15.1 / 0.1 13.6 / 0.5 16.1 / 0.2 30.6 / 0.4 25.1 / 0.2 92 / 0.2

TINY (RES) 95.5 / 0.1 95.2 / 0.1 95.1 / 0.1 93.2 93.5 / 0 56.2 / 0.2 14.7 / 0.3 14.8 / 0.5 17.1 / 0.4 31/ 0 25.6 / 0.3 90.2 / 0.1

5 Summary and Concluding Remarks

We introduced a simple and effective method to detect misclassification errors, i.e., whether a
prediction of a classifier should or should not be trusted. We provided theoretical results on the
optimal statistical model for misclassification detection and we presented our empirical discriminator
DOCTOR. Experiments on real (textual and visual) datasets–including OOD samples and comparison
to state-of-the-art methods– demonstrate the effectiveness of our proposed methods. Whilst methods
for ODD frameworks do not necessarily perform well in predicting misclassification errors, our
result advances the state-of-the-art, and the main takeaway is that DOCTOR can be applied to both
partially black-box (PBB) setups and totally black-box (TBB) ones. In the latter, information about
the model’s architecture may be undisclosed for security reason when dealing with sensitive data).
DOCTOR uses all the information in the softmax output, which results in equal or better performance
with respect to the other methods: the results in PBB, where we observe a reduction up to 4% in
terms of predictions incorrectly rejected with respect to the ones in TBB are particularly promising.
Moreover, DOCTOR does not require training data and, thanks to its flexibility, it can be easily
deployed in real-world scenarios. Currently, DOCTOR does not exploit information across the layers
yet. Only the soft-predictions are used. Besides, the most important obstacle is the calibration of
the threshold (γ) between the desired fault rejection and acceptance rates, which would require
additional validation samples. However, quite often, the cost of collecting data for this operation
can be prohibitive, making it difficult or too expensive to perform such calibration. As future work,
we shall combine DOCTOR with other related lines of research such as: the extension to white-box
incorporating additional information across the different latent codes of the model. Moreover, we
shall investigate the possibility of combining the two proposed discriminators.
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