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ABSTRACT

The visualization and interpretability of electroencephalogram (EEG) decoding
significantly contribute to brain-computer interfaces (BCI) and cognitive neuro-
science. Although some existing research has attempted to map EEG features to
specific brain regions, these approaches fail to fully utilize raw signals and lack
extensibility to other Deep Learning (DL) models. In this work, Grad-TopoCAM
(Gradient-Based Topographic Class Activation Map) is proposed, which enhances
interpretability in DL models for EEG decoding adaptively. Grad-TopoCAM cal-
culates the gradient of feature maps for the target class at the target layer. The
weights of the feature maps are obtained through global average pooling of the
gradients. The class activation map is generated by performing a linear com-
bination of weights and feature maps, which is subsequently mapped to different
brain regions. Grad-TopoCAM is validated across eight DL models on four public
datasets. Experimental results indicate that Grad-TopoCAM effectively identifies
and visualizes brain regions that significantly influence decoding outcomes, while
also facilitating channel selection for different decoding tasks. The code and data
are open-source.

1 INTRODUCTION

Electroencephalogram (EEG) decoding is the cornerstone of brain-computer interfaces (BCI) (Ji
et al., 2024). The introduction of interpretability and visualization methods not only enhances the
transparency and reliability of models but also promotes deeper exploration in neuroscience and
clinical applications (Miao et al., 2023). By employing such methods, researchers can gain insight
into which brain regions the model emphasizes during decision-making processes, thereby high-
lighting the critical roles of specific brain regions in brain activity and offering valuable guidance
for future neuroscience research (Zong et al., 2024).

Despite the remarkable progress of Deep Learning (DL) as an end-to-end ”black-box” method in
various fields, (Phan-Trong et al., 2023) its inherent opacity poses significant challenges to inter-
pretability. While interpretability techniques such as Grad-CAM (Selvaraju et al., 2017) and LIME
(Ribeiro et al., 2016) have been extensively applied in Computer Vision (CV) and Natural Lan-
guage Processing (NLP), their use in EEG signal decoding remains underexplored. Current EEG
decoding research predominantly relies on complex, indirect approaches for interpretability anal-
ysis (Sujatha Ravindran & Contreras-Vidal, 2023). In some studies, EEG signals are transformed
into two-dimensional feature maps (Qian et al., 2024), (Ding et al., 2023), or multi-channel signals
are mapped into two-dimensional matrices (Li et al., 2020), followed by visualization with Grad-
CAM. However, these methods struggle to reveal the specific brain regions that deep models focus
on during decision-making. Though some studies have designed specific algorithms for proposed
methods to visualize brain region features (Cai & Zeng, 2024), these approaches generally lack gen-
eralizability and are not easily adaptable for feature visualization across any target network layer.
Consequently, current interpretability and visualization methods of EEG decoding still lack a uni-
versal interpretability method that can directly map model-decision features to corresponding brain
region activity.
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In this work, we propose a universal interpretability and visualization method, Grad-TopoCAM
(Gradient-Based Topographic Class Activation Map), which directly maps EEG features to brain
regions in EEG decoding. When the raw EEG signals are input into the DL model, Grad-TopoCAM
computes the gradients of the feature maps at the target layer for the predicted class. The gradients
are then globally averaged to calculate the feature map weights. By linearly combining the weights
with the feature maps, class activation maps are generated for the target class. The class activation
maps are subsequently mapped to different brain regions, illustrating the varying contributions of
each brain area in EEG decoding.

We summarize our contributions below.

1. We propose Grad-TopoCAM, a class-discriminative localization technique that generates
visualizations of salient brain region features from DL models without requiring modifica-
tions to the architecture or retraining.

2. Grad-TopoCAM has been validated across eight different DL models and four publicly
available datasets, with the salient brain features aligning with established findings in cog-
nitive neuroscience.

3. Grad-TopoCAM is applied to the multi-layer convolutional structure of the EEGNet net-
work. As the convolutional layers of EEGNet deepen, Grad-TopoCAM reveals the feature
variations of different brain regions in the EEG decoding decision-making process.

4. The visualizations of salient brain region features generated by Grad-TopoCAM can be
utilized to identify key brain areas, facilitating EEG channel selection.

The remainder of this article is organized as follows. Section 2 describes the related work. Section
3 describes the proposed method. Section 4 presents the datasets, DL models, and brain topogra-
phy. Section 5 describes the discussion. Finally, Section 6 presents the conclusion and future work
directions.

2 RELATED WORKS

Early EEG visualization methods primarily rely on topographic maps (Vafaei et al., 2023), (Cline
et al., 2023) and time-frequency (Cai et al., 2022), (Kiselev et al., 2022) representations. Although
these methods display the characteristics of raw EEG signals (Ding et al., 2023), (Currey et al.,
2023), (Shi et al., 2024), they fail to reveal the brain regions that play a critical role in EEG decod-
ing. With the introduction of DL, researchers explore how to apply the interpretability of DL models
to EEG signal decoding. In the existing studies, Li et al. (2022) convert EEG signals into brain to-
pography images, train these images, and employ Grad-CAM for visualization. Nevertheless, this
method does not fully utilize the raw signals, resulting in limitations in interpretability. Moreover,
Qian et al. (2024) utilize Grad-CAM to visualize features on the time-frequency representation of
EEG signals but are unable to accurately identify the brain regions that significantly contribute to the
results. This shortcoming renders the interpretation of the model insufficient. To enhance the direct
utilization of raw EEG signals, Li et al. (2020) and Cui et al. (2022) propose mapping multi-channel
signals into two-dimensional matrices and inputting them into a two-dimensional convolutional neu-
ral network (CNN) for training. This approach aims to achieve image-like feature visualization of
the matrices, ultimately generating visualization results. Even so, while this method somewhat im-
proves interpretability, it remains limited by the necessity of employing a two-dimensional convo-
lutional structure within the neural network. To overcome this limitation, Cai & Zeng (2024), Song
et al. (2022) and Miao et al. (2023) propose various EEG decoding models that simultaneously en-
able feature visualization across specific network layers corresponding to different brain regions.
Despite these advancements, these feature visualization methods require additional specific design,
limiting their applicability for direct feature mapping across different target network layers and lack-
ing generalizability and flexibility. Therefore, exploring universal interpretability and visualization
methods that effectively link model features to brain region activity is essential.

3 METHOD

In this work, we propose a novel and generalizable interpretable visualization method, named Grad-
TopoCAM, as shown in Figure 1. The proposed method aims to directly map salient features from
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Figure 1: Architecture of the proposed Grad-TopoCAM.

target layers onto brain topographs, thereby identifying key brain regions involved in EEG decod-
ing. Unlike existing indirect and complex methods, Grad-TopoCAM facilitates feature-brain region
mapping at any target layer, significantly enhancing the universality and flexibility.

Grad-TopoCAM calculates the class activation map for the target layer of a specific class. The
detailed steps are as follows:

1. Forward Propagation: EEG signals are input into the model to obtain the predicted proba-
bility scores yc for each class, where c represents the class index.

2. Calculation of Gradient: To reveal the brain regions that the network focuses on during
the classification process, we perform backpropagation on the gradient of the predicted
score yc for the target class with respect to the feature maps Ak of the target layer. The
gradient for each feature map in the network is calculated, represented as ∂yc

∂Ak , where k

denotes the index of the kth feature map. Additionally, the target layer can be other layer
within the network architecture, such as convolutional layers, self-attention layers, or batch
normalization layers.

3. Calculation of Feature Map Weights: The gradients are processed through global average
pooling to derive the weights for each feature map, represented as αc

k. These weights reflect
the significance of the feature map Ak in contributing to the prediction of class c:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(1)

where Z represents the size of the feature map, and i and j index the corresponding spatial
locations within the feature map.

4. Calculation of salient Feature Values: The weights αc
k and the feature maps Ak are linearly

combined to generate the heatmap Lc for class c, as expressed by the following equation:

Lc = ReLU

(∑
k

αc
kA

k

)
(2)

where ReLU function is applied to ensure that negative values within the heatmap are set
to zero, preserving only the positive values. This process retains only the regions that
contribute positively to the target classification, thereby facilitating the precise localization
of the most influential areas within the brain during the decoding process.
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5. Mapping of Salient Feature Values to Brain Topography: The salient feature values for
each EEG channel are averaged to generate the brain topographic. The subsequent formula
is as follows:

Lc
avg =

1

T

T∑
t=1

(
ReLU

(∑
k

αc
kA

k

))
=

1

T

T∑
t=1

Lc
t (3)

where T denotes the dimensionality of the salient feature values.

4 EXPERIMENT

4.1 DATASETS AND PREPROCESS

Dataset I: The BCI Competition IV Dataset 2a (Tangermann et al., 2012), provided by Graz Univer-
sity of Technology, contains EEG recordings from nine healthy participants. The EEG signals were
acquired using a 10–20 electrode system with 22 Ag/AgCl electrodes, sampled at 250 Hz. Each
participant was instructed to perform four distinct motor imagery tasks: imagining movements of
the left hand, right hand, both feet, and tongue. The data was filtered to [4, 40] Hz using a band-pass
filter.

Dataset II: Nieto et al. (2022) developed an inner speech EEG dataset consisting of 10 native
Spanish-speaking participants. EEG recordings were acquired using the 10-20 system with 128
EEG channels and 8 external EOG/EMG channels at a sampling rate of 1024 Hz. Participants were
instructed to silently articulate four Spanish words: “arriba” (up), “abajo” (down), “derecha” (right),
and “izquierda” (left). During preprocessing, the data were re-referenced using earlobe channels and
filtered with a band-pass filter ranging from 0.5 to 100 Hz, along with a notch filter at 50 Hz. The
sampling rate was then downsampled to 254 Hz. Independent component analysis (ICA) was em-
ployed to remove artifacts, ensuring signal quality.

Dataset III and Dataset IV: Li et al. (2024) developed a silent reading EEG dataset, which includes
data from a single participant who is a native Mandarin speaker and proficient in English as a second
language. The EEG activity was recorded over 26 days while the participant silently read seven
Chinese words and nine English words. The Chinese words included: “你”, “去”, “天”, “头”,
“来”, “水”, and “说” , while the English words were: “apple”, “book”, “come”, “cup”, “go”,
“head”, “stand”, “water”, and “you”. EEG signals were collected using 64 electrodes (with 59 EEG
channels and 5 body function channels) based on the 10-20 system, at a sampling rate of 1000 Hz.
Dataset III consists of Chinese words and Dataset IV consists of English words

4.2 OVERVIEW OF DL MODELS

Eight different DL models are employed to train and test across four distinct datasets. The models
are summarized below.

ConvNet (Schirrmeister et al., 2017) family includes multiple convolution and pooling layers. Shal-
lowConvNet uses a single convolutional layer, while DeepConvNet leverages multiple convolutional
layers to capture more complex features.

EEGNet (Lawhern et al., 2018) is a compact CNN model. It consists of three key components:
one-dimensional convolution for temporal feature extraction, depthwise separable convolution for
spatial feature learning, and a fully connected layer for classification.

RACNN (Fang et al., 2020) is a novel regional attention convolutional neural network that extracts
spectral-spatial-temporal features. It aggregates spectral-temporal features produced by a convolu-
tional neural network into fixed-length features.

EEG-ChannelNet (Palazzo et al., 2020) consists of a series of convolutional modules that initially
extract temporal and spatial features using 1D convolutions. These features are refined through
residual layers, with final predictions generated via convolutional and fully connected layers.

Conformer (Song et al., 2022) is a compact Convolutional Transformer model. It captures both local
and global features using convolutional layers and self-attention modules. A simple fully connected
classifier is then employed to predict EEG categories.
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Table 1: Classification accuracy across different models in Dataset I.

Model S01 S02 S03 S04 S05 S06 S07 S08 S09
ShallowConvNet 73.91% 42.36% 85.42% 61.11% 47.92% 46.53% 85.42% 75.69% 73.26%

DeepConvNet 43.4% 39.24% 47.92% 46.18% 34.38% 39.24% 46.18% 44.79% 55.55%
EEGNet 78.81% 53.12% 82.64% 58.33% 40.62% 44.1% 68.06% 74.31% 72.22%
RACNN 40.97% 31.25% 38.54% 33.33% 32.99% 34.72% 35.42% 38.19% 47.92%

EEG-ChannelNet 40.62% 27.43% 48.96% 43.75% 28.82% 35.42% 38.19% 40.62% 52.43%
Conformer 81.6% 51.73% 90.62% 71.53% 34.38% 52.78% 88.53% 79.51% 79.17%
LMDA-Net 57.29% 32.99% 68.06% 47.22% 34.03% 40.62% 39.93% 46.53% 64.92%

D-FaST 64.92% 36.8% 70.49% 47.57% 34.72% 42.36% 64.24% 65.97% 68.06%

Table 2: Classification accuracy across different models in Dataset II.

Model S01 S02 S03 S04 S05 S06 S07 S08 S09
ShallowConvNet 40.0% 35.0% 42.5% 35.0% 40.0% 20.0% 40.0% 40.0% 35.0%

DeepConvNet 37.5% 27.5% 37.5% 32.5% 45.0% 40.0% 35.0% 37.5% 40.0%
EEGNet 42.5% 27.5% 40.0% 35.0% 37.5% 32.5% 35.0% 32.5% 35.0%
RACNN 42.5% 35.0% 40.0% 37.5% 37.5% 45.0% 42.5% 35.0% 37.5%

EEG-ChannelNet 25.0% 22.5% 35.0% 20.0% 30.0% 35.0% 25.0% 35.0% 32.5%
LMDA-Net 32.5% 35.0% 27.% 37.5% 37.5% 35.0% 30.0% 32.5% 45.0%

D-FaST 37.5% 30.0% 32.5% 30.0% 37.5% 40% 40% 32.5% 32.5%

Table 3: Classification accuracy across different models in Dataset III and Dataset IV.

Model Chinese English
ShallowConvNet 12.36% 9.09%

DeepConvNet 17.98% 19.00%
EEGNet 10.11% 14.05%

EEG-ChannelNet 15.73% 17.36%
LMDA-Net 14.61% 10.74%

D-FaST 12.36% 11.57%

LMDA-Net Miao et al. (2023) is a lightweight multi-dimensional attention network that integrates
channel and depth attention modules to efficiently extract features across multiple dimensions.

D-FaST (Chen et al., 2024) is a novel Disentangled Frequency-Spatial-Temporal Attention model.
It consists of three key components: multi-view attention for frequency domain features, spatial ex-
traction via dynamic brain connection graph attention, and temporal features through a local sliding
window attention mechanism.

4.3 CLASSIFICATION ACCURACY AND BRAIN TOPOGRAPHY

The performances on different datasets across multiple models are shown as Tabel 1, Table 2, Ta-
ble 3. In Dataset I, the Conformer model achieved the highest accuracy, particularly excelling for
subjects S03, S06, and S09, with rates of 90.62%, 88.53%, and 79.17%. EEGNet performed well
for S03 and S09 but was generally outperformed by Conformer. ShallowConvNet showed similar
results, performing best on S03, S07, and S09 with accuracies of 85.42%, 85.42%, and 73.26%. In
Dataset II, RACNN was the most stable, outperforming EEGNet for S01, S06, and S09. Shallow-
ConvNet had moderate success for some subjects, though overall accuracy was lower. For Dataset
III and Dataset IV, accuracy was generally low, with DeepConvNet performing slightly better than
the others, achieving 17.98% and 19.00%, respectively.

Based on the classification accuracy results, the proposed Grad-TopoCAM is employed for visu-
alization analysis on the model with the highest accuracy for each subject. The contributions of
different brain regions to the model’s decisions are displayed.
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Figure 2: Salient feature of brain topography in Dataset I.

Figure 3: Salient feature of brain topography in Dataset II.

In Dataset I (motor imagery), as shown in Figure 2, central regions (C3, Cz, CPz) demonstrated
significant contributions across multiple subjects. This aligns with existing research that identi-
fies motor-related areas, especially C3 and Cz, as key regions in motor imagery tasks (Bai et al.,
2007),(Yon et al., 2018), (Wang et al., 2023). Additionally, channels like C5, CP1, and FC2 show
high contributions in some subjects, suggesting that both precentral and parietal regions play crucial
roles in the decision-making of classification models during motor imagery tasks.

In Dataset II (inner speech), as shown in Figure 3, the frontal areas (A19, D32, B7) and parietal
regions (A21, D17) contribute significantly. These regions are associated with complex cognitive
processes and perceptual integration, with the prefrontal cortex playing a key role in speech gen-
eration and understanding, and the parietal lobe being involved in spatial and linguistic integration
(Friederici, 2011), (Fedorenko et al., 2024). The high contributions from these regions suggest that
inner speech relies on higher-order cognitive functions like attention, working memory, and visual
processing, consistent with previous cognitive task findings in EEG research.

In Datasets III (Chinese words) and Datasets IV (English words), as shown in Figure 4 and Figure 5,
visual-related regions (Oz, POz, PO8) and frontal areas (AF3, Fp1, Fp2) contribute significantly in
word classification tasks across multiple subjects. This indicates that visual and frontal regions play
a central role in language comprehension and processing, highlighting the close connection between
visual representation and linguistic cognition during word processing tasks (Kutas & Federmeier,
2000), (de Varda et al., 2024). Despite the linguistic differences between Chinese and English, the
similar patterns of brain activation suggest common cognitive processing mechanisms (Liu et al.,
2023), underscoring the deep neural underpinnings of language.
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Figure 4: Salient feature of brain topography in Dataset III.

Figure 5: Salient feature of brain topography in Dataset IV.

5 DISCUSSION

5.1 LAYER-WISE BRAIN REGION FOCUS IN EEGNET

We observe the dynamic changes in brain regions across different network layers by the proposed
Grad-TopoCAM, as shown in Figure 6. A layer-wise analysis of Datasets I (motor imagery), based
on EEGNet, reveals how crucial brain areas become progressively focused as the convolutional lay-
ers deepen. For instance, in Layer0 for Label0, task-relevant regions exhibit a broader distribution,
including areas such as CP2, CPz, and C4. However, by Layer2 and Layer3, the most contributive re-
gions converge around Cz, CPz, and C1, demonstrating that deeper layers capture more task-specific
features. This pattern is consistent across other true labels, where shallow convolutional layers show
dispersed activations, and deeper layers focus on regions closely associated with motor control.
This layer-wise feature visualization illustrates how EEGNet hones in on more precise task-relevant
regions as the network deepens, validating the efficacy of the propposed Grad-TopoCAM.

5.2 CHANNEL SELECTION ON EFFICIENCY AND FERFORMANCE

Through Grad-TopoCAM visualization, the contribution of different brain regions to classification
tasks can be determined. Channel rankings for each label are calculated based on their individual
significance, and these rankings are weighted and summed to derive the final channel sequence for
each subject. As shown in Table 4, “Full Channel Signals” refers to the use of all original signal
channels, while “Selected Channel Signals” represents the use of the top half of the channels with
the highest contributions.

Channel selection significantly optimizes both the parameter and computational demands of the
models. For example, in EEGNet, the parameter complexity decreases from 130.245M to 59.175M,
and the computational count is reduced from 213.748K to 86.772K. This reduction substantially
lowers the computational burden while maintaining good performance, making real-time processing
and application more feasible. Similarly, other models such as LMDA-Net and ShallowConvNet
also show marked reductions in parameter and computation requirements, laying a foundation for
practical deployment.

Channel selection not only improves computational efficiency but also enhances classification per-
formance by focusing on brain regions that are most crucial for the task, as shown in Table 5.
For instance, ShallowConvNet’s accuracy for subject S06 increases by 20.0%, and DeepConvNet
demonstrates consistent performance across multiple tasks. This suggests that the channel selected
is beneficial for the classification performance. Additionally, D-FaST also achieves a balance be-
tween accuracy and computational efficiency in certain tasks. However, some models experience
a drop in classification performance after channel selection. For instance, EEGNet’s accuracy de-
creases from 64.175% with full channels to 59.175% with selected channels. This decline could be
attributed to the complexity of EEG signals and the redundancy of brain region signals. While chan-
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Figure 6: Salient features of brain topography across target layers in EEGNet models.

Table 4: Comparison of model Parameters and FLOPs before and after channel selection.

Model Full Channel Signals Selected Channel Signals
Params FLOPs Params FLOPs

ShallowConvNet 324.981M 215.684K 162.575M 113.284K
DeepConvNet 253.485M 363.284K 138.746M 260.884K

EEGNet 130.245M 213.748K 59.175M 86.772K
EEG-ChannelNet 23.202G 20.090M 11.596G 6.582M

LMDA-Net 288.759M 8.388K 144.396M 7.940K
D-FaST 13.168G 12.153M 6.620G 6.296M

nel selection aims to focus on the most relevant channels for the task, in some cases, the removed
channels may still contain information beneficial to the model’s decision-making process. Overall,
channel selection through Grad-TopoCAM not only enhances model performance and efficiency but
also improves interpretability.

6 CONCLUSION

In this work, we propose Grad-TopoCAM, an innovative method that enhances the interpretability of
EEG decoding in DL models. By adaptively mapping the gradients of feature maps to specific brain
regions, Grad-TopoCAM not only highlights the areas of the brain that significantly impact decoding
outcomes but also facilitates informed channel selection across diverse EEG tasks. The comprehen-
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Table 5: Classification accuracy after channel selection across different models (with change relative
to full channel signals).

Model S01 S02 S03 S04 S05 S06 S07 S08 S09 S10
ShallowConvNet 35.0% (-5.0%) 37.5% (2.5%) 30.0% (-12.5%) 37.5% (2.5%) 40.0% (0.0%) 40.0% (20.0%) 32.5% (-7.5%) 30.0% (-10.0%) 42.5% (7.5%) 37.5% (2.5%)

DeepConvNet 35.0% (-2.5%) 35.0% (7.5%) 32.5% (-5.0%) 40.0% (7.5%) 40.0% (-5.0%) 32.5% (-15.0%) 35.0% (5.0%) 42.5% (5.0%) 45.0% (5.0%) 40.0% (2.5%)
EEGNet 37.5% (-5.0%) 25.0% (-2.5%) 37.5% (-2.5%) 32.5% (-2.5%) 40.0% (2.5%) 25.0% (-7.5%) 35.0% (0.0%) 37.5% (5.0%) 40.0% (5.0%) 32.5% (0.0%)
RACNN 40.0% (-2.5%) 42.5% (7.5%) 35.0% (-5.0%) 40.0% (2.5%) 37.5% (0.0%) 40.0% (-5.0%) 40.0% (-2.5%) 35.0% (0.0%) 47.5% (10.0%) 45.0% (2.5%)

EEG-ChannelNet 37.5% (12.5%) 25.0% (2.5%) 42.5% (7.5%) 22.5% (2.5%) 40.0% (10.0%) 35.0% (0.0%) 20.0% (-5.0%) 40.0% (0.0%) 30.0% (10.0%) 25.0% (-15.0%)
LMDA-Net 32.5% (0.0%) 32.5% (-2.5%) 32.5% (5.5%) 32.5% (-5.0%) 32.5% (-5.0%) 32.5% (-2.5%) 32.5% (2.5%) 32.5% (0.0%) 50.0% (-12.5%) 32.5% (15.0%)

D-FaST 42.5% (5.0%) 27.5% (-2.5%) 30.0% (-2.5%) 25.0% (-5.0%) 35.0% (5.0%) 25.0% (10.0%) 35.0% (0.0%) 42.5% (10.0%) 32.5% (10.0%) 32.5% (10.0%)

sive validation of Grad-TopoCAM across eight DL models and four public datasets demonstrates
its robustness and versatility, marking a significant advancement in the field of BCI and cognitive
neuroscience.

Despite the significant contributions of Grad-TopoCAM, the limitation is also consideration. The
current implementation primarily focuses on enhancing interpretability within supervised learning
frameworks. As such, its effectiveness in unsupervised or semi-supervised contexts remains un-
explored. Future research could investigate the adaptation of Grad-TopoCAM to these paradigms,
potentially expanding its applicability to a broader range of EEG analysis tasks.
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