
Under review as submission to TMLR

The Teaching–Regret–Stability Principle
in Non-Stationary Reinforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

Standard treatments of non-stationary reinforcement learning primarily emphasize track-
ing and evaluate performance via dynamic regret under variation-budget drift. In many
deployments, however, practitioners may also care about which policy is learned (e.g., com-
pliance/safety targets) and how smoothly it evolves over time. This motivates studying
teaching to a target policy and policy-trajectory stability alongside regret, as complemen-
tary objectives rather than replacements. We formalize this viewpoint in the Teaching–
Regret–Stability (TRS) Principle for Teachable Non-stationary RL (TNRL). Under standard
variation-budget assumptions and a Lipschitz policy-update condition, we prove a high-level
theorem showing that a bounded-budget teacher can simultaneously drive the teaching er-
ror to an arbitrarily small target, keep dynamic regret sublinear, and ensure that the policy
sequence remains stable on average.

1 Introduction

Reinforcement learning (RL) in non-stationary environments has become a central abstraction for systems
that must operate under continual change: recommendation platforms facing shifting user populations,
robotic controllers subjected to wear-and-tear, or online decision systems exposed to evolving markets. A
large body of work formalizes non-stationarity via variation budgets on rewards and transitions, and evaluates
algorithms through dynamic regret (Besbes et al., 2015; Cheung et al., 2020; Fei et al., 2020; Zhou et al.,
2022; Feng et al., 2023; Wei et al., 2023; Cheng et al., 2023). In this view, the environment is exogenous,
nature drifts arbitrarily within the budget, and the learner is rewarded for tracking the moving optimum as
closely as possible.

In many deployments, a designer, regulator, or operator has a reference behavior in mind—which we model
as a target policy π†—but cannot directly replace the learning system with π†. Instead, the stakeholder
typically interacts with a running learner only through limited interfaces (reward shaping, constraints/safety
layers, environment modifications, data filtering), each carrying cost and operational constraints. In this
sense, the teacher may know π† as a specification or an approved controller, yet must still induce the learner
to realize it under bounded intervention.

A fixed π† also serves a concrete purpose in drifting worlds: it models settings where stakeholders demand
behavioral consistency (compliance, interpretability, safety) even as the environment changes within an oper-
ating regime. We adopt a stationary target for conceptual clarity; extending the framework to a time-varying
target sequence {π†

k} is possible by introducing a target-variation budget analogous to Venv, and we briefly
outline this extension in Sec. 6.

From tracking to teachability. This leads to a different foundational question: is the learner teachable
under non-stationarity? More concretely:

Given a non-stationary environment and a target policy π†, can a teacher with bounded
ability to poison the environment steer a standard RL algorithm toward π†, while preserving
low dynamic regret in the true environment and maintaining a stable policy trajectory?

1



Under review as submission to TMLR

If the answer is “no”, then dynamic regret alone should not be expected to certify alignment-to-target
objectives: an algorithm can track the drifting optimum well while still remaining far from an externally
specified target policy. This does not contradict regret guarantees—it highlights that regret optimizes a
different criterion. The TRS viewpoint therefore complements regret-based evaluation when stakeholders
impose additional objectives. Conversely, if the answer is “yes” under transparent structural conditions,
then teachability becomes a new lens on the design of non-stationary RL algorithms: we can ask not only
“how fast do they learn?” but “how gracefully can they be taught?”

Three literatures, one missing bridge. Pieces of this picture exist in three separate lines of work. Non-
stationary RL with variation budgets provides dynamic-regret guarantees under drifting environments (Che-
ung et al., 2020; Fei et al., 2020; Zhou et al., 2022; Feng et al., 2023; Wei et al., 2023; Cheng et al., 2023).
Policy teaching and environment poisoning study how an attacker or teacher can manipulate transitions and
rewards to induce a desired policy, typically in stationary MDPs (Rakhsha et al., 2020). Algorithmic stability
quantifies how smoothly updates react to perturbations, and has been linked to generalization in supervised
learning (Hardt et al., 2016). However, there is currently no framework that jointly reasons about:

• the teaching error between the learned policy and an externally specified target policy;

• the dynamic regret in the true non-stationary environment, rather than in the manipulated one; and

• the stability of the policy sequence under non-stationarity and poisoning.

As a result, the field lacks a principled answer to the question of whether non-stationary RL algorithms are
fundamentally teachable, or whether dynamic-regret guarantees can mask structurally misaligned behavior.

The TRS Principle: Teachable Non-stationary RL. In this work we propose a unifying viewpoint
that we call the Teaching–Regret–Stability (TRS) Principle for Teachable Non-stationary Reinforcement
Learning (TNRL). We consider an episodic non-stationary MDP with variation budgets on rewards and
transitions (§2), and introduce a teacher that can poison the environment prior to each episode by perturbing
transitions and rewards at a per-episode cost. The teacher has a total poisoning budget C, and aims to teach
a fixed target policy π† by running a standard RL algorithm on the poisoned environments. We then focus
on three metrics:

1. Teaching error MismatchK (equation 9): the average distance between the learner’s policy and
the target policy.

2. Dynamic regret DynRegK (equation 10): the cumulative regret measured in the true drifting
environments, not in the poisoned ones.

3. Policy stability StabK (equation 11): the average step-to-step change of the learner’s policy.

Our main theorem (Theorem 1) shows that, under natural assumptions on the non-stationary MDP, the
poisoning budget, the dynamic-regret guarantee of the base algorithm, and a Lipschitz-type policy update,
there exists a teacher strategy and an RL algorithm such that:

• the teaching error MismatchK can be driven arbitrarily close to a target ε,

• the dynamic regret DynRegK remains sublinear in the number of episodes, and

• the policy sequence is stable on average, with StabK controlled by the total environment drift and
the poisoning budget.

In our experiments we validate the TRS coupling in a horizon-one instantiation (a non-stationary contextual
bandit), which is a controlled special case of non-stationary RL. This setting isolates the effects of drift and
bounded teaching and allows a clean empirical visualization of the TRS behavior.
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Positioning relative to the reward hypothesis. Our viewpoint is not a rejection of the reward hypoth-
esis. Rather, it is a complementary, multi-criteria (or constrained) lens on non-stationary RL deployments,
where stakeholders often care about behavioral constraints that are not reliably encoded in the scalar reward
available to the learner. Even if one accepts that goals can, in principle, be represented by reward under
suitable assumptions, real systems face specification gaps and operational requirements (e.g., compliance,
auditability, and limits on abrupt behavioral change) that motivate measuring which policy is learned and
how it evolves over time. See, e.g., Bowling et al. (2023) for a detailed discussion of the reward hypothesis
and its implicit requirements.

Contributions. Formally and conceptually, our contributions are as follows:

• We introduce Teachable Non-stationary RL (TNRL) and the Teaching–Regret–Stability
(TRS) Principle, which jointly reason about teaching error, dynamic regret in the true environ-
ment, and policy stability under environment poisoning.

• We prove a Teaching–Regret–Stability theorem (Theorem 1) in episodic non-stationary MDPs
with variation budgets and a Lipschitz policy-update assumption. The theorem shows that a
bounded-budget teacher can align the learner with a target policy while keeping dynamic regret
sublinear and the policy sequence stable.

• We instantiate the framework in a non-stationary contextual bandit with a synthetic generator
and a Discounted LinUCB learner, and empirically probe the TRS behavior. The experiments
demonstrate that modest poisoning budgets can significantly reduce teaching error at a mild regret
cost, while preserving or even improving stability, in line with the theoretical scaling laws.

Taken together, these results invite a shift in how we think about non-stationary RL. Rather than asking
only whether algorithms track the environment well, the TRS Principle asks whether they are teachable: can
they be steered, at bounded cost, to stable policies that embody the values and constraints of their users,
even as the world drifts?

2 Preliminaries

We consider an episodic, non-stationary Markov decision process (MDP) with finite state and action spaces

S, A, |S| = S, |A| = A.

Time is partitioned into K episodes, each of horizon H, so that the total number of interaction steps is
T = KH.

Non-stationary MDP sequence. Episode k ∈ {1, . . . , K} is associated with an MDP

Mk = (S,A, Pk, rk, ρ1, γ),

where

• Pk(· | s, a) is the transition kernel,

• rk(s, a) ∈ [0, 1] is the reward function,

• ρ1 is a fixed initial-state distribution, and

• γ ∈ [0, 1] is a discount factor (for finite-horizon problems one may set γ = 1).
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The non-stationarity of the environment is captured by a variation budget over episodes:

VP :=
K∑

k=2
sup
s,a

∥∥Pk(· | s, a)− Pk−1(· | s, a)
∥∥

1, (1)

Vr :=
K∑

k=2
sup
s,a

∣∣rk(s, a)− rk−1(s, a)
∣∣, (2)

and we write the total environment drift as

Venv := VP + Vr. (3)

Teacher and environment poisoning. We introduce a teacher (or attacker) that can modify the envi-
ronment prior to each episode by applying environment poisoning. Concretely, before episode k begins, the
teacher chooses a modified MDP

M̃k = (S,A, P̃k, r̃k, ρ1, γ),

where P̃k and r̃k may differ from the true Pk and rk.

We measure the poisoning cost in episode k by

ck := sup
s,a

∥∥P̃k(· | s, a)− Pk(· | s, a)
∥∥

1 + sup
s,a

∣∣r̃k(s, a)− rk(s, a)
∣∣. (4)

The teacher has a total poisoning budget

Ctot :=
K∑

k=1
ck ≤ C. (5)

The modified MDP sequence {M̃k}K
k=1 has its own variation budget

Veff :=
K∑

k=2
sup
s,a

∥∥P̃k(· | s, a)− P̃k−1(· | s, a)
∥∥

1 +
K∑

k=2
sup
s,a

∣∣r̃k(s, a)− r̃k−1(s, a)
∣∣. (6)

By construction, we always have
Veff ≲ Venv + C, (7)

up to universal constants.

Learner and target policy. A reinforcement learning algorithm L interacts with the poisoned environ-
ments {M̃k}K

k=1. At the beginning of episode k, the learner selects a (possibly stochastic) policy πk(· | s)
based on its past observations.

We fix a target policy π† (e.g., stationary) that the teacher aims to teach. We measure the distance between
two policies π and π′ via

d(π, π′) := sup
s∈S

∥∥π(· | s)− π′(· | s)
∥∥

1. (8)

The average teaching error (or policy mismatch) over K episodes is defined as

MismatchK := 1
K

K∑
k=1

E
[
d(πk, π†)

]
, (9)

where the expectation is taken over the randomness of the learning algorithm and the environment.
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Dynamic regret in the true environment. All learning happens in the poisoned environments M̃k,
but performance is ultimately evaluated in the true environments Mk.

Let Vk(π) denote the expected total return of policy π in the true environment Mk, starting from the initial
distribution ρ1:

Vk(π) := EMk,π

[ H∑
t=1

γt−1rk(st, at)
]
.

We define the per-episode optimal policy

π⋆
k ∈ argmaxπVk(π),

and the dynamic regret of the learner as

DynRegK :=
K∑

k=1

(
Vk(π⋆

k)− Vk(πk)
)
. (10)

Policy stability. We measure the stability of the learner’s policy sequence by the average step-to-step
change:

StabK := 1
K − 1

K∑
k=2

E
[
d(πk, πk−1)

]
. (11)

Low StabK indicates that the learner’s policy evolves smoothly over time, whereas a large value suggests
frequent drastic changes.

Which notion of stability? Our stability metric StabK in equation 11 measures policy-trajectory stability:
the average step-to-step change in the policy (a path-length / smooth-update notion). This is distinct from
other notions sometimes called “stability,” such as stability in performance (e.g., fluctuations of realized
reward or regret across time). We focus on policy-trajectory stability because it couples naturally to bounded
environment drift and Lipschitz update dynamics, and it is the appropriate notion for quantifying how
smoothly a learner can be steered by bounded interventions.

Goal. The central question is: under bounded environment drift (Venv bounded) and bounded poisoning
budget (Ctot ≤ C), can one design a teacher strategy and a learning algorithm such that

• the teaching error MismatchK is small (successful teaching),

• the dynamic regret DynRegK in the true environments is controlled (no catastrophic loss in perfor-
mance), and

• the policy sequence is stable, as quantified by StabK .

Definition 1 (TRS-achievability and TRS frontier). Fix (Venv, C, K) and a target policy π†. A triple
(ε, R, S) ∈ R3

+ is TRS-achievable if there exist a teacher strategy with total poisoning cost at most C and a
learner L such that

MismatchK ≤ ε,
DynRegK

K
≤ R, StabK ≤ S.

The TRS frontier is the set of Pareto-optimal achievable triples under componentwise order.

We state the assumptions used in our main result. They are chosen so as to be compatible with existing
work on non-stationary RL and policy teaching.
Assumption 1 (Non-stationary MDP with bounded (possibly unknown) variation). The true environments
{Mk}K

k=1 satisfy the variation budget constraints equation 1–equation 3 with Venv ≤ Benv for some finite
constant Benv (not necessarily known to the learner). Moreover, each Mk is communicating and has bounded
diameter D <∞.

5



Under review as submission to TMLR

Assumption 2 (Bounded poisoning budget). The teacher generates a sequence of poisoned environments
{M̃k}K

k=1 satisfying the per-episode cost equation 4 and total budget constraint equation 5 with Ctot ≤ C.
Assumption 3 (RL algorithm with (parameter-free) dynamic regret guarantee). There exists a reinforce-
ment learning algorithm L such that for any (possibly poisoned) environment sequence with effective variation
budget Veff (cf. equation 6), the dynamic regret with respect to {M̃k} satisfies

DynReg(M̃)
K ≤ Õ

(
K2/3V1/3

eff
)
, (12)

and L can be implemented in a parameter-free manner, i.e., it does not require prior knowledge of Veff (nor
K) to achieve equation 12 (up to logarithmic factors).

where Õ(·) hides logarithmic factors. This scaling is known to be minimax-optimal in non-stationary online
learning with variation budgets1and has been achieved up to logarithmic and problem-dependent factors in
several non-stationary RL settings.2

Assumption 4 (Canonical teachability under budget). Fix a target policy π†. For any target accuracy
ε > 0, there exists a canonical MDP M c(ε) = (S,A, P c, rc, ρ1, γ) and a learning algorithm L such that:

(i) Canonical policy–value coupling (identifiability). There exists a constant Gc > 0 that depends only on
M c(ε) (and is independent of K) such that for all policies π,

V c(π†)− V c(π) ≥ Gc d(π, π†), (13)

where V c(π) denotes the value of π in M c(ε).

(ii) Finite-time convergence of L on the canonical MDP. When L is run on the fixed environment M c(ε)
for K episodes, the induced policies {πk}K

k=1 satisfy

1
K

K∑
k=1

E
[

V c(π†)− V c(πk)
]
≤ Gcε + Õ

( 1
K

)
. (14)

(iii) Budget feasibility (canonicalization by poisoning). Define the canonicalization cost

Cmin(ε) :=
K∑

k=1

(
sup
s,a
∥P c(·|s, a)− Pk(·|s, a)∥1 + sup

s,a
|rc(s, a)− rk(s, a)|

)
. (15)

For any budget C ≥ Cmin(ε), the teacher can choose M̃k ≡ M c(ε) for all k, which satisfies the per-
episode cost definition equation 4 and the total budget constraint

∑K
k=1 ck ≤ C.

Remark 1 (On Assumption 4). Assumption 4 makes the budget–accuracy dependence explicit. Item (iii)
defines Cmin(ε) as the total cost needed to “canonicalize” the non-stationary sequence {Mk} into a fixed
canonical environment M c(ε) by setting M̃k ≡M c(ε). Items (i)–(ii) ensure that once the learner is exposed
to this canonical MDP, its average canonical suboptimality converts into a policy-distance guarantee via
the coupling equation 13. While (iii) is a strong but transparent feasibility requirement, it matches the
environment-poisoning view adopted in the paper and provides a clean knob for discussing the TRS behavior:
larger budgets allow smaller achievable ε by enabling a closer (or more favorable) canonicalization.
Assumption 5 (Lipschitz policy update). There exist constants LP , Lr ≥ 0 and α ∈ [0, 1) such that for all
k ≥ 2,

d(πk, πk−1) ≤ α d(πk−1, πk−2) + LP sup
s,a

∥∥P̃k(· | s, a)− P̃k−1(· | s, a)
∥∥

1

+ Lr sup
s,a

∣∣r̃k(s, a)− r̃k−1(s, a)
∣∣. (16)

1See, e.g., Besbes et al. (2015).
2See, e.g., Gajane et al. (2018), Fei et al. (2020), Mao et al. (2021), and Zhao et al. (2022).
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Remark 2 (On Assumption 5). Assumption 5 captures two properties of the policy update. First, in a
fixed environment (P̃k = P̃k−1 and r̃k = r̃k−1), the update is contractive with factor α < 1, so that policy
changes decay over time. Second, when the environment drifts between episodes, the induced policy change is
Lipschitz in the size of the drift, with sensitivities LP and Lr to changes in the transition kernel and reward
function, respectively. Together, these properties allow us to control the cumulative policy variation in terms
of the total environment variation and the poisoning budget.

3 Main Theorem

Minimal teaching cost and budget-dependent accuracy. Let Cmin(ε) denote the minimal total poi-
soning cost required to guarantee MismatchK ≤ ε (for the chosen learner and problem class). Equivalently,
for a fixed budget C, define

ε(C) := inf{ε > 0 : C ≥ Cmin(ε)},
which is non-increasing in C and makes the teaching accuracy explicitly budget-dependent.

We now state a high-level theorem establishing simultaneous guarantees for teaching success, dynamic regret,
and policy stability in non-stationary MDPs under bounded poisoning.

The first step is to show that, there exists a sequence of poisoned environments {M̃k} with total cost Ctot ≤ C
such that the learner’s policies {πk} converge towards the target policy π† when running L on {M̃k}. This
can be formalized as follows.
Lemma 1 (Teaching feasibility). Fix ε > 0 and suppose the budget satisfies C ≥ Cmin(ε) as in Assumption 4.
Then there exists a sequence of poisoned environments {M̃k} satisfying Ctot ≤ C and an RL algorithm L
such that

MismatchK = 1
K

K∑
k=1

E
[
d(πk, π†)

]
≤ ε + Õ

( 1
K

)
. (17)

The proof follows standard arguments in the environment poisoning literature. One constructs a canonical
MDP M c in which π† is robustly optimal, and then defines the poisoned environments M̃k to gradually steer
the learner’s observations and rewards towards those induced by M c. Robust optimality of π† ensures that
small deviations in transitions and rewards (controlled by the poisoning budget) do not change the identity
of the optimal policy. The convergence guarantee of L in the canonical environment then implies that the
sequence {πk} approaches π†, which yields equation 17.

Next, we analyze the dynamic regret of the learner with respect to the poisoned environment sequence {M̃k}.
By equation 6–equation 7 and Assumptions 1–2, the effective variation budget satisfies

Veff ≲ Venv + C.

Lemma 2 (Dynamic regret in the poisoned environment). Under Assumption 3, the dynamic regret of L
with respect to the poisoned environment sequence {M̃k} satisfies

DynReg(M̃)
K ≤ Õ

(
K2/3(Venv + C)1/3)

. (18)

This is a direct consequence of the assumed dynamic regret bound equation 12 and the upper bound Veff ≲
Venv + C on the effective variation budget of the poisoned environment sequence.

We then relate DynReg(M̃)
K to the dynamic regret DynRegK in the true environment sequence {Mk}.

Lemma 3 (Regret transfer to the true environment). Under Assumptions 1–2, we have

DynRegK ≤ DynReg(M̃)
K +O(C). (19)

For each episode k and policy π, the difference between the value functions in Mk and M̃k can be bounded
using standard perturbation arguments for MDPs:∣∣Vk(π)− Ṽk(π)

∣∣ ≤ O(ck),
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where Ṽk(π) is the value in M̃k. Summing over episodes and applying triangle inequalities yields equation 19.

Combining Lemmas 2 and 3 yields the bound equation 22 in Theorem 1.

Finally, we analyze the stability of the policy sequence using the Lipschitz update property in Assumption 5.
Lemma 4 (Stability bound). Under Assumptions 2 and 5, the average policy change satisfies

StabK ≤ LP + Lr

1− α
· Venv + C

K
+O

( 1
K

)
. (20)

Unrolling the recursion equation 16 yields

d(πk, πk−1) ≤ αk−2d(π2, π1) +
k∑

j=2
αk−j

(
LP ∆P

j + Lr∆r
j

)
,

where ∆P
j := sups,a ∥P̃j(· | s, a) − P̃j−1(· | s, a)∥1 and ∆r

j := sups,a |r̃j(s, a) − r̃j−1(s, a)|. Averaging over k,
using the geometric series bound

∑
k≥j αk−j ≤ 1/(1−α) and the fact that

∑
j(∆P

j + ∆r
j) ≲ Venv + C yields

equation 20. The O(1/K) term comes from the initial transient.

Budget–accuracy profile. Define ε(C) := inf{ε > 0 : C ≥ Cmin(ε)}, which is non-increasing in C.
Theorem 1 (Teaching–Regret–Stability Principle in Non-stationary MDPs). Suppose Assumptions 1–5 hold.
Then there exists a teacher strategy {M̃k}K

k=1 with total poisoning budget Ctot ≤ C and a reinforcement
learning algorithm L such that the following properties hold for any ε > 0, provided C is larger than a
problem-dependent threshold Cmin(ε):

(i) Teaching success (budget-dependent). The average mismatch satisfies

MismatchK ≤ ε(C) + Õ
( 1

K

)
. (21)

(ii) Dynamic regret in the true environment. The dynamic regret measured with respect to the true
environment sequence {Mk}K

k=1 satisfies

DynRegK ≤ Õ
(

K2/3(Venv + C)1/3 + C
)

, (22)

where Venv is defined in equation 3. In particular, if Venv = o(K) and C = o(K), then DynRegK = o(K)
and hence the average regret DynRegK/K → 0 as K →∞.

(iii) Policy stability. The average policy change satisfies

StabK ≤ LP + Lr

1− α
· Venv + C

K
+O

( 1
K

)
. (23)

The theorem states that under bounded environment drift and bounded poisoning budget, one can (i)
successfully teach a target policy (up to an arbitrarily small ε), while (ii) keeping the dynamic regret in the
true environment sublinear in K, and (iii) ensuring that the resulting policy sequence is stable on average.

4 The TRS Principle

We now instantiate our framework in a controlled synthetic environment and empirically probe the joint
teaching–regret–stability principle predicted by Theorem 1. All experiments are conducted in a non-
stationary contextual bandit model, which can be viewed as a horizon-one special case of a non-stationary
MDP.
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4.1 Non-stationary Contextual Bandit Environment

Model. Let X ⊆ Rd be a context (feature) space and A = {1, . . . , A} a finite action set. At each round
t = 1, . . . , T ,

1. the environment draws a context xt ∈ X ,

2. the learner selects an action at ∈ A according to a policy πt(· | xt),

3. the learner observes a stochastic reward rt(at) ∈ [0, 1] for the chosen action only.

There is no state transition beyond a single step; each round is an independent episode of length one. We
write r̄t(x, a) := E[rt(a) | xt = x] for the (possibly time-varying) mean reward of action a at context x and
time t.
Definition 2 (Non-stationary contextual bandit). A non-stationary contextual bandit environment is a
sequence

E =
{
Dt, r̄t : X ×A → [0, 1]

}T

t=1,

where Dt is a distribution over contexts xt ∈ X and r̄t is the mean reward function at round t. Non-
stationarity is captured by the fact that either Dt or r̄t (or both) may change with t.

In this subsection we focus on non-stationarity in the reward mechanism and keep the marginal context
distribution fixed, i.e., Dt ≡ D for all t.
Assumption 6 (Bounded contexts and rewards). There exists Rx > 0 such that ∥xt∥2 ≤ Rx almost surely
for all t, and rewards are bounded in [0, 1], i.e., rt(a) ∈ [0, 1] almost surely for all t and a. Moreover, the
noise is conditionally σ2-sub-Gaussian ( Boucheron et al. (2003); Vershynin (2018); Lattimore & Szepesvári
(2020)):

rt(a) = r̄t(xt, a) + ξt, E[ξt | xt] = 0, E
[
eλξt | xt

]
≤ exp

(
σ2λ2

2
)

for all λ ∈ R.

To quantify non-stationarity we impose a variation budget on the sequence of mean reward functions.
Assumption 7 (Variation budget on mean rewards). Let ∥·∥∞ denote the supremum norm over X × A.
The environment satisfies a reward-variation budget Br ≥ 0 if

T −1∑
t=1

∥∥r̄t+1 − r̄t

∥∥
∞ ≤ Br. (24)

Assumption 7 is the contextual-bandit analogue of the variation-budget conditions commonly used for non-
stationary MDPs. It allows abrupt or gradual changes in the reward structure, as long as the total drift over
time is bounded by Br.

Linear parametrization. For concreteness in our experiments, we instantiate r̄t via a time-varying linear
model. We fix a feature map ϕ : X ×A → Rd and a sequence of parameter vectors θt ∈ Rd, and set

r̄t(x, a) = σ
(
⟨θt, ϕ(x, a)⟩

)
, (25)

where σ(·) is a 1-Lipschitz squashing function such as the logistic sigmoid or a clipped identity. In this case
the variation budget is controlled by the path length of {θt}T

t=1,

T −1∑
t=1
∥θt+1 − θt∥2 ≤ Bθ,

which implies equation 24 up to the Lipschitz constants of ϕ and σ.

9



Under review as submission to TMLR

From parameter path length to reward variation. The variation budget Br in Assumption 7 is
imposed directly in the reward space via

T −1∑
t=1

∥∥r̄t+1 − r̄t

∥∥
∞ ≤ Br.

Under the linear parametrization equation 25, this budget can be controlled by the path length of the
parameter sequence {θt}T

t=1.

We assume that the squashing function σ : R→ [0, 1] is Lσ-Lipschitz and that the feature map ϕ : X×A → Rd

is uniformly bounded in norm:∣∣σ(u)− σ(v)
∣∣ ≤ Lσ|u− v| ∀u, v ∈ R, sup

x∈X , a∈A
∥ϕ(x, a)∥2 ≤ Lϕ <∞. (26)

For instance, the logistic sigmoid is 1/4-Lipschitz, and linear or one-hot feature maps are uniformly bounded
after rescaling.3

Define the parameter path length

Bθ :=
T −1∑
t=1

∥∥θt+1 − θt

∥∥
2. (27)

We then have the following simple control of the reward variation by Bθ.
Lemma 5 (Lipschitz control of reward variation). Under equation 25 and equation 26, the reward variation
budget satisfies

Br ≤ LσLϕBθ. (28)

Thus, in our linear contextual bandit model the reward variation budget Br is controlled by the parameter
path length Bθ up to the Lipschitz constants Lσ and Lϕ, a standard pattern in path-length analyses of
non-stationary online learning (Besbes et al., 2015; Hazan et al., 2016).

Synthetic generator for experiments. We now specify a concrete synthetic generator that we will use
in the experiments.

By construction, the mean reward function r̄t is piecewise-stationary with M segments, and the total variation
in equation 24 is controlled (via Lemma 5) by the path length Bθ of the parameter sequence. In our generator,
the parameter vector is constant within each segment and evolves as

θ(m) = θ(m−1) + ∆(m), ∆(m) ∼ N (0, η2Id),

so that Bθ only accumulates at segment boundaries. Writing Z ∼ N (0, Id), we have

E
[
Bθ

]
=

M∑
m=2

E
∥∥∆(m)∥∥

2 = (M − 1) η E
∥∥Z

∥∥
2 ≤ cd Mη,

where cd := E∥Z∥2 depends only on the dimension d. In particular, for fixed d the expected path length
E[Bθ] grows on the order of Mη, so varying (M, η) induces different effective variation budgets Br through
the Lipschitz relation equation 28.

4.2 Learners and Teaching Strategies

Learner. Throughout the experiments, the base learner L is instantiated as Discounted LinUCB 4, which
satisfies Assumption 3 under a standard variation-budget condition on the non-stationarity; Concretely, A

can be instantiated by any standard non-stationary linear contextual bandit algorithm with O
(
T 2/3V1/3

eff
)

dynamic regret.
3See, e.g., Vershynin (2018); Lattimore & Szepesvári (2020) for standard Lipschitz and boundedness assumptions in linear

bandit models.
4See, e.g., Russac et al. (2019) for formal guarantees.
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Algorithm 1 Synthetic non-stationary contextual bandit generator
Require: Dimension d, number of actions A, horizon T , number of segments M , drift scale η > 0, context

covariance Σx (typically Id).
1: Set segment length L← ⌊T/M⌋.
2: Initialize θ(1) ∼ N (0, σ2

θId).
3: for m = 2 to M do
4: Draw a drift vector ∆(m) ∼ N (0, η2Id).
5: Set θ(m) ← θ(m−1) + ∆(m).
6: end for
7: Fix a feature map ϕ : Rd ×A → Rd (e.g., ϕ(x, a) concatenates x with a one-hot encoding of a).
8: for t = 1 to T do
9: Let m← 1 + ⌊(t− 1)/L⌋ be the current segment index.

10: Sample a context xt ∼ N (0, Σx).
11: for each action a ∈ A do
12: Compute the mean reward

r̄t(xt, a) ← σ
(
⟨θ(m), ϕ(xt, a)⟩

)
.

13: Draw noise ξt(a) (e.g., N (0, σ2)) and set

rt(a) ← clip
(
r̄t(xt, a) + ξt(a), 0, 1

)
.

14: end for
15: end for

Teacher and poisoning budget. We consider reward-only teacher interventions in our linear contextual
bandit instantiation. Fix a canonical parameter θc ∈ Rd and a squashing function σ : R → (0, 1) (e.g.,
logistic sigmoid). This induces the canonical reward model

rc(x, a) := σ
(
⟨θc, ϕ(x, a)⟩

)
, a ∈ [A], (29)

and the associated canonical greedy target policy

π†(x) ∈ arg max
a∈[A]

rc(x, a). (30)

Assumption 4 formalizes that π† is “teachable” on the canonical environment M c(ε) via the gap–distance
coupling equation 13, and that the learner L achieves the finite-time convergence guarantee equation 14
when run on M c(ε). In experiments, we use two teacher strategies: (i) a no-teacher baseline (C = 0) where
the learner observes the true rewards, and (ii) a budgeted mixture teacher (C > 0) that gradually morphs
the observed rewards toward the canonical rewards induced by θc, while respecting a total poisoning budget.

Budget accounting. Since rt, rc
t ∈ [0, 1]A, the actual per-round perturbation satisfies ∥r̃t − rt∥∞ =

λ∥rc
t − rt∥∞ ≤ λ = ct, and thus the total cost obeys

∑T
t=1 ct = Tλ = C. In all experiments we vary C

while keeping the underlying non-stationarity (M, η) fixed, to disentangle environment drift from teacher
interventions.

4.3 Experimental protocol

We report the three metrics defined in equation 9, equation 10, and equation 11: the teaching error
MismatchK , the dynamic regret DynRegK (and its per-round version DynRegK/K), and the stability mea-
sure StabK . These are exactly the quantities that appear in the Theorem 1, whose bounds are given in
equation 21–equation 23.

We use the synthetic generator in Algorithm 1 with horizon T = K, segment counts M ∈ {1, 5, 20}, drift
scales η ∈ {0, 0.1, 0.3}, and a fixed linear feature map ϕ as in the parametrization equation 25. The base

11
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Algorithm 2 Reward-mixture budgeted teacher used in experiments
Require: Total budget C ≥ 0, horizon T , canonical parameter θc, feature map ϕ(·, ·), squashing σ(·),

number of actions A.
Ensure: Poisoned reward vector r̃t ∈ [0, 1]A and per-round cost ct.

1: Set mixing rate λ← C/T (constant budget scheduler)
2: for t = 1, 2, . . . , T do
3: Observe context xt and the true reward vector rt ∈ [0, 1]A
4: if C = 0 then (no-teacher baseline)
5: r̃t ← rt, ct ← 0
6: else (mixture teacher)
7: for a = 1, 2, . . . , A do
8: rc

t (a)← σ
(
⟨θc, ϕ(xt, a)⟩

)
9: end for

10: r̃t ← (1− λ) rt + λ rc
t

11: ct ← λ (deterministic upper bound on perturbation)
12: end if
13: Reveal r̃t to the learner and continue interaction
14: end for

Table 1: Global TRS metrics under a budget sweep: mean ± standard deviation (over all (M, η) and seeds)
as the normalized poisoning budget Cfrac = C/T increases.

Cfrac DynRegK DynRegK/K MismatchK StabK

0.00 1793± 162 3.59×10−2 ± 3.2×10−3 1.46± 0.48 0.194± 0.062
0.05 1812± 203 3.62×10−2 ± 4.1×10−3 1.41± 0.50 0.193± 0.056
0.10 1844± 272 3.69×10−2 ± 5.4×10−3 1.36± 0.52 0.192± 0.050
0.20 1962± 456 3.92×10−2 ± 9.1×10−3 1.26± 0.52 0.192± 0.045

learner L is instantiated as Discounted LinUCB, which satisfies the dynamic regret condition in Assumption 3
under a standard variation-budget condition on the non-stationarity; in particular, its regret matches the
K2/3V1/3

eff scaling in equation 12, where the effective variation budget Veff for the poisoned environments
satisfies equation 6–equation 7. For each choice of (M, η) we vary the total poisoning budget C through the
normalized fraction Cfrac := C/T ∈ {0, 0.05, 0.10, 0.20}. The case Cfrac = 0 corresponds to the no-teacher
baseline, while Cfrac > 0 activates the budgeted teacher described in Section 4.1 and Assumptions 2 and 4.
All results are averaged over 5 random seeds; we report means and standard deviations.

4.4 Global TRS behavior

By Theorem 1, the three metrics MismatchK , DynRegK , and StabK defined in equation 9, equation 10, and
equation 11 satisfy the bounds equation 21–equation 23: for fixed T = K we expect (i) teaching error that
can be driven down to ε up to an O(1/K) term, (ii) average regret DynRegK/K that grows sublinearly in
C through the (Venv + C)1/3 factor in equation 22, and (iii) stability that is controlled by (Venv + C)/K as
in equation 23, where Venv is the environment drift defined in equation 3.

Table 1 summarizes the global behavior of the three metrics as we vary the normalized budget Cfrac, averaging
over all non-stationarity configurations (M, η) and seeds. We report means ± standard deviations over all
(M, η) and seeds. Dynamic regret grows mildly with the budget, while teaching error decreases and stability
remains essentially unchanged, in line with equation 21–equation 23.

Two patterns stand out and mirror the structure of equation 21–equation 23.

(1) Teaching buys alignment at a modest regret cost. As we increase the normalized budget from
Cfrac = 0 to 0.20, the average teaching error MismatchK (defined in equation 9) drops from approximately

12
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1.46 to 1.26, a relative reduction of about 13%. Over the same range, the cumulative dynamic regret
DynRegK (defined in equation 10) increases from roughly 1.8 × 103 to 2.0 × 103, corresponding to only a
∼ 9% increase in DynRegK and a similarly mild increase in the average regret DynRegK/K. In other words,
a small but well-structured amount of poisoning significantly improves how closely the learner tracks the
target policy π†, while keeping the overall regret very close to the no-teacher baseline.

This behavior is consistent with equation 22: for fixed K and moderate budgets, the upper bound
DynRegK

K
≲ K−1/3(Venv + C)1/3 + C

K
,

with Venv from equation 3, predicts that increasing C by a constant factor should only moderately increase
the average regret, especially when the environment variation already dominates. Empirically, we see exactly
this regime: the teacher can “spend” up to 20% of the horizon on poisoning without destroying the dynamic-
regret guarantees of the base algorithm in Assumption 3.

(2) Stability is preserved—and often improved in practice. Perhaps surprisingly, the stability
metric StabK defined in equation 11 remains essentially flat as we increase Cfrac. Across all non-stationarity
configurations, the average value of StabK stays around 0.19, and the standard deviation actually shrinks
slightly when the budget increases. The worst-case bound in Theorem 1(iii), equation 23, only guarantees
that StabK scales with (Venv+C)/K through the Lipschitz update condition in Assumption 5; it does not rule
out the possibility that teaching might improve stability by steering the learner toward a fixed target policy.
Our experiments show that this benign behavior is typical in the synthetic contextual bandit: the teacher
reduces large oscillations by pulling the policy sequence toward π†, so the contractive term αd(πk, πk−1) in
equation 16 dominates and smooths the trajectory.

4.5 Effect of Environment Non-stationarity

We next examine how the TRS behavior changes as we vary the non-stationarity of the environment. Recall
that in our generator the total variation budget on the mean rewards is controlled by the number of segments
M and the drift scale η through Assumption 7 and equation 24: piecewise-stationary instances with larger
M and η correspond to larger effective variation budgets Br.

For the no-teacher baseline (Cfrac = 0), we observe that DynRegK and DynRegK/K remain stable across
all (M, η), with changes well below 10% even when we move from a stationary single-segment environment
(M = 1, η = 0) to highly non-stationary cases (M = 20, η = 0.3). This matches the intuition behind the
K2/3V1/3

eff scaling in equation 12: in the finite-horizon regime we explore, the variation budgets induced by
our choices of (M, η) are not large enough to dominate the K2/3 term, so the regret curves are relatively
flat.

When we fix a non-zero budget (e.g., Cfrac = 0.10) and vary (M, η), we again see an essentially stable
dynamic regret and stability, while the teaching error MismatchK shows only mild dependence on the drift
level. This suggests that, in this regime, the teacher’s cost C is the dominant contribution to the effective
variation budget Veff ≲ Venv +C in equation 7: once C is fixed, moderate changes in Venv do not qualitatively
change the behavior.

4.6 Summary and Implications

Overall, the synthetic experiments provide a clean empirical picture that is consistent with the simultaneous
guarantees suggested by Theorem 1.

• A small poisoning budget C is enough to substantially improve alignment with a target policy
π† (small MismatchK in equation 9), while keeping dynamic regret close to that of a strong non-
stationary bandit baseline (sublinear DynRegK as in equation 22).

• The learner’s policy sequence remains stable on average; in fact, the teacher can make the policy
smoother by suppressing large, purely non-stationary-driven jumps, consistently with the Lipschitz
stability guarantee equation 23.

13
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• The qualitative behavior is robust across a range of non-stationarity levels, controlled by (M, η)
and Assumption 7, indicating that the guarantees of Theorem 1 are not an artifact of a particular
environment, but capture a genuine phenomenon in non-stationary RL with poisoning.

From a higher-level perspective, this highlights the importance of our framework: dynamic regret alone
(via equation 10) is blind to what policy is being learned, and stability alone (via equation 11) does not
prevent convergence to an undesirable policy. By explicitly coupling teaching error, regret, and stability
through equation 21–equation 23, we empirically illustrate this coupling in a horizon-one instantiation (a
non-stationary contextual bandit), which is a controlled special case of non-stationary RL. This setting
isolates the effects of drift and bounded teaching and enables a clear visualization of the achievable TRS
profiles obtained by sweeping the budget parameter C. Overall, the experiments suggest that joint control of
mismatch, regret, and stability is quantitatively achievable with standard algorithms and a simple teacher,
providing a first step toward teachable non-stationary RL systems.

5 Related Work

Non-stationary RL with variation budgets has been studied in tabular MDPs (Cheung et al., 2020; Fei et al.,
2020; Mao et al., 2025), linear and structured settings (Zhou et al., 2022; Feng et al., 2023; Wei et al., 2023;
Cheng et al., 2023), and risk-sensitive or constrained formulations (Ding et al., 2023; Wei et al., 2023). Our
formulation follows this line by adopting variation budgets on rewards and transitions.

Policy teaching and environment poisoning against RL were formalized in (Rakhsha et al., 2020), which
characterized the feasibility and cost of teaching arbitrary target policies by manipulating rewards and
transitions. Our work combines such teaching mechanisms with non-stationary RL dynamic-regret bounds.

Finally, our stability condition is inspired by the algorithmic stability literature (Hardt et al., 2016), where
Lipschitz-type update rules are used to control generalization error. Here, a similar idea quantifies the
smoothness of policy updates in the face of non-stationarity and poisoning.

6 Conclusion and Limitations

A dominant theme in non-stationary reinforcement learning is tracking: environments drift, algorithms adapt,
and success is often summarized by low dynamic regret. This criterion is well aligned with the classical
objective of maximizing cumulative reward under drift. At the same time, many deployments introduce
additional, application-driven desiderata that are not explicitly represented by dynamic regret alone—for
example, alignment to an externally specified reference behavior, and constraints on how abruptly policies
may change over time. These considerations do not expose a flaw in the standard formulation; rather, they
motivate a different problem setting and a broader evaluation lens when such requirements are present.

In this work we propose such a lens, formalized as the Teaching–Regret–Stability (TRS) Principle for Teach-
able Non-stationary Reinforcement Learning (TNRL). We model a stakeholder (designer/regulator/operator)
as a teacher who cannot directly replace the learner, but can intervene through bounded modifications of
rewards and transitions (environment poisoning) with total cost at most C. Within this setting we quantify
three objectives: (i) teaching error (policy mismatch) with respect to a fixed target policy π†, (ii) dynamic
regret measured in the true drifting environments, and (iii) policy stability measured as the step-to-step
change of the learned policy sequence. Importantly, our notion of stability concerns the trajectory of poli-
cies (Eq. equation 11), which is distinct from stability notions defined purely in terms of performance (e.g.,
stability of rewards or regret).

Our main theorem provides simultaneous guarantees showing that, under transparent structural assumptions,
there exist teacher–learner pairs for which these three quantities can be jointly controlled: the mismatch can
be driven to an arbitrarily small target (up to finite-sample terms), the dynamic regret remains sublinear in
the horizon, and the policy sequence evolves smoothly on average. Empirically, in a non-stationary contextual
bandit instantiation, we observe that modest teaching budgets can substantially reduce mismatch while
leaving regret close to a strong non-stationary baseline and keeping policy stability essentially unchanged.
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We view these results as a first step toward principled study of teachability under drift: a complementary
perspective to regret-based tracking that becomes relevant precisely when stakeholders impose objectives
beyond cumulative reward, such as reference-policy alignment and trajectory-level stability.

Extension to time-varying targets. Our analysis assumes a stationary reference policy π†, which iso-
lates the effect of environmental drift from changes in stakeholder objectives. In applications where the
desired reference behavior itself evolves, one can replace π† by a target sequence {π†

k} and introduce a
target-variation budget V† (e.g., a cumulative distance

∑K−1
k=1 d(π†

k+1, π†
k) under the same metric d used in

the mismatch/stability definitions). Conceptually, the TRS guarantees would then acquire additional terms
scaling with V†, in direct analogy to how non-stationary regret bounds depend on Venv. A full treatment
requires choosing the appropriate notion of variation (policy-space vs. induced occupancy) and tracking how
it composes with the teacher’s budget C, which we leave to future work. Future work includes extending
the framework to richer forms of non-stationarity, partial observability, and time-varying target policies
{π†

k} with an explicit target-variation budget, as well as developing learners explicitly optimized for these
multi-criteria requirements.
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A Proofs for Lemmas 1–3

A.1 Auxiliary bounds

Lemma 6 (Effective variation under poisoning). For any true environment sequence {Mk}K
k=1 and any

poisoned sequence {M̃k}K
k=1 with per-episode costs {ck}K

k=1 defined in equation 4, the effective variation
budget equation 6 satisfies

Veff ≤ Venv + 2
K∑

k=1
ck = Venv + 2Ctot ≤ Venv + 2C. (31)

Proof. We bound the transition-variation part; the reward part is analogous. For any k ≥ 2 and any (s, a),
by the triangle inequality,

∥P̃k(·|s, a)−P̃k−1(·|s, a)∥1 ≤ ∥P̃k(·|s, a)−Pk(·|s, a)∥1+∥Pk(·|s, a)−Pk−1(·|s, a)∥1+∥Pk−1(·|s, a)−P̃k−1(·|s, a)∥1.

Taking sups,a on both sides yields

sup
s,a
∥P̃k(·|s, a)−P̃k−1(·|s, a)∥1 ≤ sup

s,a
∥P̃k(·|s, a)−Pk(·|s, a)∥1+sup

s,a
∥Pk(·|s, a)−Pk−1(·|s, a)∥1+sup

s,a
∥P̃k−1(·|s, a)−Pk−1(·|s, a)∥1.

Summing over k = 2, . . . , K telescopes the poisoning terms and gives

K∑
k=2

sup
s,a
∥P̃k(·|s, a)− P̃k−1(·|s, a)∥1 ≤ VP + 2

K∑
k=1

sup
s,a
∥P̃k(·|s, a)− Pk(·|s, a)∥1.

An identical argument for rewards yields

K∑
k=2

sup
s,a
|r̃k(s, a)− r̃k−1(s, a)| ≤ Vr + 2

K∑
k=1

sup
s,a
|r̃k(s, a)− rk(s, a)|.

Adding the two inequalities and using the definition of ck in equation 4 proves equation 31.
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Lemma 7 (Per-episode value perturbation (finite-horizon simulation bound)). Fix an episode k and two
MDPs Mk = (S,A, Pk, rk, ρ1, γ) and M̃k = (S,A, P̃k, r̃k, ρ1, γ) with the same (S,A, ρ1, γ) and horizon H.
Let ck be as in equation 4. Then for any policy π,

∣∣Vk(π)− Ṽk(π)
∣∣ ≤ κH,γ ck, κH,γ :=

H−1∑
t=0

γt

︸ ︷︷ ︸
=: Hγ

+ 1
2H2

γ . (32)

Proof. For h ∈ {1, . . . , H + 1}, let V π
k,h(s) and Ṽ π

k,h(s) denote the expected discounted return starting from
state s at step h when following π in Mk and M̃k, respectively, with the convention V π

k,H+1 ≡ Ṽ π
k,H+1 ≡ 0.

Define ∆h := ∥V π
k,h − Ṽ π

k,h∥∞.

By the Bellman recursion and the triangle inequality, for any s,∣∣V π
k,h(s)− Ṽ π

k,h(s)
∣∣ =

∣∣∣Ea∼π(·|s)

[
rk(s, a) + γ Es′∼Pk(·|s,a)V

π
k,h+1(s′)

]
− Ea∼π(·|s)

[
r̃k(s, a) + γ Es′∼P̃k(·|s,a)Ṽ

π
k,h+1(s′)

]∣∣∣
≤ sup

s,a
|rk(s, a)− r̃k(s, a)|+ γ sup

s,a

∣∣∣EPk(·|s,a)V
π

k,h+1 − EP̃k(·|s,a)Ṽ
π

k,h+1

∣∣∣
≤ sup

s,a
|rk(s, a)− r̃k(s, a)|+ γ ∆h+1 + γ sup

s,a

∣∣∣EPk(·|s,a)Ṽ
π

k,h+1 − EP̃k(·|s,a)Ṽ
π

k,h+1

∣∣∣.
For the last term, use the standard total-variation inequality: for any bounded f with ∥f∥∞ ≤ B, |Epf −
Eqf | ≤ B

2 ∥p− q∥1. Since rewards lie in [0, 1], we have ∥Ṽ π
k,h+1∥∞ ≤ Hγ . Thus,

sup
s,a

∣∣∣EPk(·|s,a)Ṽ
π

k,h+1 − EP̃k(·|s,a)Ṽ
π

k,h+1

∣∣∣ ≤ Hγ

2 sup
s,a
∥Pk(·|s, a)− P̃k(·|s, a)∥1.

Combining the bounds gives the recursion

∆h ≤ sup
s,a
|rk(s, a)− r̃k(s, a)|+ γ ∆h+1 + γ

Hγ

2 sup
s,a
∥Pk(·|s, a)− P̃k(·|s, a)∥1.

Unrolling from h = 1 to H and using ∆H+1 = 0 yields

∆1 ≤ Hγ sup
s,a
|rk(s, a)− r̃k(s, a)|+

H2
γ

2 sup
s,a
∥Pk(·|s, a)− P̃k(·|s, a)∥1.

Finally, |Vk(π)− Ṽk(π)| ≤ ∆1 (values start from ρ1), and ck is the sum of the two sup terms in equation 4,
which proves equation 32.

A.2 Proof of Lemma 1

Proof of Lemma 1. Fix ε > 0 and assume C ≥ Cmin(ε). By Assumption 4(iii), the teacher may choose
M̃k ≡M c(ε) for all k, which satisfies Ctot ≤ C.

Since the learner interacts with the fixed canonical MDP M c(ε) for K episodes, Assumption 4(ii) gives

1
K

K∑
k=1

E
[

V c(π†)− V c(πk)
]
≤ Gcε + Õ

( 1
K

)
.

Applying the coupling inequality in Assumption 4(i), V c(π†)− V c(πk) ≥ Gcd(πk, π†), and averaging over k
yields

MismatchK = 1
K

K∑
k=1

E
[
d(πk, π†)

]
≤ ε + Õ

( 1
K

)
,

which is exactly equation 17.
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A.3 Proof of Lemma 2

Proof of Lemma 2. By Assumption 3, for any poisoned environment sequence with effective variation budget
Veff ,

DynReg(M̃)
K ≤ Õ

(
K2/3V1/3

eff
)
.

By Lemma 6, Veff ≤ Venv + 2Ctot ≤ Venv + 2C. Plugging this into the dynamic-regret bound yields

DynReg(M̃)
K ≤ Õ

(
K2/3(Venv + 2C)1/3

)
= Õ

(
K2/3(Venv + C)1/3

)
,

where the last step absorbs the constant factor 2 into the Õ(·) notation. This proves equation 18.

A.4 Proof of Lemma 3

Proof of Lemma 3. For each episode k, let Ṽk(π) denote the value of policy π in the poisoned MDP M̃k. Let
π̃⋆

k ∈ arg maxπ Ṽk(π) be an optimal policy in M̃k. Then

DynRegK =
K∑

k=1

(
Vk(π⋆

k)− Vk(πk)
)

=
K∑

k=1

(
Vk(π⋆

k)− Ṽk(π⋆
k)︸ ︷︷ ︸

(I)

+ Ṽk(π⋆
k)− Ṽk(πk)︸ ︷︷ ︸

(II)

+ Ṽk(πk)− Vk(πk)︸ ︷︷ ︸
(III)

)
.

We bound the three terms.

Step 1: terms (I) and (III) via value perturbation. By Lemma 7, for any policy π, |Vk(π)− Ṽk(π)| ≤
κH,γck. Applying this to π = π⋆

k and π = πk yields

(I) + (III) ≤ 2κH,γck.

Step 2: term (II) is upper bounded by the poisoned regret. Since π̃⋆
k is optimal for Ṽk, we have

Ṽk(π⋆
k) ≤ Ṽk(π̃⋆

k), hence
(II) = Ṽk(π⋆

k)− Ṽk(πk) ≤ Ṽk(π̃⋆
k)− Ṽk(πk).

Summing over k gives
K∑

k=1
(II) ≤

K∑
k=1

(
Ṽk(π̃⋆

k)− Ṽk(πk)
)

= DynReg(M̃)
K .

Step 3: combine and use the budget constraint. Putting the bounds together,

DynRegK ≤ DynReg(M̃)
K + 2κH,γ

K∑
k=1

ck ≤ DynReg(M̃)
K + 2κH,γCtot ≤ DynReg(M̃)

K + 2κH,γC.

This is equation 19 with the constant in O(C) equal to 2κH,γ .

B Additional Theoretical Results

B.1 Proof of Lemma 4

We provide a complete proof of the stability bound stated in Lemma 4.

Proof of Lemma 4. For brevity, write

dk := d(πk, πk−1), ∆P
k := sup

s,a

∥∥P̃k(· | s, a)− P̃k−1(· | s, a)
∥∥

1,

18
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∆r
k := sup

s,a

∣∣r̃k(s, a)− r̃k−1(s, a)
∣∣.

By Assumption 5, for all k ≥ 3 we have

dk ≤ α dk−1 + LP ∆P
k + Lr∆r

k. (33)

Step 1: Unrolling the recursion. We first show by induction that for all k ≥ 3,

dk ≤ αk−2d2 +
k∑

j=2
αk−j

(
LP ∆P

j + Lr∆r
j

)
. (34)

For k = 3, equation 33 gives
d3 ≤ αd2 + LP ∆P

3 + Lr∆r
3,

which coincides with equation 34 for k = 3. Assume equation 34 holds for some k ≥ 3. Then, using
equation 33,

dk+1 ≤ αdk + LP ∆P
k+1 + Lr∆r

k+1

≤ α
(

αk−2d2 +
k∑

j=3
αk−j(LP ∆P

j + Lr∆r
j)

)
+ LP ∆P

k+1 + Lr∆r
k+1

= αk−1d2 +
k∑

j=3
α(k+1)−j(LP ∆P

j + Lr∆r
j) + α0(LP ∆P

k+1 + Lr∆r
k+1)

= α(k+1)−2d2 +
k+1∑
j=3

α(k+1)−j(LP ∆P
j + Lr∆r

j),

which is exactly equation 34 with k replaced by k + 1. Thus equation 34 holds for all k ≥ 3.

Step 2: Bounding the average policy change. By definition,

StabK = 1
K − 1

K∑
k=2

dk = 1
K − 1

(
d2 +

K∑
k=3

dk

)
.

Using equation 34 for k ≥ 3, we obtain

K∑
k=2

dk ≤ d2 +
K∑

k=3

(
αk−2d2 +

k∑
j=2

αk−j(LP ∆P
j + Lr∆r

j)
)

= d2

K∑
k=2

αk−2 +
K∑

k=3

k∑
j=2

αk−j(LP ∆P
j + Lr∆r

j).

We bound the two terms separately. For the first term, since α ∈ [0, 1), the geometric series is bounded:

K∑
k=2

αk−2 =
K−2∑
m=0

αm ≤ 1
1− α

,

so
1

K − 1d2

K∑
k=2

αk−2 ≤ d2

(1− α)(K − 1) = O
( 1

K

)
.

For the second term, define

S :=
K∑

k=3

k∑
j=2

αk−j(LP ∆P
j + Lr∆r

j).

19
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We exchange the order of summation:

S =
K∑

j=2
(LP ∆P

j + Lr∆r
j)

K∑
k=j

αk−j .

Again using α ∈ [0, 1) and the geometric series,

K∑
k=j

αk−j =
K−j∑
m=0

αm ≤ 1
1− α

,

hence

S ≤ 1
1− α

K∑
j=2

(LP ∆P
j + Lr∆r

j).

Therefore

StabK ≤
1

K − 1 ·
1

1− α

K∑
j=2

(LP ∆P
j + Lr∆r

j) +O
( 1

K

)
.

Using LP ∆P
j + Lr∆r

j ≤ (LP + Lr)(∆P
j + ∆r

j) and the fact that, up to universal constants,

K∑
j=2

(∆P
j + ∆r

j) ≲ Venv + C

(Assumptions 1 and 2), we obtain

StabK ≤ LP + Lr

1− α
· Venv + C

K − 1 +O
( 1

K

)
,

which is equivalent to equation 20 after replacing K − 1 by K in the denominator.

Remark 3. The parameter α ∈ [ 0, 1) in Assumption 5 plays the role of a contraction factor for the policy
update: when the environment is fixed (∆P

k = ∆r
k = 0), the recursion dk ≤ αdk−1 implies that successive

policy changes decay at rate αk. The bound
∑K

k=j αk−j ≤ (1 − α)−1 used above is the standard geometric-
series estimate associated with this contraction.

B.2 Proof of Lemma 5

Proof. Fix t and (x, a). Then∣∣r̄t+1(x, a)− r̄t(x, a)
∣∣ =

∣∣σ(⟨θt+1, ϕ(x, a)⟩)− σ(⟨θt, ϕ(x, a)⟩)
∣∣

≤ Lσ

∣∣⟨θt+1 − θt, ϕ(x, a)⟩
∣∣ (by Lipschitzness of σ)

≤ Lσ∥θt+1 − θt∥2∥ϕ(x, a)∥2 (Cauchy–Schwarz)
≤ LσLϕ∥θt+1 − θt∥2,

where we used the uniform bound on ∥ϕ(x, a)∥2 in the last step. Taking the supremum over (x, a) yields∥∥r̄t+1 − r̄t

∥∥
∞ ≤ LσLϕ∥θt+1 − θt∥2.

Summing over t = 1, . . . , T − 1 gives

T −1∑
t=1

∥∥r̄t+1 − r̄t

∥∥
∞ ≤ LσLϕ

T −1∑
t=1
∥θt+1 − θt∥2 = LσLϕBθ,

which is exactly equation 28.
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Figure 1: Average dynamic regret DynRegK/K versus normalized poisoning cost per step C/T . Each curve
corresponds to a different non-stationarity configuration (M, η); shaded regions denote standard deviation
over seeds.

B.3 Expected path length of the synthetic generator

Lemma 8 (Expected path length of the synthetic generator). In Algorithm 1, let Bθ be defined as in
equation 27. Then there exists a constant cd > 0 depending only on the dimension d such that E[Bθ] ≤ cdMη.

B.4 Evaluation Metrics

We report three metrics that correspond directly to the quantities in Theorem 1.

Teaching error (policy mismatch). We measure how well the teacher succeeds at steering the learner
towards the fixed target policy π† by the average mismatch

MismatchK = 1
K

K∑
k=1

E
[
d(πk, π†)

]
,

where d(·, ·) is the ℓ1 distance between action distributions, taken uniformly over contexts.

Dynamic regret in the true environment. Although all updates happen in the (possibly poisoned)
environments, performance is evaluated in the true non-stationary environment. We therefore track the
cumulative dynamic regret

DynRegK =
K∑

k=1

(
Vk(π⋆

k)− Vk(πk)
)
,

where Vk(π) denotes the expected return of policy π in the true environment at episode k, and π⋆
k is the

per-episode optimal policy. We report both the cumulative regret and the average regret DynRegK/K.

Policy stability. Finally, we quantify the smoothness of the policy trajectory via the average step-to-step
change

StabK = 1
K − 1

K∑
k=2

E
[
d(πk, πk−1)

]
.

Small values of StabK indicate that the learner updates its policy gradually over time, whereas large values
point to unstable behavior with frequent drastic shifts.

C Additional Experimental Figures
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Figure 2: Teaching error MismatchK versus normalized poisoning cost per step C/T . Larger budgets con-
sistently reduce policy mismatch across all non-stationarity levels; shaded regions denote standard deviation
over seeds.
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Figure 3: Policy stability StabK versus normalized poisoning cost per step C/T . Stability remains essen-
tially flat, indicating that teaching does not destabilize the policy updates; shaded regions denote standard
deviation over seeds.
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Figure 4: Regret–mismatch frontier for each M . Each point is the mean over seeds of (Mismatch, DynReg/K)
for a specific (η, C/T ); marker shapes indicate η and colors match the η legend. A translucent ellipse shows
the empirical covariance (1σ) of seed-level outcomes. The starred marker highlights the minimum mean
dynamic regret within each panel.
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Figure 5: Paired seed trajectories in mismatch–dynamic regret space for each (η, M). Gray arrows connect the
same seed from the baseline (C/T = 0) through increasing budgets, with arrowheads at the largest budget.
Hollow markers denote teacher budgets (C/T ∈ {0.05, 0.10, 0.20}), and filled dots denote the baseline.
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