
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SELF-IMPROVING DIFFUSION MODELS
WITH SYNTHETIC DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

The artificial intelligence (AI) world is running out of real data for training in-
creasingly large generative models, resulting in accelerating pressure to train on
synthetic data. Unfortunately, training new generative models with synthetic data
from current or past generation models creates an autophagous (self-consuming)
loop that degrades the quality and/or diversity of the synthetic data in what has been
termed model autophagy disorder (MAD) and model collapse. Current thinking
around model autophagy recommends that synthetic data is to be avoided for model
training lest the system deteriorate into MADness. In this paper, we take a different
tack that treats synthetic data differently from real data. Self-IMproving diffusion
models with Synthetic data (SIMS) is a new training concept for diffusion models
that uses self-synthesized data to provide negative guidance during the generation
process to steer a model’s generative process away from the non-ideal synthetic
data manifold and towards the real data distribution. We demonstrate that SIMS
is capable of self-improvement; it establishes new records based on the Fréchet
inception distance (FID) metric for CIFAR-10 and ImageNet-64 generation and
achieves competitive results on FFHQ-64 and ImageNet-512. Moreover, SIMS is,
to the best of our knowledge, the first prophylactic generative AI algorithm that can
be iteratively trained on self-generated synthetic data without going MAD. As a
bonus, SIMS can adjust a diffusion model’s synthetic data distribution to match any
desired in-domain target distribution to help mitigate biases and ensure fairness.

1 INTRODUCTION

Thanks to the ongoing rapid advances in the field of generative artificial intelligence (AI), we are
witnessing a proliferation of synthetic data of various modalities that have been rapidly integrated
into popular online platforms. The voracious appetite of generative models for training data (Yahoo-
Finance, 2024; The Economist, 2023a;b; Villalobos et al., 2022) has caused practitioners to train
new models either partially or completely using synthetic data from previous generations of models.
Synthetic training data is actually hard to avoid, because many of today’s popular training datasets
have been inadvertently polluted with synthetic data (Alemohammad et al., 2023; 2024).

Unfortunately, there are hidden costs to synthetic data training. Training new generative models with
synthetic data from current or past generation models creates an autophagous (self-consuming) loop
(Alemohammad et al., 2023; 2024) that can have a detrimental effect on performance. In the limit
over many generations of training, the quality and/or diversity of the synthetic data will decrease, in
what has been termed Model Autophagy Disorder (MAD) (Alemohammad et al., 2023; 2024) and
Model Collapse (Shumailov et al., 2024). MAD generative models also have major fairness issues, as
they produce increasingly biased samples that lead to inaccurate representations across the attributes
present in real data (e.g., related to demographic factors such as gender and race) (Wyllie et al., 2024).

MADness arises because synthetic data, regardless of how accurately it is modeled and generated, is
still an approximation of samples from the real data distribution.1 An autophagous loop causes any
approximation errors to be compounded, ultimately resulting in performance deterioration and bias
amplification.

1In this paper, by real data we mean direct samples from a target distribution. For example, in the context of
natural images, real data would be digital photographs taken by a camera in a physical space.
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Safely advancing the performance of generative AI systems in the synthetic data era requires that we
make progress on both of the following open questions:

Q1. How can we best exploit synthetic data in generative model training to improve real data
modeling and synthesis?

Q2. How can we exploit synthetic data in generative model training in a way that does not lead to
MADness in the future?

In this paper, we develop Self-IMproving diffusion models with Synthetic data (SIMS), a new learning
framework for generative models that addresses both of the above issues simultaneously. Our key
insight is that, to most effectively exploit synthetic data in training a generative model, we need
to change how we employ synthetic data. Instead of naïvely training a model on synthetic data as
though it were real, SIMS guides the model towards better performance but away from the patterns
that arise from synthetic data training.

We focus here on SIMS for diffusion models in the context of image generation, because their robust
guidance capabilities enable us to efficiently guide them away from their own generated synthetic data.
In particular, we use a base model’s own synthetic data to obtain a synthetic score function associated
with the synthetic data manifold and use it to provide negative guidance during the generation process.
By doing so, we steer the model’s generative process away from the non-ideal synthetic data manifold
and towards the real data distribution.

To summarize, given a training dataset, SIMS performs the following four steps to obtain a self-
improved diffusion model using self-generated synthetic data:

Algorithm 1 SIMS Procedure

Input: Training dataset D
Hyperparameters: Synthetic dataset size ns, guidance strength ω, training budget B

1: Train base diffusion model: Use dataset D to train the diffusion model using standard training,
resulting in the score function sθr(xt, t).

2: Generate auxiliary synthetic data: Create an internal synthetic dataset S by generating ns = |S|
samples from the base diffusion model.

3: Train auxiliary diffusion model: Fine-tune the base model using only S within the training
budget B to obtain sθs(xt, t). Discard S.

4: Extrapolate the score function: Use sθs(xt, t) to extrapolate backwards from sθr(xt, t) to the
SIMS score function

sθ(xt, t) = sθr(xt, t)− ω(sθs(xt, t)− sθr(xt, t)) = (1 + ω)sθr(xt, t)− ωsθs(xt, t).

Synthesize: Generate synthetic data from the model using the SIMS score function sθ(xt, t).

In the paper we show that SIMS results in self-improvement; by obtaining the auxiliary model
score function using models own synthetic data and using it as negative guidance we significantly
improve upon the performance of the base model. SIMS also acts as a MAD-prophylactic; It is,
to the best of our knowledge, the first generative AI model that can be iteratively trained on self-
generated, synthetic data without going MAD. Finally, we show SIMS can be used for distribution
controllability; it can adjust a diffusion model’s synthetic data distribution to match any desired
in-domain target distribution. This can help mitigate biases and ensure model fairness, all while
improving the quality of the generated outputs

Our findings clearly demonstrate that synthetic data can actually be both useful and safe for learning
diffusion models and counters recent recommendations (Alemohammad et al., 2023; 2024; Shumailov
et al., 2024) that synthetic data is to be avoided in learning. The difference in conclusions is due to
SIMS’ unique approach: while training directly on (real data aggregated with) synthetic data causes a
model to drift away from the true data distribution, SIMS instead uses the synthetic data to explicitly
avoid the synthetic data manifold and extrapolate closer to the true data distribution.
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2 BACKGROUND

Diffusion models. Let p denote the distribution we seek to model. Diffusion models gradually
diffuse the training data over time t ∈ [0, T ] and sample from p by inversely modeling the forward
diffusion process (Ho et al., 2020; Song and Ermon, 2019). Typically, this diffusion process involves
transforming instances drawn from p into noisy versions with scale schedule at and noise schedule
σt at time t. Hence, the conditional distribution of the noisy sample xt at time t can be formalized as

qt(xt|x0) = N (xt | µ = atx0,Σ = σtI), (1)

where x0 is the data instance drawn from p. The diffusion process can be formalized using a stochastic
differential equation (SDE) (Song and Ermon, 2019)

dx = f(x, t)dt+ g(t)dw, (2)

where w is the standard Wiener process. Different choices for f(x, t) and g(t) result in different
scaling at and noise σt schedules in (1). We refer the reader to (Karras et al., 2024a) for more details
on different SDE formulations for diffusion models.

The solution to the SDE in (2) is another SDE described by (Anderson, 1982)

dx =
[
f(x, t)− g2(t)∇xt

log qt(xt)
]
dt+ g(t)dw̄, (3)

where dw̄ is the standard Wiener process when time flows in the reverse direction, and qt is the
unconditional distribution in (1) obtained by the forward SDE through (2). The solution of the SDE in
(3) starting from the samples of xT ∼ qT results in samples x ∼ q0(x0) that enable data generation
from p.

Since the score function ∇xt
log qt(xt) is unknown, the objective is to train a neural network with

parameters θ to approximate the score function sθ(xt, t) ≈ ∇xt
log qt(xt) through

min
θ

1

|D|
∑
x0∈D

Et∈[0,T ],xt∼qt(xt|x0)

[
λ(t)∥sθ(xt, t)−∇xt

log qt(xt)∥2
]
, (4)

where D is the training set containing samples from p, and λ(t) is a temporal weighting function.
The SDE in (3) can be solved by replacing ∇xt log qt(xt) with sθ(xt, t) and performing numerical
integration. For conditional generation, one can also impose a condition on the score function during
training to obtain the conditional score.

Self-consuming generative models. Let A(·) represent an algorithm that, given a training dataset D
as input, constructs a generative model with distribution G, i.e., G = A(D). Consider a sequence of
generative models Gt = A(Dt) for t ∈ N, where each model approximates some reference (typically
real data) probability distribution pr.
Definition 1. Self-consuming (autophagous) loop (Alemohammad et al., 2023; 2024): An au-
tophagous loop is a sequence of distributions (Gt)t∈N where each generative model Gt is trained on
data that includes samples from previous generation models (Gτ )t−1

τ=1.
Definition 2. Model Authophagy Disorder (MAD) (Alemohammad et al., 2023; 2024): Let dist(·, ·)
denote a distance metric on distributions. A MAD generative process is a sequence of distributions
(Gt)t∈N such that E[dist(Gt, pr)] increases with t.

One can form a variety of self-consuming loops based on how Dt, the training data at generation
t, is constructed from real data Dt

r drawn from pr and synthetic data Dt
s generated by the model

Gt. Let the first generation model be trained solely on real data, i.e, G1 = A(Dr). For subsequent
generation models Gt = A(Dt), t ≥ 2, the three main loop types proposed in (Alemohammad et al.,
2023; 2024) are based on how Dt is constructed:

• Fully synthetic loop: Each model Gt for t ≥ 2 trains exclusively on synthetic data sampled from
models from the previous generation model, i.e., Dt = Dt−1

s .

• Synthetic augmentation loop: Each model Gt for t ≥ 2 trains on the dataset Dt = Dr ∪ Dt−1
s

comprising a fixed set of real data Dr from pr plus synthetic data Dt−1
s from the previous

generation model.
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• Fresh data loop: Each model Gt for t ≥ 2 trains on the dataset Dt = Dt
r ∪ Dt−1

s comprising
a fresh (new) set of real data Dt

r drawn from pr plus synthetic data Dt−1
s from the previous

generation model.

This paper focuses on the first two loop types above, which in general deteriorate into MADness of
some kind. In particular, for the fully synthetic loop, it has been shown theoretically and experimen-
tally that E[dist(G∞, pr)] → ∞ (Alemohammad et al., 2023; 2024). In this scenario, often referred
to as “model collapse” (Shumailov et al., 2024) in the literature, the sequence of models drifts away
from the real data distribution until it no longer resembles it.

Mitigating MADness. Several groups have developed methods to mitigate MADness, which we
define as ensuring that E[dist(G∞, pr)] ≤ C for some bounded C. In words, the performance of
a mitigated-MAD family of models does not diverge into full MADness (C → ∞) but plateaus at
a level that does not exceed the performance of the first-generation model, i.e., E[dist(G∞, pr)] >
E[dist(G1, pr)].

(Bertrand et al., 2023; Feng et al., 2024a) show that MADness can be mitigated in the synthetic
augmentation loop. The continuous inclusion of real data in the training set prevents the model from
drifting too far from the initial model. (Dohmatob et al., 2024a; Gerstgrasser et al., 2024) show that it
is possible to mitigate MADness without incorporating real data in every generation, as long as the
synthetic dataset size increases linearly across generations by accumulating synthetic data from all
previous generations.

Preventing MADness. To more completely address the problem of performance degradation in self-
consuming loops, one should aim to not just mitigate but prevent MADness, where the sequence of
model generations at least maintains and ideally improves on the performance of the first-generation
base model, i.e., E[dist(G∞, pr)] ≤ E[dist(G1, pr)].

The above results involve a closed loop, where the only external information about the target
distribution pr is a fixed initial real dataset. Incorporating new external information in self-consuming
loops — such as a verifier to oversee synthetic data selection Feng et al. (2024b); Setlur et al.
(2024), external guidance during the generation process Gillman et al. (2024), or fresh real data
(Alemohammad et al., 2023; 2024) — has been shown to prevent MADness.

Research on self-consuming loops has not yet identified an approach where the inclusion of synthetic
data in a closed loop with no external knowledge not only mitigates MADness across generations
but completely prevents it. In the next section, we introduce SIMS, and in Section 3.1, we show
that using SIMS as the training algorithm A(·) in the synthetic augmentation loop can fully prevent
MADness.

3 SELF-IMPROVING DIFFUSION MODELS

Experimental setup. We test SIMS on four different datasets D: 32× 32 resolution CIFAR-10 (50k
images) (Krizhevsky and Hinton, 2009), 64× 64 resolution FFHQ-64 (70k images) (Karras et al.,
2019), 64 × 64 resolution ImageNet-64 (1.2M images), and 512 × 512 resolution ImageNet-512
(1.2M images) (Deng et al., 2009). For the first step of the Algorithm 1, we use pre-trained diffusion
models from (Karras et al., 2024a; 2022). For CIFAR-10 and FFHQ-64, we use the unconditional
Variance Preserving (VP) variant of the EDM diffusion model from (Karras et al., 2022) as the
base model for SIMS. For ImageNet-64 and ImageNet-512, we use the conditional EDM2-S model
from (Karras et al., 2024a). While we use RGB-space diffusion models for CIFAR-10, FFHQ-64,
and ImageNet-64, the ImageNet-512 model operates as a latent diffusion model with a latent space
dimensionality of 64× 64× 4. To train each auxiliary model, we first generate ns = |S| synthetic
data samples ( ns = 100k for CIFAR-10 and FFHQ-64 and ns = 1.5M for ImageNet ) from the base
model and then fine-tune the base model using S and the same training configuration as the base
model. Finally, we generate samples according to the last step of Algorithm 1. For evaluations, we
report the Fréchet Inception Distance (FID) (Heusel et al., 2017) using 50k generated images.

Quantitative Results. To demonstrate that SIMS achieves self-improvement, we need to show that
the SIMS diffusion model produced by Algorithm 1 outperforms the base model. In Figure 1, we
plot the FID between the SIMS model and the real data distribution as a function of the guidance
strength parameter ω and the training budget B as measured by the number of million-images-seen
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Figure 1: SIMS consistently self-improves diffusion models. Top row: FID between the SIMS model from
Algorithm 1 and the real data distribution as a function of the guidance parameter ω at three different checkpoints
of the training budget B as measured by the number of million-images-seen (Mi) during fine tuning of the
auxiliary model. Bottom row: FID of the SIMS model as a function of training budget for three different values
of the guidance parameter ω.

(Mi) during fine tuning of the auxiliary model. In the top row, ω = 0 corresponds to no guidance,
which establishes the FID attained by the base model. The key takeaway from Figure 1 is that, across
all four datasets, even a small negative guidance ω and a small amount of fine-tuning (small Mi)
results in a SIMS model that outperforms the base model. Moreover, for properly tuned guidance and
training budget, the self-improvement can be substantial: for CIFAR-10, FFHQ-64, ImageNet-64, and
ImageNet-512, SIMS yields a relative FID self-improvement of 32.5%, 56.9%, 41.8%, and 32.4%,
respectively.

SIMS achieves a new state-of-the-art FID for CIFAR-10 and ImageNet-64, outperforming the FIDs
reported by (Zheng and Yang, 2024; Karras et al., 2024b). Additionally, SIMS delivers competitive
results on FFHQ-64 and ImageNet-512 generation. Detailed baseline comparisons with other methods
and ablation studies on reducing function evaluations and the impact of synthetic datasets for fine-
tuning the auxiliary model are provided in Appendix A.

3.1 MAD PREVENTION USING SIMS

3.1.1 TWO DIMENSIONAL GAUSSIAN DATA IN A SYNTHETIC AUGMENTATION LOOP

We now use a simple low-dimensional experiment to demonstrate the effectiveness of SIMS in
preventing the negative impacts of synthetic data training that can lead to MADness. Recall from
Section 2 that demonstrating that SIMS prevents MAD for a sequence of models (Gt)t∈N in a
self-consuming loop requires showing that E[dist(G∞, pr)] ≤ E[dist(G1, pr)].

Experimental Setup. We start with the task of learning a simple two-dimensional Gaussian distribu-
tion pr = N (µ,Σ) with mean µ = [0, 0]⊤ and covariance Σ = [2, 1; 1, 2] using a DDPM diffusion
model Ho et al. (2020); Álvaro Jiménez (2023). We sample a real dataset Dr of size |Dr| = 1000
from N (µ,Σ) and train the base model G1 = A(Dr). We then form a synthetic augmentation loop,
where for generation t of the loop, Gt = A(Dr ∪ Dt−1

s ), where Dt−1
s is synthetic data generated

from the previous generation model Gt−1. We quantify the performance of the models in terms of the
Wasserstein distance dist(·, ·) between the synthetic and real data distributions E[dist(Gt, pr)].

We compare two different training approaches:

• Standard training, where we train the generation-t model on the dataset Dt = Dr ∪ Dt−1
s in

which the real data is polluted with synthetic data from the previous generation.
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Figure 2: SIMS simultaneously self-improves and prevents MADness in the synthetic augmentation
self-consuming loop. We compare standard synthetic augmentation training (Alemohammad et al., 2023; 2024)
to SIMS training in a synthetic augmentation loop across 100 generations for two-dimensional Gaussian data.
Standard training corresponds to guidance ω = 0 in all cases. At top left, we confirm SIMS’s self-improvement
by noting that, for a wide range of ω, the expected Wasserstein distance E[dist(G1, pr)] between the first
generation model G1 = A(Dr) and the real data distribution drops. At the bottom, we confirm that SIMS can act
a prophylactic for MADness. We plot E[dist(Gt,pr)]

E[dist(G1,pr)]
, the ratio of the expected Wasserstein Distance at generation

t to that at generation 1 for |Dt
s| = 250 and 125. The green/orange/purple curves correspond to weak MADness

mitigation/strong MADness mitigation/MADness prevention. At top right, we plot the normalized expected
Wasserstein distance at convergence as a function of ω for four different synthetic data sizes |Dt

s|. A guidance
parameter of ω ≈ 3 results in either strong MADness mitigation or complete MADness prevention.

• SIMS, where we train the generation-t base model on the polluted dataset Dt.

For both approaches, we trained the base model for 100 epochs on Dr. For SIMS, we obtained the
auxiliary model at generation t by fine-tuning the base model for 50 epochs using ns = |S| = 2000
data points synthesized from the base model. We calculated expectations over 1000 independent
runs, with each run starting with a new real dataset Dr drawn from pr and continuing the synthetic
augmentation loop for 100 generations. When there is no guidance (ω = 0), standard training and
SIMS coincide and produce identical models.

Results. First, we confirm SIMS’s self-improvement. Figure 2 top left plots the expected Wasserstein
distance E[dist(G1, pr)] for the first generation model G1 = A(Dr) for various values of ω in SIMS.
We see clearly that SIMS has exploited its self-synthesized data to self-improve over the base model.
trained on purely real data (there is no synthetic data pollution in generation 1).

Next, we confirm that SIMS can act a prophylactic against MADness. In Figure 2 bottom, we plot
E[dist(Gt,pr)]
E[dist(G1,pr)]

, the ratio of the expected Wasserstein Distance at generation t to that at generation 1,
over 100 synthetic augmentation loop generations for two synthetic dataset sizes: |Ds| = 250 and
125. With standard training (ω = 0, green curves), we observe that the Wasserstein distance ratio
quickly increases to a value much larger than 1, confirming MADness. In words, the performance of
models that aggregate the real and synthetic data together and use standard training deteriorates with
each generation t in the synthetic augmentation loop until it converges to a stable point, consistent
with the findings regarding MADness mitigation in Bertrand et al. (2023); Gillman et al. (2024);
Dohmatob et al. (2024b). However, as ω increases (orange curves), the SIMS Wasserstein distance
ratio remains closer to 1, meaning that the negative impacts of synthetic training have been reduced.
Moreover, for an optimized ω (purple curves), the SIMS Wasserstein distance ratio does not deviate
from 1, meaning that MADness has been completely prevented.
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Figure 3: SIMS acts as a prophylactic against MADness for realistic training datasets polluted with
synthetic data. For the CIFAR-10 (50k real images, left) and FFHQ-64 (70k real images, right) datasets, we
plot the FID of the four training scenarios from Section 3.1.2 as a function of the amount of polluting synthetic
data |Dp|. While the modeling performance of standard training is strongly affected by increasing amounts
of synthetic data pollution (compare G2

ST-P to G2
ST-I), the performance of SIMS training is relatively immune

(compare G2
SIMS-P to G2

SIMS-I).

To gain insight into the convergence limit for different ω, we calculated E[dist(G∞, pr)] by averaging
{E[dist(Gt, pr)]}100t=20 and plot its ratio to E[dist(G1, pr)] in Figure 2 top right. The minimum values
of E[dist(G∞,pr)]

E[dist(G1,pr)]
over different ω for |Dt

s| = 125, 250, 500, 1000 were 0.996, 1.013, 1.078, 1.204,
respectively. The corresponding ratios for standard data training were 1.71, 2.46, 3.99, 6.69.

These results suggest that SIMS features a prophylactic threshold on the amount of synthetic data
pollution, below which MADness prevention is possible but above which only MADness mitigation
is possible. In this particular experiment, that threshold is approximately |Ds| = 250. There are
interesting parallels between this property and the fresh data threshold of the fresh data self-consuming
loop in (Alemohammad et al., 2023; 2024). Exploring and characterizing this threshold are interesting
avenues for further research.

To summarize, to the best of our knowledge, SIMS is the first synthetic-data learning algorithm that
can prevent MAD in a self-consuming loop without injecting external knowledge.

3.1.2 REALISTIC DATA IN A SYNTHETIC AUGMENTATION LOOP

We continue our exploration of self-improvement and MADness prevention using realistic image
data from the CIFAR-10 and FFHQ-64 datasets, large-scale diffusion models, and more pragmatic
contexts regarding how the synthetic data enters the synthetic augmentation loop.

We compare four different training scenarios. The real dataset Dr (either CIFAR-10 or FFHQ-64) is
the same in each scenario.

• First generation, standard training with purely real data, G1
ST-I: This scenario corresponds to

training a primordial model using standard training and exclusively real data Dr. As an archetype
of today’s lax data curation practices, data synthesized from G1

ST-I, which we denote by Dp,
pollutes the “real” training data of the last two second-generation models below.

• Second generation, ideal SIMS training with purely real data, G1
SIMS-I: This wishful, idealized

scenario corresponds to how synthetic data training should be performed: by applying SIMS to
self-improve the base model G1

ST-I that was trained on purely real data.

• Second generation, standard training with polluted real data, G2
ST-P: This practical scenario

corresponds to training a model using standard training with the polluted training data comprising
the purely real data Dr combined with synthetic data Dp generated by G1

ST-I. We know from
(Alemohammad et al., 2023; 2024) that this approach leads to MADness.

• Second generation, SIMS training with polluted real data, G2
SIMS-P: This practical scenario cor-

responds to training a model using SIMS training with the same polluted training data comprising
the purely real data Dr combined with synthetic data Dp generated by G1

ST-I.

7
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Figure 4: SIMS can simultaneously shift the synthetic distribution to an arbitrary in-domain target
distribution while self-improving the quality of generation. (left) Percentage of female synthetic images for
different values of the guidance ω. (right) FID of synthetic male and female images with respect to the male and
female images in the FFHQ-64 dataset for different guidance levels ω.

Experimental setup. For G1
ST-I, we used the EDM-VP models pre-trained on CIFAR-10 and FFHQ-

64 from (Karras et al., 2022). For CIFAR-10, we trained both G2
ST-P and the base model in G2

SIMS-P
from scratch for 200Mi. For FFHQ-64, to reduce computational costs, we fine-tuned G1

ST-P and the
base model in G2

SIMS-P for 100Mi rather than training from scratch. For the training sets S of the
auxiliary models in SIMS, we generated |S| = 100k data from the corresponding base models. For
each |Dp|, we report the best FID for G2

SIMS-P over various values of guidance ω and training budget
B of the auxiliary model. The procedure for G1

SIMS-I is identical to the self-improved models for
CIFAR-10 and FFHQ-64 in Section 3, so we re-use those results here.

Results. Figure 3 plots the FIDs attained by the diffusion models learned by the four training
scenarios above for the CIFAR-10 and FFHQ-64 datasets as we vary the amount of synthetic data
|Dp| that is polluting the real training dataset. The same trends occur for both datasets. First, we
see a substantial self-improvement in modeling performance from G1

ST-I to G1
SIMS-I. Indeed, the drop

in FID for CIFAR-10 from 1.41 (Section 3) to 1.33, sets a new state-of-the-art FID benchmark
for CIFAR-10 generation. Second, we see that increasing amounts of polluting synthetic data |Dp|
cause the performance of G1

ST-P to diverge from G1
ST-I. Third, in contrast to standard training, the

performance of SIMS training is relatively insensitive to the presence of polluting synthetic data
in the base model, which indicates a prophylactic function against MADness. More precisely, the
plots indicate that, for |Dp| < 30k with CIFAR-10 (60% of |Dr|) and |Dp| < 15k for FFHQ-64 (20%
of |Dr|), SIMS not only prevents MADness in the second generation models but also achieves a
self-improved FID by somehow exploiting the polluting synthetic data from the previous generation
in its training set. The reason for this behavior remains an interesting open research question.

Our findings have potential implications for the future of diffusion generative models. Previous
research has surfaced a “first mover” advantage for generative models, whereby large models trained
early on real internet data will have a performance edge over later models trained on a mix of real
and synthetic data from earlier generation models (Alemohammad et al., 2023; 2024; Shumailov
et al., 2024). This advantage for standard training is evident in Figure 3, where the FID scores of the
models degrade as the proportion of synthetic data increases. In contrast, and somewhat surprisingly,
with SIMS training, model performance can actually improve when a small amount of synthetic data
pollutes the training data.

3.2 DISTRIBUTION CONTROLLABILITY WITH SIMS

Training datasets often follow a distribution p that differs from the desired target distribution p̂,
leading generative models to produce biased samples. This bias often impacts demographic attributes
like gender and race, resulting in inaccurate representations and reduced fairness (Friedrich et al.,
2023).

In this section, we show that SIMS can align generated images with an arbitrary in-domain target
distribution p̂, distinct from the model’s training distribution p, while improving sample quality. This
capability allows SIMS to self-improve and mitigate biases by shifting the model’s distribution toward
one that promotes fairness.

8
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EDM-VP baseline, ω = 0, 50.3% female SIMS, ω = 1.5, 68.5% female

Figure 5: Distribution shifting with SIMS. (left) Sample images synthesized from the pre-trained baseline
diffusion model EDM-VP from (Karras et al., 2022) trained on the FFHQ-64 dataset are approximately 50%
female. (right) Sample images synthesized using SIMS targeting a distribution shift to approximately 70%
female. We used the same seed and randomness for both models to highlight the distribution shift.

To illustrate this, we use the FFHQ-64 dataset, which contains 70k face images varying in gender,
age, and race, with a near-equal gender split (51% female, 49% male). A pre-trained EDM-VP model
from (Karras et al., 2022) generates samples with 50.3% perceived female and 49.7% perceived male
(Karkkainen and Joo, 2021), reflecting fairness between genders. However, to demonstrate SIMS’s
flexibility, we adjust the target distribution to overrepresent females, shifting it to 70% female and 30%
male. In Section 3, synthetic samples were generated to match the base model’s distribution. Now,
we label the perceived genders of generated faces using the pre-trained classifier from (Karkkainen
and Joo, 2021) and construct a synthetic dataset of 140k images with 70% male and 30% female
samples. Since the auxiliary model’s score function sθs(xt, t) acts as negative guidance, its generated
distribution complements the target distribution p̂. Using SIMS, we fine-tune the pre-trained diffusion
model on FFHQ-64 for 50Mi, then combine the score functions of the base and auxiliary models
with guidance strength ω.

Results. Figure 4 (left) illustrates the distribution shift, showing the percentage of female images as
guidance ω varies. At ω = −1 (sampling only from the auxiliary model trained on 70% male and
30% female data), 32% of generated images are female. At ω = 0 (sampling from the base model),
this increases to 50%. As ω rises, the percentage reaches approximately 68% at ω = 1.5. To evaluate
image quality, two FID measures are provided: one comparing synthetic male images with real male
images in FFHQ-64 and the other for female images, using 35k synthetic images per gender. Gender
classification is performed using the pre-trained classifier from (Karkkainen and Joo, 2021).

Figure 4 (right) shows evidence of simultaneous self-improvement, plotting FID scores for male and
female images. FID exhibits a bowl-shaped pattern, with the lowest male FID at ω = 1.5 (coinciding
with 70% female generation) and the lowest female FID at ω = 1.25. This indicates that optimizing
distribution shift and image quality may not align at the same ω. Figure 5 presents sample images
from the baseline model (left) and the final, distribution-shifted, self-improved model (right).

4 DISCUSSION

We introduced SIMS, a new training algorithm that improves diffusion model performance using their
own synthetic data. Unlike standard methods, SIMS avoids mixing real and synthetic data, which
can cause MADness (Alemohammad et al., 2023; 2024; Shumailov et al., 2024), and instead uses
synthetic data as negative guidance to align models with real data distributions.

SIMS achieves two key outcomes: (Q1) setting new benchmarks for realistic data generation on
CIFAR-10 and ImageNet-64, and (Q2) enabling iterative training on synthetic data without suc-
cumbing to MADness. To the best of our knowledge, SIMS is the first generative AI model that
can be iteratively trained on self-generated, synthetic data without going MAD. As an added bonus,
SIMS can adjust a diffusion model’s synthetic data distribution to match any desired in-domain target
distribution, helping mitigate biases and ensure model fairness.

9
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Table 1: SIMS attains state-of-the-art image generation performance. Image generation performance
comparison between SIMS and image generation baselines on the CIFAR-10, FFHQ-64, ImageNet-64, and
ImageNet-512 datasets. SIMS consistently improves upon the base models EDM-VP and EDM-S. Indeed, SIMS
establishes the new state-of-the-art FID for CIFAR-10 and ImageNet-64 (bold). We also compare the number of
function evaluations (NFE) required for inference and the number of parameters (Million parameters, Mparams)
for each model.

CIFAR-10 32× 32 (Unconditional)
Model FID ↓ NFE ↓ Mparams
DDPM (Ho et al., 2020) 3.17 1000 -
StyleGAN2-ADA (Karras et al., 2020) 2.92 1 -
LSGM (Vahdat et al., 2021) 2.10 138 -
NCSN++ (Song et al., 2021) 2.20 2000 -
GDD Distill. (Zheng and Yang, 2024) 1.66 1 -
GDD-I Distill. (Zheng and Yang, 2024) 1.54 1 -
EDM-VP (Karras et al., 2022) 1.97 35 280
EDM-G++ (Kim et al., 2023) 1.77 35 -
LSGM-G++ (Kim et al., 2023) 1.94 138 -
EDM-VP + SIMS (Ours) 1.41 70 560
EDM-VP + SIMS + ST (Ours) 1.33 70 560

FFHQ 64× 64

Model FID ↓ NFE ↓ Mparams

EDM-VE (Karras et al., 2022) 2.53 79 280
EDM-VP (Karras et al., 2022) 2.39 79 280
EDM-G++ (Kim et al., 2023) 1.98 71 -
GDD Distill. (Zheng and Yang, 2024) 1.08 1 -
GDD-I Distill. (Zheng and Yang, 2024) 0.85 1 -

EDM-VP + SIMS (Ours) 1.04 158 560
EDM-VP + SIMS + ST (Ours) 1.03 158 560

ImageNet 64× 64

Model FID ↓ NFE ↓ Mparams

ADM (Dhariwal and Nichol, 2021) 2.07 250 -
StyleGAN-XL (Sauer et al., 2022) 1.51 1 -
RIN (Jabri et al., 2023) 1.23 1000 280
EDM2-S (Karras et al., 2024a) 1.58 63 280
EDM2-M 1.43 63 498
EDM2-L 1.33 63 777
EDM2-XL 1.33 63 1119
AutoGuidance-S (Karras et al., 2024b) 1.01 126 560
GDD-I Distill. (Zheng and Yang, 2024) 1.21 1 -

EDM2-S + SIMS (Ours) 0.92 126 560

ImageNet 512× 512
Model FID ↓ NFE ↓ Mparams
ADM-G (Dhariwal and Nichol, 2021) 7.72 250 -
StyleGAN-XL (Sauer et al., 2022) 2.41 1 -
RIN (Jabri et al., 2023) 3.95 1000 320
EDM2-S (Karras et al., 2024a) 2.56 63 280
EDM2-M 2.25 63 498
EDM2-L 2.06 63 777
EDM2-XL 1.96 63 1119
EDM2-XXL 1.91 63 1523
AutoGuidance-S (Karras et al., 2024b) 1.34 126 560
AutoGuidance-XL (Karras et al., 2024b) 1.25 126 2236
EDM2-S + SIMS (Ours) 1.73 126 560

A SELF-IMPROVEMENT

A.1 BASELINE COMPARISON

Table 1 compares the results obtained by SIMS with several standard diffusion based image generation
baselines, including ADM (Dhariwal and Nichol, 2021) optionally used with classifier guidance
(ADM-G), RIN (Jabri et al., 2023), EDM2-{S,M,L,XL} (Karras et al., 2024a), DDPM (Ho et al.,
2020), EDM-VP (Karras et al., 2022), NCSN++ with improved sampling (Song et al., 2021), latent
score based model (Vahdat et al., 2021). We also compare with generative adversarial networks
(GANs) such as StyleGAN-XL (Sauer et al., 2022) and StyleGAN-2-ADA (Karras et al., 2020).
Additionally, we compare with methods that similar to SIMS, improve the performance of a base
model, such as the distilled single step diffusion models GDD and GDD-I (Zheng and Yang, 2024),
discriminator guided models EDM-G++ and LSGM-G++ (Kim et al., 2023), and the EDM2-{S,XL}
models guided by Autoguidance (Karras et al., 2024b). Note that, for all the aforementioned methods,
we present their paper-reported metrics in the table. For ImageNet-64 SIMS with EDM2-S and
for CIFAR-10 SIMS with EDM-VP outperforms all of the baseline methods and reaches the new
state-of-the-art FIDs of 0.92 and 1.33, respectively, representing a relative improvement of 8.9% and
13.6% over the closest baseline methods, Autoguidance-S and GDD-I.

Here are two highlights from Table 1. First, EDM2-S equipped with SIMS surpasses the performance
of EDM2-XL by a significant margin for both ImageNet-64 and ImageNet-512, demonstrating that
scaling the number of parameters cannot match the performance obtained by training an auxiliary
model with synthetic data. Second, SIMS outperforms discriminator guidance (EDM-G++ and
LSGM-G++) by a significant margin for both CIFAR-10 and FFHQ-64, demonstrating that reducing
the probability under the synthetic data distribution at each denoising step outperforms increasing
the realism score via a discriminator. For ImageNet-512, while EDM2-S with SIMS outperforms
EDM2-S, SIMS is outperformed by Autoguidance.

A.2 ABLATION STUDIES FOR SIMS

In this section, we present ablations on the synthetic dataset size used for training the auxiliary model,
FID for different number of function evaluations, and strategies for reducing number of function
evalutions during inference.
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Figure 6: Left: training the auxilary model score function sθs(x, t) using synthetic datasets of varying size for
ImageNet-64. Increasing synthetic dataset size helps obtain better FID during self-improvement with diminishing
returns. Middle-left: FID for different number of function evaluations (NFE). Middle-right Reducing the
number of learnable parameters during auxiliary model fine-tuning. Right Changing the guidance interval for
SIMS. Early and late denoising steps can be ignored with a minimal drop in FID.

Synthetic dataset size. For ImageNet-64, we change the dataset size used for training the auxiliary
model score function sθs(x, t), and present the FID over training budget. In Figure 6 (left), we
see that increasing the dataset size allows obtaining better FID. However note that if |Ds| → ∞,
sθs(x, t) → sθr(x, t), i.e., the score functions become identical and negative guidance yields no gain.
Therefore increasing the synthetic dataset further to very large numbers may result in an decrease in
FID.

Number of function evaluations. Number of function evaluations (NFE) refer to the number of
times a score function is evaluated during denoising. For ImageNet-64 we compare NFE for the
EDM2-S base model with and without SIMS. In Figure 6 (middle left), we see that naturally, with
SIMS we need more function evaluations to achieve the lowest FID. At NFE= 40, FID for both with
and without guidance cases are almost equal to 1.70. For the SIMS we use a guidance strength of
ω = 0.9 and the best FID auxiliary model trained upto 56 Mi seen during training.

Reducing number of function evaluations. For a fixed denoising step, SIMS uses twice the
number of function evaluations (NFE) compared to the baseline method without any guidance. This
results in doubling the inference time computation. We propose two strategies to reduce the NFE
overhead.

The EDM model architecture consists of an encoder and a decoder, each responsible for half of
the computations for one function evaluation. As illustrated in Figure 6 (middle right), during the
fine-tuning of the base model, we froze the weights of the encoder and trained only the decoder part.
At inference time, the encoder is shared between the base model and the auxiliary model, differing
only in the decoder. Consequently, the effective number of function evaluations decreases from 2x to
1.5x. We observe that training only the decoder to obtain the auxiliary model slightly increases the
minimum FID from 0.92 to 1.01 during fine-tuning while reducing the NFE from 2 to 1.5.

The second strategy involves applying guidance from the auxiliary model for a limited interval. To
assess the impact of this guidance at different denoising steps, we compute the FID for SIMS with
guidance applied to a limited interval (tl, th), rather than the default setting of (0, 32). As shown in
Figure 6 (right), guidance is more crucial during the final denoising steps compared to the earlier
ones. The results indicate that we can exclude the first 10 steps in the denoising process with only a
minimal drop in FID, from 0.93 to 0.96. Utilizing the auxiliary model for guidance over a smaller
number of intervals can effectively reduce inference time and costs.
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B CIFAR-10 SYNTHESIZED IMAGES

SIMS: w = 0.8, Training budget: 40 Mi

Base Model
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C FFHQ-64 SYNTHESIZED IMAGES

SIMS: w = 1.5, Training budget: 34 Mi

Base Model

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D IMAGENET-64 SYNTHESIZED IMAGES

SIMS: w = 0.9, Training budget: 56 Mi

Base Model
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E IMAGENET-512 SYNTHESIZED IMAGES

SIMS: w = 0.7, Training budget: 102 Mi
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Base Model
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F STANDARD TRAINING

Algorithm 2 Standard Training Procedure

Input: Training dataset D
1: Train diffusion model: Use dataset D to train the diffusion model using standard training,

resulting in the score function sθ(xt, t).
Synthesize: Generate synthetic data from the model using the score function sθ(xt, t).

The procedure of standard training is shown in Algorithm 2. Compared to SIMS (Algorithm 1),
standard training is essentially the same as using only the base diffusion model’s score function to
generate synthetic data, which is equivalent to setting ω = 0 in SIMS. It’s important to note that if
you already have a model trained using the standard approach, you can still apply steps 2-4 of SIMS
to develop a self-improved model.
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