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ABSTRACT

Personalized image generation aims to synthesize novel scenes featuring a spe-
cific user-provided subject. However, state-of-the-art models often fail to pre-
serve the fine-grained details that define a subject’s unique identity, a critical flaw
that limits their use in high-fidelity applications. This “consistency gap” arises
from a misalignment between the model’s learned similarity metric and nuanced
human perception. To address this, we introduce UPER (Unifying Post-training
for Personalization), a post-training framework designed to align generative mod-
els with human preferences for detail consistency. UPER employs a two-stage
process: it first refines the model’s focus on the subject’s core attributes via Su-
pervised Fine-Tuning (SFT) on a dataset with cleaned background information.
Subsequently, it optimizes the model using Reinforcement Learning (RL) with a
novel composite reward function. The key component of this function is a new
patch-based consistency metric that accurately measures subject fidelity using
only pre-trained vision encoders, eliminating the need for expensive preference
data collection. We apply UPER to the state-of-the-art OminiControl model. The
results are unequivocal: in a blind user study with over 1,000 responses, images
generated by our final model were preferred for their overall quality and subject
consistency 89.3% of the time over the strong baseline. Our work provides a ro-
bust and scalable solution to the detail-consistency challenge, paving the way for
more faithful personalized generation.

1 INTRODUCTION

Large-scale diffusion models have achieved remarkable success in generating high-fidelity images
from text descriptions (Rombach et al., 2022; Saharia et al., 2022; Esser et al., 2024). A pivotal
frontier in this domain is personalized generation, where models are conditioned on a reference im-
age to transfer specific subjects or styles into new creations (Ye et al., 2023; Tan et al., 2024). This
multi-modal conditioning offers far greater precision than text alone, enabling high-value applica-
tions from virtual try-on (Han et al., 2023) to hyper-realistic product visualization for e-commerce
and advertising (Zhang et al., 2024).

Despite this progress, a critical limitation persists: a failure to maintain detail consistency. As
shown in Fig. 1, while models can replicate the general form of a subject, they often lose the spe-
cific textures, patterns, and structural nuances that define its unique identity. This “consistency gap”
is particularly detrimental in commercial applications, where preserving brand logos, specific col-
orways, or unique material finishes is paramount. The issue is not merely a technical flaw but a
fundamental alignment problem: the model’s internal objective for “similarity” deviates from nu-
anced human perception. For instance, a model might prioritize matching the color of a shirt, while
a human user cares more about preserving the logo printed on it. This misalignment stems from
training paradigms that either lack diversity (self-generation) or rely on scarce, imperfectly paired
data, causing the model to learn a generalized concept rather than specific details.

To bridge this perception gap, we turn to Reinforcement Learning from Human Feedback (RLHF),
a powerful paradigm for instilling complex, hard-to-define human preferences into Al systems.
While RLHF is well-established in language modeling, its application to image generation presents



unique opportunities. Unlike discrete language models that require policy gradient algorithms like
PPO (Schulman et al., 2017), diffusion and flow-based models operate in a continuous space. This
allows for more direct optimization methods. One such method is Reward-supported Flow Learning
(ReFL) (Xu et al., 2023), which leverages the differentiability of flow models to directly backprop-
agate reward signals, proving highly efficient for visual alignment tasks.

To address the critical challenge of detail loss, we propose UPER (Unifying Post-Training for
Personalization). UPER is a post-training framework designed to enhance the detail consistency
of any subject-driven generative model. Our framework consists of two core stages:

1. Refined Supervised Fine-Tuning (SFT): We introduce a data pre-processing pipeline that cleans
reference images by removing confounding background information. While background removal
itself is a known technique in object-centric generation (Chen et al., 2024; Song et al., 2024), we
integrate it as a systematic SFT step to force the model to focus on subject-specific details.

2. Reinforcement Learning (RL) with a Novel Reward Ensemble: We design a composite re-
ward function that balances text alignment, aesthetics, and a novel, patch-based reward metric
specifically engineered to measure fine-grained subject consistency. This reward is optimized
using the efficient ReFL algorithm, which we found to be more effective than DPO in our pre-
liminary experiments.

We demonstrate UPER’s effectiveness by applying it to the state-of-the-art OminiControl (Tan et al.,
2024) model. Extensive automated, quantitative, and human evaluations confirm that UPER signifi-
cantly improves detail preservation without compromising overall generation quality.

Our primary contributions are:

* A systematic, two-stage post-training framework (UPER) that significantly resolves the detail-
consistency problem in personalized object generation by treating it as an alignment task.

* A new patch-based reward metric for subject consistency that leverages pre-trained vision en-
coders to capture fine-grained details, requiring no training on preference data.

* Extensive empirical validation, including a large-scale human study and comprehensive ablation
experiments, showing that UPER achieves state-of-the-art subject fidelity and is overwhelmingly
preferred by users over strong baselines.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone for aligning
Al systems, particularly Large Language Models (LLMs), with complex human values (Christiano
et al., 2017). The standard process involves Supervised Fine-Tuning (SFT) on curated examples,
followed by training a reward model (RM) on human preference data. Finally, a reinforcement learn-
ing algorithm optimizes the SFT model to maximize the score from the RM. While policy gradient
methods like PPO (Schulman et al., 2017) are common, recent work has explored more sample-
efficient alternatives like GRPO (Shao et al., 2024). Our work adapts this alignment paradigm to the
continuous domain of image generation.

2.2 HUMAN FEEDBACK IN DIFFUSION MODELS

Integrating human feedback into diffusion models has become an active area of research, with sev-
eral algorithmic families emerging to align models with preferences like aesthetic quality and se-
mantic fidelity. One major branch of work adapts traditional reinforcement learning paradigms.
This includes methods that use policy gradient algorithms like PPO (Black et al., 2023; Fan et al.,
2023), which often introduce significant training complexity, and more direct fine-tuning approaches
like Reward-supported Flow Learning (ReFL) (Xu et al., 2023), which leverage the model’s differ-
entiability to efficiently backpropagate a reward signal. A second branch seeks to simplify this
process. Reward-Weighted Regression (RWR) (Lee et al., 2023) reframes alignment as a weighted
supervised learning problem, while Direct Preference Optimization (DPO) and its variants (Rafailov



et al., 2023; Wallace et al., 2024) offer an elegant solution by bypassing the need for an explicit
reward model altogether. While DPO is powerful, we found in preliminary experiments that the
explicit, component-wise control offered by ReFL was more stable and effective for our specific
multi-objective task. The ability to explicitly weight and balance different reward components (text,
aesthetics, consistency) is crucial for navigating the complex trade-offs in our problem, a level of
control that is less direct with DPO’s implicit reward formulation. While these methods have proven
effective for general T2I alignment, our work is the first to construct a reward ensemble specifically
for the complex, multi-faceted task of detail-preserving personalized generation.

2.3 PERSONALIZED GENERATION

Personalized generation seeks to create images featuring a specific subject, style, or concept pro-
vided by a user. Early methods like Textual Inversion (Gal et al., 2022) and DreamBooth (Ruiz
et al., 2023) achieved this through per-subject fine-tuning of a diffusion model on a few example
images. While effective, these approaches are computationally intensive and require optimization
for each new subject. More recent works, such as IP-Adapter (Ye et al., 2023) and our baseline
OminiControl (Tan et al., 2024), have shifted towards using lightweight adapters for more efficient,
zero-shot personalization. A parallel line of research, focused on high-fidelity object composition
and editing, has also emerged. Works like AnyDoor (Chen et al., 2024), IMPRINT (Song et al.,
2024), and Bifrost (Li et al., 2024) have explored sophisticated techniques for object manipulation,
often involving segmentation. Our work draws inspiration from this latter line of research, specifi-
cally the principle of using background removal to isolate the subject. However, we position this not
as a core novel contribution in itself, but as a crucial and systematic data refinement step within our
broader alignment framework. The primary novelty of UPER lies in its two-stage post-training struc-
ture, which addresses the subsequent and more challenging problem of preserving the fine-grained
details that even these advanced methods can struggle with.

3 METHOD

Our method, UPER, enhances personalized image generation through a two-stage post-training
framework. The process begins with Supervised Fine-Tuning (SFT) to refine conditional focus, fol-
lowed by Reinforcement Learning (RL) to optimize for a composite reward signal. The full pipeline
is shown in Fig. 1 and detailed in Algorithm 1.

3.1 REWARD MODEL ENSEMBLE FOR PERSONALIZATION

Instead of training a monolithic reward model, we construct a composite reward by ensembling
three specialized, pre-trained models. This approach allows us to precisely target the multi-faceted
goals of personalized generation: text alignment, aesthetic quality, and, most critically, subject con-
sistency. To measure semantic correspondence with the input prompt, we use the cosine similarity
between CLIP ViT-L/14 embeddings of the generated image and the text, providing a standard, dif-
ferentiable score for text alignment (Ryx). For visual appeal, we employ the Human Preference
Score v2 (HPS-v2) (Wu et al., 2023), a state-of-the-art aesthetic predictor trained on a large dataset
of human preference choices, which yields a robust aesthetic score (R,es). The cornerstone of our
ensemble, however, is the reward for subject consistency (Rg,), which is designed to capture the
fine-grained details that define a subject’s identity.

3.1.1 TEXT-PROMPT ALIGNMENT (Rrgxr)

We measure semantic correspondence between the generated image Io, and the prompt P using
CLIP ViT-L/14 embeddings (Radford et al., 2021): Riext = Sim(CLIPing(Igen ), CLIP ey (P)).

3.1.2 AESTHETIC QUALITY (Rgs)

We use the Human Preference Score v2 (HPS-v2) (Wu et al., 2023), a state-of-the-art aesthetic
predictor, to get a scalar score. HPS-v2 is trained on a large-scale dataset of human preference
choices, making it robust against common failure modes and reward hacking. R,.s = HPS-v2(/, gen).
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Figure 1: Overview of the UPER Post-Training Pipeline. The framework consists of two main
stages: Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL). (a) Reward Model En-
semble: We design a composite reward signal from three distinct, pre-trained components targeting
text alignment (Riext), aesthetics (Raes), and subject consistency (Rgyp). The key innovation is our
patch-based consistency metric, which uses a DINOv2 (Oquab et al., 2023) encoder to compute
similarity at a local level. (b) SFT Stage: The base model is fine-tuned on a refined dataset where
reference images have their backgrounds removed, forcing the model to learn a more precise subject-
focused representation. (c) RL Stage: We use Reward-supported Flow Learning (ReFL) to align
the model with the composite reward. The end-to-end differentiability of the reward models and the
single-step flow prediction allows gradients to be backpropagated directly into the model’s LoORA
weights for efficient optimization.

3.1.3 SUBJECT CONSISTENCY (Rgug)

To capture fine-grained details, we propose a patch-based reward, Rqy,. The key insight is to use an
encoder trained specifically for instance-level matching, rather than global semantic similarity. We
choose DINOvV2 (Oquab et al., 2023) for its strong performance on such tasks, as its self-supervised
training objective encourages learning features that are robust to viewpoint changes while preserving
identity. The computation is a three-step process. First, both the generated image I, and the
reference image I,.r are decomposed into a grid of N overlapping 224 x 224 patches with a stride
of 112. Second, for each spatially corresponding patch pair (pien, p‘,'ff), we extract their feature

embeddings using the pre-trained DINOv2 encoder ( fpinovz) and compute their cosine similarity:

¢ = sim( fD1N0v2(pien), fDINOﬁ(P?ff))- (1

Finally, the individual patch similarities are aggregated by taking their mean to produce the final

subject consistency reward, Ry = % Z,ivzl ¢r. This patch-based approach is highly sensitive to
local texture and pattern loss, which global metrics like CLIP similarity often miss.

3.2 POST-TRAINING PIPELINE

3.2.1 STAGE 1: SUPERVISED FINE-TUNING WITH REFINED CONDITIONING

The pre-training of our baseline model, OminiControl, utilizes the Subject-200K dataset. A critical
observation is that the reference images in this dataset contain rich and often complex background
information. As illustrated in Fig. 2(a), this creates a ”conditioning noise” problem. For instance,
when the model is tasked to learn the identity of the Eames lounge chair, it is simultaneously exposed
to vastly different backgrounds—a cozy library in one image and a modern city view in another. This
irrelevant background information can confound the model, forcing it to entangle subject features
with background context and hindering its ability to learn a pure, disentangled representation of the
subject’s core attributes.
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(a) Original data with noisy backgrounds. (b) Our data refinement pipeline.

Figure 2: SFT Data Refinement Pipeline. (a) Original image pairs from Subject-200K exhibit
“conditioning noise,” where complex backgrounds interfere with subject learning. (b) Our pipeline
first removes the background from the reference image and then uses a VLM to filter for high-quality
pairs, ensuring the model focuses on core subject attributes.

Algorithm 1 UPER Post-Training Framework

1: Input: Pre-trained model 8y, SFT dataset Dsgr, RL prompts Dgy .
2: Hyperparameters: SFT steps Tspr, RL steps TRy, learning rate 1, LoRA rank r = 4.
3: Initialize LoRA weights for model 6.

4: {— Stage 1: Supervised Fine-Tuning —}

5: fort =1 to Tspr do
6.
7
8

Sample (Irefa Itarget, P) ~ DsFr.
Compute SFT loss Lspr (e.g., flow matching loss).
: Update LoRA weights: 0 < 0 — nVyLspr.
9: end for
10: Let ‘9SFT «— 0.
11: {— Stage 2: Reinforcement Learning —}
12: for¢t = 1to Ty do
13:  Sample (Iyef, P) ~ Dgy.
14:  Generate image Joen ~ Togr (| Irer, P).
15:  Compute rewards Riext, [laes, Fsub-
16:  For each reward R;, compute mean p; and std o; over the batch.
17 Normalize rewards: R; < (R; — 1)/ (c: + ).
18:  Compute composite reward Reomposicc = > w; ]%,
19:  Compute RL loss Lri, = — Reomposite-
20:  Update LoRA weights: Ospr < Osrr — Vg LrL-
21: end for
22: Return: Aligned model Oy, = Ospr.

To address this information redundancy and improve the model’s focus, we introduce a systematic
data pre-processing and filtering pipeline for the SFT stage, as visualized in Fig. 2(b). This process
is twofold. First, we apply a robust background removal model (‘RMBG-1.4) to every reference
image, segmenting the primary subject and placing it on a neutral white background. This step forces
the model to learn the subject’s identity from its intrinsic properties alone, free from confounding
background signals. Second, to further enhance the quality and consistency of the training pairs, we
employ a powerful Vision-Language Model, Qwen-VL (Wang et al., 2024), as a filter. For each pair,
the VLM first identifies key visual attributes from the now-cleaned reference image (e.g., "Eames
Lounge Chair,” ”black leather,” “wood shell”). It then verifies whether these essential attributes are
accurately present in the corresponding target image. Any pair that fails this cross-modal consistency
check is discarded from the training set. This meticulous refinement process yields a high-quality
SFT dataset that enables the model to develop a more robust and detailed conditional generation
capability before the RL alignment stage.

3.2.2 STAGE 2: REINFORCEMENT LEARNING WITH DIFFERENTIABLE REWARDS

Following SFT, we use RL to align the model with our composite reward. We employ Reward-
supported Flow Learning (ReFL) (Xu et al., 2023), where the reward signal is backpropagated di-
rectly through the single-step image prediction process. The RL loss is the negative of the composite
reward: Lrr. = —Rcomposite- This end-to-end differentiable pipeline enables highly efficient align-
ment. The full process is detailed in Algorithm 1.



3.3 MITIGATING REWARD HACKING

An unconstrained Ry, could encourage the model to simply copy-paste textures. We employ two
strategies to mitigate this:

1. Balanced Composite Reward: We combine the reward components using weights determined

via empirical sweeps: Reomposite = 0.2 - f%tm +0.2- f{aes +0.4- ]%sub, where R denotes z-score
normalization over the batch. This multi-objective landscape discourages over-optimization.

2. Gradient Clipping: To prevent the subject consistency term from dominating, we clip the gra-
dient of the reward with respect to the generated image, V Iyen Rgup, with a threshold of 7 = 0.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Base Model. We build UPER upon OminiControl (Tan et al., 2024), which is based on the FLUX.1-
dev flow transformer model (Esser et al., 2024).

Training Details. We use LoRA (Hu et al., 2022) with rank 4. Training is done on 8 NVIDIA H100
(80GB) GPUs with an effective batch size of 32. We use the AdamW optimizer (Kingma & Ba,
2014) with a learning rate of 1e-4. The SFT stage runs for 5k iterations, and the RL stage for 2k.

Datasets. We use our refined version of Subject-200K (Tan et al., 2024) for SFT and the Dream-
Booth dataset (Ruiz et al., 2023) for evaluation.

4.2 EVALUATION METHODOLOGY

Baselines. We compare UPER against OminiControl (our direct baseline) and IP-
Adapter+FLUX (Ye et al., 2023), which represents a strong, widely-used method for subject-driven
generation. This allows us to evaluate the specific gains from our post-training framework. Quan-
titative Metrics. We use Fréchet Inception Distance (FID) (Heusel et al., 2017) for overall image
fidelity and CLIP Score (Radford et al., 2021) for text-prompt alignment. To specifically address the
core challenge of this paper, we introduce DINOv2-Sim, which is the cosine similarity between the
DINOvV2 embeddings of the generated subject and the reference subject (both segmented from the
background). This metric is designed to be a direct quantitative measure of subject consistency. Au-
tomated & Human Evaluation. For scalable assessment, we use GPT-40 to evaluate 750 generated
image pairs on subject consistency, text alignment, and image fidelity. The cornerstone of our eval-
uation, however, is a large-scale human study. We collected over 1,000 responses from 105 unique
participants in a blind, randomized pairwise comparison. The interface for this study, designed to
elicit clear preferences on both quality and consistency, is shown in Fig. 3.

4.3 RESULTS AND ANALYSIS

Quantitative and Automated Analysis. Table 1 shows UPER consistently improves over baselines.
The RL stage brings the most significant gain in DINOv2-Sim (+0.07 over SFT), confirming its
effectiveness in enhancing subject consistency. The automated evaluation in Fig. 4(a) corroborates
this, showing a major improvement in Subject Consistency as judged by GPT-40, while maintaining
strong Text Alignment and Image Fidelity.

User Study Analysis. The human evaluation (Fig. 4(b)) provides the most compelling evidence.
When asked for their overall preference, users chose our final UPER-RL model over the baseline an
overwhelming 89.3% of the time. This near 9-to-1 preference ratio validates that by optimizing for
detail consistency, we have addressed a primary pain point for users.

4.4 QUALITATIVE ANALYSIS

Beyond quantitative metrics, a qualitative examination of the generated images provides clear and
intuitive evidence of UPER’s effectiveness. In Fig. 5, we present a side-by-side comparison of
our final UPER-RL model against the baseline for several challenging subjects. For the backpack,
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Figure 3: The interface for our human preference study. Participants were presented with a
reference image and a text prompt, along with two generated images from different models in a
randomized order. They were asked to select the better image based on overall quality and subject
consistency.

Table 1: Quantitative comparison. UPER demonstrates superior performance across all metrics,
with significant gains in subject consistency (DINOv2-Sim) and image fidelity (FID).

Method FID| CLIP Score! DINOv2-Sim 1

IP-Adapter + FLUX 239.12 0.782 0.65

OminiControl (Baseline) 156.12 0.824 0.71

UPER-SFT 134.12 0.830 0.78

UPER-RL (Ours) 130.12 0.831 0.85
Automated Evaluation Average Results Automated Evaluation Maximum Results

Subject Subject
Consistency Consistency

UPER-SFT Quality
UPER-RL Quality
UPER-SFT Consistency

ment UPER-RL Consistency
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(a) Automated evaluation by GPT-4o. (b) Human preference rates.

Figure 4: Evaluation Results. (a) The radar chart, normalized from 0 (worst) to 1 (best), shows
UPER-RL’s superior subject consistency. (b) The bar chart shows overwhelming human preference
for UPER-RL over the baseline. Error bars denote 95% confidence intervals.

prompted with a photo of this backpack in a forest,” the baseline model generates a backpack of a
different color, failing to preserve the original’s distinct purple hue. Our model, however, maintains
the correct color and texture. For the bowl, prompted with ”a photo of this bowl in the snow,” the
baseline completely ignores the "Bon Appétit” text, a key identifying feature. UPER successfully
reproduces this text, demonstrating superior alignment with human-salient details. Similarly, for
the vase (”a photo of this vase on a wooden table”), UPER preserves the unique color gradient and
glossy finish, while the baseline produces a duller, less accurate version. Finally, for the boots ("a
photo of these boots on a cobblestone street””), UPER accurately reconstructs the intricate fringe
details, which are heavily simplified by the baseline. These examples collectively illustrate that
UPER consistently captures and renders the fine-grained, identity-defining characteristics that are
crucial for high-fidelity personalization.
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Figure 5: Additional Qualitative Examples. More comparisons showing UPER’s superior detail
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preservation. Prompts from left to right, top to bottom: a photo of this backpack in a forest”, ’a

photo of this bowl in the snow”, ”a photo of this vase on a wooden table”, ”a photo of these boots
on a cobblestone street”.

4.5 ABLATION STUDIES

To dissect our framework’s contributions and validate our design choices, we conducted a series of
comprehensive ablation studies.

Impact of SFT Data Refinement. We first investigated the impact of our proposed SFT data refine-
ment pipeline. As shown in Table 2, training a model without this pipeline (i.e., using the original
Subject-200K dataset with noisy backgrounds) yields only a marginal improvement in subject con-
sistency over the baseline. In contrast, our full SFT process, which uses cleaned reference images,
leads to a substantial boost in both FID and DINOv2-Sim. This result empirically confirms our hy-
pothesis that reducing conditioning noise by removing irrelevant backgrounds is a crucial first step
for enhancing detail preservation.

Table 2: Ablation on SFT data refinement.

SFT Variant FID | DINOv2-Sim 1
OminiControl (Baseline) 156.12 0.71
UPER-SFT (w/o Refinement) 145.53 0.73
UPER-SFT (Full) 134.12 0.78

Contribution of Reward Components. To understand the role of each component in our reward
ensemble, we trained RL variants using only subsets of the rewards (Table 3). A model trained
with only text alignment and aesthetic rewards (Rx; + Raes) failed to improve subject consistency,
with its DINOv2-Sim score remaining at the SFT level. Conversely, a model trained with only the
subject consistency reward (Rq) achieved the highest consistency score but suffered from severe
reward hacking, manifesting as unnatural texture repetition and a noticeable drop in text alignment
(CLIP Score). This demonstrates that the full ensemble is necessary to achieve a synergistic effect,
simultaneously improving consistency while maintaining quality and editability.

Table 3: Ablation on RL reward components.

RL Reward CLIP Score T DINOvV2-Sim 1
UPER-SFT (No RL) 0.830 0.78
Riex + Raes only 0.832 0.77
Rgyp only 0.815 0.86
Full Ensemble (Ours) 0.831 0.85

Analysis of Reward Weights and Patch Encoder. We tested alternative weightings for Reomposite
and found our chosen weights (0.2, 0.2, 0.4) provided the best balance between consistency and



quality. We also compared DINOv2 with CLIP as the patch encoder for Ry, (Table 4). DINOv2,
which is self-supervised for fine-grained instance-level matching, significantly outperformed CLIP,
which is trained for global semantic alignment. This highlights the importance of choosing a reward
encoder whose training objective aligns with the desired fine-grained comparison task.

Table 4: Ablation on patch encoder for Rgyp.

Patch Encoder DINOV2-Sim 1

CLIP ViT-L/14 0.81
DINOv2 ViT-g/14 0.85

4.6 COMPARISON WITH ADDITIONAL BASELINES

To further contextualize UPER’s performance, we compare it with DreamBooth (Ruiz et al., 2023),
a classic fine-tuning method, and a DPO-based (Wallace et al., 2024) variant of our own frame-
work (Table 5). DreamBooth achieves excellent subject consistency but at the cost of requiring
per-subject fine-tuning and offering limited text-based editability. Our DPO variant, which opti-
mizes on preference pairs derived from our reward scores, was less stable during training for this
multi-objective task and yielded slightly lower performance than our ReFL-based approach. This
supports our choice of ReFL for its efficiency and effectiveness in this specific problem setting.

Table 5: Comparison with additional baselines.

Method Editability (CLIP) T Consistency (DINOv2) 1
DreamBooth 0.795 0.87
UPER (DPO-based) 0.828 0.83
UPER (ReFL-based) 0.831 0.85

4.7 COMPARISON WITH STATE-OF-THE-ART GENERALIST MODELS ON HUMAN-ALIGNED
BENCHMARKS

Meanwhile, we extended our evaluation to include OmniGen2 (Wu et al., 2025), a powerful, state-
of-the-art generalist model known for its subject-driven generation capabilities. Crucially, to better
evaluate the degree to which model personalisation aligns with human preferences, we evaluated
its performance on the standardized DreamBench++ (Peng et al., 2024) benchmark, which provides
robust criteria for assessing personalized image generation, alongside the original DreamBench.

We applied our Reinforcement Learning stage (using the same composite reward) to the publicly
available OmniGen2 model to test the generalizability and effectiveness of our post-training align-
ment approach. As shown in Tab. 6, the results, obtained via automated scoring with GPT-4o,
are clear. Our RL fine-tuning significantly boosts the subject consistency of OmniGen2 on both
benchmarks (from 72.2 to 77.4 on DreamBench, and 84.0 to 88.0 on DreamBench++), with only a
negligible impact on image fidelity and text alignment. This demonstrates that our specialist align-
ment framework is not only effective but also necessary for enhancing detail preservation, even when
combined with powerful, large-scale generalist models. These results validate the broad applicabil-
ity and necessity of the UPER framework.

Table 6: Automated evaluation (GPT-40) of our RL alignment on the Omnigen2 model using Dream-
Bench and the reviewer-suggested DreamBench++ benchmark. Our method consistently improves
subject consistency.

Model Benchmark Subject Consist. T Image Fidelity T Text Align. 1
Omnigen2 DreamBench 72.2 85.0 94.4
Omnigen2 w. R DreamBench 77.4 84.8 95.2
Omnigen2 DreamBench++ 84.0 90.2 94.2
Omnigen2 w. RL  DreamBench++ 88.0 89.2 94.8




Future Work. The limitations of our current work point to several exciting directions for future
research. To address the complexity of the reward ensemble, one could explore “reward distilla-
tion,” where the knowledge from the three separate reward models is distilled into a single, efficient
network. This would reduce the computational overhead during RL training. Another promising
direction is to automate the reward weighting process, perhaps through meta-learning or a bandit-
based approach, to find the optimal balance for different types of subjects or prompts dynamically.
Finally, extending the UPER framework to other personalized generation tasks, such as video or
3D synthesis, where detail consistency is equally, if not more, critical, represents a significant and
impactful area for future exploration.

5 CONCLUSION

In this paper, we introduced UPER, a two-stage post-training framework that significantly improves
detail consistency in personalized image generation. By framing the problem as one of alignment
and leveraging a novel, patch-based reward metric within an efficient RL framework, UPER success-
fully bridges the gap between model objectives and human perception. Our extensive evaluations,
including comprehensive ablations and a large-scale user study, demonstrate that UPER produces
more faithful and compelling personalized images that are overwhelmingly preferred by users. This
work establishes a robust methodology for aligning generative models with nuanced, detail-oriented
human preferences, paving the way for their use in high-fidelity creative and commercial applica-
tions where precision and faithfulness are non-negotiable.
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A THE USE OF LARGE LANGUAGE MODELS(LLMS)

Large Language Models (LLMs) were only used to correct grammar errors and polish the writ-
ing. They were not involved in research ideation, experiment design, analysis, or other substantive
contributions.

B LIMITATIONS

While our work achieves significant progress, it is subject to several limitations. First, the ultimate
performance of the UPER framework is inherently dependent on the capabilities of the chosen base
model (OminiControl in this paper). Although our post-training approach markedly improves detail
consistency, it cannot fundamentally resolve certain intrinsic weaknesses of the base model, such
as a limited understanding of complex spatial relationships or physical interactions. Second, our
two-stage training pipeline, particularly the RL stage involving multiple reward models, introduces
additional computational overhead and implementation complexity. The selection of reward weights
requires empirical sweeps and may not be optimal for all subject types. Furthermore, despite em-
ploying strategies like gradient clipping to mitigate reward hacking, the risk of over-optimizing for
a specific reward metric remains, which could lead to distortions in some aspects of the gener-
ated images. Lastly, our current evaluation focuses primarily on single-subject personalization; the
framework’s effectiveness in handling complex scenes with multiple interacting subjects remains an
area for future investigation.

C BROADER IMPACT

Positive Impact The technology proposed in this research holds the potential for positive impact
across several domains. For artists, designers, and small businesses, it offers a powerful and effi-
cient tool for creating highly customized visual content, such as product prototype visualizations,
advertising materials, and personalized artwork, thereby lowering the barrier to professional content
creation. In e-commerce and fashion, this technology could power applications like virtual try-on,
offering consumers a more realistic and engaging shopping experience.

Potential Risks and Mitigation Like all powerful generative technologies, the outcomes of this
research carry a risk of misuse. The most significant concern is the potential for creating deceptive
synthetic content (“deepfakes”) to spread misinformation or for malicious purposes. While our re-
search aims to enhance the fidelity of personalization, this capability is inherently a double-edged
sword. We advocate for the continued development and deployment of robust synthetic media detec-
tion techniques to counter such risks. Moreover, the presence of copyrighted material and societal
biases in the training data is a critical issue. The model might inadvertently replicate copyrighted
elements or amplify biases inherent in the data. We believe future work must address the provenance
and compliance of datasets and develop algorithms to identify and mitigate bias in generated content
to ensure the responsible development and application of this technology.
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A ADDITIONAL QUALITATIVE RESULTS

To further demonstrate the effectiveness of UPER, we provide additional qualitative comparisons
in Fig. 6. These examples span a diverse range of subjects, including animals, toys, and household
items, consistently showing UPER’s superior ability to preserve fine-grained details, textures, and
unique features compared to the OminiControl baseline.

m Al
Reference OminiControl Ours Reference OminiControl Ours

Figure 6: Additional Qualitative Comparisons. UPER consistently preserves subject-specific de-
tails such as the sloth’s knitted texture, the robot’s specific markings, the dog’s fur pattern, and the
unique shape of the poop emoji pillow, whereas the baseline often loses these fine-grained charac-
teristics.

B FURTHER IMPLEMENTATION AND DESIGN DETAILS

B.1 IMPLEMENTATION OF THE PATCH-BASED SUBJECT CONSISTENCY REWARD (Rgyp)

As requested by reviewers, we provide a more detailed breakdown of our subject consistency reward
calculation. The goal is to measure both global structural similarity and local detail fidelity, while
preventing trivial copy-paste solutions.

1. Global Similarity: We first resize both the reference image [.r and the generated image
Ige, to the native resolution of our DINOv2 encoder (384x384 pixels). We extract their
global CLS token embeddings and compute the cosine similarity. This provides a baseline
score for overall structural correspondence.

2. Patch-Based Similarity: We then perform random spatial cropping on both images to
extract NV corresponding patch pairs, each of size 384x384. For each pair, we compute the
cosine similarity of their DINOv2 embeddings and average these scores across all N pairs.
This patch-level comparison is crucial for capturing fine-grained textures and patterns.
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3. High Similarity Penalty: A key challenge in reward design is preventing “reward hack-
ing.” An unconstrained similarity metric could incentivize the model to simply output a
slightly distorted version of the reference image. To mitigate this, we introduce a penalty
for excessively high similarity scores. If the calculated similarity exceeds a certain thresh-
old, the reward is penalized, encouraging the model to integrate the subject into a new
context rather than just copying it.

The final R, is a weighted combination of these components, creating a robust metric that aligns
well with human perception of detail consistency.

B.2 RATIONALE FOR REWARD WEIGHTS

The reward weights (0.2 for Riex, 0.2 for R, and 0.4 for Rg,,) were determined through empirical
sweeps. Our initial approach used a more balanced distribution (e.g., 0.3, 0.3, 0.4). While this
improved subject consistency, we observed instances of reward hacking from the aesthetic and text-
alignment models, leading to minor artifacts. By down-weighting Riex and R,es, we found a better
equilibrium that strongly preserved subject details without compromising overall image quality. We
argue that the ratio between weights is more critical than their sum, as the overall magnitude can be
absorbed by the learning rate. Our chosen weights represent the best-found trade-off for our task.

B.3 QUALITATIVE ABLATION: DINOV2 vs. CLIP FOR R,, ENCODER

To illustrate why DINOV?2 is superior to CLIP as a patch encoder for R,;, we present a qualitative
comparison in Fig. 7. While the CLIP-based reward model generates an image that is semantically
correct at a high level (e.g., it produces “a robot” or a bowl”), it fails to capture the specific, identity-
defining details. The DINO-based reward, in contrast, successfully preserves fine-grained features
such as the robot’s blue chest light and wheel structure and the "Bon Appétit” text on the bowl. This
is because DINOV2 is trained via self-supervision for instance-level matching, making its feature
space inherently better suited for measuring the similarity of fine details.

o e P
3 %%/ ‘\“‘J ' - %/; ]
Reference  w. DINO w.CLIP  Reference w. DINO w. CLIP

Figure 7: DINOv2 vs. CLIP as Patch Encoder for R;,;. The model trained with a DINOv2-based
reward preserves fine-grained details (e.g., the robot’s blue markings, the bowl’s text). The model
trained with a CLIP-based reward captures the high-level concept but loses these specific details,
demonstrating the importance of using an encoder suited for instance-level matching.

B.4 EXAMPLES OF VLM-FILTERED DATA PAIRS

In our SFT data refinement pipeline, the Qwen-VL model acts as a crucial filter to remove imper-
fectly paired data. Fig. 8 provides a concrete example of this process. The VLM is tasked with
comparing two bookshelf images that share a similar overall structure. However, it correctly identi-
fied subtle but critical differences in their construction, the items on the shelves, and the wood grain
pattern. By analyzing these fine-grained details, the model concludes that they are not the same
object and assigns a similarity score of 0. This capability to discern between objects with high se-
mantic similarity but low instance-level identity is vital for curating a high-quality SFT dataset, free
from inconsistent or noisy pairs. For instance, another pair might be discarded if the reference image
clearly shows a “red leather chair,” but the target image, due to lighting or other factors, renders the
chair as brown or orange.
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User: Are the bookshelves in the two
pictures below identical?

VLM: While they share the same
basic design (a light-colored wood, 2-
column by 5-row cubby structure),
there are numerous differences in their
construction, the items they hold, and
even the wood grain itself.

User: Are the bookshelves in the two pictures below identical? Rate this pair. 0 indicates they
are definitely not the same object, while 5 indicates they are certainly the same object.

VLM: While they share the same basic design (a light-colored wood, 2-column by 5-row
cubby structure), there are numerous differences in their construction, the items they hold,
and even the wood grain itself.

Figure 8: Example of VLM-Based Data Filtering. The VLM is tasked with determining if the two
bookshelves are identical. Despite sharing a similar high-level design (a 2-column, 5-row wooden
structure), the VLM astutely identifies fine-grained inconsistencies in its construction, the specific
items it holds, and even the wood grain. Consequently, it rates the pair as 0, signifying they are
different objects. This showcases the VLM’s crucial role in filtering out subtly mismatched pairs to
ensure the quality of our SFT dataset.

C QUALITATIVE ANALYSIS OF UPER ON OMNIGEN?2

In response to the reviewer’s feedback, we not only added quantitative comparisons with the state-
of-the-art OmniGen2 model but also provided qualitative examples in Fig. 9. These visualizations
demonstrate the effectiveness of our RL alignment stage when applied to a strong, existing gener-
alist model. The results on both the standard DreamBench benchmark and the more challenging
DreamBench++ benchmark show that our method consistently enhances subject consistency and
detail preservation.
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a  Input image OmniGen2

.RL Input image OmniGen2 w. RL
' 2 " 2 J

This item in the forest This item in the city.
a  Input image OmniGen2 w. RL Input image OmniGen2 w. RL

A er flying above a farm, its feathers glowing with the

colors of the rainbow under the moonlight

A toucan speaking with other exotic birds in a forest A minimalist sketch of a cotton-top tamarin, captured in simple,
elegant lines.

Figure 9: Qualitative comparison of our RL alignment applied to Omnigen2. The figure is di-
vided into two parts based on the evaluation benchmark. (a) Results on the DreamBench benchmark.
Our RL alignment (w. RL) significantly improves detail preservation. For instance, it correctly ren-
ders the pins on the pink backpack, preserves the "Transatlantic IPA” text on the can, and maintains
the "Bon Appétit” script on the bowl, details which the base OmniGen2 model struggles with. (b)
Results on the DreamBench++ benchmark, which features more complex and stylistic prompts.
Our RL alignment successfully enhances subject identity. For example, it generates a more faithful
anime-style French bulldog while preserving the subject’s core features, and creates a more vibrant
and detailed rooster that better matches the fantastical prompt. These examples show that the UPER
framework serves as a general-purpose post-training solution to improve subject fidelity for state-
of-the-art models.
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