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ABSTRACT

Personalized image generation aims to synthesize novel scenes featuring a spe-
cific user-provided subject. However, state-of-the-art models often fail to pre-
serve the fine-grained details that define a subject’s unique identity, a critical flaw
that limits their use in high-fidelity applications. This ”consistency gap” arises
from a misalignment between the model’s learned similarity metric and nuanced
human perception. To address this, we introduce UPER (Unifying Post-training
for Personalization), a post-training framework designed to align generative mod-
els with human preferences for detail consistency. UPER employs a two-stage
process: it first refines the model’s focus on the subject’s core attributes via Su-
pervised Fine-Tuning (SFT) on a dataset with cleaned background information.
Subsequently, it optimizes the model using Reinforcement Learning (RL) with a
novel composite reward function. The key component of this function is a new
patch-based consistency metric that accurately measures subject fidelity using
only pre-trained vision encoders, eliminating the need for expensive preference
data collection. We apply UPER to the state-of-the-art OminiControl model. The
results are unequivocal: in a blind user study with over 1,000 responses, images
generated by our final model were preferred for their overall quality and subject
consistency 89.3% of the time over the strong baseline. Our work provides a ro-
bust and scalable solution to the detail-consistency challenge, paving the way for
more faithful personalized generation.

1 INTRODUCTION

Large-scale diffusion models have achieved remarkable success in generating high-fidelity images
from text descriptions (Rombach et al., 2022; Saharia et al., 2022; Esser et al., 2024). A pivotal
frontier in this domain is personalized generation, where models are conditioned on a reference im-
age to transfer specific subjects or styles into new creations (Ye et al., 2023; Tan et al., 2024). This
multi-modal conditioning offers far greater precision than text alone, enabling high-value applica-
tions from virtual try-on (Han et al., 2023) to hyper-realistic product visualization for e-commerce
and advertising (Zhang et al., 2024).

Despite this progress, a critical limitation persists: a failure to maintain detail consistency. As
shown in Figure ??, while models can replicate the general form of a subject, they often lose the
specific textures, patterns, and structural nuances that define its unique identity. This ”consistency
gap” is particularly detrimental in commercial applications, where preserving brand logos, specific
colorways, or unique material finishes is paramount. The issue is not merely a technical flaw but
a fundamental alignment problem: the model’s internal objective for ”similarity” deviates from
nuanced human perception. For instance, a model might prioritize matching the color of a shirt
while a human user cares more about preserving the logo printed on it. This misalignment stems
from training paradigms that either lack diversity (self-generation) or rely on scarce, imperfectly
paired data, causing the model to learn a generalized concept rather than specific details.

To bridge this perception gap, we turn to Reinforcement Learning from Human Feedback (RLHF),
a powerful paradigm for instilling complex, hard-to-define human preferences into AI systems.
While RLHF is well-established in language modeling, its application to image generation presents
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unique opportunities. Unlike discrete language models that require policy gradient algorithms like
PPO (Schulman et al., 2017), diffusion and flow-based models operate in a continuous space. This
allows for more direct optimization methods. One such method is Reward-supported Flow Learning
(ReFL) (Xu et al., 2023), which leverages the differentiability of flow models to directly backprop-
agate reward signals, proving highly efficient for visual alignment tasks.

To address the critical challenge of detail loss, we propose UPER (Unifying Post-Training for
Personalization). UPER is a post-training framework designed to enhance the detail consistency
of any subject-driven generative model. Our framework consists of two core stages:

1. Refined Supervised Fine-Tuning (SFT): We introduce a data pre-processing pipeline that cleans
reference images by removing confounding background information. While background removal
itself is a known technique in object-centric generation (Chen et al., 2024; Song et al., 2024), we
integrate it as a systematic SFT step to force the model to focus on subject-specific details.

2. Reinforcement Learning (RL) with a Novel Reward Ensemble: We design a composite re-
ward function that balances text alignment, aesthetics, and a novel, patch-based reward metric
specifically engineered to measure fine-grained subject consistency. This reward is optimized
using the efficient ReFL algorithm, which we found to be more effective than DPO in our pre-
liminary experiments.

We demonstrate UPER’s effectiveness by applying it to the state-of-the-art OminiControl Tan et al.
(2024) model. Extensive automated, quantitative, and human evaluations confirm that UPER signif-
icantly improves detail preservation without compromising overall generation quality.

Our primary contributions are:

• A systematic, two-stage post-training framework (UPER) that significantly resolves the detail-
consistency problem in personalized object generation by treating it as an alignment task.

• A new patch-based reward metric for subject consistency that leverages pre-trained vision en-
coders to capture fine-grained details, requiring no training on preference data.

• Extensive empirical validation, including a large-scale human study and comprehensive ablation
experiments, showing that UPER achieves state-of-the-art subject fidelity and is overwhelmingly
preferred by users over strong baselines.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone for aligning
AI systems, particularly Large Language Models (LLMs), with complex human values (Christiano
et al., 2017). The standard process involves Supervised Fine-Tuning (SFT) on curated examples,
followed by training a reward model (RM) on human preference data. Finally, a reinforcement learn-
ing algorithm optimizes the SFT model to maximize the score from the RM. While policy gradient
methods like PPO (Schulman et al., 2017) are common, recent work has explored more sample-
efficient alternatives like GRPO (Shao et al., 2024). Our work adapts this alignment paradigm to the
continuous domain of image generation.

2.2 HUMAN FEEDBACK IN DIFFUSION MODELS

Integrating human feedback into diffusion models has become an active area of research, with sev-
eral algorithmic families emerging to align models with preferences like aesthetic quality and se-
mantic fidelity. One major branch of work adapts traditional reinforcement learning paradigms.
This includes methods that use policy gradient algorithms like PPO (Black et al., 2023; Fan et al.,
2023), which often introduce significant training complexity, and more direct fine-tuning approaches
like Reward-supported Flow Learning (ReFL) (Xu et al., 2023), which leverage the model’s differ-
entiability to efficiently backpropagate a reward signal. A second branch seeks to simplify this
process. Reward-Weighted Regression (RWR) (Lee et al., 2023) reframes alignment as a weighted
supervised learning problem, while Direct Preference Optimization (DPO) and its variants (Rafailov

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

et al., 2023; Wallace et al., 2024) offer an elegant solution by bypassing the need for an explicit
reward model altogether. While DPO is powerful, we found in preliminary experiments that the
explicit, component-wise control offered by ReFL was more stable and effective for our specific
multi-objective task. The ability to explicitly weight and balance different reward components (text,
aesthetics, consistency) is crucial for navigating the complex trade-offs in our problem, a level of
control that is less direct with DPO’s implicit reward formulation. While these methods have proven
effective for general T2I alignment, our work is the first to construct a reward ensemble specifically
for the complex, multi-faceted task of detail-preserving personalized generation.

2.3 PERSONALIZED GENERATION

Personalized generation seeks to create images featuring a specific subject, style, or concept pro-
vided by a user. Early methods like Textual Inversion (Gal et al., 2022) and DreamBooth (Ruiz
et al., 2023) achieved this through per-subject fine-tuning of a diffusion model on a few example
images. While effective, these approaches are computationally intensive and require optimization
for each new subject. More recent works, such as IP-Adapter (Ye et al., 2023) and our baseline
OminiControl (Tan et al., 2024), have shifted towards using lightweight adapters for more efficient,
zero-shot personalization. A parallel line of research, focused on high-fidelity object composition
and editing, has also emerged. Works like AnyDoor (Chen et al., 2024), IMPRINT (Song et al.,
2024), and Bifröst (Li et al., 2024) have explored sophisticated techniques for object manipulation,
often involving segmentation. Our work draws inspiration from this latter line of research, specifi-
cally the principle of using background removal to isolate the subject. However, we position this not
as a core novel contribution in itself, but as a crucial and systematic data refinement step within our
broader alignment framework. The primary novelty of UPER lies in its two-stage post-training struc-
ture, which addresses the subsequent and more challenging problem of preserving the fine-grained
details that even these advanced methods can struggle with.

3 METHOD

Our method, UPER, enhances personalized image generation through a two-stage post-training
framework. The process begins with Supervised Fine-Tuning (SFT) to refine conditional focus, fol-
lowed by Reinforcement Learning (RL) to optimize for a composite reward signal. The full pipeline
is shown in Figure 1 and detailed in Algorithm 1.

3.1 REWARD MODEL ENSEMBLE FOR PERSONALIZATION

Instead of training a monolithic reward model, we construct a composite reward by ensembling
three specialized, pre-trained models. This approach allows us to precisely target the multi-faceted
goals of personalized generation: text alignment, aesthetic quality, and, most critically, subject con-
sistency. To measure semantic correspondence with the input prompt, we use the cosine similarity
between CLIP ViT-L/14 embeddings of the generated image and the text, providing a standard, dif-
ferentiable score for text alignment (Rtext). For visual appeal, we employ the Human Preference
Score v2 (HPS-v2) (Wu et al., 2023), a state-of-the-art aesthetic predictor trained on a large dataset
of human preference choices, which yields a robust aesthetic score (Raes). The cornerstone of our
ensemble, however, is the reward for subject consistency (Rsub), which is designed to capture the
fine-grained details that define a subject’s identity.

3.1.1 TEXT-PROMPT ALIGNMENT (RTEXT)

We measure semantic correspondence between the generated image Igen and the prompt P using
CLIP ViT-L/14 embeddings (Radford et al., 2021): Rtext = sim(CLIPimg(Igen),CLIPtext(P )).

3.1.2 AESTHETIC QUALITY (RAES)

We use the Human Preference Score v2 (HPS-v2) (Wu et al., 2023), a state-of-the-art aesthetic
predictor, to get a scalar score. HPS-v2 is trained on a large-scale dataset of human preference
choices, making it robust against common failure modes and reward hacking. Raes = HPS-v2(Igen).
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Figure 1: Overview of the UPER Post-Training Pipeline. The framework consists of two main
stages: Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL). (a) Reward Model En-
semble: We design a composite reward signal from three distinct, pre-trained components targeting
text alignment (Rtext), aesthetics (Raes), and subject consistency (Rsub). The key innovation is our
patch-based consistency metric, which uses a DINOv2 encoder to compute similarity at a local level.
(b) SFT Stage: The base model is fine-tuned on a refined dataset where reference images have their
backgrounds removed, forcing the model to learn a more precise subject-focused representation. (c)
RL Stage: We use Reward-supported Flow Learning (ReFL) to align the model with the composite
reward. The end-to-end differentiability of the reward models and the single-step flow prediction
allows gradients to be backpropagated directly into the model’s LoRA weights for efficient opti-
mization.

3.1.3 SUBJECT CONSISTENCY (RSUB)

To capture fine-grained details, we propose a patch-based reward, Rsub. The key insight is to use an
encoder trained specifically for instance-level matching, rather than global semantic similarity. We
choose DINOv2 (?) for its strong performance on such tasks, as its self-supervised training objective
encourages learning features that are robust to viewpoint changes while preserving identity. The
computation is a three-step process. First, both the generated image Igen and the reference image
Iref are decomposed into a grid of N overlapping 224 × 224 patches with a stride of 112. Second,
for each spatially corresponding patch pair (pgen

k , pref
k ), we extract their feature embeddings using the

pre-trained DINOv2 encoder (fDINOv2) and compute their cosine similarity:

ϕk = sim(fDINOv2(p
gen
k ), fDINOv2(p

ref
k )). (1)

Finally, the individual patch similarities are aggregated by taking their mean to produce the final
subject consistency reward, Rsub = 1

N

∑N
k=1 ϕk. This patch-based approach is highly sensitive to

local texture and pattern loss, which global metrics like CLIP similarity often miss.

3.2 POST-TRAINING PIPELINE

3.2.1 STAGE 1: SUPERVISED FINE-TUNING WITH REFINED CONDITIONING

The pre-training of our baseline model, OminiControl, utilizes the Subject-200K dataset. A critical
observation is that the reference images in this dataset contain rich, and often complex, background
information. As illustrated in Figure 2(a), this creates a ”conditioning noise” problem. For instance,
when the model is tasked to learn the identity of the Eames lounge chair, it is simultaneously exposed
to vastly different backgrounds—a cozy library in one image and a modern city view in another. This
irrelevant background information can confound the model, forcing it to entangle subject features
with background context and hindering its ability to learn a pure, disentangled representation of the
subject’s core attributes.
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(a) Original data with noisy backgrounds.
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Tag

Reference Image 

(b) Our data refinement pipeline.

Figure 2: SFT Data Refinement Pipeline. (a) Original image pairs from Subject-200K exhibit
”conditioning noise,” where complex backgrounds interfere with subject learning. (b) Our pipeline
first removes the background from the reference image and then uses a VLM to filter for high-quality
pairs, ensuring the model focuses on core subject attributes.
Algorithm 1 UPER Post-Training Framework

1: Input: Pre-trained model θ0, SFT dataset DSFT, RL prompts DRL.
2: Hyperparameters: SFT steps TSFT, RL steps TRL, learning rate η, LoRA rank r = 4.
3: Initialize LoRA weights for model θ0.
4: {— Stage 1: Supervised Fine-Tuning —}
5: for t = 1 to TSFT do
6: Sample (Iref, Itarget, P ) ∼ DSFT.
7: Compute SFT loss LSFT (e.g., flow matching loss).
8: Update LoRA weights: θ ← θ − η∇θLSFT.
9: end for

10: Let θSFT ← θ.
11: {— Stage 2: Reinforcement Learning —}
12: for t = 1 to TRL do
13: Sample (Iref, P ) ∼ DRL.
14: Generate image Igen ∼ πθSFT(·|Iref, P ).
15: Compute rewards Rtext, Raes, Rsub.
16: For each reward Ri, compute mean µi and std σi over the batch.
17: Normalize rewards: R̂i ← (Ri − µi)/(σi + ϵ).
18: Compute composite reward Rcomposite =

∑
wiR̂i.

19: Compute RL loss LRL = −Rcomposite.
20: Update LoRA weights: θSFT ← θSFT − η∇θSFTLRL.
21: end for
22: Return: Aligned model θRL = θSFT.

To address this information redundancy and improve the model’s focus, we introduce a systematic
data pre-processing and filtering pipeline for the SFT stage, as visualized in Figure 2(b). This process
is twofold. First, we apply a robust background removal model (‘RMBG-1.4‘) to every reference im-
age, segmenting the primary subject and placing it on a neutral white background. This step forces
the model to learn the subject’s identity from its intrinsic properties alone, free from confounding
background signals. Second, to further enhance the quality and consistency of the training pairs,
we employ a powerful Vision-Language Model, Qwen-VL (?), as a filter. For each pair, the VLM
first identifies key visual attributes from the now-cleaned reference image (e.g., ”Eames Lounge
Chair,” ”black leather,” ”wood shell”). It then verifies whether these essential attributes are accu-
rately present in the corresponding target image. Any pair that fails this cross-modal consistency
check is discarded from the training set. This meticulous refinement process yields a high-quality
SFT dataset that enables the model to develop a more robust and detailed conditional generation
capability before the RL alignment stage.

3.2.2 STAGE 2: REINFORCEMENT LEARNING WITH DIFFERENTIABLE REWARDS

Following SFT, we use RL to align the model with our composite reward. We employ Reward-
supported Flow Learning (ReFL) (Xu et al., 2023), where the reward signal is backpropagated di-
rectly through the single-step image prediction process. The RL loss is the negative of the composite
reward: LRL = −Rcomposite. This end-to-end differentiable pipeline enables highly efficient align-
ment. The full process is detailed in Algorithm 1.
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3.3 MITIGATING REWARD HACKING

An unconstrained Rsub could encourage the model to simply copy-paste textures. We employ two
strategies to mitigate this:

1. Balanced Composite Reward: We combine the reward components using weights determined
via empirical sweeps: Rcomposite = 0.2 · R̂text + 0.2 · R̂aes + 0.4 · R̂sub, where R̂ denotes z-score
normalization over the batch. This multi-objective landscape discourages over-optimization.

2. Gradient Clipping: To prevent the subject consistency term from dominating, we clip the gra-
dient of the reward with respect to the generated image, ∇IgenRsub, with a threshold of τ = 0.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Base Model. We build UPER upon OminiControl (Tan et al., 2024), which is based on the FLUX.1-
dev flow transformer model (Esser et al., 2024).

Training Details. We use LoRA (Hu et al., 2022) with rank 4. Training is done on 8 NVIDIA H100
(80GB) GPUs with an effective batch size of 32. We use the AdamW optimizer (Kingma & Ba,
2014) with a learning rate of 1e-4. The SFT stage runs for 5k iterations, and the RL stage for 2k.

Datasets. We use our refined version of Subject-200K (Tan et al., 2024) for SFT and the Dream-
Booth dataset (Ruiz et al., 2023) for evaluation.

4.2 EVALUATION METHODOLOGY

Baselines. We compare UPER against OminiControl (our direct baseline) and IP-
Adapter+FLUX (Ye et al., 2023), which represents a strong, widely-used method for subject-driven
generation. This allows us to evaluate the specific gains from our post-training framework. Quan-
titative Metrics. We use Fréchet Inception Distance (FID) (Heusel et al., 2017) for overall image
fidelity and CLIP Score (Radford et al., 2021) for text-prompt alignment. To specifically address the
core challenge of this paper, we introduce DINOv2-Sim, which is the cosine similarity between the
DINOv2 embeddings of the generated subject and the reference subject (both segmented from the
background). This metric is designed to be a direct quantitative measure of subject consistency. Au-
tomated & Human Evaluation. For scalable assessment, we use GPT-4o to evaluate 750 generated
image pairs on subject consistency, text alignment, and image fidelity. The cornerstone of our eval-
uation, however, is a large-scale human study. We collected over 1,000 responses from 105 unique
participants in a blind, randomized pairwise comparison. The interface for this study, designed to
elicit clear preferences on both quality and consistency, is shown in Figure 3.

4.3 RESULTS AND ANALYSIS

Quantitative and Automated Analysis. Table 1 shows UPER consistently improves over baselines.
The RL stage brings the most significant gain in DINOv2-Sim (+0.07 over SFT), confirming its
effectiveness in enhancing subject consistency. The automated evaluation in Figure 4(a) corroborates
this, showing a major improvement in Subject Consistency as judged by GPT-4o, while maintaining
strong Text Alignment and Image Fidelity.

User Study Analysis. The human evaluation (Figure 4(b)) provides the most compelling evidence.
When asked for their overall preference, users chose our final UPER-RL model over the baseline an
overwhelming 89.3% of the time. This near 9-to-1 preference ratio validates that by optimizing for
detail consistency, we have addressed a primary pain point for users.

4.4 QUALITATIVE ANALYSIS

Beyond quantitative metrics, a qualitative examination of the generated images provides clear and
intuitive evidence of UPER’s effectiveness. In Figure 5, we present a side-by-side comparison of
our final UPER-RL model against the baseline for several challenging subjects. For the backpack,
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Figure 3: The interface for our human preference study. Participants were presented with a
reference image and a text prompt, along with two generated images from different models in a
randomized order. They were asked to select the better image based on overall quality and subject
consistency.

Table 1: Quantitative comparison. UPER demonstrates superior performance across all metrics,
with significant gains in subject consistency (DINOv2-Sim) and image fidelity (FID).

Method FID ↓ CLIP Score ↑ DINOv2-Sim ↑
IP-Adapter + FLUX 239.12 0.782 0.65
OminiControl (Baseline) 156.12 0.824 0.71
UPER-SFT 134.12 0.830 0.78
UPER-RL (Ours) 130.12 0.831 0.85

(a) Automated evaluation by GPT-4o. (b) Human preference rates.

Figure 4: Evaluation Results. (a) The radar chart, normalized from 0 (worst) to 1 (best), shows
UPER-RL’s superior subject consistency. (b) The bar chart shows overwhelming human preference
for UPER-RL over the baseline. Error bars denote 95% confidence intervals.

prompted with ”a photo of this backpack in a forest,” the baseline model generates a backpack of a
different color, failing to preserve the original’s distinct purple hue. Our model, however, maintains
the correct color and texture. For the bowl, prompted with ”a photo of this bowl in the snow,” the
baseline completely ignores the ”Bon Appétit” text, a key identifying feature. UPER successfully
reproduces this text, demonstrating superior alignment with human-salient details. Similarly, for
the vase (”a photo of this vase on a wooden table”), UPER preserves the unique color gradient and
glossy finish, while the baseline produces a duller, less accurate version. Finally, for the boots (”a
photo of these boots on a cobblestone street”), UPER accurately reconstructs the intricate fringe
details, which are heavily simplified by the baseline. These examples collectively illustrate that
UPER consistently captures and renders the fine-grained, identity-defining characteristics that are
crucial for high-fidelity personalization.

7
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Figure 5: Additional Qualitative Examples. More comparisons showing UPER’s superior detail
preservation. Prompts from left to right, top to bottom: ”a photo of this backpack in a forest”, ”a
photo of this bowl in the snow”, ”a photo of this vase on a wooden table”, ”a photo of these boots
on a cobblestone street”.

4.5 ABLATION STUDIES

To dissect our framework’s contributions and validate our design choices, we conducted a series of
comprehensive ablation studies.

Impact of SFT Data Refinement. We first investigated the impact of our proposed SFT data refine-
ment pipeline. As shown in Table 2, training a model without this pipeline (i.e., using the original
Subject-200K dataset with noisy backgrounds) yields only a marginal improvement in subject con-
sistency over the baseline. In contrast, our full SFT process, which uses cleaned reference images,
leads to a substantial boost in both FID and DINOv2-Sim. This result empirically confirms our hy-
pothesis that reducing conditioning noise by removing irrelevant backgrounds is a crucial first step
for enhancing detail preservation.

Table 2: Ablation on SFT data refinement.

SFT Variant FID ↓ DINOv2-Sim ↑
OminiControl (Baseline) 156.12 0.71
UPER-SFT (w/o Refinement) 145.53 0.73
UPER-SFT (Full) 134.12 0.78

Contribution of Reward Components. To understand the role of each component in our reward
ensemble, we trained RL variants using only subsets of the rewards (Table 3). A model trained
with only text alignment and aesthetic rewards (Rtext + Raes) failed to improve subject consistency,
with its DINOv2-Sim score remaining at the SFT level. Conversely, a model trained with only the
subject consistency reward (Rsub) achieved the highest consistency score but suffered from severe
reward hacking, manifesting as unnatural texture repetition and a noticeable drop in text alignment
(CLIP Score). This demonstrates that the full ensemble is necessary to achieve a synergistic effect,
simultaneously improving consistency while maintaining quality and editability.

Table 3: Ablation on RL reward components.

RL Reward CLIP Score ↑ DINOv2-Sim ↑
UPER-SFT (No RL) 0.830 0.78
Rtext +Raes only 0.832 0.77
Rsub only 0.815 0.86
Full Ensemble (Ours) 0.831 0.85

Analysis of Reward Weights and Patch Encoder. We tested alternative weightings for Rcomposite
and found our chosen weights (0.2, 0.2, 0.4) provided the best balance between consistency and
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quality. We also compared DINOv2 with CLIP as the patch encoder for Rsub (Table 4). DINOv2,
which is self-supervised for fine-grained instance-level matching, significantly outperformed CLIP,
which is trained for global semantic alignment. This highlights the importance of choosing a reward
encoder whose training objective aligns with the desired fine-grained comparison task.

Table 4: Ablation on patch encoder for Rsub.

Patch Encoder DINOv2-Sim ↑
CLIP ViT-L/14 0.81
DINOv2 ViT-g/14 0.85

4.6 COMPARISON WITH ADDITIONAL BASELINES

To further contextualize UPER’s performance, we compare it with DreamBooth (Ruiz et al., 2023),
a classic fine-tuning method, and a DPO-based (Wallace et al., 2024) variant of our own frame-
work (Table 5). DreamBooth achieves excellent subject consistency but at the cost of requiring
per-subject fine-tuning and offering limited text-based editability. Our DPO variant, which opti-
mizes on preference pairs derived from our reward scores, was less stable during training for this
multi-objective task and yielded slightly lower performance than our ReFL-based approach. This
supports our choice of ReFL for its efficiency and effectiveness in this specific problem setting.

Table 5: Comparison with additional baselines.

Method Editability (CLIP) ↑ Consistency (DINOv2) ↑
DreamBooth 0.795 0.87
UPER (DPO-based) 0.828 0.83
UPER (ReFL-based) 0.831 0.85

Future Work. The limitations of our current work point to several exciting directions for future
research. To address the complexity of the reward ensemble, one could explore ”reward distilla-
tion,” where the knowledge from the three separate reward models is distilled into a single, efficient
network. This would reduce the computational overhead during RL training. Another promising
direction is to automate the reward weighting process, perhaps through meta-learning or a bandit-
based approach, to find the optimal balance for different types of subjects or prompts dynamically.
Finally, extending the UPER framework to other personalized generation tasks, such as video or
3D synthesis, where detail consistency is equally, if not more, critical, represents a significant and
impactful area for future exploration.

5 CONCLUSION

In this paper, we introduced UPER, a two-stage post-training framework that significantly improves
detail consistency in personalized image generation. By framing the problem as one of alignment
and leveraging a novel, patch-based reward metric within an efficient RL framework, UPER success-
fully bridges the gap between model objectives and human perception. Our extensive evaluations,
including comprehensive ablations and a large-scale user study, demonstrate that UPER produces
more faithful and compelling personalized images that are overwhelmingly preferred by users. This
work establishes a robust methodology for aligning generative models with nuanced, detail-oriented
human preferences, paving the way for their use in high-fidelity creative and commercial applica-
tions where precision and faithfulness are non-negotiable.
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A THE USE OF LARGE LANGUAGE MODELS(LLMS)

Large Language Models (LLMs) were only used to correct grammar errors and polish the writ-
ing. They were not involved in research ideation, experiment design, analysis, or other substantive
contributions.

B LIMITATIONS

While our work achieves significant progress, it is subject to several limitations. First, the ultimate
performance of the UPER framework is inherently dependent on the capabilities of the chosen base
model (OminiControl in this paper). Although our post-training approach markedly improves detail
consistency, it cannot fundamentally resolve certain intrinsic weaknesses of the base model, such
as a limited understanding of complex spatial relationships or physical interactions. Second, our
two-stage training pipeline, particularly the RL stage involving multiple reward models, introduces
additional computational overhead and implementation complexity. The selection of reward weights
requires empirical sweeps and may not be optimal for all subject types. Furthermore, despite em-
ploying strategies like gradient clipping to mitigate reward hacking, the risk of over-optimizing for
a specific reward metric remains, which could lead to distortions in some aspects of the gener-
ated images. Lastly, our current evaluation focuses primarily on single-subject personalization; the
framework’s effectiveness in handling complex scenes with multiple interacting subjects remains an
area for future investigation.

C BROADER IMPACT

Positive Impact The technology proposed in this research holds the potential for positive impact
across several domains. For artists, designers, and small businesses, it offers a powerful and effi-
cient tool for creating highly customized visual content, such as product prototype visualizations,
advertising materials, and personalized artwork, thereby lowering the barrier to professional content
creation. In e-commerce and fashion, this technology could power applications like virtual try-on,
offering consumers a more realistic and engaging shopping experience.

Potential Risks and Mitigation Like all powerful generative technologies, the outcomes of this
research carry a risk of misuse. The most significant concern is the potential for creating deceptive
synthetic content (”deepfakes”) to spread misinformation or for malicious purposes. While our re-
search aims to enhance the fidelity of personalization, this capability is inherently a double-edged
sword. We advocate for the continued development and deployment of robust synthetic media detec-
tion techniques to counter such risks. Moreover, the presence of copyrighted material and societal
biases in the training data is a critical issue. The model might inadvertently replicate copyrighted
elements or amplify biases inherent in the data. We believe future work must address the provenance
and compliance of datasets and develop algorithms to identify and mitigate bias in generated content
to ensure the responsible development and application of this technology.
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