
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UPER: ALIGNING PERSONALIZED IMAGE GENERATION WITH HUMAN PERCEPTION VIA REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Personalized image generation aims to synthesize novel scenes featuring a specific user-provided subject. However, state-of-the-art models often fail to preserve the fine-grained details that define a subject’s unique identity, a critical flaw that limits their use in high-fidelity applications. This “consistency gap” arises from a misalignment between the model’s learned similarity metric and nuanced human perception. To address this, we introduce **UPER** (Unifying Post-training for Personalization), a post-training framework designed to align generative models with human preferences for detail consistency. UPER employs a two-stage process: it first refines the model’s focus on the subject’s core attributes via Supervised Fine-Tuning (SFT) on a dataset with cleaned background information. Subsequently, it optimizes the model using Reinforcement Learning (RL) with a novel composite reward function. The key component of this function is a new patch-based consistency metric that accurately measures subject fidelity using only pre-trained vision encoders, eliminating the need for expensive preference data collection. We apply UPER to the state-of-the-art OminiControl model. The results are unequivocal: in a blind user study with over 1,000 responses, images generated by our final model were preferred for their overall quality and subject consistency **89.3%** of the time over the strong baseline. Our work provides a robust and scalable solution to the detail-consistency challenge, paving the way for more faithful personalized generation.

1 INTRODUCTION

Large-scale diffusion models have achieved remarkable success in generating high-fidelity images from text descriptions (Rombach et al., 2022; Saharia et al., 2022; Esser et al., 2024). A pivotal frontier in this domain is personalized generation, where models are conditioned on a reference image to transfer specific subjects or styles into new creations (Ye et al., 2023; Tan et al., 2024). This multi-modal conditioning offers far greater precision than text alone, enabling high-value applications from virtual try-on (Han et al., 2023) to hyper-realistic product visualization for e-commerce and advertising (Zhang et al., 2024).

Despite this progress, a critical limitation persists: a failure to maintain detail consistency. As shown in Fig. 1, while models can replicate the general form of a subject, they often lose the specific textures, patterns, and structural nuances that define its unique identity. This “consistency gap” is particularly detrimental in commercial applications, where preserving brand logos, specific colorways, or unique material finishes is paramount. The issue is not merely a technical flaw but a fundamental alignment problem: the model’s internal objective for “similarity” deviates from nuanced human perception. For instance, a model might prioritize matching the color of a shirt, while a human user cares more about preserving the logo printed on it. This misalignment stems from training paradigms that either lack diversity (self-generation) or rely on scarce, imperfectly paired data, causing the model to learn a generalized concept rather than specific details.

To bridge this perception gap, we turn to Reinforcement Learning from Human Feedback (RLHF), a powerful paradigm for instilling complex, hard-to-define human preferences into AI systems. While RLHF is well-established in language modeling, its application to image generation presents

unique opportunities. Unlike discrete language models that require policy gradient algorithms like PPO (Schulman et al., 2017), diffusion and flow-based models operate in a continuous space. This allows for more direct optimization methods. One such method is Reward-supported Flow Learning (ReFL) (Xu et al., 2023), which leverages the differentiability of flow models to directly backpropagate reward signals, proving highly efficient for visual alignment tasks.

To address the critical challenge of detail loss, we propose **UPER** (Unifying Post-Training for Personalization). UPER is a post-training framework designed to enhance the detail consistency of any subject-driven generative model. Our framework consists of two core stages:

1. **Refined Supervised Fine-Tuning (SFT):** We introduce a data pre-processing pipeline that cleans reference images by removing confounding background information. While background removal itself is a known technique in object-centric generation (Chen et al., 2024; Song et al., 2024), we integrate it as a systematic SFT step to force the model to focus on subject-specific details.
2. **Reinforcement Learning (RL) with a Novel Reward Ensemble:** We design a composite reward function that balances text alignment, aesthetics, and a novel, patch-based reward metric specifically engineered to measure fine-grained subject consistency. This reward is optimized using the efficient ReFL algorithm, which we found to be more effective than DPO in our preliminary experiments.

We demonstrate UPER’s effectiveness by applying it to the state-of-the-art OminiControl (Tan et al., 2024) model. Extensive automated, quantitative, and human evaluations confirm that UPER significantly improves detail preservation without compromising overall generation quality.

Our primary contributions are:

- A systematic, two-stage post-training framework (UPER) that significantly resolves the detail-consistency problem in personalized object generation by treating it as an alignment task.
- A new patch-based reward metric for subject consistency that leverages pre-trained vision encoders to capture fine-grained details, requiring no training on preference data.
- Extensive empirical validation, including a large-scale human study and comprehensive ablation experiments, showing that UPER achieves state-of-the-art subject fidelity and is overwhelmingly preferred by users over strong baselines.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone for aligning AI systems, particularly Large Language Models (LLMs), with complex human values (Christiano et al., 2017). The standard process involves Supervised Fine-Tuning (SFT) on curated examples, followed by training a reward model (RM) on human preference data. Finally, a reinforcement learning algorithm optimizes the SFT model to maximize the score from the RM. While policy gradient methods like PPO (Schulman et al., 2017) are common, recent work has explored more sample-efficient alternatives like GRPO (Shao et al., 2024). Our work adapts this alignment paradigm to the continuous domain of image generation.

2.2 HUMAN FEEDBACK IN DIFFUSION MODELS

Integrating human feedback into diffusion models has become an active area of research, with several algorithmic families emerging to align models with preferences like aesthetic quality and semantic fidelity. One major branch of work adapts traditional reinforcement learning paradigms. This includes methods that use policy gradient algorithms like PPO (Black et al., 2023; Fan et al., 2023), which often introduce significant training complexity, and more direct fine-tuning approaches like Reward-supported Flow Learning (ReFL) (Xu et al., 2023), which leverage the model’s differentiability to efficiently backpropagate a reward signal. A second branch seeks to simplify this process. Reward-Weighted Regression (RWR) (Lee et al., 2023) reframes alignment as a weighted supervised learning problem, while Direct Preference Optimization (DPO) and its variants (Rafailov

108 et al., 2023; Wallace et al., 2024) offer an elegant solution by bypassing the need for an explicit
109 reward model altogether. While DPO is powerful, we found in preliminary experiments that the
110 explicit, component-wise control offered by ReFL was more stable and effective for our specific
111 multi-objective task. The ability to explicitly weight and balance different reward components (text,
112 aesthetics, consistency) is crucial for navigating the complex trade-offs in our problem, a level of
113 control that is less direct with DPO’s implicit reward formulation. While these methods have proven
114 effective for general T2I alignment, our work is the first to construct a reward ensemble specifically
115 for the complex, multi-faceted task of detail-preserving personalized generation.

116

117 2.3 PERSONALIZED GENERATION

118

119 Personalized generation seeks to create images featuring a specific subject, style, or concept pro-
120 vided by a user. Early methods like Textual Inversion (Gal et al., 2022) and DreamBooth (Ruiz
121 et al., 2023) achieved this through per-subject fine-tuning of a diffusion model on a few example
122 images. While effective, these approaches are computationally intensive and require optimization
123 for each new subject. More recent works, such as IP-Adapter (Ye et al., 2023) and our baseline
124 OminiControl (Tan et al., 2024), have shifted towards using lightweight adapters for more efficient,
125 zero-shot personalization. A parallel line of research, focused on high-fidelity object composition
126 and editing, has also emerged. Works like AnyDoor (Chen et al., 2024), IMPRINT (Song et al.,
127 2024), and Bifröst (Li et al., 2024) have explored sophisticated techniques for object manipulation,
128 often involving segmentation. Our work draws inspiration from this latter line of research, speci-
129 fically the principle of using background removal to isolate the subject. However, we position this not
130 as a core novel contribution in itself, but as a crucial and systematic data refinement step within our
131 broader alignment framework. The primary novelty of UPER lies in its two-stage post-training struc-
132 ture, which addresses the subsequent and more challenging problem of preserving the fine-grained
133 details that even these advanced methods can struggle with.

134

135 3 METHOD

136

137 Our method, UPER, enhances personalized image generation through a two-stage post-training
138 framework. The process begins with Supervised Fine-Tuning (SFT) to refine conditional focus, fol-
139 lowed by Reinforcement Learning (RL) to optimize for a composite reward signal. The full pipeline
140 is shown in Fig. 1 and detailed in Algorithm 1.

141

142 3.1 REWARD MODEL ENSEMBLE FOR PERSONALIZATION

143

144 Instead of training a monolithic reward model, we construct a composite reward by ensembling
145 three specialized, pre-trained models. This approach allows us to precisely target the multi-faceted
146 goals of personalized generation: text alignment, aesthetic quality, and, most critically, subject con-
147 sistency. To measure semantic correspondence with the input prompt, we use the cosine similarity
148 between CLIP ViT-L/14 embeddings of the generated image and the text, providing a standard, dif-
149 ferentiable score for text alignment (R_{text}). For visual appeal, we employ the Human Preference
150 Score v2 (HPS-v2) (Wu et al., 2023), a state-of-the-art aesthetic predictor trained on a large dataset
151 of human preference choices, which yields a robust aesthetic score (R_{aes}). The cornerstone of our
152 ensemble, however, is the reward for subject consistency (R_{sub}), which is designed to capture the
153 fine-grained details that define a subject’s identity.

154

155 3.1.1 TEXT-PROMPT ALIGNMENT (R_{text})

156

157 We measure semantic correspondence between the generated image I_{gen} and the prompt P using
158 CLIP ViT-L/14 embeddings (Radford et al., 2021): $R_{\text{text}} = \text{sim}(\text{CLIP}_{\text{img}}(I_{\text{gen}}), \text{CLIP}_{\text{text}}(P))$.

159

160 3.1.2 AESTHETIC QUALITY (R_{aes})

161

162 We use the Human Preference Score v2 (HPS-v2) (Wu et al., 2023), a state-of-the-art aesthetic
163 predictor, to get a scalar score. HPS-v2 is trained on a large-scale dataset of human preference
164 choices, making it robust against common failure modes and reward hacking. $R_{\text{aes}} = \text{HPS-v2}(I_{\text{gen}})$.

Figure 1: **Overview of the UPER Post-Training Pipeline.** The framework consists of two main stages: Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL). **(a) Reward Model Ensemble:** We design a composite reward signal from three distinct, pre-trained components targeting text alignment (R_{text}), aesthetics (R_{aes}), and subject consistency (R_{sub}). The key innovation is our patch-based consistency metric, which uses a DINOv2 (Oquab et al., 2023) encoder to compute similarity at a local level. **(b) SFT Stage:** The base model is fine-tuned on a refined dataset where reference images have their backgrounds removed, forcing the model to learn a more precise subject-focused representation. **(c) RL Stage:** We use Reward-supported Flow Learning (ReFL) to align the model with the composite reward. The end-to-end differentiability of the reward models and the single-step flow prediction allows gradients to be backpropagated directly into the model’s LoRA weights for efficient optimization.

3.1.3 SUBJECT CONSISTENCY (R_{SUB})

To capture fine-grained details, we propose a patch-based reward, R_{sub} . The key insight is to use an encoder trained specifically for instance-level matching, rather than global semantic similarity. We choose DINOv2 (Oquab et al., 2023) for its strong performance on such tasks, as its self-supervised training objective encourages learning features that are robust to viewpoint changes while preserving identity. The computation is a three-step process. First, both the generated image I_{gen} and the reference image I_{ref} are decomposed into a grid of N overlapping 224×224 patches with a stride of 112. Second, for each spatially corresponding patch pair $(p_k^{\text{gen}}, p_k^{\text{ref}})$, we extract their feature embeddings using the pre-trained DINOv2 encoder (f_{DINOv2}) and compute their cosine similarity:

$$\phi_k = \text{sim}(f_{\text{DINOv2}}(p_k^{\text{gen}}), f_{\text{DINOv2}}(p_k^{\text{ref}})). \quad (1)$$

Finally, the individual patch similarities are aggregated by taking their mean to produce the final subject consistency reward, $R_{\text{sub}} = \frac{1}{N} \sum_{k=1}^N \phi_k$. This patch-based approach is highly sensitive to local texture and pattern loss, which global metrics like CLIP similarity often miss.

3.2 POST-TRAINING PIPELINE

3.2.1 STAGE 1: SUPERVISED FINE-TUNING WITH REFINED CONDITIONING

The pre-training of our baseline model, OminiControl, utilizes the Subject-200K dataset. A critical observation is that the reference images in this dataset contain rich and often complex background information. As illustrated in Fig. 2(a), this creates a "conditioning noise" problem. For instance, when the model is tasked to learn the identity of the Eames lounge chair, it is simultaneously exposed to vastly different backgrounds—a cozy library in one image and a modern city view in another. This irrelevant background information can confound the model, forcing it to entangle subject features with background context and hindering its ability to learn a pure, disentangled representation of the subject’s core attributes.

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 2: **SFT Data Refinement Pipeline.** (a) Original image pairs from Subject-200K exhibit “conditioning noise,” where complex backgrounds interfere with subject learning. (b) Our pipeline first removes the background from the reference image and then uses a VLM to filter for high-quality pairs, ensuring the model focuses on core subject attributes.

Algorithm 1 UPER Post-Training Framework

```

1: Input: Pre-trained model  $\theta_0$ , SFT dataset  $D_{\text{SFT}}$ , RL prompts  $D_{\text{RL}}$ .
2: Hyperparameters: SFT steps  $T_{\text{SFT}}$ , RL steps  $T_{\text{RL}}$ , learning rate  $\eta$ , LoRA rank  $r = 4$ .
3: Initialize LoRA weights for model  $\theta_0$ .
4: {— Stage 1: Supervised Fine-Tuning —}
5: for  $t = 1$  to  $T_{\text{SFT}}$  do
6:   Sample  $(I_{\text{ref}}, I_{\text{target}}, P) \sim D_{\text{SFT}}$ .
7:   Compute SFT loss  $\mathcal{L}_{\text{SFT}}$  (e.g., flow matching loss).
8:   Update LoRA weights:  $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}_{\text{SFT}}$ .
9: end for
10: Let  $\theta_{\text{SFT}} \leftarrow \theta$ .
11: {— Stage 2: Reinforcement Learning —}
12: for  $t = 1$  to  $T_{\text{RL}}$  do
13:   Sample  $(I_{\text{ref}}, P) \sim D_{\text{RL}}$ .
14:   Generate image  $I_{\text{gen}} \sim \pi_{\theta_{\text{SFT}}}(\cdot | I_{\text{ref}}, P)$ .
15:   Compute rewards  $R_{\text{text}}, R_{\text{aes}}, R_{\text{sub}}$ .
16:   For each reward  $R_i$ , compute mean  $\mu_i$  and std  $\sigma_i$  over the batch.
17:   Normalize rewards:  $\hat{R}_i \leftarrow (R_i - \mu_i) / (\sigma_i + \epsilon)$ .
18:   Compute composite reward  $R_{\text{composite}} = \sum w_i \hat{R}_i$ .
19:   Compute RL loss  $\mathcal{L}_{\text{RL}} = -R_{\text{composite}}$ .
20:   Update LoRA weights:  $\theta_{\text{SFT}} \leftarrow \theta_{\text{SFT}} - \eta \nabla_{\theta_{\text{SFT}}} \mathcal{L}_{\text{RL}}$ .
21: end for
22: Return: Aligned model  $\theta_{\text{RL}} = \theta_{\text{SFT}}$ .

```

To address this information redundancy and improve the model’s focus, we introduce a systematic data pre-processing and filtering pipeline for the SFT stage, as visualized in Fig. 2(b). This process is twofold. First, we apply a robust background removal model (‘RMBG-1.4’) to every reference image, segmenting the primary subject and placing it on a neutral white background. This step forces the model to learn the subject’s identity from its intrinsic properties alone, free from confounding background signals. Second, to further enhance the quality and consistency of the training pairs, we employ a powerful Vision-Language Model, **Qwen-VL** (Wang et al., 2024), as a filter. For each pair, the VLM first identifies key visual attributes from the now-cleaned reference image (e.g., “Eames Lounge Chair,” “black leather,” “wood shell”). It then verifies whether these essential attributes are accurately present in the corresponding target image. Any pair that fails this cross-modal consistency check is discarded from the training set. This meticulous refinement process yields a high-quality SFT dataset that enables the model to develop a more robust and detailed conditional generation capability before the RL alignment stage.

3.2.2 STAGE 2: REINFORCEMENT LEARNING WITH DIFFERENTIABLE REWARDS

Following SFT, we use RL to align the model with our composite reward. We employ Reward-supported Flow Learning (ReFL) (Xu et al., 2023), where the reward signal is backpropagated directly through the single-step image prediction process. The RL loss is the negative of the composite reward: $\mathcal{L}_{\text{RL}} = -R_{\text{composite}}$. This end-to-end differentiable pipeline enables highly efficient alignment. The full process is detailed in Algorithm 1.

270 3.3 MITIGATING REWARD HACKING
271

272 An unconstrained R_{sub} could encourage the model to simply copy-paste textures. We employ two
273 strategies to mitigate this:

274 1. **Balanced Composite Reward:** We combine the reward components using weights determined
275 via empirical sweeps: $R_{\text{composite}} = 0.2 \cdot \hat{R}_{\text{text}} + 0.2 \cdot \hat{R}_{\text{aes}} + 0.4 \cdot \hat{R}_{\text{sub}}$, where \hat{R} denotes z-score
276 normalization over the batch. This multi-objective landscape discourages over-optimization.
277

278 2. **Gradient Clipping:** To prevent the subject consistency term from dominating, we clip the gra-
279 dient of the reward with respect to the generated image, $\nabla_{I_{\text{gen}}} R_{\text{sub}}$, with a threshold of $\tau = 0.2$.

280
281 4 EXPERIMENTS
282

283 4.1 EXPERIMENTAL SETUP
284

285 **Base Model.** We build UPER upon OminiControl (Tan et al., 2024), which is based on the FLUX.1-
286 dev flow transformer model (Esser et al., 2024).

287 **Training Details.** We use LoRA (Hu et al., 2022) with rank 4. Training is done on 8 NVIDIA H100
288 (80GB) GPUs with an effective batch size of 32. We use the AdamW optimizer (Kingma & Ba,
289 2014) with a learning rate of 1e-4. The SFT stage runs for 5k iterations, and the RL stage for 2k.

290 **Datasets.** We use our refined version of Subject-200K (Tan et al., 2024) for SFT and the Dream-
291 Booth dataset (Ruiz et al., 2023) for evaluation.

292
293 4.2 EVALUATION METHODOLOGY
294

295 **Baselines.** We compare UPER against OminiControl (our direct baseline) and IP-
296 Adapter+FLUX (Ye et al., 2023), which represents a strong, widely-used method for subject-driven
297 generation. This allows us to evaluate the specific gains from our post-training framework. **Quan-**

298 **titative Metrics.** We use Fréchet Inception Distance (FID) (Heusel et al., 2017) for overall image
299 fidelity and CLIP Score (Radford et al., 2021) for text-prompt alignment. To specifically address the
300 core challenge of this paper, we introduce **DINOv2-Sim**, which is the cosine similarity between the
301 DINOv2 embeddings of the generated subject and the reference subject (both segmented from the
302 background). This metric is designed to be a direct quantitative measure of subject consistency. **Au-**
303 **tomated & Human Evaluation.** For scalable assessment, we use GPT-4o to evaluate 750 generated
304 image pairs on subject consistency, text alignment, and image fidelity. The cornerstone of our eval-
305 uation, however, is a large-scale human study. We collected over 1,000 responses from 105 unique
306 participants in a blind, randomized pairwise comparison. The interface for this study, designed to
307 elicit clear preferences on both quality and consistency, is shown in Fig. 3.

308
309 4.3 RESULTS AND ANALYSIS
310

311 **Quantitative and Automated Analysis.** Table 1 shows UPER consistently improves over baselines.
312 The RL stage brings the most significant gain in DINOv2-Sim (+0.07 over SFT), confirming its
313 effectiveness in enhancing subject consistency. The automated evaluation in Fig. 4(a) corroborates
314 this, showing a major improvement in Subject Consistency as judged by GPT-4o, while maintaining
315 strong Text Alignment and Image Fidelity.

316 **User Study Analysis.** The human evaluation (Fig. 4(b)) provides the most compelling evidence.
317 When asked for their overall preference, users chose our final UPER-RL model over the baseline an
318 overwhelming **89.3%** of the time. This near 9-to-1 preference ratio validates that by optimizing for
319 detail consistency, we have addressed a primary pain point for users.

320
321 4.4 QUALITATIVE ANALYSIS
322

323 Beyond quantitative metrics, a qualitative examination of the generated images provides clear and
324 intuitive evidence of UPER’s effectiveness. In Fig. 5, we present a side-by-side comparison of
325 our final UPER-RL model against the baseline for several challenging subjects. For the backpack,

Figure 3: **The interface for our human preference study.** Participants were presented with a reference image and a text prompt, along with two generated images from different models in a randomized order. They were asked to select the better image based on overall quality and subject consistency.

Table 1: Quantitative comparison. UPER demonstrates superior performance across all metrics, with significant gains in subject consistency (DINOv2-Sim) and image fidelity (FID).

Method	FID ↓	CLIP Score ↑	DINOv2-Sim ↑
IP-Adapter + FLUX	239.12	0.782	0.65
OminiControl (Baseline)	156.12	0.824	0.71
UPER-SFT	134.12	0.830	0.78
UPER-RL (Ours)	130.12	0.831	0.85

Figure 4: **Evaluation Results.** (a) The radar chart, normalized from 0 (worst) to 1 (best), shows UPER-RL’s superior subject consistency. (b) The bar chart shows overwhelming human preference for UPER-RL over the baseline. Error bars denote 95% confidence intervals.

prompted with ”a photo of this backpack in a forest,” the baseline model generates a backpack of a different color, failing to preserve the original’s distinct purple hue. Our model, however, maintains the correct color and texture. For the bowl, prompted with ”a photo of this bowl in the snow,” the baseline completely ignores the ”Bon Appétit” text, a key identifying feature. UPER successfully reproduces this text, demonstrating superior alignment with human-salient details. Similarly, for the vase (”a photo of this vase on a wooden table”), UPER preserves the unique color gradient and glossy finish, while the baseline produces a duller, less accurate version. Finally, for the boots (”a photo of these boots on a cobblestone street”), UPER accurately reconstructs the intricate fringe details, which are heavily simplified by the baseline. These examples collectively illustrate that UPER consistently captures and renders the fine-grained, identity-defining characteristics that are crucial for high-fidelity personalization.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392 **Figure 5: Additional Qualitative Examples.** More comparisons showing UPER’s superior detail
393 preservation. Prompts from left to right, top to bottom: ”a photo of this backpack in a forest”, ”a
394 photo of this bowl in the snow”, ”a photo of this vase on a wooden table”, ”a photo of these boots
395 on a cobblestone street”.

4.5 ABLATION STUDIES

396 To dissect our framework’s contributions and validate our design choices, we conducted a series of
397 comprehensive ablation studies.

400 **Impact of SFT Data Refinement.** We first investigated the impact of our proposed SFT data refine-
401 ment pipeline. As shown in Table 2, training a model without this pipeline (i.e., using the original
402 Subject-200K dataset with noisy backgrounds) yields only a marginal improvement in subject con-
403 sistency over the baseline. In contrast, our full SFT process, which uses cleaned reference images,
404 leads to a substantial boost in both FID and DINOv2-Sim. This result empirically confirms our hy-
405 pothesis that reducing conditioning noise by removing irrelevant backgrounds is a crucial first step
406 for enhancing detail preservation.

407
408 Table 2: Ablation on SFT data refinement.

SFT Variant	FID \downarrow	DINOv2-Sim \uparrow
OminiControl (Baseline)	156.12	0.71
UPER-SFT (w/o Refinement)	145.53	0.73
UPER-SFT (Full)	134.12	0.78

415 **Contribution of Reward Components.** To understand the role of each component in our reward
416 ensemble, we trained RL variants using only subsets of the rewards (Table 3). A model trained
417 with only text alignment and aesthetic rewards ($R_{\text{text}} + R_{\text{aes}}$) failed to improve subject consistency,
418 with its DINOv2-Sim score remaining at the SFT level. Conversely, a model trained with only the
419 subject consistency reward (R_{sub}) achieved the highest consistency score but suffered from severe
420 reward hacking, manifesting as unnatural texture repetition and a noticeable drop in text alignment
421 (CLIP Score). This demonstrates that the full ensemble is necessary to achieve a synergistic effect,
422 simultaneously improving consistency while maintaining quality and editability.

423
424 Table 3: Ablation on RL reward components.

RL Reward	CLIP Score \uparrow	DINOv2-Sim \uparrow
UPER-SFT (No RL)	0.830	0.78
$R_{\text{text}} + R_{\text{aes}}$ only	0.832	0.77
R_{sub} only	0.815	0.86
Full Ensemble (Ours)	0.831	0.85

425 **Analysis of Reward Weights and Patch Encoder.** We tested alternative weightings for $R_{\text{composite}}$
426 and found our chosen weights (0.2, 0.2, 0.4) provided the best balance between consistency and

432 quality. We also compared DINOv2 with CLIP as the patch encoder for R_{sub} (Table 4). DINOv2,
 433 which is self-supervised for fine-grained instance-level matching, significantly outperformed CLIP,
 434 which is trained for global semantic alignment. This highlights the importance of choosing a reward
 435 encoder whose training objective aligns with the desired fine-grained comparison task.
 436

437 Table 4: Ablation on patch encoder for R_{sub} .
 438

Patch Encoder	DINOv2-Sim \uparrow
CLIP ViT-L/14	0.81
DINOv2 ViT-g/14	0.85

439 **4.6 COMPARISON WITH ADDITIONAL BASELINES**
 440

441 To further contextualize UPER’s performance, we compare it with DreamBooth (Ruiz et al., 2023),
 442 a classic fine-tuning method, and a DPO-based (Wallace et al., 2024) variant of our own frame-
 443 work (Table 5). DreamBooth achieves excellent subject consistency but at the cost of requiring
 444 per-subject fine-tuning and offering limited text-based editability. Our DPO variant, which opti-
 445 mizes on preference pairs derived from our reward scores, was less stable during training for this
 446 multi-objective task and yielded slightly lower performance than our ReFL-based approach. This
 447 supports our choice of ReFL for its efficiency and effectiveness in this specific problem setting.
 448

449 Table 5: Comparison with additional baselines.
 450

Method	Editability (CLIP) \uparrow	Consistency (DINOv2) \uparrow
DreamBooth	0.795	0.87
UPER (DPO-based)	0.828	0.83
UPER (ReFL-based)	0.831	0.85

451 **4.7 COMPARISON WITH STATE-OF-THE-ART GENERALIST MODELS ON HUMAN-ALIGNED
 452 BENCHMARKS**

453 Meanwhile, we extended our evaluation to include OmniGen2 (Wu et al., 2025), a powerful, state-
 454 of-the-art generalist model known for its subject-driven generation capabilities. Crucially, to better
 455 evaluate the degree to which model personalisation aligns with human preferences, we evaluated
 456 its performance on the standardized DreamBench++ (Peng et al., 2024) benchmark, which provides
 457 robust criteria for assessing personalized image generation, alongside the original DreamBench.
 458

459 We applied our Reinforcement Learning stage (using the same composite reward) to the publicly
 460 available OmniGen2 model to test the generalizability and effectiveness of our post-training align-
 461 ment approach. As shown in Tab. 6, the results, obtained via automated scoring with GPT-4o,
 462 are clear. Our RL fine-tuning significantly boosts the subject consistency of OmniGen2 on both
 463 benchmarks (from 72.2 to 77.4 on DreamBench, and 84.0 to 88.0 on DreamBench++), with only a
 464 negligible impact on image fidelity and text alignment. This demonstrates that our specialist align-
 465 ment framework is not only effective but also necessary for enhancing detail preservation, even when
 466 combined with powerful, large-scale generalist models. These results validate the broad applicabil-
 467 ity and necessity of the UPER framework.
 468

469 Table 6: Automated evaluation (GPT-4o) of our RL alignment on the OmniGen2 model using Dream-
 470 Bench and the reviewer-suggested DreamBench++ benchmark. Our method consistently improves
 471 subject consistency.
 472

Model	Benchmark	Subject Consist. \uparrow	Image Fidelity \uparrow	Text Align. \uparrow
Omnigen2	DreamBench	72.2	85.0	94.4
Omnigen2 w. RL	DreamBench	77.4	84.8	95.2
Omnigen2	DreamBench++	84.0	90.2	94.2
Omnigen2 w. RL	DreamBench++	88.0	89.2	94.8

486
487
488
489
490
491
492
493
494

Future Work. The limitations of our current work point to several exciting directions for future research. To address the complexity of the reward ensemble, one could explore "reward distillation," where the knowledge from the three separate reward models is distilled into a single, efficient network. This would reduce the computational overhead during RL training. Another promising direction is to automate the reward weighting process, perhaps through meta-learning or a bandit-based approach, to find the optimal balance for different types of subjects or prompts dynamically. Finally, extending the UPER framework to other personalized generation tasks, such as video or 3D synthesis, where detail consistency is equally, if not more, critical, represents a significant and impactful area for future exploration.

495
496
497

5 CONCLUSION

498
499
500
501
502
503
504
505
506

In this paper, we introduced UPER, a two-stage post-training framework that significantly improves detail consistency in personalized image generation. By framing the problem as one of alignment and leveraging a novel, patch-based reward metric within an efficient RL framework, UPER successfully bridges the gap between model objectives and human perception. Our extensive evaluations, including comprehensive ablations and a large-scale user study, demonstrate that UPER produces more faithful and compelling personalized images that are overwhelmingly preferred by users. This work establishes a robust methodology for aligning generative models with nuanced, detail-oriented human preferences, paving the way for their use in high-fidelity creative and commercial applications where precision and faithfulness are non-negotiable.

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES

541

542 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
543 models with reinforcement learning. In *Advances in Neural Information Processing Systems*,
544 volume 36, 2023.

545 Xi Chen, Liangbing Wang, Yaxing Zhang, Zihan Liu, Qiang Wang, Chang Wang, Dong Wang, and
546 Turo Liu. Anydoor: Zero-shot object-level image customization. In *Proceedings of the IEEE/CVF*
547 *Conference on Computer Vision and Pattern Recognition*, pp. 8453–8463, 2024.

548 Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
549 reinforcement learning from human preferences. *arXiv preprint arXiv:1706.03741*, 2017.

550 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
551 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
552 high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*,
553 2024.

554 Yu-Guan Fan, Olivia Watkins, YuXuan Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter
555 Abbeel, Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning
556 for fine-tuning text-to-image diffusion models. In *Advances in Neural Information Processing*
557 *Systems*, volume 36, 2023.

558 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
559 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
560 inversion. *arXiv preprint arXiv:2208.01618*, 2022.

561 Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S Davis. Towards detailed characteristic-
562 preserving virtual try-on. In *Proceedings of the IEEE/CVF International Conference on Computer*
563 *Vision*, 2023.

564 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
565 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
566 *neural information processing systems*, 30, 2017.

567 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
568 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *International Confer-*
569 *ence on Learning Representations (ICLR)*, 1(2):3, 2022.

570 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
571 *arXiv:1412.6980*, 2014.

572 Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, YuXuan Du, Craig Boutilier, Pieter Abbeel,
573 Mohammad Ghavamzadeh, and Kangwook Lee. Aligning text-to-image models using reward
574 weighted regression. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-*
575 *tern Recognition*, pp. 26136–26146, 2023.

576 Yuto Li, Ka-Hei Li, Hong-Wing Yang, Yu-Wing Lai, and Philip Yu. Bifröst: 3d-aware image
577 compositing with language instructions. In *Advances in Neural Information Processing Systems*,
578 2024.

579 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
580 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
581 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

582 Yuang Peng, Yuxin Cui, Haomiao Tang, Zekun Qi, Runpei Dong, Jing Bai, Chunrui Han, Zheng Ge,
583 Xiangyu Zhang, and Shu-Tao Xia. Dreambench++: A human-aligned benchmark for personalized
584 image generation. *arXiv preprint arXiv:2406.16855*, 2024.

585 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
586 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
587 models from natural language supervision. In *International Conference on Machine Learning*
588 (*ICML*), pp. 8748–8763. PMLR, 2021.

594 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
595 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Ad-*
596 *vances in Neural Information Processing Systems*, volume 36, 2023.

597

598 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
599 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
600 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

601 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
602 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-*
603 *ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–
604 22510, 2023.

605 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
606 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
607 text-to-image diffusion models with deep language understanding. *Advances in neural informa-*
608 *tion processing systems*, 35:36479–36494, 2022.

609

610 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
611 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

612 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
613 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
614 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

615

616 Yuhang Song, Chao Wang, Jian Wang, Junsong Shen, Philip Chen, and Jian Zhang. Imprint: Gen-
617 erative object compositing by learning identity-preserving representation. In *Proceedings of the*
618 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6619–6629, 2024.

619 Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang. Ominicontrol: Min-
620 imal and universal control for diffusion transformer. *arXiv preprint arXiv:2411.15098*, 2024.

621

622 Bram Wallace, Meihua Dang, Rafael Rafailov, Lin Zhou, Aaron Lou, Senthil Purushwalkam, Ste-
623 fano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
624 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
625 *and Pattern Recognition*, pp. 8228–8238, 2024.

626

627 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
628 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
629 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

630

631 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
632 Jiang, Yexin Liu, Junjie Zhou, et al. Omnipgen2: Exploration to advanced multimodal generation.
633 *arXiv preprint arXiv:2506.18871*, 2025.

634

635 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
636 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
637 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023.

638

639 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
640 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
641 *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

642

643 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
644 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

645

646 Yujun Zhang, Zeyue Huang, Zeyu Wang, Tianhe Ren, Zeqi Liu, Xiaoyu Zhang, Xintao Chen,
647 Changxing Ding, Jingyi Yu, and Wen Gao. Aigi: Learning to generate and sell fashion items
before production. *arXiv preprint arXiv:2503.22182*, 2024.

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765</p

648 A THE USE OF LARGE LANGUAGE MODELS(LLMs)

649
650 Large Language Models (LLMs) were only used to correct grammar errors and polish the writing.
651 They were not involved in research ideation, experiment design, analysis, or other substantive
652 contributions.

653
654 B LIMITATIONS

655
656 While our work achieves significant progress, it is subject to several limitations. First, the ultimate
657 performance of the UPER framework is inherently dependent on the capabilities of the chosen base
658 model (OminiControl in this paper). Although our post-training approach markedly improves detail
659 consistency, it cannot fundamentally resolve certain intrinsic weaknesses of the base model, such
660 as a limited understanding of complex spatial relationships or physical interactions. Second, our
661 two-stage training pipeline, particularly the RL stage involving multiple reward models, introduces
662 additional computational overhead and implementation complexity. The selection of reward weights
663 requires empirical sweeps and may not be optimal for all subject types. Furthermore, despite em-
664 ploying strategies like gradient clipping to mitigate reward hacking, the risk of over-optimizing for
665 a specific reward metric remains, which could lead to distortions in some aspects of the gener-
666 ated images. Lastly, our current evaluation focuses primarily on single-subject personalization; the
667 framework’s effectiveness in handling complex scenes with multiple interacting subjects remains an
668 area for future investigation.

669
670 C BROADER IMPACT

671
672 **Positive Impact** The technology proposed in this research holds the potential for positive impact
673 across several domains. For artists, designers, and small businesses, it offers a powerful and effi-
674 cient tool for creating highly customized visual content, such as product prototype visualizations,
675 advertising materials, and personalized artwork, thereby lowering the barrier to professional content
676 creation. In e-commerce and fashion, this technology could power applications like virtual try-on,
677 offering consumers a more realistic and engaging shopping experience.

678 **Potential Risks and Mitigation** Like all powerful generative technologies, the outcomes of this
679 research carry a risk of misuse. The most significant concern is the potential for creating deceptive
680 synthetic content (“deepfakes”) to spread misinformation or for malicious purposes. While our re-
681 search aims to enhance the fidelity of personalization, this capability is inherently a double-edged
682 sword. We advocate for the continued development and deployment of robust synthetic media detec-
683 tion techniques to counter such risks. Moreover, the presence of copyrighted material and societal
684 biases in the training data is a critical issue. The model might inadvertently replicate copyrighted
685 elements or amplify biases inherent in the data. We believe future work must address the provenance
686 and compliance of datasets and develop algorithms to identify and mitigate bias in generated content
687 to ensure the responsible development and application of this technology.

688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A ADDITIONAL QUALITATIVE RESULTS

704 To further demonstrate the effectiveness of UPER, we provide additional qualitative comparisons
 705 in Fig. 6. These examples span a diverse range of subjects, including animals, toys, and household
 706 items, consistently showing UPER’s superior ability to preserve fine-grained details, textures, and
 707 unique features compared to the OminiControl baseline.

736 Figure 6: **Additional Qualitative Comparisons.** UPER consistently preserves subject-specific de-
 737 tails such as the sloth’s knitted texture, the robot’s specific markings, the dog’s fur pattern, and the
 738 unique shape of the poop emoji pillow, whereas the baseline often loses these fine-grained char-
 739 acteristics.

740 B FURTHER IMPLEMENTATION AND DESIGN DETAILS

741 B.1 IMPLEMENTATION OF THE PATCH-BASED SUBJECT CONSISTENCY REWARD (R_{sub})

745 As requested by reviewers, we provide a more detailed breakdown of our subject consistency reward
 746 calculation. The goal is to measure both global structural similarity and local detail fidelity, while
 747 preventing trivial copy-paste solutions.

749 1. **Global Similarity:** We first resize both the reference image I_{ref} and the generated image
 750 I_{gen} to the native resolution of our DINOv2 encoder (384x384 pixels). We extract their
 751 global CLS token embeddings and compute the cosine similarity. This provides a baseline
 752 score for overall structural correspondence.

753 2. **Patch-Based Similarity:** We then perform random spatial cropping on both images to
 754 extract N corresponding patch pairs, each of size 384x384. For each pair, we compute the
 755 cosine similarity of their DINOv2 embeddings and average these scores across all N pairs.
 This patch-level comparison is crucial for capturing fine-grained textures and patterns.

756
757
758
759
760
761
762
3. **High Similarity Penalty:** A key challenge in reward design is preventing "reward hacking." An unconstrained similarity metric could incentivize the model to simply output a slightly distorted version of the reference image. To mitigate this, we introduce a penalty for excessively high similarity scores. If the calculated similarity exceeds a certain threshold, the reward is penalized, encouraging the model to integrate the subject into a new context rather than just copying it.

763 The final R_{sub} is a weighted combination of these components, creating a robust metric that aligns
764 well with human perception of detail consistency.

766 B.2 RATIONALE FOR REWARD WEIGHTS

768 The reward weights (0.2 for R_{text} , 0.2 for R_{aes} , and 0.4 for R_{sub}) were determined through empirical
769 sweeps. Our initial approach used a more balanced distribution (e.g., 0.3, 0.3, 0.4). While this
770 improved subject consistency, we observed instances of reward hacking from the aesthetic and text-
771 alignment models, leading to minor artifacts. By down-weighting R_{text} and R_{aes} , we found a better
772 equilibrium that strongly preserved subject details without compromising overall image quality. We
773 argue that the ratio between weights is more critical than their sum, as the overall magnitude can be
774 absorbed by the learning rate. Our chosen weights represent the best-found trade-off for our task.

776 B.3 QUALITATIVE ABLATION: DINOv2 vs. CLIP FOR R_{sub} ENCODER

778 To illustrate why DINOv2 is superior to CLIP as a patch encoder for R_{sub} , we present a qualitative
779 comparison in Fig. 7. While the CLIP-based reward model generates an image that is semantically
780 correct at a high level (e.g., it produces "a robot" or "a bowl"), it fails to capture the specific, identity-
781 defining details. The DINO-based reward, in contrast, successfully preserves fine-grained features
782 such as the robot's blue chest light and wheel structure and the "Bon Appétit" text on the bowl. This
783 is because DINOv2 is trained via self-supervision for instance-level matching, making its feature
784 space inherently better suited for measuring the similarity of fine details.

793 Figure 7: **DINOv2 vs. CLIP as Patch Encoder for R_{sub} .** The model trained with a DINOv2-based
794 reward preserves fine-grained details (e.g., the robot's blue markings, the bowl's text). The model
795 trained with a CLIP-based reward captures the high-level concept but loses these specific details,
796 demonstrating the importance of using an encoder suited for instance-level matching.

800 B.4 EXAMPLES OF VLM-FILTERED DATA PAIRS

801 In our SFT data refinement pipeline, the Qwen-VL model acts as a crucial filter to remove imper-
802 fectly paired data. Fig. 8 provides a concrete example of this process. The VLM is tasked with
803 comparing two bookshelf images that share a similar overall structure. However, it correctly identi-
804 fied subtle but critical differences in their construction, the items on the shelves, and the wood grain
805 pattern. By analyzing these fine-grained details, the model concludes that they are not the same
806 object and assigns a similarity score of 0. This capability to discern between objects with high
807 semantic similarity but low instance-level identity is vital for curating a high-quality SFT dataset, free
808 from inconsistent or noisy pairs. For instance, another pair might be discarded if the reference image
809 clearly shows a "red leather chair," but the target image, due to lighting or other factors, renders the
chair as brown or orange.

810
811
812
813
814
815
816
817
818
819

User: Are the bookshelves in the two pictures below identical?

VLM: While they share the same basic design (a light-colored wood, 2-column by 5-row cubby structure), there are numerous differences in their construction, the items they hold, and even the wood grain itself. **They are definitely two different objects.**

820
821
822

User: Are the bookshelves in the two pictures below identical? *Rate this pair: 0 indicates they are definitely not the same object, while 5 indicates they are certainly the same object.*

823
824
825
826
827
828
829

VLM: While they share the same basic design (a light-colored wood, 2-column by 5-row cubby structure), there are numerous differences in their construction, the items they hold, and even the wood grain itself. **They are definitely two different objects. Therefore, the pair will be rated as 0.**

830
831
832
833
834
835
836

Figure 8: **Example of VLM-Based Data Filtering.** The VLM is tasked with determining if the two bookshelves are identical. Despite sharing a similar high-level design (a 2-column, 5-row wooden structure), the VLM astutely identifies fine-grained inconsistencies in its construction, the specific items it holds, and even the wood grain. Consequently, it rates the pair as 0, signifying they are different objects. This showcases the VLM’s crucial role in filtering out subtly mismatched pairs to ensure the quality of our SFT dataset.

837
838

C QUALITATIVE ANALYSIS OF UPER ON OMNIGEN2

839
840
841
842
843
844

In response to the reviewer’s feedback, we not only added quantitative comparisons with the state-of-the-art OmniGen2 model but also provided qualitative examples in Fig. 9. These visualizations demonstrate the effectiveness of our RL alignment stage when applied to a strong, existing generalist model. The results on both the standard DreamBench benchmark and the more challenging DreamBench++ benchmark show that our method consistently enhances subject consistency and detail preservation.

845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864
865
866
867
868
869
870
871

901 Figure 9: **Qualitative comparison of our RL alignment applied to OmniGen2.** The figure is di-
902 vided into two parts based on the evaluation benchmark. **(a)** Results on the DreamBench benchmark.
903 Our RL alignment (w. RL) significantly improves detail preservation. For instance, it correctly ren-
904 gers the pins on the pink backpack, preserves the "Transatlantic IPA" text on the can, and maintains
905 the "Bon Appétit" script on the bowl, details which the base OmniGen2 model struggles with. **(b)**
906 Results on the DreamBench++ benchmark, which features more complex and stylistic prompts.
907 Our RL alignment successfully enhances subject identity. For example, it generates a more faithful
908 anime-style French bulldog while preserving the subject's core features, and creates a more vibrant
909 and detailed rooster that better matches the fantastical prompt. These examples show that the UPER
910 framework serves as a general-purpose post-training solution to improve subject fidelity for state-
911 of-the-art models.

911
912
913
914
915
916
917