
Under review as a conference paper at ICLR 2023

OPPORTUNISTIC ACTOR-CRITIC (OPAC) WITH
CLIPPED TRIPLE Q-LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite being the most successful model-free deep reinforcement learning (RL)
algorithms in recent years, Soft Actor-Critic (SAC) and Twin Delayed Deep De-
terministic Policy Gradient (TD3) have their respective downsides–TD3 performs
well in simple tasks, while SAC does so in relatively complicated ones. However,
they also suffer from underestimation due to Clipped Double Q-learning, i.e., tak-
ing a minimum of two Q-values. This paper introduces Opportunistic Actor-Critic
(OPAC), an ensemble model-free deep RL algorithm that performs well in sim-
ple and complex tasks. OPAC combines the features of TD3 and SAC under one
roof to retain their respective benefits. It also employs three critics and consid-
ers taking the mean of the smallest two Q-values for updating the shared target,
dubbed Clipped Triple Q-learning. Our analytical results establish that Clipped
Triple Q-learning incurs less underestimation than Clipped Double Q-learning.
Furthermore, we have systematically evaluated OPAC in MuJoCo environments,
and the empirical results indicate that OPAC attains higher average rewards than
the current baselines.

1 INTRODUCTION

Model-free deep reinforcement learning (RL) has been enormously successful in many fields, like
gaming (Mnih et al., 2013; Silver et al., 2016; Alonso et al., 2021), robotic control (Gu et al., 2017;
Haarnoja et al., 2018a), decision-making (Chen et al., 2019), and many more. However, despite
achieving overwhelming performance in these tasks, applying model-free deep RL in continuous
domains confronts several significant obstacles. These include over or under-estimation bias, sample
complexity, convergence brittleness concerning the hyper-parameters, inefficient exploration, and
sub-optimal policies.

Getting accurate estimates of the Q-values is essential in model-free deep RL, as it enables the
actor to learn a robust policy. Actor-critic architectures form the base of the most popular and suc-
cessful model-free methods. Konda & Tsitsiklis (1999) presented a class of actor-critic algorithms
with provable convergence properties. Nevertheless, one glaring drawback of traditional actor-critic
methods is that they suffer from an overestimation bias while estimating the Q-values of the crit-
ics. For this reason, Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016) based
algorithms fail to deliver promising results on continuous control domains. Twin Delayed Deep
Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018) addressed the issue of overestimation
in actor-critic methods. It employed Clipped Double Q-learning, delayed policy updates, and target
policy smoothing. These techniques also contributed significantly to the stability of TD3. It is an
off-policy algorithm that trains a deterministic actor and learns from past samples with an experience
replay memory. However, TD3 underestimates the Q-values due to the usage of Clipped Double Q-
learning (Wu et al., 2020; He & Hou, 2020). In other words, TD3 considers the minimum of two
Q-values while computing the shared target, leading to underestimation. Furthermore, TD3 requires
careful hyper-parameter tuning to converge to the optimal policy.

To combat the convergence brittleness of model-free deep RL, the maximum entropy framework was
incorporated in Soft Actor-Critic (SAC) (Haarnoja et al., 2018b;c). The maximum entropy frame-
work has been used in several areas e.g. Ziebart et al. (2008); Todorov (2008); Toussaint (2009);
Rawlik et al. (2013). Like TD3, SAC also utilizes Clipped Double Q-learning and suffers from un-
derestimation. But as it also aims to maximize entropy, it ultimately achieves substantially higher

1

Under review as a conference paper at ICLR 2023

rewards. SAC outperformed prior state-of-the-art methods (including TD3) in terms of performance
and sample efficiency. However, due to the Gaussian nature of its policy, SAC struggles with poor
exploration, resulting in borderline performance in relatively simpler continuous control environ-
ments (Ciosek et al., 2019).

Although TD3 and SAC are two of the most successful model-free deep RL algorithms, they fail to
deliver consistently in a wide range of continuous control environments. For instance, TD3 performs
best in simple tasks, but SAC does well in relatively complicated ones. So, can we combine the
features of TD3 and SAC to get an algorithm that performs well in easy and complex tasks? In
this context, we introduce Opportunistic Actor-Critic (OPAC), an ensemble model-free deep RL
algorithm that puts the central features of TD3 and SAC under one roof to retain their respective
benefits. It is an off-policy algorithm that trains a stochastic actor. Also, OPAC uses three critics and
considers the mean of the smallest two Q-values to update the shared target. We call this strategy
Clipped Triple Q-learning, and our analytical results show that it incurs less underestimation than
Clipped Double Q-learning, i.e., taking the minimum of two Q-values. As per our knowledge, taking
the mean of the smallest two Q-values is a novel target-update strategy, and no prior works exist on
this. We have systematically evaluated OPAC on MuJoCo (Todorov et al., 2012) continuous control
tasks interfaced through OpenAI Gym (Brockman et al., 2016). The empirical results demonstrate
that OPAC consistently yields higher average rewards over time than current baselines.

2 RELATED WORKS

Several algorithms deal with controlling the estimation bias in actor-critic-based architectures.
These primarily differ in terms of the number of critics used and the target-update rule. Triplet-
Average Deep Deterministic Policy Gradient (TADD) (Wu et al., 2020) uses three critics and takes
a convex combination of the minimum of the first two Q-values and the third Q-value. Addition-
ally, it uses the arithmetic mean of the third Q-value of the last K time steps to reduce variance.
A shortcoming of this approach is its dependence on the convex combination coefficient β, which
is an environment-dependent hyper-parameter and is responsible for balancing the over-estimation
and under-estimation bias. Saglam et al. (2021) also uses three critics, but its target-update rule
is a modification of the Double Q-learning (van Hasselt et al., 2015) algorithm. It first takes the
maximum of two Q-values and then compares it with a third Q-value to determine the minimum.
Unlike TADD, there is no environment-specific hyper-parameter in this work. Weighted Delayed
Deep Deterministic Policy Gradient (WD3) (He & Hou, 2020) employs two critics and reduces the
underestimation by employing a weighted smooth update mechanism.

There also exist approaches that obtain better function estimates by not focusing on the number
of critics or the target-update rule. Duan et al. (2020) shows that the estimation bias is mitigated
by learning a distribution function of state-action returns instead of directly learning the Q-values.
Softmax Deep Double Deterministic Policy Gradients (SD3) (Pan et al., 2020) uses the Boltzmann-
Softmax operator for value function estimation. It can not only lessen the overestimation of DDPG
but also smooth the optimization landscape. Another approach is in Lyu et al. (2022) where the
prospect of having double actors and regularized critics is explored. Double actors possess a bias
alleviation property, and regularized critics control the large difference in value estimation between
two independent critics.

3 PRELIMINARIES

In this section, we briefly go over the fundamentals of reinforcement learning and maximum entropy
reinforcement learning. The provided mathematical notations have been used throughout.

3.1 REINFORCEMENT LEARNING

Markov Decision Processes (MDPs) are most commonly defined by the 4-tuple (S,A, p, r), where
S is the state space, A is the action space, p represents the transition function, and r represents the
reward function. The transition function p : S × S × A → [0,∞) signifies the probability density
of the next state st+1 ∈ S given the current state st ∈ S and action at ∈ A.

2

Under review as a conference paper at ICLR 2023

The goal in an MDP is to find an optimal policy. Policy is a function π that specifies the action π(s)
to choose when in state s. It is often expressed as a conditional probability distribution over the
actions given the states. Reinforcement learning considers an agent interacting with its environment
to learn a behavior that maximizes the accumulated rewards. The agent in RL could be thought of
as the decision-maker in MDPs and the environment could be thought of as the setting on which the
MDP is defined. Thus, RL can be viewed as a policy search in an MDP. The standard RL objective
is the expected sum of rewards given by

∑∞
t=0 E(st,at)∼ρπ

[r(st, at)]. The goal in RL is to learn a
policy π(at | st) that maximizes this objective.

3.2 MAXIMUM ENTROPY REINFORCEMENT LEARNING

Entropy is a measure of unpredictability of a random variable. Suppose x is a random vari-
able with probability mass or density function P . The entropy H of x is computed by H(P) =
Ex∼P [− logP(x)].
The maximum entropy objective extends the normal RL objective by including an entropy term,
so that the optimal policy also strives to maximize its entropy at each visited state, π∗ =
argmaxπ

∑∞
t=0 E(st,at)∼ρπ

[r(st, at) + αH(π(· | st))]. Here α is the temperature parameter that
determines the relative importance of the entropy term versus the reward. It controls the stochastic
nature of the optimal policy.

4 FEATURES OF OPAC

Before we delve into the mathematics of OPAC, let us discuss its constituent features taken from
TD3 and SAC. It is to provide an intuition of the advantages of the chosen features. First, we
consider the features from SAC that are present in OPAC.

• Maximum Entropy Framework: The concept of maximizing entropy alongside the ex-
pected sum of rewards is central to this framework. Here the policy is rewarded for broad-
ening its boundaries while rejecting sub-optimal actions. The policy can also capture a
wide range of near-optimal behavior, assigning the same probabilities to actions that appear
equally desirable. Maximizing the entropy boosts learning speed compared to approaches
that optimize the standard RL objective. Another justification for using this framework is to
balance the slight underestimation incurred in Clipped Triple Q-learning with the expected
entropy value.

• Automatic Entropy Adjustment: SAC was shown to be brittle with respect to the temper-
ature parameter α. Fixing the value of α in the maximum entropy framework is not a good
approach. Determining the ideal value of α is a complex undertaking. Furthermore, the en-
tropy might fluctuate unpredictably across tasks and during training as the policy improves.
Therefore, α in OPAC is automatically adjusted similarly to SAC.

Now we list the features borrowed from TD3 in OPAC and their reason for inclusion.

• Target Networks: In deep RL, target networks help stabilize training (Mnih et al., 2015).
Deep neural networks are great at approximating functions, but take a long time to converge
since they require many gradient adjustments. Target networks provide a clear goal in the
learning process and allow for higher training data acquisition in such situations. Like TD3,
OPAC leverages target networks for both actors and critics.

• Delayed Policy Updates: Updating the actor at a lesser frequency than the critic reduces
the risk of error before performing a policy update. The core idea is to hold back updating
the policy until the error in the critic’s Q-value estimation is as small as possible. Correla-
tion between the critics is also regularized in this way.

• Addition of Noise: At any instance, an RL-tuple is defined as (s, a, s′, r) where s is the
current state, a is the playable action from state s, s′ is the new-state reached, and r is the
reward obtained. We can obtain a′, i.e., the playable action from next-state s′ by feeding it
into the target policy. Adding a small amount of Gaussian noise to a′ facilitates exploration.

Only a unique feature of OPAC is left to discuss - Clipped Triple Q-learning. Section 6 is entirely
devoted to it.

3

Under review as a conference paper at ICLR 2023

Algorithm 1: Opportunistic Actor-Critic (OPAC)
Initialize policy parameters θ, Q-function parameters ϕ1, ϕ2, ϕ3 and an empty replay bufferR
Initialize target network parameters θ′ ← θ, ϕ′

i ← ϕi (i = 1, 2, 3)
Initialize the replay bufferR
for t = 1, . . . , T do

Select action with exploration noise: a ∼ πθ(· | s) + η, where η ∼ N (0, 0.1)
After observing the reward r and new state s′, store the transition tuple (s, a, s′, r) inR
Sample a batch of transitions B = {(s, a, s′, r)} fromR
Compute next action: a′ ← ã+ η, where ã ∼ πθ′(· | s′) and η ∼ N (0, δ)
Compute the target: y(r, s′)← r + γ

(
msti=1,2,3 Qϕ′

i
(s′, a′)− α log πθ′(a′ | s′)

)
Update Q-functions: ∇ϕi

1
|B|
∑

(Qϕi
(s, a)− y(r, s′))

2

if t mod D = 0 then
Update the policy: ∇θ

1
|B|
∑

(Qϕ1
(s, πθ(s))− α log πθ(πθ(s) | s))

Update the target networks and tune α:
θ′ ← τθ′ + (1− τ)θ
ϕ′
i ← τϕ′

i + (1− τ)ϕi

α← α− λ∇αJ(α)

end
end

5 OPPORTUNISTIC ACTOR-CRITIC

OPAC is derived from Soft Policy Iteration which was introduced in Haarnoja et al. (2018c;b). Since
SAC inspires our derivation, both have many similarities, and we will skip the repetitive details.
Deep networks must approximate the soft Q-function and the policy to translate the Soft Policy
Iteration into a continuous setting. We alternate between optimizing the soft Q-function and policy
network by stochastic gradient descent to build our algorithm of OPAC. Let Qϕ and πθ denote the
soft Q-function and the policy with parameters ϕ and θ respectively. ϕ is trained to minimize the
soft Bellman-error as follows

JQ(ϕ) = E(st,at)∼R

[
1

2
(Qϕ(st, at)− (r(st, at) + γEst+1∼p[Vϕ′(st+1)]))

2

]
, (1)

whereR is the replay buffer. The value function parameters V (st) = Eat∼π[Q(st, at)−α log π(at |
st)], are put in Equation 1 and optimized by stochastic gradient descent:

∇ϕJQ(ϕ) = ∇ϕQϕ(st, at)
(
Qϕ(st, at)− (r(st, at)+γQϕ′(st+1, at+1)−α log πθ′(at+1 | st+1))

)
,

(2)
where ϕ′ and θ′ denote the parameters of the target Q-function and that of target policy respec-
tively. θ can be learned by minimizing the KL-divergence in the policy improvement equation
(given in Haarnoja et al. (2018c)) as follows

Jπ(θ) = Est∼R[Eat∼πθ(·|st)[α log πθ(at | st)−Qϕ(st, at)]]. (3)

Therefore we need to compute, ∇θEat∼πθ(·|st)[α log πθ(at | st)−Qϕ(st, at)]. As Qϕ(st, at) does
not directly depend on θ, its gradient cannot be computed over θ. Since the policy is a Gaussian
distribution with parameters µθ and σθ, we have

at = µθ(st) + κtσθ(st), where at ∼ πθ(· | st) and κt ∼ N (0, 1). (4)

It is convenient to use the re-parameterization trick for obtaining the gradient. Setting at =
fθ(κt, st) = µθ(st) + κtσθ(st) and combining Equation 3 and Equation 4, we get

Jπ(θ) = Est∼R[Eκt∼N (0,1)[α log πθ(fθ(κt, st) | st)−Qϕ(st, fθ(κt, st))]], (5)

whose gradient w.r.t θ can be obtained by

∇θJπ(θ) = ∇θ log πθ(at | st) + (∇at log πθ(at | st)−∇atQϕ(st, at))∇θfθ(κt, st). (6)

An off-policy algorithm for OPAC is now ready with a fixed α. We have discussed the need for
automating α and will do it the same way as SAC. The standard maximum entropy learning problem

4

Under review as a conference paper at ICLR 2023

for OPAC can be reformulated as: while aiming to maximize the expected return, the policy should
also satisfy a minimum entropy constraint,

max
π0,...,πT

E

[
T∑

t=0

r(st, at)

]
, s.t. ∀t,H(πt) ≥ H0, (7)

whereH0 is a predefined minimum policy entropy threshold. The optimal value of α can be learned
by minimizing the objective function J(α) = Eat∼πt(·|st)[−α log πt(at | st)−αH0] (see Haarnoja
et al. (2018c) for more details).

The formal algorithm of OPAC is listed in Algorithm 1. When computing the shared target, the
mst(·) operator denotes the usage of Clipped Triple Q-learning. Actors are updated by gradient
ascent once every D iteration, while the critics are updated by stochastic gradient descent in every
iteration. Like TD3, OPAC considers the output of the first critic-model while updating the policy.
The target networks are updated by Polyak-averaging once every D iteration. The algorithm runs
for a total of T time steps, and J(α) is the objective function for learning α.

6 CLIPPED TRIPLE Q-LEARNING

Single-critic algorithms witness overestimation, while using double-critics often brings about un-
derestimation. The main idea behind employing three critics in OPAC is to combine these opposite
biases to achieve better estimates. TD3 and SAC utilize Clipped Double Q-learning, i.e., consider
the minimum of the two Q-values while computing the shared target. On the contrary, OPAC uses
a novel target-update strategy–taking the mean of the smallest two Q-values. We name this strategy
Clipped Triple Q-learning. This approach is undoubtedly pessimistic, but not as much as taking the
minimum of all the Q-values.

6.1 PROOF OF CONVERGENCE OF CLIPPED TRIPLE Q-LEARNING

Clipped Triple Q-learning is presented formally in Theorem 1. The technique used to prove The-
orem 1 has been used for showing the convergence of many prior Q-learning based algorithms
like Double Q-learning (Hasselt, 2010), Clipped Double Q-learning (Fujimoto et al., 2018), and
TADD (Wu et al., 2020).
Theorem 1 (Clipped Triple Q-learning). Consider a finite MDP where,

(i) Each state-action pair (s, a) is sampled an infinite number of times.

(ii) Q-values are stored in a lookup table.

(iii) QA, QB , and QC receive an infinite number of updates.

For γ ∈ [0, 1) let the following conditions hold:

(iv) The learning rates satisfy the Robbins-Monro conditions: αt(s, a) ∈ [0, 1],
∑

t αt(s, a) =
∞,
∑

t(αt(s, a))
2 <∞ with probability 1, and αt(s, a) = 0, for all (s, a) ̸= (st, at).

(v) Var[r(s, a)] <∞, for all (s, a).

The optimal action-value function Q∗ is as defined by the Bellman optimality equation. If an MDP
satisfies the above conditions then Clipped Triple Q-learning converges to Q∗ with probability 1.

Conditions (iv) (Robbins & Monro, 1951) and (v) also occur in the theorem of Clipped Double
Q-learning (Fujimoto et al., 2018). The proof of Theorem 1 has been deferred to Section A.1 of
the Appendix. We now present an analysis of the estimation error of Clipped Triple Q-learning
which establishes that Clipped Triple Q-learning incurs less underestimation than Clipped Double
Q-learning.

6.2 EXPECTED ERROR OF CLIPPED TRIPLE Q-LEARNING

Define Q1, Q2, . . . , QM as independent Q-value estimates of M critics. The critics are parameter-
ized by ϕi’s for all i = 1, . . . ,M . Let mst(Q1, . . . , QM) or mst(·) denote computing the mean of

5

Under review as a conference paper at ICLR 2023

2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

Number of critics (M)

Ex
pe

ct
ed

er
ro

r

mst(·)
min(·)

(a)

M = 6

M = 5

f
[m

st
(Q

1
,.
..
,Q

M
)]
−→

M = 4

µ− σ

M = 3

Qi −→
(b)

Figure 1: (a) A comparison of the expected underestimation between two target-update strate-
gies: min(·) and mst(·). The dashed horizontal lines indicate that the expected underestimation
of mst(Q1, Q2, Q3) (in red dot) is less than that of min(Q1, Q2) (in blue dot). Here γ = 0.99
and ϵ = 0.5. (b) The distribution of mst(Q1, . . . , QM) for randomly sampled numbers from
an interval. The red filled region, f [mst(Q1, . . . , QM) < µ− σ], indicates the probability that
mst(Q1, . . . , QM) violates the lower bound µ−σ (µ and σ denote the mean and the standard devia-
tion of the Q-values respectively). Only mst(Q1, Q2, Q3) and mst(Q1, . . . , Q4) are lower bounded
by µ− σ.

the smallest two Q-values in a total of M Q-values. Any algorithm that employs mst(·) will have
its shared target calculated as

y(r, s′)← r + γ mst
i=1,...,M

Qϕ′
i
(s′, πθ′(s′)), (8)

ϕ′
i and θ′ denote the parameters of the target networks for the critic and actor, respectively. Let Q∗

be the hypothetical true Q-function the critics attempt to approximate. Due to the noise induced by
function approximation, there exists an error term Yi = Qϕ′

i
(s′, πθ′(s′)) − Q∗(s′, πθ′(s′)) for all

i = 1, . . . ,M . One important assumption can be made without loss of generality: all the Yi’s are
independent, identical, and uniformly distributed over an interval [−ϵ, ϵ]. The error induced by the
mst(·) operation in Equation 8 can be written as,

ZM
mst = r + γ mst

i=1,...,M
Qϕ′

i
(s′, πθ′(s′))− (r + γ Q∗(s′, πθ′(s′)))

= γ

(
mst

i=1,...,M
Qϕ′

i
(s′, πθ′(s′))−Q∗(s′, πθ′(s′))

)
= γ

(
Y(1) + Y(2)

2

)
. (9)

Y(1) and Y(2) in Equation 9 denote the 1-th and 2-th order statistic respectively of the Yi’s. We need
to calculate the expected error E[ZM

mst] which is written as

E
[
ZM
mst

]
= γ E

[
Y(1) + Y(2)

2

]
=

γ

2

(
E
[
Y(1)

]
+ E

[
Y(2)

])
. (10)

Theorem 2 helps us analyze the expected error, and its proof is in Section A.2 of the Appendix.
Theorem 2. Assume that every Yi = Qϕ′

i
(s′, πθ′(s′)) −Q∗(s′, πθ′(s′)) for i = 1, . . . ,M , is inde-

pendently and identically uniformly distributed in the interval [−ϵ, ϵ]. Then the average underesti-
mation of the mst(·) operation of all the Yi’s is E[ZM

mst] =
2−M
M+1 ϵγ.

Let min(·) denote computing the minimum of all the M Q-values. According to Wu et al. (2020),
the expected underestimation of min(·) is E[ZM

min] = −M−1
M+1 ϵγ. From Theorem 2 it is evident that

E[ZM
min] < E[ZM

mst] (for M ≥ 2), i.e., mst(·) is a better target-update strategy than min(·). Figure 1a
clearly illustrates this fact. Putting M = 3 in E[ZM

mst] and M = 2 in E[ZM
min] we have: E[Z3

mst] =

6

Under review as a conference paper at ICLR 2023

0 0.5 1

Time steps (×106)

0

200

400

600

Av
er

ag
e

va
lu

e

True OPAC

OPAC

0 0.5 1

Time steps (×106)

0

200

400

600
True TADD

TADD

0 0.5 1

Time steps (×106)

0

200

400

600
True SAC

SAC

0 0.5 1

Time steps (×106)

0

200

400

600
True TD3

TD3

(a) OPAC (b) TADD (c) SAC (d) TD3

Figure 2: Measuring the bias in the value estimates of OPAC, TADD, SAC, and TD3 on the Ant-v2
environment of MuJoCo over 1 million time steps. The red dotted line indicates the trajectory of the
true Q-values, while the blue line corresponds to the predicted Q-values.

− 1
4ϵγ and E[Z2

min] = − 1
3ϵγ. Therefore, it is clear that the expected underestimation of Clipped

Triple Q-learning (E[Z3
mst]) is less than Clipped Double Q-learning (E[Z2

min]).

The minimization operation performed by Clipped Double Q-learning is equivalent to computing
the lower confidence bound of the Q-values with the coefficient of the uncertainty term being
one (Ciosek et al., 2019). Experimental evaluations suggest mst(Q1, . . . , QM) is bounded below by
µ− σ only when M ≤ 4, as depicted in Figure 1b. Here µ and σ denote the mean and the standard
deviation of the Q-values respectively.

7 ESTIMATION BIAS OF OPAC

According to Algorithm 1, the shared target in OPAC is computed via

y(r, s′)← r + γ

(
mst

i=1,2,3
Qϕ′

i
(s′, a′)− α log πθ′(a′ | s′)

)
. (11)

Let E[ZOPAC] denote the expected error in the Q-value estimation of OPAC. Here, ZOPAC is the error
induced in Equation 11 due to function approximation. Using the calculations of Section 6.2, we
can write ZOPAC as

ZOPAC = γ

(
mst

i=1,2,3
Qϕ′

i
(s′, a′)−Q∗(s′, πθ′(s′))− α log πθ′(a′ | s′)

)
= γ

(
Z3
mst − α log πθ′(a′ | s′)

)
.

Taking expectation on both sides we have

E[ZOPAC] = E[Z3
mst]− (αγ)EOPAC[log πθ′(a′ | s′)]. (12)

In order to get E[ZOPAC], we only need to calculate EOPAC[log πθ′(a′ | s′)] since we already know
that E[Z3

mst] = − 1
4ϵγ. The value of EOPAC[log πθ′(a′ | s′)] is found to be− 1

2 log
(
2π(σ2

θ′ + δ)
)
− 1

2 .
Complete calculations have been deferred to Section A.3 of the Appendix. Substituting the values
of E[Z3

mst] and EOPAC[log πθ′(a′ | s′)] in Equation 12 we have

E[ZOPAC] = −
1

4
ϵγ +

αγ

2
· log

(
2π(σ2

θ′ + δ)
)
+

αγ

2
. (13)

Just like E[ZOPAC], we can also calculate the expected error in the Q-value estimation of SAC, TD3,
and TADD, i.e., E[ZSAC], E[ZTD3], and E[ZTADD]. These are shown in Section A.5 of the Appendix.

Figure 2 demonstrates the expected error incurred byOPAC, TADD, SAC, and TD3 while estimating
the Q-values. The plots compare an estimate of the true Q-value with the average value estimate of
over 10, 000 states. Beginning from the states sampled from the replay buffer, the true Q-value is
estimated using the average discounted return over 50 episodes following the current policy. There
are 21 red dots in each of the plots, which signify the mean of the true Q-values of those 100
states sampled from the replay buffer every 50, 000 time step. It is seen that OPAC estimates the
Q-values more accurately than others which implies that the expected value of the entropy, i.e.,
EOPAC[log πθ′(a′ | s′)] counters the slight underestimation of Clipped Triple Q-learning.

7

Under review as a conference paper at ICLR 2023

0 1 2 3

Time steps (×106)

0

2,000

4,000

6,000

8,000

Av
er

ag
e

re
tu

rn

OPAC

TADD

SAC

TD3

0 1 2 3

Time steps (×106)

5,000

10,000

15,000

OPAC

TADD

SAC

TD3

0 0.5 1

Time steps (×106)

0

1,000

2,000

3,000

OPAC

TADD

SAC

TD3

0 2 4

Time steps (×106)

0

2,000

4,000

6,000

8,000

Av
er

ag
e

re
tu

rn

OPAC

TADD

SAC

TD3

0 0.5 1

Time steps (×106)

250

500

750

1,000

OPAC

TADD

SAC

TD3

0 1 2 3

Time steps (×106)

0

2,000

4,000

6,000

OPAC

TADD

SAC

TD3

(a) Ant-v2 (b) HalfCheetah-v2 (c) Hopper-v2

(d) Humanoid-v2 (e) InvertedPendulum-v2 (f) Walker2d-v2

Figure 3: Learning curves of OPAC, SAC, TD3, and TADD on MuJoCo environments. The shaded
regions correspond to one standard deviation. The plots suggest that OPAC has a definitive edge
over the others in all environments.

8 EXPERIMENTS AND RESULTS

We compare the performance of OPAC with TD3 (Fujimoto et al., 2018), SAC (Haarnoja et al.,
2018c), and TADD (Wu et al., 2020). All the algorithms are executed in six MuJoCo continuous
control tasks, namely, Ant-v2, HalfCheetah-v2, Hopper-v2, Humanoid-v2, InvertedPendulum-v2,
and Walker2d-v2. Since those are the simplest environments, the algorithms run in Hopper-v2
and InvertedPendulum-v2 for one million time steps. Whereas in Ant-v2, HalfCheetah-v2, and
Walker2d-v2, the algorithms run for three million time steps as they are moderately difficult. For
Humanoid-v2, arguably the most challenging environment, we run the algorithms for five million
time steps.

This section contains two subsections: comparative evaluation and ablation study. The first sub-
section, i.e., comparative evaluation, aims to compare the performance of OPAC with the vanilla
versions of SAC, TD3, and TADD. The second subsection, ablation study, focuses on understanding
the effect of varying the number of critics and changing the target-update rule.

8.1 COMPARATIVE EVALUATION

Figure 3 shows the total average return of OPAC, SAC, TD3, and TADD during training in six
MuJoCo environments. Solid curves correspond to the mean, and the shaded region corresponds to
one standard deviation. The curves have been smoothed using simple moving average as needed.
The plots indicate that OPAC consistently yields higher average rewards over time than the others.
In other words, OPAC outperforms SAC, TD3, and TADD in average rewards accumulated over
time in all the environments.

We train five instances of each algorithm with only different seed values and then plot the results
by averaging over the five trials. The algorithms run purely on an exploratory policy for the first
10, 000 time steps. The policy is evaluated after every 5, 000 time step. Each evaluation step is
performed over 50 episodes. The evaluation reports the mean of the cumulative reward of the 50
episodes without discount and any noise. All the plots in Section 8 and the Appendix have been
generated in this fashion. A comparison of the maximum rewards obtained by OPAC, SAC, TD3,
and TADD in each environment is shown in Table 1 and Table 2 (see Section A.6 of the Appendix).

8

Under review as a conference paper at ICLR 2023

0 1 2 3

Time steps (×106)

0

2,000

4,000

6,000

8,000

Av
er

ag
e

re
tu

rn
OPAC

OPAC-4

OPAC-5

OPAC-6

0 1 2 3

Time steps (×106)

0

2,000

4,000

6,000

8,000

SAC

SAC-3

SAC-4

0 1 2 3

Time steps (×106)

0

2,000

4,000

6,000

8,000

TD3

TD3-3

TD3-4

Figure 4: Performance comparison of OPAC, SAC, and TD3 with different number of critics in
the Ant-v2 environment. Increasing the number of critics does not enhance the performance of the
algorithms. The shaded regions correspond to one standard deviation.

8.2 ABLATION STUDIES

Since OPAC constitutes features from SAC and TD3, we limit our ablation study to these algorithms
only. Firstly, we perform an ablation on the number of critics. Let OPAC-4, OPAC-5, and OPAC-6
denote the variant of OPAC, which uses four, five, and six critics, respectively, with the target-update
strategy as mst(·). Similarly, let SAC-3, SAC-4, TD3-3, and TD3-4 denote the variants of SAC and
TD3 with three and four critics, respectively. The target-update strategy for the variants of TD3 and
SAC is min(·). The plots in Figure 4 empirically verify the analytical results of Section 6.2, i.e.,
an increase in the number of critics increases the underestimation of mst(·) and min(·). Therefore,
having more critics can negatively impact the performance of OPAC, SAC, and TD3. Figure 4 is
in the Ant-v2 environment. Additional plots in the five remaining MuJoCo environments is given
in Figure 6 (see Section A.7 of the Appendix).

Secondly, we perform an ablation on the target-update rule. Let SAC-3-mst and TD3-3-mst denote
the variants of SAC and TD3, respectively, that employ mst(·) on three critics as their target-update
strategy. As illustrated in Figure 5, the usage of mst(·) improves the performance of SAC and
TD3, but it is not enough to outperform OPAC. Additional plots in the remaining three MuJoCo
environments is provided in Figure 7 (see Section A.9 of the Appendix).

0 1 2 3

Time steps (×106)

0

2,000

4,000

6,000

8,000

Av
er

ag
e

re
tu

rn

OPAC

SAC-3-mst

TD3-3-mst

0 1 2 3

Time steps (×106)

5,000

10,000

15,000

OPAC

SAC-3-mst

TD3-3-mst

0 0.5 1

Time steps (×106)

0

1,000

2,000

3,000

OPAC

SAC-3-mst

TD3-3-mst

(a) Ant-v2 (b) HalfCheetah-v2 (c) Hopper-v2

Figure 5: Comparing the performance of OPAC with SAC-3-mst and TD3-3-mst. The shaded re-
gions correspond to one standard deviation.

9 CONCLUSIONS

This paper presents Opportunistic Actor-Critic (OPAC), an ensemble model-free deep RL algorithm
that combines the core features of TD3 and SAC to retain their respective benefits. It also uses
Clipped Triple Q-learning to mitigate the underestimation. Our analytical results in Section 6.2
prove that Clipped Triple Q-learning incurs less underestimation than Clipped Double Q-learning.
Bias plots in Section 7 exhibit that OPAC is better at estimating the Q-values than SAC, TD3, and
TADD. The empirical results in Section 8 demonstrate that OPAC consistently outperforms SAC,
TD3, and TADD in easy and challenging MuJoCo continuous control tasks.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Eloi Alonso, Maxim Peter, David Goumard, and Joshua Romoff. Deep reinforcement learning for
navigation in aaa video games. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-21, pp. 2133–2139. International Joint
Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/294. URL
https://doi.org/10.24963/ijcai.2021/294. Main Track.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont,
MA, USA, 2nd edition, 2000. ISBN 1886529094.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Jianyu Chen, Bodi Yuan, and Masayoshi Tomizuka. Model-free deep reinforcement learning for
urban autonomous driving. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
pp. 2765–2771, 2019. doi: 10.1109/ITSC.2019.8917306.

Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better exploration with op-
timistic actor critic. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural In-
formation Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
1785–1796, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
a34bacf839b923770b2c360eefa26748-Abstract.html.

Jingliang Duan, Yang Guan, Yangang Ren, Shengbo Eben Li, and Bo Cheng. Addressing value
estimation errors in reinforcement learning with a state-action return distribution function. CoRR,
abs/2001.02811, 2020. URL http://arxiv.org/abs/2001.02811.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 1587–1596, 10–15 Jul 2018. URL https://proceedings.mlr.press/
v80/fujimoto18a.html.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 3389–3396, 2017. doi: 10.1109/ICRA.2017.
7989385.

Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza Dalal, Pieter Abbeel, and Sergey Levine.
Composable deep reinforcement learning for robotic manipulation. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6244–6251, 2018a. doi: 10.1109/ICRA.
2018.8460756.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1861–1870, 10–15 Jul 2018b. URL
https://proceedings.mlr.press/v80/haarnoja18b.html.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. CoRR, abs/1812.05905, 2018c. URL http://arxiv.org/abs/
1812.05905.

Hado V. Hasselt. Double q-learning. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 23, pp.
2613–2621, 2010. URL https://proceedings.neurips.cc/paper/2010/file/
091d584fced301b442654dd8c23b3fc9-Paper.pdf.

10

https://doi.org/10.24963/ijcai.2021/294
https://proceedings.neurips.cc/paper/2019/hash/a34bacf839b923770b2c360eefa26748-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/a34bacf839b923770b2c360eefa26748-Abstract.html
http://arxiv.org/abs/2001.02811
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/haarnoja18b.html
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf

Under review as a conference paper at ICLR 2023

Qiang He and Xinwen Hou. Wd3: Taming the estimation bias in deep reinforcement learning.
In 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pp.
391–398, 2020. doi: 10.1109/ICTAI50040.2020.00068.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen,
and K. Müller (eds.), Advances in Neural Information Processing Systems, volume 12.
MIT Press, 1999. URL https://proceedings.neurips.cc/paper/1999/file/
6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun (eds.), ICLR, 2016. URL http://dblp.uni-trier.de/db/
conf/iclr/iclr2016.html#LillicrapHPHETS15.

Jiafei Lyu, Xiaoteng Ma, Jiangpeng Yan, and Xiu Li. Efficient continuous control with double
actors and regularized critics. Proceedings of the AAAI Conference on Artificial Intelligence, 36
(7):7655–7663, Jun. 2022. doi: 10.1609/aaai.v36i7.20732. URL https://ojs.aaai.org/
index.php/AAAI/article/view/20732.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236.

Ling Pan, Qingpeng Cai, and Longbo Huang. Softmax deep double deterministic policy gradients.
In NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
884d247c6f65a96a7da4d1105d584ddd-Abstract.html.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference (extended abstract). In Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence, IJCAI ’13, pp. 3052–3056, 2013.
ISBN 9781577356332.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Math-
ematical Statistics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586. URL https:
//doi.org/10.1214/aoms/1177729586.

Baturay Saglam, Enes Duran, Dogan C. Cicek, Furkan B. Mutlu, and Suleyman S. Kozat. Estimation
error correction in deep reinforcement learning for deterministic actor-critic methods. In 2021
IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 137–144,
2021. doi: 10.1109/ICTAI52525.2021.00027.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529:484–503, 2016. URL http:
//www.nature.com/nature/journal/v529/n7587/full/nature16961.html.

Satinder Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvári. Convergence re-
sults for single-step on-policy reinforcement-learning algorithms. Mach. Learn., 38(3):287–308,
March 2000. ISSN 0885-6125. doi: 10.1023/A:1007678930559. URL https://doi.org/
10.1023/A:1007678930559.

E. Todorov. General duality between optimal control and estimation. In 2008 47th IEEE Conference
on Decision and Control, pp. 4286–4292, 2008.

11

https://proceedings.neurips.cc/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15
https://ojs.aaai.org/index.php/AAAI/article/view/20732
https://ojs.aaai.org/index.php/AAAI/article/view/20732
http://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1038/nature14236
https://proceedings.neurips.cc/paper/2020/hash/884d247c6f65a96a7da4d1105d584ddd-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/884d247c6f65a96a7da4d1105d584ddd-Abstract.html
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://doi.org/10.1023/A:1007678930559
https://doi.org/10.1023/A:1007678930559

Under review as a conference paper at ICLR 2023

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012.

Marc Toussaint. Robot trajectory optimization using approximate inference. In Proceedings of the
26th Annual International Conference on Machine Learning, ICML ’09, pp. 1049–1056, New
York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585161. doi: 10.
1145/1553374.1553508. URL https://doi.org/10.1145/1553374.1553508.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. CoRR, abs/1509.06461, 2015. URL http://arxiv.org/abs/1509.06461.

Dongming Wu, Xingping Dong, Jianbing Shen, and Steven C. H. Hoi. Reducing estimation bias via
triplet-average deep deterministic policy gradient. IEEE Transactions on Neural Networks and
Learning Systems, 31(11):4933–4945, 2020. doi: 10.1109/TNNLS.2019.2959129.

Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In Dieter Fox and Carla P. Gomes (eds.), Proceedings of the 23rd
National Conference on Artificial Intelligence, volume 3 of AAAI’08, pp. 1433–1438, 2008. ISBN
978-1-57735-368-3.

12

https://doi.org/10.1145/1553374.1553508
http://arxiv.org/abs/1509.06461

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 PROOF OF CONVERGENCE OF CLIPPED TRIPLE Q-LEARNING

We now present the proof of Theorem 1 under deterministic policies. To this end, we first include
a lemma from Singh et al. (2000). It originally appears as a proposition in Bertsekas (2000) which
was further generalized into the following lemma.
Lemma 3. Let ∥ · ∥ denote the maximum norm. Consider a stochastic process (ζt,∆t, Ft), t ≥ 0
where ζt,∆t, Ft : X → R satisfy the equation: ∆t+1(xt) = (1 − ζt(xt))∆t(xt) + ζt(xt)Ft(xt),
where xt ∈ X and t = 0, 1, Let Pt be a sequence of increasing σ-fields such that ζ0 and ∆0 are
P0 measurable and ζt,∆t, and Ft−1 are Pt measurable for t = 0, 1, Assume that the following
hold:

(1) The set X is finite.

(2) ζt(xt) ∈ [0, 1],
∑

t ζt(xt) = ∞, and
∑

t(ζt(xt))
2 < ∞ with probability 1 and for all

x ̸= xt : ζt = 0.

(3) ∥E[Ft | Pt]∥ ≤ κ∥∆t∥+ ct, κ ∈ [0, 1) and ct converges to 0 with probability 1.

(4) Var[Ft | Pt] ≤ K(1 + κ∥∆t∥)2, where K is some constant.

Then ∆t converges to 0 with probability 1.

For a finite MDP setting, we maintain three tabular estimates of the value functions: QA, QB , and
QC . At each time step we update all of them.

Proof of Theorem 1. We apply Lemma 3 with Pt =
{
QA

0 , Q
B
0 , Q

C
0 , s0, a0, α0, r1, s1, . . . , st, at

}
,

X = S × A, ζt = αt. Consider the target mapping
(
QA

t , Q
B
t , Q

C
t

)
7→ g

(
QA

t , Q
B
t , Q

C
t

)
that

computes the mean of the smallest two Q-values. Also without loss of generality, let’s assume
∆t = QA

t −Q∗.

The conditions (1) and (4) of Lemma 3 hold by the condition (ii) of Theorem 1. Condition (2) of the
lemma holds by condition (iv) of the theorem along with our selection of ζt = αt. Following the
same notation and argument as Fujimoto et al. (2018) we get

∆t+1(st, at) = (1− αt(st, at))∆t(st, at) + αt(st, at)Ft(st, at),

where,

Ft(st, at) ≜ rt + γg
(
QA

t (st+1, a
∗) , QB

t (st+1, a
∗) , QC

t (st+1, a
∗)
)
−Q∗(st, at)

= FQ
t (st, at) + ct.

The first term FQ
t (st, at) is same as Clipped Double Q-Learning. The second term ct is slightly dif-

ferent and equal to γg
(
QA

t (st+1, a
∗), QB

t (st+1, a
∗), QC

t (st+1, a
∗)
)
−γQA

t (st+1, a
∗). The quantity

E
[
FQ
t

∣∣∣Pt

]
≤ γ∥∆t∥ is known to be true due to Bellman operator being a contraction mapping.

This implies condition (3) of Lemma 3 holds if we can show that ct converges to 0 with probability
1.

Let, ∆BA
t ≜ QB

t (st, at)−QA
t (st, at) and ∆BC

t ≜ QB
t (st, at)−QC

t (st, at). In our case, contrary to
Clipped Double Q-Learning, for ct to converge to 0 both ∆BA

t and ∆BC
t needs to converge to 0 with

probability 1. The convergence of ∆BA
t is fairly straightforward and has been laid out in Fujimoto

et al. (2018). By appealing to the generality of this result, we see that

∆BC
t+1(st, at) ≜ QB

t+1(st, at)−QC
t+1(st, at)

= (1− αt(st, at))∆
BC
t (st, at).

Clearly, ∆BC
t converges to 0. These signify that we have fulfilled the condition (3) of Lemma 3, and

thus QA(st, at) converges to Q∗
t (st, at). Repeating the same steps for QB(st, at) and QC(st, at)

completes the proof.

13

Under review as a conference paper at ICLR 2023

A.2 PROOF OF THEOREM 2

Proof. We use the abbreviation “iid” for independent and identically distributed. According to our
assumption, {Y1, Y2, . . . , YM} iid∼ U [−ϵ, ϵ]. We can write,{

Y1

2ϵ
,
Y2

2ϵ
, . . . ,

YM

2ϵ

}
iid∼ U [−1

2
,
1

2
]{

Y1

2ϵ
+

1

2
,
Y2

2ϵ
+

1

2
, . . . ,

YM

2ϵ
+

1

2

}
iid∼ U [0, 1].

Let Xi =
Yi

2ϵ + 1
2 for i = 1, . . . ,M . Then {X1, X2, . . . , XM} iid∼ U [0, 1]. Therefore, Yi = x =⇒

Xi =
x
2ϵ +

1
2 and we have the following probability density function,

f
(
Y(k) = x

)
= f

(
X(k) =

x

2ϵ
+

1

2

)
.

Here, Y(k) is the k-th order statistic of {Y1, Y2, . . . , YM} iid∼ U [−ϵ, ϵ] and X(k) is the equivalent

k-th order statistic of {X1, X2, . . . , XM} iid∼ U [0, 1]. The probability distribution of X(k) is a Beta
distribution with parameters k and M − k + 1,

X(k) ∼ B(k,M − k + 1).

The expected value of X(k) is,

E
[
X(k)

]
=

k

M + 1
. (14)

Since Yi =
(
Xi − 1

2

)
2ϵ for i = 1, . . . ,M , the expected value of Y(k) can be easily calculated as,

E
[
Y(k)

]
= E

[(
X(k) −

1

2

)
2ϵ

]
= 2ϵ

(
E[X(k)]−

1

2

)
.

From 14 we have,

E
[
Y(k)

]
= 2ϵ

(
k

M + 1
− 1

2

)
= ϵ

(
2k −M − 1

M + 1

)
. (15)

We can obtain E[Y(1)] and E[Y(2)] from 15. Putting them in 10 we have,

E
[
ZM
mst

]
=

γ

2

(
E[Y(1)] + E[Y(2)]

)
=

γ

2

[
ϵ

(
2−M − 1

M + 1

)
+ ϵ

(
4−M − 1

M + 1

)]
=

γ

2

[
ϵ

(
1−M

M + 1

)
+ ϵ

(
3−M

M + 1

)]
=

γ

2

[
ϵ

(
1−M + 3−M

M + 1

)]
=

γ

2

[
(4− 2M)ϵ

M + 1

]
= γ

[
(2−M)ϵ

M + 1

]

∴ E
[
ZM
mst

]
=

2−M

M + 1
ϵγ

This completes the proof of Theorem 2.

14

Under review as a conference paper at ICLR 2023

A.3 CALCULATING THE EXPECTED ENTROPY OF OPAC

Recalling Equation 12 from Section 7

E[ZOPAC] = E
[
Z3
mst

]
− (αγ)EOPAC[log πθ′(a′ | s′)].

πθ′ is the target Gaussian policy network with parameters θ′. From the re-parameterization trick
used in Section 5 and Algorithm 1 we know

a′ = fθ′(κ, s′) + η = µθ′(s′) + κσθ′(s′) + η, where κ ∼ N (0, 1) and η ∼ N (0, δ).

µθ′ and σθ′ are obtained from πθ′ itself. Because s′ is already known and µθ′ and σθ′ are functions
of it, we omit unnecessary writing of s′ for simplicity. It is easily seen that

κ ∼ N (0, 1) =⇒ κσθ′ ∼ N (0, σ2
θ′)

=⇒ κσθ′ + η ∼ N (0, σ2
θ′ + δ).

Then,

a′ = µθ′ + κσθ′ + η =⇒ a′ ∼ N (µθ′ , σ2
θ′ + δ).

Since πθ′ is a Gaussian policy network, then πθ′(a′ | s′) ∼ N (µθ′ , σ2
θ′ + δ) and it can be thought of

as the probability distribution function of N (µθ′ , σ2
θ′ + δ). Therefore,

πθ′(a′ | s′) = 1√
(σ2

θ′ + δ)
√
2π
· exp

−(a′−µ
θ′)

2

2(σ2
θ′+δ)

=
1√

(σ2
θ′ + δ)

√
2π
· exp

−(µ
θ′+κσ

θ′+η−µ
θ′)

2

2(σ2
θ′+δ)

=
1√

2π (σ2
θ′ + δ)

· exp
−(κσ

θ′+η)2

2(σ2
θ′+δ)

Taking logarithm on both sides,

log πθ′(a′ | s′) = −1

2
log
(
2π(σ2

θ′ + δ)
)
+ log

exp

−(κσ
θ′+η)2

2(σ2
θ′+δ)


= −1

2
log
(
2π(σ2

θ′ + δ)
)
− (κσθ′ + η)2

2(σ2
θ′ + δ)

. (16)

Since κσθ′ + η ∼ N (0, σ2
θ′ + δ), then κσθ′+η√

(σ2
θ′+δ)

∼ N (0, 1). Quite clearly (κσθ′+η)2

(σ2
θ′+δ)

∼ χ2
1, which

implies that E
[
(κσθ′+η)2

(σ2
θ′+δ)

]
= 1. Taking expectation on both sides of Equation 16,

EOPAC[log πθ′(a′ | s′)] = −1

2
E
[
log
(
2π(σ2

θ′ + δ)
)]
− 1

2
E
[
(κσθ′ + η)2

(σ2
θ′ + δ)

]
= −1

2
log
(
2π(σ2

θ′ + δ)
)
− 1

2
.

Finally we have,

EOPAC[log πθ′(a′ | s′)] = −1

2
log
(
2π(σ2

θ′ + δ)
)
− 1

2

The expected value of the entropy has been calculated using a′ according to Algorithm 1. We
sampled a′ from πθ′(· | s′) and added a Gaussian noise. However, in practice, we compute the
entropy using only a′ and without the noise.

15

Under review as a conference paper at ICLR 2023

A.4 CALCULATING THE EXPECTED ENTROPY OF SAC

The target-update equation of SAC is

ySAC(r, s′)← r + γ

(
min
i=1,2

Qϕ′
i
(s′, a′)− α log πθ′(a′ | s′)

)
.

πθ′ is the target Gaussian policy network with parameters θ′. From the re-parameterization trick
used in Haarnoja et al. (2018c) we know

a′ = fθ′(κ, s′) = µθ′(s′) + κσθ′(s′), where κ ∼ N (0, 1).

µθ′ and σθ′ are obtained from πθ′ itself. Because s′ is already known and µθ′ and σθ′ are functions
of it, we omit unnecessary writing of s′ for simplicity. It is easily seen that

κ ∼ N (0, 1) =⇒ κσθ′ ∼ N (0, σ2
θ′).

Also,
a′ = µθ′ + κσθ′ =⇒ κσθ′ = a′ − µθ′ .

Since πθ′ is a Gaussian policy network, then πθ′(a′ | s′) ∼ N (µθ′ , σ2
θ′) and it can be thought of as

the probability distribution function of N (µθ′ , σ2
θ′). Therefore,

πθ′(a′ | s′) = 1

σθ′
√
2π
· exp

−(a′−µ
θ′)

2

2σ2
θ′

=
1

σθ′
√
2π
· exp

−(µ
θ′+κσ

θ′−µ
θ′)

2

2σ2
θ′

=
1

σθ′
√
2π
· exp

−(κσ
θ′)

2

2σ2
θ′

=
1

σθ′
√
2π
· exp−κ2

2 .

Taking logarithm on both sides,

log πθ′(a′ | s′) = log

(
1

σθ′
√
2π

)
+ log

(
exp

−κ2

2

)
= − log

(
σθ′
√
2π
)
− κ2

2
.

Taking expectation on both sides,

ESAC[log πθ′(a′ | s′)] = E
[
− log

(
σθ′
√
2π
)]
− E

[
κ2

2

]
.

∵ κ ∼ N (0, 1) =⇒ κ2 ∼ χ2
1 =⇒ E[κ2] = 1. Therefore,

ESAC[log πθ′(a′ | s′)] = − log
(
σθ′
√
2π
)
− 1

2
(17)

A.5 CALCULATING THE EXPECTED ERROR OF SAC, TD3, AND TADD

Let Qϕ′
i

denote the i-th target critic network with parameters ϕ′
i. Similarly, let πθ′ denote the target

Gaussian policy network with parameters θ′. The target-update equations of SAC, TD3, and TADD
are as follows

ySAC(r, s′)← r + γ

(
min
i=1,2

Qϕ′
i
(s′, a′)− α log πθ′(a′ | s′)

)
yTD3(r, s′)← r + γ min

i=1,2
Qϕ′

i
(s′, a′)

yTADD(r, s′)← r + γ

(
β min

i=1,2
Qϕ′

i
(s′, a′) + (1− β)

1

K

K∑
k=1

[Qϕ′
3
(s′, a′)]k

)
.

16

Under review as a conference paper at ICLR 2023

Now, let ZSAC, ZTD3, and ZTADD respectively denote the error induced in the target-update equations
of SAC, TD3, and TADD due to function approximation. Then let E[ZSAC], E[ZTD3], and E[ZTADD]
denote the expected error in the Q-value estimation of SAC, TD3, and TADD respectively. Using
the same type of calculations as in Section 6.2 and Section 7 we have

E[ZSAC] = E[Z2
min]− (αγ)ESAC[log πθ′(a′ | s′)]

E[ZTD3] = E[Z2
min]

E[ZTADD] = βE[Z2
min] + (1− β)λ

In E[ZTADD], λ (> 0) denotes the overestimation bias of Qϕ′
3

and β ∈ (0, 1) is the weight of
the double-critics (Wu et al., 2020). Substituting the values of E[Z2

min] (from Section 6.2) and
ESAC[log πθ′(a′ | s′) (from Equation 17) in the above equations we get

E[ZSAC] = −
1

3
ϵγ + αγ · log

(
σθ′
√
2π
)
+

αγ

2

E[ZTD3] = −
1

3
ϵγ

E[ZTADD] = −
1

3
ϵγβ + (1− β)λ

A.6 TABLE CORRESPONDING TO FIGURE 3

Table 1: Maximum reward obtained by SAC, TD3, and TADD in the six MuJoCo continuous control
environments. The ± corresponds to one standard deviation. To maintain margins on both sides of
the paper, the maximum rewards obtained by OPAC is shown separately in Table 2.

Environment SAC TD3 TADD
Ant-v2 5580.93± 307.76 5817.13± 138.28 6129.01± 218.52

HalfCheetah-v2 14656.11± 138.25 12029.47± 182.26 12416.0± 138.06

Hopper-v2 3354.10± 17.84 2858.70± 18.65 2954.54± 57.33

Humanoid-v2 6835.31± 17.66 193.09± 7.79 167.09± 7.14

InvertedPendulum-v2 1000.00± 0.00 1000.00± 0.00 1000.00± 0.00

Walker2d-v2 5733.03± 49.22 5647.76± 52.52 5391.95± 50.91

Table 2: Maximum reward obtained by OPAC in the six MuJoCo continuous control environments.
The ± corresponds to one standard deviation.

Environment OPAC
Ant-v2 7097.45± 90.80

HalfCheetah-v2 15356.27± 149.61

Hopper-v2 3610.51± 26.80

Humanoid-v2 7710.47± 32.70

InvertedPendulum-v2 1000.00± 0.00

Walker2d-v2 7008.71± 50.41

The numbers in the columns of Table 1 and Table 2 denote the maximum return averaged over five
trials for an algorithm. Ideally, the entries for OPAC should have been present in Table 1 itself.

17

Under review as a conference paper at ICLR 2023

0 1 2 3

Time steps (×106)

0

5,000

10,000

15,000

Av
er

ag
e

re
tu

rn
OPAC

OPAC-4

OPAC-5

OPAC-6

0 1 2 3

Time steps (×106)

0

5,000

10,000

15,000

SAC

SAC-3

SAC-4

0 1 2 3

Time steps (×106)

0

5,000

10,000

15,000

TD3

TD3-3

TD3-4

0 0.5 1

Time steps (×106)

0

1,000

2,000

3,000

Av
er

ag
e

re
tu

rn

OPAC

OPAC-4

OPAC-5

OPAC-6

0 0.5 1

Time steps (×106)

0

1,000

2,000

3,000

SAC

SAC-3

SAC-4

0 0.5 1

Time steps (×106)

0

1,000

2,000

3,000

TD3

TD3-3

TD3-4

0 2.5 5

Time steps (×106)

0

2,000

4,000

6,000

8,000

Av
er

ag
e

re
tu

rn

OPAC

OPAC-4

OPAC-5

OPAC-6

0 2.5 5

Time steps (×106)

0

2,000

4,000

6,000

8,000

SAC

SAC-3

SAC-4

0 2.5

Time steps (×106)

0

2,000

4,000

6,000

8,000

TD3

TD3-3

TD3-4

0 0.5 1

Time steps (×106)

0

500

1,000

Av
er

ag
e

re
tu

rn

OPAC

OPAC-4

OPAC-5

OPAC-6

0 0.5 1

Time steps (×106)

0

500

1,000

SAC

SAC-3

SAC-4

0 0.5 1

Time steps (×106)

0

500

1,000

TD3

TD3-3

TD3-4

0 1 2 3

Time steps (×106)

0

2,000

4,000

6,000

Av
er

ag
e

re
tu

rn

OPAC

OPAC-4

OPAC-5

OPAC-6

0 1 2 3

Time steps (×106)

0

2,000

4,000

6,000

SAC

SAC-3

SAC-4

0 1 2 3

Time steps (×106)

0

2,000

4,000

6,000

TD3

TD3-3

TD3-4

OPAC SAC TD3

H
al

fC
he

et
ah

-v
2

H
op

pe
r-

v2
H

um
an

oi
d-

v2
In

ve
rt

ed
Pe

nd
ul

um
-v

2
W

al
ke

r2
d-

v2

Figure 6: Performance comparison of OPAC, SAC, and TD3 with different number of critics in the
remaining five MuJoCo environments. The shaded regions correspond to one standard deviation.

However, a split was necessary to maintain the margins on both sides of the paper. Therefore, the
OPAC entries were placed in Table 2. On observing the tables and the corresponding columns, it is
seen that OPAC attains the highest reward in all the environments. That’s why each entry in Table 2
is boldfaced.

A.7 ADDITIONAL PLOTS FOR ABLATION ON CRITICS

As already mentioned in Section 8.2, increasing the number of critics degrades the performance of
the algorithms. Figure 6 conforms to this fact. It is evident from the plots that the vanilla versions of

18

Under review as a conference paper at ICLR 2023

OPAC, SAC, and TD3 deliver consistently in the environments. However, in some cases, the variants
(like SAC-3, OPAC-4) marginally perform better than the respective vanilla versions. Nevertheless,
this improvement is nothing significant.

Therefore, increasing the number of critics brings about more underestimation, which is responsible
for the sub-optimal performance of the variants of OPAC, SAC, and TD3.

A.8 TABLE CORRESPONDING TO FIGURE 4 AND FIGURE 6

Table 3: The maximum mean return (averaged over five trials) of the different SAC, TD3, and
OPAC versions in three MuJoCo environments. The ± corresponds to one standard deviation. The
maximum reward in an environment has been boldfaced.

Algorithm Ant-v2 Hopper-v2 Walker2d-v2
SAC 5580.93± 307.76 3354.10± 17.84 5733.03± 49.22

SAC-3 4751.11± 112.25 3317.38± 248.84 6035.48± 35.59
SAC-4 5091.44± 54.87 3316.90± 11.93 5423.74± 23.80

TD3 5817.13± 138.28 2858.70± 18.65 5647.76± 52.52
TD3-3 4309.67± 76.56 2908.60± 14.84 3585.04± 11.02
TD3-4 3894.86± 33.49 2091.47± 3.52 1103.03± 341.61

OPAC 7097.45± 90.80 3610.51± 26.80 7008.71± 50.41
OPAC-4 6166.51± 58.75 3466.41± 5.08 6081.18± 22.64
OPAC-5 5241.13± 47.31 3525.72± 4.28 4984.11± 14.74
OPAC-6 4713.99± 38.40 3369.56± 5.55 4273.17± 20.48

Table 3 contains a comparison between the maximum rewards obtained by the variants (based on
the number of critics) of SAC, TD3, and OPAC. The boldfaced value in each column of the table
indicates the maximum reward obtained by an algorithm in Ant-v2, Hopper-v2, and Walker2d-v2.

The row-wise entries inside the table indicate that OPAC achieves the highest reward in all the
environments. To put it differently, OPAC performs consistently well in all environments.

A.9 ADDITIONAL PLOTS FOR ABLATION ON TARGET-UPDATE RULE

0 2.5 5

Time steps (×106)

0

2,000

4,000

6,000

8,000

Av
er

ag
e

re
tu

rn

OPAC

SAC-3-mst

TD3-3-mst

0 0.5 1

Time steps (×106)

200

400

600

800

1,000

OPAC

SAC-3-mst

TD3-3-mst

0 1 2 3

Time steps (×106)

0

2,000

4,000

6,000

OPAC

SAC-3-mst

TD3-3-mst

(a) Humanoid-v2 (b) InvertedPendulum-v2 (c) Walker2d-v2

Figure 7: Comparing the performance of OPAC with SAC-3-mst and TD3-3-mst in the remaining
three MuJoCo environments. The shaded regions correspond to one standard deviation.

Figure 7 shows the plots of OPAC, SAC-3-mst, and TD3-3-mst on the remaining three MuJoCo
environments. Quite clearly, the usage of mst(·) boosts the performance of SAC and TD3, but this
boost is insufficient to outperform OPAC. In additon to the theoretical analysis given in Section 6.2,
the plots in Figure 5 and Figure 7 also demonstrate that mst(·) is a better target-update strategy than
min(·).

19

Under review as a conference paper at ICLR 2023

A.10 LIST OF HYPER-PARAMETERS

Table 4 lists the value of the OPAC, SAC, TD3, and TADD hyper-parameters used to generate the
results of Section 8, i.e., comparative evaluation and ablation study.

Table 4: Hyper-parameter choices for OPAC, SAC, TD3, and TADD.

Hyperparameter OPAC SAC TD3 TADD
Optimizer Adam Adam Adam Adam
Learning Rate 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Beta (β) N/A N/A N/A 0.95
Target Update Rate (τ) 5× 10−3 5× 10−3 5× 10−3 5× 10−3

Target Update Interval (D) 2 1 2 2
Policy Update Interval (D) 2 1 2 2
Replay Buffer Size 106 106 106 106

No. of hidden layers 2 2 2 2
Hidden units per layer 512 256 (400, 300) (400, 300)
Batch Size 256 256 100 100
Nonlinearity ReLU ReLU ReLU ReLU
Discount Factor (γ) 0.99 0.99 0.99 0.99
Reward Scaling 1 1 1 1
Noise Clipping (−0.5, 0.5) N/A (−0.5, 0.5) (−0.5, 0.5)
Policy Noise N (0, 0.2) N/A N (0, 0.2) N (0, 0.2)
Exploration Noise N (0, 0.1) N/A N (0, 0.1) N (0, 0.1)
Gradient Steps 1 1 1 1
Critic Regularisation None None None None
Actor Regularisation None None None None

A.11 SYSTEM SPECIFICATIONS

Table 5 lists the GPU’s specifications that have been used to execute the codes.

Table 5: GPU specifications.

Attribute Value
GPU Name GeForce RTX 2080 Ti
Count 4
Width 64-bit
Clock Speed 33 MHz
RAM 32 GB
Operating System Ubuntu 20.04.1 LTS
Kernel Linux 5.4.0-45-generic

20

	Introduction
	Related Works
	Preliminaries
	Reinforcement Learning
	Maximum Entropy Reinforcement Learning

	Features of OPAC
	Opportunistic Actor-Critic
	Clipped Triple Q-learning
	Proof of Convergence of Clipped Triple Q-learning
	Expected Error of Clipped Triple Q-learning

	Estimation Bias of OPAC
	Experiments and Results
	Comparative Evaluation
	Ablation Studies

	Conclusions
	Appendix
	Proof of Convergence of Clipped Triple Q-learning
	Proof of Theorem 2
	Calculating the Expected Entropy of OPAC
	Calculating the Expected Entropy of SAC
	Calculating the expected error of SAC, TD3, and TADD
	Table corresponding to Figure 3
	Additional plots for Ablation on Critics
	Table corresponding to Figure 4 and Figure 6
	Additional plots for Ablation on Target-Update Rule
	List of Hyper-parameters
	System Specifications

