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ABSTRACT

Generalization measures are intensively studied in the machine learning commu-
nity for better modeling generalization gaps. However, establishing a reliable gen-
eralization measure for statistical singular models such as deep neural networks
(DNNs) is challenging due to the complex nature of the singular models. We fo-
cus on a classical measure called Takeuchi’s Information Criteria (TIC) to investi-
gate allowed conditions in which the criteria can well explain generalization gaps
caused by DNNs. In fact, the theory indicates the applicability of TIC near the
neural tangent kernel (NTK) regime. Experimentally, we trained more than 5,000
DNN models with 12 DNN architectures including large models (e.g., VGG16)
and 4 datasets, and estimated corresponding TICs in order to comprehensively
study the relationship between the generalization gap and the TIC estimates. We
examine several approximation methods to estimate TIC with feasible computa-
tional load and investigate the accuracy trade-off. Experimental results indicate
that estimated TIC well correlates generalization gaps under the conditions that
are close to NTK regime. Outside the NTK regime, such correlation disappears,
shown theoretically and empirically. We further demonstrate that TIC can yield
better trial pruning ability for hyperparameter optimization over existing meth-
ods.

1 INTRODUCTION

Deep neural networks (DNNs) have been exhibiting great generalization abilities in many applica-
tions, but the mechanism of the generalization has not been fully understood yet (Neyshabur et al.,
2014; Zhang et al., 2016; Recht et al., 2019). Establishing a reliable generalization measure is an
important research topic for generating a good model from limited data resources, including an ap-
plication of hyperparameter search. Many attempts (Arora et al., 2018; Wei & Ma, 2019; Neyshabur
et al., 2018) have been taken to better understand the generalization phenomenon in deep learning
models from theoretical points of view. From empirical points of view, there have been intensive
studies (Keskar et al., 2016; Liang et al., 2019; Bartlett et al., 2017) in search of learning conditions
that likely yield high model performance.

Work by (Jiang et al., 2019) indicated that a measure that includes both hessian H(θ)1 and covari-
ance C(θ) defined from the loss and the network parameters θ near a local minimum may poten-
tially show good correlation with generalization performance. Another study indicated that use of
only a single measure, either HessianH(θ) or covariance C(θ), fails to capture the generalization
performance (Novak et al., 2018a).

The generalization gap inherently stems from a discrepancy between the empirical and the true data
distribution. A minimizer of the empirical loss will be affected by the noise due to a finite number of
samples and by the form of the loss landscape near the minimum. The former can be characterized
as noise (C(θ)) and the latter as curvature (H(θ)).

Taking these findings into account, we sought to model the generalization gap, then found that a
classical information criterion called Takeuchi’s Information Criteria (TIC) (Takeuchi, 1976) ex-

1H(θ) andC(θ) are defined in equation 2
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presses generalization gap in the neural tangent kernel (NTK) regime. TIC has the following form

TIC(θ)︸ ︷︷ ︸
Information Criteria

= −Ep̂[l(y, f(x,θ))]︸ ︷︷ ︸
Mean Empirical Error

+ Tr
(
H(θ)−1C(θ)

)︸ ︷︷ ︸
Estimated Bias Term

, (1)

where f is a smooth function over θ ∈ Rd with input x and target y, and l is the negative log-
likelihood, also denoted as loss function. The first term on the right-hand side is the log-likelihood,
which takes the expectation over an empirical data distribution (xi, yi) ∼ p̂. For the later discus-
sion, we use θ̂ minimizes the empirical loss; i.e., θ̂ = arg minθEp̂[l(y, f(x,θ))], and θ∗ as the
parameters that maximizes the likelihood with respect to the true data distribution (x, y) ∼ p; i.e.,
θ∗ = arg minθEp[l(y, f(x,θ))].

For a DNN of practical size, exact computations of the matrices H(θ), C(θ) are nearly infeasible
due to large dimensionality. To make the computation feasible, we adopted a strategy of using
shared components of the matrix to estimate TIC with fewer computations, based on a relationship
among matrices such as H(θ), C(θ), and Fisher Information Matrix F (θ). To further reduce
the computational costs for the bias term, we examined methods using approximations and lower
bounds so that TIC estimations for DNNs of practical sizes are feasible.

In this work, we make the following contributions:

• We provide empirical and theoretical evidence that TIC is highly correlated with generalization
gap of DNNs that are close to NTK regime, despite the fact that TIC is not originally designed for
singular model such as general DNNs.

• We conduct comprehensive experiments in which more than 5,000 models, including ones close
to NTK regime, with totally 12 DNN architectures, 4 datasets and 15 training settings are
trained, and corresponding TICs are estimated with approximation techniques, to clarify con-
ditions that TIC can well explain generalization gaps.

• We use TIC as a threshold for pruning poorly performing trial models during hyperparameter
optimization (HPO) and show that it can successfully prevent promising candidates from being
pruned prematurely.

2 GENERALIZATION MEASURES

Generalization measures measure the generalization ability of statistical models. Typically, the
generalization gap, which is defined as the difference between training loss and validation loss, is
used to quantify the generalization ability.

2.1 WHICH GENERALIZATION MEASURE IS PROSPECTIVE?

To answer this question, before demonstrating the effectiveness of TIC, we highlight the develop-
ment of research in this area and the motivation behind this work. For understanding generalization
behavior, there are two major approaches by quantifying generalization bounds and complexity
measures.

Approach of quantifying generalization bounds is pursued by theoretical groups to prove the bound
of the generalization gap (Dziugaite & Roy, 2017). Although tight bounds can be proven, they are
often based on assumptions that do not apply to practical DNN settings. In addition, no bounds have
been shown to describe the performance of the current DNNs to a satisfactory level.

On the other hand, approach of quantifying complexity measures, which do not necessarily certify
bounds, follows the principle of Occam’s razor and evaluates the complexity of the model. Theo-
retically motivated complexity measures, including VC-dimension (Vapnik & Chervonenkis, 2015),
PAC-Bayesian framework (McAllester, 1999), the norm of parameters (Neyshabur et al., 2015), are
often discussed as significant components of generalization bounds, and a monotonic relationship
between complexity measures and generalizations is mathematically established. In contrast, em-
pirically motivated generalization measures, such as sharpness (Keskar et al., 2016), are justified by
experiments and observations. In particular, for DNNs, Jiang et al. (2019) have conducted exhaustive
experiments to evaluate the effectiveness of generalization measures for three groups: norm-based
measure, sharpness-based measure, and noise-based measure.
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• Norm-based measure: |θ|. Most of the proposed norm-based measures are based on the Fisher-
Rao Metric (Liang et al., 2019), which does not capture generalization well. In particular, it has
been reported that spectral complexity such as product of spectral norms of the layers (Bartlett
et al., 2017) has a strong negative correlation with generalization. It is impossible to explain the
success of DNN models with huge parameter sizes in recent years with these metrics.

• Sharpness-based measure: H(θ). Sharpness-based metrics, such as sharp minima and flat
minima (Keskar et al., 2016) and PAC-Bayesian framework (McAllester, 1999), are not only
associated with intuitive understanding but also empirically show a strong correlation with the
generalization gap. However, some model architectures are known to show poor correlation (Dinh
et al., 2017).

• Noise-based measure: C(θ). Experimental results show that generalization measure based on
gradient has potential (Jiang et al., 2019). In particular, in their experiments, they observe that the
variance of the gradient captures Sharpness, but they suggest that this is not a good generalization
measure depending on the architecture of the model.

These results suggest that studying generalization measures that can be estimated using H(θ) and
C(θ) is prospective. However, since the combination ofH(θ) andC(θ) seen in TIC is not feasible
to compute for practical DNN settings, so it was outside the scope of (Jiang et al., 2019).

2.2 INFORMATION MATRIX: ELEMENTS OF GENERALIZATION MEASURES

Previous research has highlighted information matrices such as H(θ) and C(θ) in generalization
measures in DNNs. Thomas et al. (2020); Kunstner et al. (2019) remarked that these matrices are
often confused and misused, for example in the field of optimization, leading to wrong conclusions,
even though these matrices play an essential role in the study of DNNs, especially in optimization
(Amari et al., 2020; Martens & Grosse, 2015a), understanding implicit regularization in SGD (Wen
et al., 2019; Zhu et al., 2019), and Bayesian inference (Zhang et al., 2018). Before discussing these
generalization measures, it should be made clear how each of the information matrices are defined.

In this paper, uncentered gradient covariance matrix is denoted as C(θ). We define qθ as a model
distribution. Furthermore, we employ the data distributions p̂ and p introduced in the previous
section as the empirical and true data distributions respectively. Matrices H(θ), C(θ) and F (θ)
are then defined as:

H(θ) = Ep
[
∂2l(y, f(x,θ))

∂θ∂θT

]
∈ Rd×d,

C(θ) = Ep
[
∂l(y, f(x,θ))

∂θ

∂l(y, f(x,θ))

∂θT

]
∈ Rd×d,

F (θ) = Eqθ
[
∂l(y, f(x,θ))

∂θ

∂l(y, f(x,θ))

∂θT

]
∈ Rd×d

(2)

The conditions under which these matrices are equal will be discussed in detail in section 3.1. The
relation betweenC(θ) andF (θ) is often misunderstood because they both involve the outer product
of the gradients but they a different distribution when computing the expectation.

As a subsequent study, Novak et al. (2018a) concluded that consideration of either H(θ) or C(θ)
alone is insufficient to estimate the generalization of DNNs and that both are essential. In particular,
H(θ) is a value that does not depend on the distribution of input data; however, as the generalization
ability depends on the distribution of the data, it is also natural to considerC(θ), which is related to
noise in the gradient. Furthermore, as supporting evidence of Novak et al. (2018a)’s claim, Thomas
et al. (2020) showed empirically the effectiveness of TIC, a generalization measure that considers
both H(θ) and C(θ) expressed by the equation 1. However, Thomas et al. (2020)’s work only
experimented with very small-scale NNs because it is challenging to calculate TIC with DNNs of
practical size. As a matter of fact, even the ResNet-8 model used in the small-scale image classifi-
cation benchmark CIFAR10 is not feasible, as it requires nearly 200TB of memory to calculate the
TIC exactly.
Remark 2.1. It should also be noted that TIC is an information criterion for regular models, not for
singular models such as DNNs, and its theoretical justification in the domain of DNNs is not clear.
One of the characteristics of singular models is that the Fisher information matrix is not positive
definite.

3



Under review as a conference paper at ICLR 2022

2.3 TIC IS DERIVED AS GENERALIZATION GAP IN NTK REGIME

This section outlines the derivation of the definition of TIC in equation 1, considering the gener-
alization gap of DNNs in the framework of NTK’s regime. We employ the setting introduced in
section 1, f is a smooth function over θ ∈ Rd, a parameter of the statistical model. First, we further
assume that the following holds for f and θ ∈ Rd in the NTK regime.
Assumption 2.1.

(A1) Global convergence: the model has only one possible solution. However, it is not required
to be qθ = p (allowing for misspecified situation).

(A2) Asymptotic normality: the maximum likelihood estimator θ̂ from the empirical data dis-
tribution p̂ and the maximum likelihood estimator θ∗ in the true data distribution p satisfy
asymptotic normality.

Proposition 2.1 (Generalization Gap in NTK Regime is equal to TIC).

Under the assumptions (A1) and (A2), the estimated bias b (i.e. generalization gap) when evaluating
using empirical data distribution p̂ would then be as follows.

b = Ep
[
Ep̂[l(y, f(x, θ̂))]− Ep[l(y, f(x, θ̂))]

]
= Tr

(
Hp(θ

∗)−1Cp(θ
∗)
) (3)

Where Hp(θ
∗) and Cp(θ∗) are the Hessian and Covariance respectively with regards to θ∗ over

true data distribution p. However, as the true data distribution p and parameter θ∗ which maximizes
the likelihood for that data distribution are unknown, the expected value in the empirical data distri-
bution p̂ and parameter θ̂ are generally used as a consistent estimator, which is consistent with the
TIC. A more detailed proof is given in Appendix A.1.2.
Remark 2.2. The bias term of TIC is formulated as Tr

(
H(θ)−1C(θ)

)
. However, since there is

no guarantee that H(θ) is positive definite in practice. To prevent this problem, the addition of a
small identity matrix, called damping, is performed as H̃(θ)−1 = (H(θ) + λI)

−1. Alternatively,
consider the case where the TIC is calculated by approximation with a matrix of only the diagonal
components of the respective matrices, as Tr

(
H(θ)−1C(θ)

)
≈ Tr

(
Hdiag(θ)−1Cdiag(θ)

)
In this

case, the following lower bound is given for the diagonal approximated TIC.

Tr
(
Hdiag(θ)−1Cdiag(θ)

)
>

Tr(Cdiag(θ))

Tr(Hdiag(θ))
=

Tr(C(θ))

Tr(H(θ))
(4)

Remark 2.3. We note that not all DNNs are in the NTK regime. One indicator of whether a DNN is
in the NTK regime is the ratio of the number of model parameters to the number of data. In general,
unconstrained DNNs are singular models, so WAIC (Watanabe, 2013) is appropriate instead of TIC
or AIC (Akaike, 1998), but computational cost of WAIC is way too high to perform a wide range
of learning experiments. Furthermore, when the loss function includes a regularization term, GIC
(Konishi & Kitagawa, 1996) is technically appropriate instead of TIC, but it has a disadvantage that
the calculation is further complicated.

3 APPROXIMATION OF TIC

3.1 HESSIAN, GENERALIZED GAUSS-NEWTON MATRIX (GGN) AND FIM

In this section, we describe the conditions for which the Hessian, GGN, and FIM become equivalent.
This equivalence can be exploited to reduce the computational cost of computing the TIC. TIC
requires the computation of H(θ) and C(θ), but the computational cost of H(θ) is relatively
high. For NNs that consist of linear, convolutional, and pooling layers, along with piecewise linear
activations, the Hessian is equal to the GGN (Schraudolph, 2002). This actually holds true for
most CNNs used in practice. The GGN is an extension of the Gauss-Newton matrix G̃(θ) =
Ep
[
(Jθ)TJθ

]
.

G(θ) = Ep
[
(Jθ)THfJθ

]
(5)
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Where Hf is the Hessian of l(y, f(x,θ)) and Jθ is Jacobian of f(x,θ) with respect to θ. Further-
more, the GGN is equal to the FIM for any NN that uses the softnax cross entropy. Therefore, we
can assume the following for most practical DNN problem settings.

Assumption 3.1.

(B1) Loss function: l is the softmax cross-entropy function

(B2) Activation function: inside f , all activation functions’ second derivative are always zero,
such as ReLU or the identity function.

Proposition 3.1 (H(θ) is equal to F (θ) through GGN).

Under the assumption of (B1) and (B2),H(θ) and F (θ) are exactly equal through GGN. They are
also guaranteed to be positive semi-definite.

H(θ) = G(θ) = F (θ) (6)

A more detailed proof is given in Martens (2020).

3.2 APPROXIMATION OF MATRICES AND TRACE ESTIMATION

As noted in section 2.2, information matrices are in demand for many applications, including TIC.
However, for a model with a large number of parameters d such as a DNN, it is necessary to compute
a matrix with size of d2. For this reason, approximation methods ranging from approximating the
information matrix itself (Le Roux et al., 2007) to approximating the product of the information
matrix, and the vector directly is used in optimization (Pearlmutter, 1994) and other applications.
We propose the following approximation method to calculate the TIC and experimentally verify the
trade-off between accuracy and computation time.

• Replacing H(θ) in F (θ) and fast estimation of F (θ) in Monte-Carlo sampling. As shown
in equation 6, F (θ) can be used in place of H(θ) under the (B1) and (B2) assumption. We use
this property to speed up the calculation by simultaneously computing C(θ) and F (θ), which
have a common term. Furthermore, since the number of classes for the classification task is 10 in
MNIST and 100 in CIFAR100, the computational cost of F (θ) is huge, so we approximate F (θ)
using Fmmc(θ), which is a Monte Carlo approximation. Martens & Grosse (2015b) use m = 1 in
the practical setting. We follow this setting F1mc(θ) for the approximation of F (θ).

• Block-diagonalization and diagonalization. In NTK Regime, the correlation between layers
is ignored, so block-diagonalization is a reasonable approximation method. The computational
complexity can be reduced from O(d3) to O(d3

l )
2 by the block-diagonal approximation. Diago-

nalization is a simple approximation; it ignores the correlation between DNN units. It has been
reported to be sufficient for some applications (Singh & Alistarh, 2020). It can also be calculated
as a sum-of-products operation on vectors rather than matrices, significantly reducing computa-
tional complexity and memory consumption. In particular, by using the diagonal approximation,
the inverse calculation ofH(θ) can be reduced from O(d3) to the order of O(d).

• Lower bound of diagonalization. As shown in equation 4, by giving the lower bound of the
diagonal approximation, it is possible to calculate the trace of each matrix by calculating and
dividing the trace of each matrix without calculating the diagonal component of the matrix. In
other words, it is possible to calculate without considering whether F (θ) is positive definite.

• Hutchinson’s method for estimating Tr(H(θ)) in fast. Furthermore, rather than approximating
the matrix itself, we will introduce a method to accelerate the computation of its eigenvalues and
trace. For optimization in deep learning, it is enough to calculate not the Hessian itself but the
product of the Hessian and an arbitrary vector (Hessian vector product; Hvp). In order to compute
Hvp exactly, Pearlmutter (1994) proposed a fast algorithm to compute Hvp in NNs during back-
propagation. This Hvp can be applied to non-optimization applications, such as approximating
Tr(H(θ)) (Avron & Toledo, 2011). Hutchinson’s method (Hutchinson, 1989) approximates the
expectation value of the quadratic form of the Hessian and the Rademacher random vector (each
element takes 1 or −1 with probability 1/2).

2l is the number of parameters for the layer with the largest number of parameters in the network.
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Figure 1: Approximation comparison experiments in small-scale setting. (a) shows equality of
Tr(H) and Tr(F ). (b), (c), and (d) respectively compare how different the approximation method
of TIC estimation is from the exact case. All full results are shown in Appendix D.2.2.

4 EXPERIMENTS

4.1 OVERVIEW

The goal of our paper is to elucidate the correlation between the TIC estimates and the generalization
gap. To make our study of TIC as comprehensive as possible, we trained on 4 different data sets
and 12 different DNN models. Using these combinations, we searched for hyperparameters for each
of the 15 problem settings and evaluated the parameters of the trained models. By comparing these
results, we can observe how the effectiveness of TIC changes with the model and problem settings.
In our experiments, the bias term of TIC is estimated by using validation data, and the generalization
gap is the absolute value of the difference in loss between training and test data, using all of the data
in each dataset, not just a part of the data. The problem settings for the experiment can be divided
into two main categories along with dataset and model size as table 1.

Table 1: 2 Categories of experimental settings. Problem settings with ] and ? indicate to use
linear neural network and to be considered almost in NTK regime respectively. For hyperparameter
search, we conduct Bayesian optimization for all experimental settings. We describe the further
detailed configurations of hyperparameters and other settings for the experiment in Appendix C.2.
The remaining experimental settings are explained in Appendix C.

Category TIC Estimates Problem Setting: Dataset & Model Ratio: d/n
Small-scale
Data<1MB
Model<50KB

Exact and Approx.
(Block Diag, Diag
and Lower Bound)

TinyMNIST on 2-NN w/o SC3

TinyMNIST on 3-NN w/o and w/ SC
] TinyMNIST on 3-LNN w/o and w/ SC

0.09
0.02
0.02

Practical-scale
Data>20MB
Model>0.5MB

Approx.
(Diag and
Lower Bound)

? MNIST on 6-NN w/o and w/ SC
]? MNIST on 6-LNN w/o and w/ SC
? MNIST on Simple CNN
]? CIFAR10 on 6-LNN w/o and w/ SC
? CIFAR10 on ResNet8 w/o BN 4

? CIFAR10 on VGG16 w/o BN
? CIFAR100 on ResNet8 w/o BN

2.50
2.50
268.92
8.72
122.65
3357.53
122.65

In particular, ResNet-8, which is commonly used as a benchmark for training CIFAR10, requires
over 200TB of memory to compute exact H(θ). Even state-of-the-art GPU NVIDIA A100 is
impractical since it has only 80 GB of device memory. Hence, as small-scale experiment, we use
a small dataset called TinyMNIST to limit the size of the DNN model, which is a resized version
of the MNIST image, which reduces the dimension of the input layer of DNN, to compare our
approximation method and exact calculation. As practical-scale experiments, we evaluated the
real-world datasets and DNN models. We used diagonal approximations and their lower bound
approximations to estimate TIC.

4.2 SMALL SCALE EXPERIMENTS: COMPARING APPROXIMATION AND EXACT

As small-scale experiments, we trained Tiny MNIST on 5 experimental settings: 3-LNNs and NNs,
each w/ and w/o SC, and a wide model, 2-NNs without SC. Afterwards, we evaluated the approx-
imation of Tr

(
H(θ)−1C(θ)

)
, the bias term of TIC, for H(θ) and C(θ), using block-diagonal

42-NN and 3-LNN denote 2-Layer Non Linear Neural Network and 3-Layer Linear Neural Network respec-
tively. SC denotes Skip-Connection

4BN denotes Batch Normalization.
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Figure 2: Correlation between the generalization gap and the TIC estimates. (a) is a problem
setting outside the NTK regime, where the correlation between TIC and the generalization gap is
weak; (b) (c) are a problem setting close to the NTK regime, where the correlation is stronger. All
full results are shown in Appendix D.
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Figure 3: Relationship between Pearson’s Correlation (generalization gap and TIC estimates),
and d/n. It should be noted that the correlation between the TIC estimates and the generalization
gap is high in regions with large d/n, which are considered to be close to the NTK regime. All
full results of its value and other metric’s Spearman’s Correlation and Kendall’s τ Coefficient result
including are shown in Appendix D.

approximation, diagonal approximation, and its lower bound. Furthermore, as mentioned in equa-
tion 6, for the purpose of speeding up the process, we also estimate TIC using F (θ), which shares
the same elements to be calculated as C(θ) as an alternative.

Remark 4.1. It should be noted that the above five settings are different from the situation of NTK,
since d� p. However, we observed that the estimation of TIC was effective for LNNs.

First, we show the results of our experiments on the quality of the approximations. In general, from
the exact computation to the block-diagonal approximation, i.e., the approximation which ignores
the correlation between layers, we can confirm that the value and the rank correlation are kept. As
for the LNN, the rank correlation is maintained for the block-diagonal approximation, the diagonal
approximation, and its lower bound, though the value fluctuates. On the other hand, in the case of
NN w/ SC, we confirmed that the rank correlation is maintained between exact and block-diagonal
approximation, between diagonal approximation and its lower bound. These results show that LNN
or NN with more layers and SC has a trend of the higher approximation quality.

Then we explain the correlation between the TIC estimates and the generalization gap. We observed
that LNN is in the effective regime of TIC and has a high correlation with the generalization gap in
all approximations. For NNs, similarly high correlations were observed for the models w/ SC. For
the 3-NN w/o SC, the results were such that the inverse correlation was observed even in the exact
case. In the case of 2-NN, the approximate correlation was also collapsed, resulting in no correlation
with the generalization gap.
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(b) : CIFAR100 on ResNet-8

Figure 4: Correlation between the generalization gap and the TIC estimates in training process.
The color bar represents the number of epochs of trained models. All full results are shown in
Appendix D.3

From these results, we conclude that the performance of TIC on the correlation with the general-
ization gap is higher for NN models with more layers and SC, and the correlation does not change
significantly before and after the approximation.

4.3 PRACTICAL SCALE EXPERIMENTS: CORRELATION TO GENERALIZATION GAP AND TIC
LOWER BOUND, TIC WITH DIAGONAL APPROXIMATION

As practical-scale experiments, we experimented with the problems where d � p, which is con-
sidered to be NTK’s Regime. Contrary to small-scale experiments, we used MNIST, CIFAR10, and
CIFAR100 datasets to evaluate practical settings.

First, we show the case of MNIST. The settings of LNN show a strong correlation with the gen-
eralization gap in the lower bound approximation as well as in the small-scale experiment. In the
case of the NN model, a strong correlation with the generalization gap is observed, unlike in the
small-scale setting. Furthermore, in the case of NN and LNN w/ SC, it has less variance and shows
a stronger correlation with the generalization gap. In the Simple CNN case, the correlation with the
generalization gap is weaker than in previous cases but still shows a correlation. Also, there is no
correlation with the generalization gap in the case of the value of Tr (H(θ)), Tr (F (θ)), Tr (C(θ))
itself respectively. Detailed experimental results are shown in figure 13 in the Appendix D.3.

In the cases of CIFAR10 and CIFAR100, both the measures using lower bound and the diagonal
approximation show a high correlation with the generalization gap. For LNNs, the correlation is
more linear in the case w/ SC. For VGG16 and ResNet8, the correlation is not as good as for
LNN, but we confirmed the effectiveness of TIC in NTK’s regime. Furthermore, no correlation was
found between the generalization gap and trace itself, respectively. These trace values have different
patterns depending on the network, and it was found that this single factor alone is insufficient for
estimating the generalization gap.

Remark 4.2. It should be noted that TIC estimates captured the trend of the generalization gap in
the training process as shown in figure 4.

4.4 CALCULATION RUNTIME MEASUMENT EXPERIMENTS

Our runtime measurement experiments were run on an NVIDIA Tesla V100 16GB GPUs, with
an average of 10 trials each. Significant speedup was achieved by approximating the shape of the
matrix, replacing H(θ) by F (θ), and Monte Carlo estimation of F (θ), as shown in 3. Even in
the case of a small-scale problem setting, the diagonal approximation with F (θ) and C(θ) is 50
times faster than the exact version, while maintaining the rank correlation with H(θ) and C(θ).
However, since the number of parameters in the small problem setting is at most 720, and VGG16
has 186,530 times as many parameters, the effect of increasing the computational order from O(d3)
toO(d) is more significant in the large-scale problem setting. The full details are shown in Appendix
D.4. Notably, this speedup by using F (θ) and C(θ) as a set instead of H(θ) and C(θ), and the
method of approximating the matrix form to drop the computation order dramatically reduces the
computation time.
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(a) : All Trials without Pruning
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(b) : SHA Pruning using Validation Loss

0 20 40 60 80 100 120
Epoch

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Va
lid

at
io

n 
lo

ss

top-1
top-2
top-3
top-4
top-5
top-6
top-7
top-8
top-9
top-10
top-11
top-12
top-13
top-14
top-15
top-16
top-17
top-18
top-19
top-20
top-21
top-22
top-23
top-24
top-25

top-26
top-27
top-28
top-29
top-30
top-31
top-32
top-33
top-34
top-35
top-36
top-37
top-38
top-39
top-40
top-41
top-42
top-43
top-44
top-45
top-46
top-47
top-48
top-49
top-50

(c) : SHA Pruning using TIC

Figure 5: A comparative experiment using TIC as an evaluation value for pruning with SHA
in HPO for training of CIFAR10 on ResNet-8: (a) shows the case where all hyperparameter
candidates are trained to the end without pruning. (b) shows the case where pruning is performed
based on validation loss as a baseline. (c) shows the pruning method using TIC. In the figure, all the
legends on the right side show the trials with different hyperparameters, and the final generalization
performance (validation loss) to be reached is in descending order. The 1st place trial is shown in
dark purple and the 3rd place in light purple.

5 APPLICATION TO HYPERPARAMETER OPTIMIZATION

In previous sections, we have demonstrated that TIC is a reasonable estimator of the generalization
gap that is also effective in the training process and can be computed fast. Motivated by these, in
this section, we employ the TIC values on the training processes to accelerate hyperparameter opti-
mization (HPO). HPO is an essential task to achieve good performance in a wide range of machine
learning algorithms (Feurer & Hutter, 2019). In particular, the performance of DNNs depends signif-
icantly on the selection of the hyperparameters, such as learning rates, weight decay, and momentum
(Lucic et al., 2018; Henderson et al., 2018; Dacrema et al., 2019).

The Successive halving algorithm (SHA) (Jamieson & Talwalkar, 2016) shows promising perfor-
mance in HPO by utilizing the iterative structure of DNNs. SHA prunes unpromising hyperparame-
ters at early stage by utilizing not only a final loss but also losses in training process. The validation
loss obtained by the hold out method is usually used as the intermediate loss for SHA. However, the
validation loss is often numerically unstable, as shown in Figure 5.

To achieve stable optimization in SHA, we apply the TIC values for the intermediate loss. One
advantage of using TIC is that it can take into account the variance as bias term in equation 1, which
was not taken into account in the validation loss obtained by the hold out method. In particular, TIC
is known to be asymptotically close to leave-one-out cross-validation (LOOCV) (Stone, 1977), and
is superior to Hold-Out in terms of the order of estimates error. Details are given in Appendix B.
We conduct an experiment to investigate the effectiveness of using the TIC values in SHA. Figure 5
shows the result of the experiment. The TIC values with the proposed approximation method can
select 1st top trial, while the traditional method (SHA + the validation loss obtained by the hold out
method) selects 3rd top trial.

6 CONCLUSION AND DISCUSSION

This study conducted a comprehensive experiment and observed that the TIC approximation method
captures the generalization gap, even in the practical DNN setting close to the NTK regime. We have
shown that the generalization gap could be captured in the training process, even if the model is not
completed to train. Based on these results, we tested the validity of using TIC as an assessment
value for HPO branch pruning and confirmed a valid case. It is challenging to establish a theory
to discuss in the active regime (outside of the NTK regime) for future work. Especially, WAIC can
handle singular models and applied to DNN; the difficulty arises for calculation; thus, it is required
to have an approximation method. Still, it is necessary to bridge the theory of DNN for the validity
of the approximation.
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APPENDIX

A PROOFS

A.1 DERIVATION OF THE TIC IN NTK REGIME

A.1.1 NTK: NEURAL TANGENT KERNEL

In general, DNNs have a large number of parameters p, compared to the number of data, n, causing
them to memorize data and hurt their generalization ability. Furthermore, all data are subjected
to nonlinear transformations, which results in the problem of minimizing a nonconvex objective
function. Due to this difficulty in analyzing the training dynamics of DNNs, the reasons for the
generalization of practical DNNs and the mysteries related to the guarantee of global convergence
remain unsolved. However, a theoretical framework called Neural Tangent Kernel (NTK) (Jacot
et al., 2018) has been developed to analyze the training dynamics of gradient descent in DNNs with
a sufficiently large width.

Assuming that the loss function to be minimized in NN training is L = 1
2‖f(x;θ) − y‖2, and the

parameters are updated by the gradient method with the learning rate η, the amount of change is ∆θ,

∆θ = −η ∂L(θ)

∂θ
= −η∇θL(θ) (7)

Continuing this equation using the continuous time (training step of NN) t, we obtain

∂θ

∂t
= −η∇θL(θ(t)) (8)

= −ηJt(x;θ)T∇ft(x)L(ft(x)) (9)

where Jt(x;θ) is ∂f(x;θ)
∂θ = ∇θft(x).

Second, considering the time variation of the output of the function instead of the parameters we get

∂ft(x;θ)

∂t
=

∂ft(x;θ)

∂θ

∂θ

∂t
(10)

= −ηJt(x;θ)Jt(x;θ)T∇ft(x)L(ft(x)) (11)
= −ηKt(x, x)∇ft(x)L(ft(x)) (12)

where Kt(x, x) is Jt(x;θ)Jt(x;θ)T =
∑num of layer

layer=1 Jt (x;θlayer) Jt (x;θlayer)
T

The problem here is that Kt(x, x) which is the NTK at time t depends on θ and x. However, it
was shown that if the width of the randomly initialized NN is large enough, it will be Kt(x, x) ∼
K0(x, x) (Jacot et al., 2018).

Given the output of the neural network with its first-order Taylor expansion, we have

f lin
t (x;θt) ≈ f0 (x;θ0) +∇θf0 (x;θ0)

T
(θt − θ0) (13)

The dynamics of training can be expressed in the following way.

θt = θ0 −∇θf0(x)TK−1
0

(
I − e−ηK0t

)
(f0(x)− y) (14)

f lin
t (x) =

(
I − e−ηK0t

)
y + e−ηK0tf0(x) (15)

Therefore, NTK theory determines the dynamics of gradients in function space by introducing the
NTK regime, which allows us to assume that the weights follow a Gaussian process even in training
progresses, based on the theory that the random initialized NN can be considered as a Gaussian
process when the hidden layers become infinite in the study of Lee et al. (2018); Novak et al. (2018b).

NTK allows us to prove the global convergence of gradient descent, and furthermore, the equiva-
lence between the trained model and the Gaussian process can be used to explain the generalization
performance of DNN. Besides, NTK was extended to CNNs (Arora et al., 2019) and RNNs (Yang,
2019) as well as MLPs, and exhaustive experiments (Lee et al., 2019) were conducted.
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A.1.2 PRELIMINARIES FOR TIC IN NTK REGIME

TIC requires that the statistical model be a regular model. However, DNNs are generally singular
models. The requirements for a regular model are as follows,

• The posterior distribution of the parameters can be approximated by a Gaussian distribution, and
the number of samples is sufficiently large (as n increases, the prior distribution is ignored).

• There is only one optimal solution θ̂ for arg max `(θ).
• Hp(θ

∗) is positive definite.

In machine learning, we often pursue to minimize the negative log-likelihood using it as a loss
function. Let f be the predictive distribution of the model over the p-dimensional parameters θ ∈
Θ ⊂ Rp and the true distribution g . We can compare the models by measuring the KL divergence
of f and g to see how well f approximates the true distribution g as a predictive distribution.

DKL(g, f) = Ep
[
log

g(y|x)

f(y|x,θ)

]
(16)

= Ep[log g(y|x)]− Ep[log f(y|x,θ)] (17)

Since the first term of equation 17 is independent of θ, the model is better if it maximizes the second
term, i.e., the higher the mean log-likelihood L(θ) = Ep[log f(y|x,θ)].

The mean log-likelihood L(θ) is also an unknown quantity that cannot be calculated as it depends
on the true distribution of the data p . However, suppose it is possible to obtain a valid estimator of
the mean log-likelihood using the empirical distribution of the data p̂.In that case, it can be used as
a criterion for evaluating the model.

In model selection, we assume an output of DNN model f(y|x,θ), which is estimated by the maxi-
mum likelihood method. We can calculate f(y|x, θ̂) by replacing the unknown parameters θ in the
probability distribution with the maximum likelihood estimator θ̂ .

θ̂ := arg max
θ∈Θ

`(θ) (18)

Where `(θ)=Ep̂[log f(y|x,θ)]=1
n

∑n
i=1 log f(yi|xi,θ) is the likelihood function over θ ∈ Θ.

Let Sn = {(x1, y1), (x2, y2), . . . (xn, yn)} be the data observed according to the true data distri-
bution p. Let p̂ be the empirical distribution based on this Sn. By the law of large numbers, the
mean of Ep̂[log f(y|x, θ̂)] = 1

n

∑n
i=1 log f(yi|xi, θ̂) converges in probability to its expected value

Ep[log f(y|x, θ̂)] when the number of data n becomes infinitely large.

1

n

n∑
i=1

log f(yi|xi, θ̂) −−−−−→
n→+∞

Ep[log f(y|x, θ̂)] (19)

Therefore, the estimator based on the empirical distribution function in equation 19 is a nat-
ural estimator of the mean log-likelihood. While Ep̂[log f(y|x, θ̂)] is a natural estimator of
Ep[log f(y|x, θ̂)], θ̂ is a model parameter estimated using empirical data (xi, yi) ∼ p̂. The data
is also used to evaluate the mean log-likelihood of f(y|x, θ̂) of the model in terms of prediction,
although a fair model selection is not possible.

Therefore, it is necessary to evaluate and correct for this bias for fair model selection. The bias of
estimating the mean log-likelihood Ep[log f(y|x, θ̂)] with equation Ep̂[log f(y|x, θ̂)] is formulated
as follows:
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b=nEp
[
Ep̂[log f(y|x, θ̂)]− Ep[log f(y|x, θ̂)]

]
(20)

=nEp
[
`(θ̂)− L(θ̂)

]
(21)

=nEp
[
`(θ̂)− `(θ∗)

]
(22)

+nEp [`(θ∗)− L(θ∗)] (23)

+nEp
[
L(θ∗)− L(θ̂)

]
(24)

Where θ∗ is the maximum likelihood estimator of L(θ), thus, equation 21 can be decomposed
as equation 22, 23, 24. Also, equation 23 converges to 0 ,since taking the expectation of the
left-hand side by p coincides with the right-hand side, and equations 22 and 24 converge to
1
2Tr

(
Hp(θ

∗)−1Dp(θ
∗)
)

in n→∞, respectively. Technically, this asymptotic validity holds under
the regularity condition (White, 1982).

A.1.3 APPLY NTK REGIME FOR TIC DERIVATION

Now we satisfy the above condition by using the training dynamics of DNN in the NTK regime.
Specifically, the regime in NTK satisfies the first condition because it uses a locally linear approx-
imation, as in equation 13, and considers the training of the NN as a Gaussian process. Also, as
shown in equation 14, the optimal solution at the t-th step is uniquely determined, and the optimiza-
tion is convex.

The positive definiteness of Kt(x, x) is proved in Appendix A4 of Jacot et al. (2018), under the as-
sumption of non-polynomial Lipschitz nonlinearity. From the definition ofKt(x, x), the eigenvalues
of Fisher Information Matrix (FIM) are positive definite in NTK Regime because Kt(x, x) and FIM
have a duality that shares eigenvalues.

This condition is true when the DNN is considered to be in the NTK Regime, i.e., when Assumption
2.1 is satisfied.

Figure 6 shows a schematic diagram of the bias term b. The matrices Hp(θ
∗) and Dp(θ

∗) is as
follows:

Dp(θ
∗) = Ep

[
∂ log f(y|x,θ)

∂θ
∂ log f(y|x,θ)

∂θT

∣∣∣
θ=θ∗

]
Hp(θ

∗) = Ep
[
∂2 log f(y|x,θ)

∂θ∂θT

∣∣∣
θ=θ∗

] (25)

If the true distribution g is included in the assumed statistical model f(y|x,θ), then Dp(θ
∗) =

Hp(θ
∗) is valid and b = Tr(I) = d, and thus AIC can be derived. In the DNN setting, this

assumption does not hold, i.e., we need to use the respective matrices for the misspecified situation.

Since the bias b depends on the true data distribution p, it needs to be estimated based on the ob-
served data. Assuming that the consistent estimators forDp(θ

∗) andHp(θ
∗) are C(θ̂) andH(θ̂),

respectively, the estimates in equation 20 are as follows:

C(θ̂) = 1
n

∑n
i=1

∂ log f(yi|xi,θ)
∂θ

∂ log f(yi|xi,θ)
∂θT

∣∣∣
θ=θ̂

H(θ̂) = 1
n

∑n
i=1

∂2 log f(yi|xi,θ)
∂θ∂θT

∣∣∣
θ=θ̂

(26)

Using equation 2, b̂ as an estimate of bias b can be described as follows.

b̂ = Tr
(
H(θ̂)−1C(θ̂)

)
(27)

The term of b is called Moody’s effective number of parameters (Moody, 1992). The TIC is derived
in equation 1 by estimating the asymptotic bias of the mean log-likelihood with the log-likelihood
of the statistical model.
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Figure 6: TIC takes into account the bias of the estimate

B ASYMPTOTIC EQUIVALENCE OF TIC TO CROSS-VALIDATION

Since deep learning usually requires a lot of data and a huge amount of time for training, the Hold-
Out method is commonly used to divide the training data into train data for training, validation
data for model selection, especially for hyperparameter optimization, and test data to verify the
performance of the model. This method is relatively fast, but its evaluation varies depending on how
the data is divided, and it is not used when the number of data is small. In K-fold cross-validation,
the entire train data is divided into K pieces. Then, one of them is used as the validation data, and the
remaining K-1 groups are decomposed into training data. The validation data and training data are
swapped and repeated, and the verification is repeated so that all cases become validation cases. The
leave-one-out cross-validation (LOOCV) is a method that uses only one piece of the entire train data
as validation data. LOOCV is empirically known to have high performance and is often used when
the overall data is small. If the number of data is n, the bias of the estimation error is O(1/

√
n) for

the Hold-Out method and O(1/n) for LOOCV (Stone, 1977). However, LOOCV requires n times
the computational cost. In a case such as ImageNet-1K, 1.2 million images can be used as training
data, and the current trend is to use the Hold-Out method, which allows the estimation error to be
O(1/

√
n) with small computational cost, instead of reducing the estimation error to O(1/n) at the

expense of huge computational cost.

C TIC EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION AND ENVIRONMENT FOR EXPERIMENT

We perform our experiment with supercomputer A (These names will be deanonymized after pub-
lication). For supercomputer A, each node is composed of NVIDIA Tesla V100×4GPU and Intel
Xeon Gold 6148 2.4 GHz, 20 Cores×2CPU. As a software environment, we use Red Hat 4.8.5, gcc
7.4, Python 3.6.5, Pytorch 1.6.0, cuDNN 7.6.2, and CUDA 10.0. Our code can be found at the link
below.
https://anonymous.4open.science/r/TIC-in-NTKRegime-02A2/

C.2 HYPERPARAMETERS AND DETAILED CONFIGURATION

We will report the hyperparameter’s search space. We search learning rate η, learning rate decay rate
ρ and the timing to decay learning rate δ, and regularization coefficient of weight decay λ. When
δ = 0.7, it means that the learning rate decays when training passes 70 % of the total iterations.
Furthermore, a parameter to control momentum γ is added to the hyperparameters.

To set the range in which to search for each hyperparameter, we follow the configuration of Choi
et al. (2019),Shallue et al. (2019). We summarize the workloads we use in the experiment in Table 2.
We do not use batch normalization and the input image is just normalized and any data augmentation
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is not employed. Hyperparameter ranges are summarized in Tables 3,4,5 and 6. We conduct a
bayesian optimization to explore hyperparameters in the range described in these tables.

Table 2: Experiments: Workloads

Model Dataset Batch size Step Budget Epoch

2-NN w/o SC (Thomas et al., 2020) TinyMNIST 512 11343 120
3-LNN w/ SC TinyMNIST 8192 300 60
3-LNN w/o SC TinyMNIST 8192 300 60
3-NN w/ SC TinyMNIST 8192 300 60
3-NN w/o SC TinyMNIST 8192 300 60

6-LNN w/ SC MNIST 8192 300 60
6-LNN w/o SC MNIST 8192 300 60
6-NN w/ SC MNIST 8192 300 60
6-NN w/o SC MNIST 8192 300 60
Simple CNN Base (Shallue et al., 2019) MNIST 256 9350 60
6-LNN w/ SC CIFAR-10 256 10205 60
6-LNN w/o SC CIFAR-10 256 10205 60
VGG-16 w/o BN (Simonyan & Zisserman, 2015) CIFAR-10 128 78000 250
ResNet-8 w/o BN (Shallue et al., 2019) CIFAR-10 256 15800 120
ResNet-8 w/o BN (Shallue et al., 2019) CIFAR-100 256 15800 120

Table 3: Hyperparameter Search Range for TinyMNIST Dataset Experiments

Model η ρ δ λ γ

2-LNN w/o SC [1e-3, 1e-1] [1e-2, 1] [1e-2, 1] [0] [0, 0.999]
3-NN w/o and w/ SC [1e-4, 1e-1] [5e-1, 1] [5e-1, 1] [0] [0, 0.999]
3-LNN w/o and w/ SC [1e-4, 1e-1] [5e-1, 1] [5e-1, 1] [0] [0, 0.999]

Table 4: Hyperparameter Search Range for MNIST Dataset Experiments

Model η ρ δ λ γ

6-NN w/o and w/ SC [1e-4, 1e-1] [5e-1, 1] [5e-1, 1] [0] [0, 0.999]
6-LNN w/o and w/ SC [1e-4, 1e-1] [5e-1, 1] [5e-1, 1] [0] [0, 0.999]
Simple CNN [1e-4, 1] [5e-1, 1] [5e-1, 1] [0] [0, 0.999]

Table 5: Hyperparameter Search Range for CIFAR10 Dataset Experiments

Model η ρ δ λ γ

6-LNN w/o and w/ SC [1e-4, 1e-1] [0.5, 1] [0.5, 1] [0] [0, 0.999]
ResNet-8 w/o BN [1e-6, 1e+1] [0.5, 1] [0.5, 1] [1e-5, 1e-4] [1e-4, 0.999]
VGG-16 w/o BN [1e-3, 1e-0] [0.5, 1] [0.5, 1] [1e-4, 1e-1] [1e-4, 0.999]

Table 6: Hyperparameter Search Range for CIFAR100 Dataset Experiment

Model η ρ δ λ γ

ResNet-8 w/o BN [1e-6, 1e+1] [0.5, 1] [0.5, 1] [1e-5, 1e-4] [1e-4, 0.999]
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C.3 DISTRIBUTION OF TRAIN LOSS AND GENERALIZATION GAP
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Figure 7: Distribution of training loss and generalization gap on the trained models
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 FULL RESULTS OF CORRELATION BETWEEN GENERALIZATION GAP AND TIC LOWER
BOUND ESTIMATES

We summarize these results, evaluated with three different correlation coefficients, in Table 7. These
results are the calculated 3 types of correlation coefficients for the plot shown in figure 4a, 4b and 2c
. Furthermore, the relationship between these correlation coefficients and the values of the ratios of
the parameters to the number of data is shown in Figure 8. The result of plotting these results along
with d/n is shown in Figure 8.

Table 7: Correlation: TIC estimates Tr(C(θ))/Tr(F (θ)) and generalization gap

Model Dataset Spearman’s Kendall’s τ Pearson’s Correlation

2-NN Tiny MNIST -0.456 -0.313 -0.309
3-NN Tiny MNIST -0.631 -0.44 -0.766
3-NN w/ SC Tiny MNIST -0.19 -0.137 -0.347
3-LNN Tiny MNIST 0.277 0.238 0.256
3-LNN w/ SC Tiny MNIST 0.932 0.795 0.898
6-NN MNIST 0.882 0.708 0.425
6-NN w/ SC MNIST 0.969 0.87 0.478
6-LNN MNIST 0.682 0.465 0.774
6-LNN w/ SC MNIST 0.593 0.512 0.848
Simple CNN MNIST 0.923 0.553 0.763
6-LNN CIFAR10 0.951 0.82 0.888
6-LNN w/ SC CIFAR10 0.976 0.877 0.965
VGG-16 w/o BN CIFAR10 0.904 0.725 0.933
ResNet-8 w/o BN CIFAR10 0.912 0.766 0.983
ResNet-8 w/o BN CIFAR100 0.966 0.855 0.978
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Figure 8: Relationship between correlation coefficient and d/n. It should be noted that the correla-
tion between the TIC estimates and the generalization gap is high in regions with large d/n, which
are considered to be close to the NTK regime.
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D.2 ADDITIONAL RESULTS OF SMALL-SCALE EXPERIMENTS

In this chapter, we provide details of the experimental results on a small-scale that could not be
included in the main paper. In particular, we investigate the goodness of approximation of the
information matrix in the small-scale case, since it can be computed exactly, although the execution
time is longer.

D.2.1 EMPIRICAL RELATIONSHIP BETWEEN H AND F

First of all, we examine the behavior ofH(θ) when it is approximated by F (θ), or more precisely,
F1mc(θ). Figure 9 shows that H(θ) is not in perfect agreement with F (θ) due to the effect of
the damping term. However, For cases that do not require inverse calculations, such as trace calcu-
lations and lower bounds, these effects can be eliminated and a relatively good approximation can
be achieved. Furthermore, in the case of linear neural networks, H(θ) and F (θ) show a strong
correlation.
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Figure 9: Small-scale experiments: comparison of the TIC estimate w/ H(θ) and F (θ) respec-
tively.
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D.2.2 EFFECT OF MATRIX SHAPE APPROXIMATION ON ESTIMATION OF TIC

Next, we fixed the use of F (θ) instead of H(θ) and observed the change in the TIC estimates and
the correlation with the generalization gap when form of the matrix is changed by approximation
methods.

Figure 10 and 11 show the correlation between the TIC estimates and the generalized gaps in the
case of approximation. Figure 10 shows the comparison of the shape of matrix and its estimates,
and Figure 11 shows the correlation between generalization gap and tic estimates. These values are
evaluated using three different correlation metric and summarized in Table 8, 9 and 10.
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Figure 10: Small-scale experiments: comparison of the TIC estimate.
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(b) :Generalization gap vs block-diagonal TIC.
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(c) :Generalization gap vs diagonal TIC.
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Figure 11: Small-scale experiments: comparison of the TIC estimate and Generalization Gap.
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Table 8: Correlation: TIC Estimates Tr(F (θ)
−1
C(θ)) and Generalization Gap

Dataset Model Spearman’s Kendall’s τ Pearson’s Correlation

Tiny MNIST 2-NN 0.532 0.38 0.27
Tiny MNIST 3-NN -0.62 -0.427 -0.679
Tiny MNIST 3-NN w/ SC 0.258 0.175 -0.332
Tiny MNIST 3-LNN 0.292 0.271 0.305
Tiny MNIST 3-LNN w/ SC 0.886 0.75 0.922

Table 9: Correlation: TIC Estimates Tr(Fblockdiag(θ)
−1
Cblockdiag(θ)) and Generalization Gap

Dataset Model Spearman’s Kendall’s τ Pearson’s Correlation

Tiny MNIST 2-NN 0.524 0.372 0.288
Tiny MNIST 3-NN -0.549 -0.366 -0.622
Tiny MNIST 3-NN w/ SC 0.364 0.244 -0.08
Tiny MNIST 3-LNN 0.26 0.257 0.252
Tiny MNIST 3-LNN w/ SC 0.937 0.823 0.944

Table 10: Correlation: TIC Estimates Tr(Fdiag(θ)
−1
Cdiag(θ)) and Generalization Gap

Dataset Model Spearman’s Kendall’s τ Pearson’s Correlation

Tiny MNIST 2-NN -0.309 -0.23 -0.234
Tiny MNIST 3-NN -0.297 -0.203 -0.415
Tiny MNIST 3-NN w/ SC -0.176 -0.128 -0.415
Tiny MNIST 3-LNN 0.275 0.237 0.288
Tiny MNIST 3-LNN w/ SC 0.932 0.796 0.918
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D.3 ADDITIONAL RESULTS OF PRACTICAL-SCALE EXPERIMENTS

In this section, we present results of practical-scale setting that we have not presented in the main
paper. We observed that in a small-scale setting, DNNs with a large number of layers and SC tend
to have a high rank correlation in the TIC estimator and a strong correlation with the generalization
gap. Since it is not computationally feasible to compute TIC in practical DNNs, this section de-
tails experimentalresults on the performance of two approximate estimators of TIC using diagonal
approximation and its lower bound.

D.3.1 PRACTICAL-SCALE EXPERIMENTS: MNIST CASE

As shown in Figure 12, we observed the correlation between the TIC estimator and the generalization
gap for the diagonal approximation and the lower bound. Both were found to be highly correlated
and good estimators of the generalization gap.
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Figure 12: Practical-scale MNIST experiments: comparison of the TIC estimates.

Here, we also investigated whether the estimated TIC from lower bounds is due to only one of
the components of the trace, respectively. As shown in figure 13, the value of trace itself was
not correlated with the generalization gap. It was also confirmed that different models behaved
differently. At the same time, we also confirmed that Tr (F (θ)) is a good approximation of trace
Tr (H(θ)).
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Figure 13: Practical-scale MNIST experiments: elements of the TIC estimates.
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D.3.2 PRACTICAL-SCALE EXPERIMENTS: CIFAR10 AND CIFAR100 CASE
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Figure 14: Practical-scale CIFAR experiments: comparison of the TIC estimates.
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Figure 15: Practical-scale CIFAR experiments: elements of the TIC estimates.
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D.3.3 CORRELATION BETWEEN TIC ESTIMATES AND GENERALIZATION GAP IN TRAINING
PROCESS

Within the scope of our experiments, we find that TIC can estimate the generalization gap even in
the middle of learning for problem settings that are considered to belong to NTK.
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Figure 16: Correlation between generalization gap and TIC estimates in MNIST experiments,
through training process. The color map shows the epoch.
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Figure 17: Correlation between generalization gap and TIC estimates in CIFAR experiments,
through training process.The color map shows the epoch.
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D.4 CALCULATION TIME MEASUMENTS EXPERIMENT

First of all, we explain the execution time of the small NN/LNN case. In the case of using Tr (F (θ))
and Tr (C(θ)), the computation time by block diagonal approximation is only 40% faster than exact
computation. The computational complexity should have been reduced from O(d3) to O(d3

l ) by the
block diagonal approximation. However, the overhead such as memory copying is dominant, and
there is no significant difference in execution time compared to the theoretical amount of computa-
tion. From block diagonal to diagonal approximation, the experimental results show a reduction of
up to 50% in computation time. The computational complexity is reduced from O(d3

l ) to O(d).

Secondly, the use of Tr (H(θ)) and Tr (C(θ)) requires up to 900% more time than the use of
Tr (F (θ)) and Tr (C(θ)) in the Exact case. The choice to use Tr (F (θ)) instead of Tr (H(θ)) is
therefore justified in terms of the reduction in computational time. In the case of block diagonaliza-
tion, the speed-up was only a few percent. In the case of diagonalization, no significant speed-up
was observed, but the speed-up was more than 40 times when Trace’s approximation was performed
using the Hutchinson method. However, the estimation using Tr (F (θ)) and Tr (C(θ)) is faster in
the Small Scale problem setting.

It is observed that in such a small scale problem setting, there is a 50 times difference in execu-
tion time between using Tr (H(θ)) and Tr (C(θ)) with Exact TIC and computing Tr (F (θ)) and
Tr (C(θ)) simultaneously and using diagonal approximation.

This speed-up should be more significant for larger models. As mentioned in section 2.2, it was
not feasible to calculate of Tr (H(θ)) in ResNet-8 which requires more than 2,00 TB of memory
without approximation. While execution time is also important, the most important aspect is that it
is made possible to calculate TIC by approximation.

Secondly, we compare the execution time at practical scale. Among the cases where Tr (F (θ))
and Tr (C(θ)) is used, we investigate how much the time can be reduced when Tr (F (θ)) and
Tr (C(θ)) are computed simultaneously compared to the case where they are computed separately.
In the case of Small Scale and Practical Scale networks, the time is reduced by half, but in the case
of SimpleCNN, VGG16, ResNet8, etc., the time is not reduced significantly. For relatively small
models, which could be reduced by about 50%, the approximation by simultaneous Tr (F (θ)) and
Tr (C(θ)) calculations was faster than using the Hutchinson method. In contrast. For networks with
a large number of dimensions in the final layer, such as VGG16, etc., the calculation of Tr (C(θ))
and a fast approximation of Tr (H(θ)) resulted in a speedup of 10%-25% faster than the simulta-
neous calculation of Tr (F (θ)) and Tr (C(θ)).
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D.5 EXPERIMENTS WITH d/n CHANGES WITHIN TINYMNIST

We created a restricted dataset, SmallTinyMNIST, which uses only 5% of the TinyMNIST data.

Table 12: Additional problem settings are highlighted in bold text

Category Problem Setting: Dataset & Model Ratio: d/n

Small Scale
Data Size <1MB
Model <50KB

TinyMNIST on 2-NN w/o SC
TinyMNIST on 3-NN w/o SC, 3-NN w/ SC
TinyMNIST on 3-LNN w/o SC, 3-LNN w/ SC
SmallTinyMNIST on 3-LNN w/o SC
TinyMNIST on Wide 3-NN w/ SC

0.09
0.02
0.02
0.36
13.90

We conducted training evaluations using SmallTinyMNIST to investigate the relationship between
the TIC estimator and the generalization gap for patterns with relatively large d/n ratios.

Furthermore, we prepared a network with a large number of d as a 3-layer Wide-NN, and confirmed
the effectiveness of TIC in settings where the d/n ratio exceeds 10.

The distributions of the loss and the generalization gap are shown in figure 18. For the comparative
purpose, problem settings with the same or relative networks are included in comparison plots and
tables. The correlation between the TIC and the generalization gap is shown in figure 19.
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Figure 18: Distribution of training loss and generalization gap on the trained models

Table 13: Correlation: TIC estimates Tr(C(θ))/Tr(F (θ)) and generalization gap

Model Dataset Spearman’s Kendall’s τ Pearson’s Correlation

3-LNN Tiny MNIST 0.277 0.238 0.256
3-LNN Small Tiny MNIST 0.806 0.622 0.811
3-NN w/ SC Tiny MNIST -0.19 -0.137 -0.347
3-Wide NN w/ SC Tiny MNIST 0.834 0.656 0.967
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Figure 19: Relationship between TIC estimates and generalization gap
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