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ABSTRACT

Person search aims to simultaneously detect and re-identify a query person within
an entire scene, involving detection and re-identification as a multi-task problem.
While existing studies have made significant progress in achieving superior per-
formance on clean datasets, the challenge of robustness under various corruptions
remains largely unexplored. To address this gap, we propose two benchmarks,
CUHK-SYSU-C and PRW-C, designed to assess the robustness of person search
models across diverse corruption scenarios. Previous studies on corruption have
been conducted independently for single tasks such as re-identification and detec-
tion. However, recent advancements in person search adopt an end-to-end multi-
task learning framework that processes the entire scene as input, unlike the com-
bination of single tasks. This raises the question of whether independent achieve-
ments can ensure corruption robustness for person search. Our findings reveal
that merely combining independent, robust detection and re-identification mod-
els is not sufficient for achieving robust person search. We further investigate the
vulnerability of the detection and representation stages to corruption and explore
its impact on both foreground and background areas. Based on these insights, we
propose a foreground-aware augmentation and regularization method to enhance
the robustness of person search models. Supported by our comprehensive robust-
ness analysis and evaluation framework our benchmarks provide, our proposed
technique substantially improves the robustness of existing person search models.
Code will be made publicly available.

1 INTRODUCTION

Person search is a task that involves detecting individuals in complex scenes and subsequently re-
identifying the same individuals from a gallery of scene images. Significant advancements in this
task have been made through the discriminative capabilities of deep neural networks (DNNs). Since
person search requires both pedestrian detection and person re-identification simultaneously, earlier
studies have adopted a two-step framework (Lan et al., 2018; Chen et al., 2018; Han et al., 2019;
Wang et al., 2020), where independent detection and re-identification models are applied sequen-
tially. More recent models have adopted a one-step approach (Li & Miao, 2021; Lee et al., 2022;
Cao et al., 2022; Yu et al., 2022), which processes the entire scene in a single pass and leverages
joint end-to-end multi-task learning, leading to significant improvements.

Despite these advancements, DNNs have shown vulnerability to common corruptions such as noise,
blur, and compression artifacts, often resulting in significant performance degradation (Liu et al.,
2024a; Chen et al., 2024; Kong et al., 2024; He et al., 2023; Schiappa et al., 2022; Yi et al., 2021).
This vulnerability leads to the necessity for models to maintain robustness under such challenging
conditions, driving numerous studies focused on enhancing corruption robustness (Mintun et al.,
2021; Kar et al., 2022; Dooley et al., 2022; Dong et al., 2023). This line of research has been
explored in the fields of detection (Michaelis et al., 2019; Mao et al., 2023; Lee et al., 2024) and
re-identification (Chen et al., 2021). However, to our knowledge, the impact of data corruption on
person search models remains largely unexplored, highlighting the need for further investigation in
this area.

To tackle this issue, we introduce two new benchmarks – CUHK-SYSU-C and PRW-C – that extend
existing popular person search datasets (Xiao et al., 2017; Zheng et al., 2017) to address their lack
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Figure 1: Examples of corruption types with varying severity in our proposed benchmark.

Figure 2: Performance evaluation of SoTA person search models on the proposed corruption
benchmarks: CUHK-SYSU-C and PRW-C. We employ six state-of-the-art person search models:
OIMNet (Xiao et al., 2017), NAE (Chen et al., 2020), OIMNet++ (Lee et al., 2022), SeqNet (Li &
Miao, 2021), COAT (Yu et al., 2022), PSTR (Cao et al., 2022). Models are trained on CUHK-SYSU
and PRW, then evaluated on the proposed benchmarks CUHK-SYSU-C and PRW-C, respectively.

of robustness evaluation under corrupted conditions. These benchmarks incorporate 18 types of cor-
ruption with five severity levels, enabling a detailed evaluation under diverse corruption scenarios,
as shown in Figure 1. Given these proposed benchmarks, we extensively evaluate the robustness
of corruption in seminal state-of-the-art person search models. Moreover, we explore a straightfor-
ward solution that naturally arises: integrating a robust detection model (Lee et al., 2024) with a
re-identification model (Chen et al., 2021), both of which are designed for corruption robustness.
However, our experimental results reveal that existing person search models remain highly vulnera-
ble to corruption, and a simple integration approach is insufficient to address this issue (Section 3.1).
For instance, as shown in Figure 2, we observe a notable performance drop in existing person search
models, with relative mAP declines of up to 80%.

To investigate the underlying reasons for this phenomenon, we conduct further analysis of corrup-
tion vulnerability, considering the unique aspects of this task. Since person search models typically
localize pedestrian candidates through a detection head and then extract person representations from
the detected regions, we explore the sensitivity of the detection and re-identification stages to corrup-
tion (Section 3.2). Additionally, given the complex scene inputs and large receptive fields in person
search models, we assess how corrupted regions in the input images, including the foreground (con-
taining the person) and the background, affect performance (Section 3.3). Our experimental findings
indicate that the re-identification stage and the foreground regions are particularly vulnerable to cor-
ruption, leading to significant performance drops.

To this end, we propose a simple yet effective method to enhance corruption robustness—
foreground-aware augmentation and regularization for robust person representation, which can be
easily applied to various existing person search models. Specifically, we apply selective augmenta-
tions to the foreground in the input scene images and compute a regularization between the person
representations of the original and foreground-augmented images to improve robustness against
corruption. Thanks to its simple and easy-to-implement design, extensive experimental results on
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CUHK-SYSU-C and PRW-C demonstrate that our method consistently improves the corruption ro-
bustness of five state-of-the-art person search models.

In summary, the contributions of this paper are as follows:

• We propose new benchmarks, CUHK-SYSU-C and PRW-C, to evaluate corruption robustness
and reveal the significant vulnerability of state-of-the-art person search models to corruption.

• We analyze the sensitivity of both the detection and re-identification stages to corruption and
explore the impact of corrupted foreground and background regions.

• Based on this analysis, we propose a foreground-aware augmentation method and a regulariza-
tion specifically designed to enhance robust person representation.

• Extensive experiments on CUHK-SYSU-C and PRW-C demonstrate that our method signifi-
cantly improves the corruption robustness of five state-of-the-art person search models.

2 RELATED WORKS

Person Search. Existing person search works are typically categorized into two approaches: the
two-step and the one-step methods. Two-step approaches involve two independent detection and
reID models, where a detection model first detects people appearing in the scene, and then a reID
model recognizes the detected individuals. The primary goal of this two-step approach (Han et al.,
2019; Dong et al., 2020; Wang et al., 2020) is to specialize these models, which were initially
designed for independent tasks, for the person search task by employing techniques like adapting the
prediction by a detector to facilitate the reID process. On the other hand, the one-step approach (Xiao
et al., 2017; Munjal et al., 2019; Kim et al., 2021; Zhang et al., 2021a; Han et al., 2021; Li & Miao,
2021; Yu et al., 2022; Lee et al., 2022; Cao et al., 2022; Li et al., 2022; Han et al., 2022; Yan et al.,
2023), which performs both sub-tasks with a single model, has recently gained popularity due to its
simplicity and efficiency, reducing the number of parameters by nearly half.

One-step approaches take the entire scene as input and jointly train the detection and reID heads in
an end-to-end manner. This is commonly achieved by employing a Faster R-CNN (Ren et al., 2016)
detection head and reID head with the OIM (Xiao et al., 2017) loss. The one-step approach focuses
on addressing challenges that arise from the joint learning of the two tasks. Chen et al. (2020)
address conflicting learning objectives, and SeqNet (Li & Miao, 2021) and OIMNet++ (Lee et al.,
2022) incorporate the detection quality on reID head training and search performance. PSTR (Cao
et al., 2022) and COAT (Yu et al., 2022) enable recent one-step person search frameworks to leverage
the advantages of transformers. Another challenge unique to person search, unlike conventional
reID, is the influence of background information on extracting person representations from larger
receptive fields. GLCNet (Qin et al., 2023) mitigates this by extracting features from the entire
global scene, including both the background and foreground, to improve the final person embedding.
While these studies have made significant advancements in the person search field, they have not
been sufficiently investigated for corruption robustness.

Benchmarking Robustness to Corruption. Deep neural networks are often considered general-
izable, but they are not as robust to corruption as humans are (Leveque et al., 2022). The pioneering
study by Hendrycks & Dietterich (2019) introduced a benchmarking paradigm, where synthetic
corruptions are used to evaluate model robustness. This benchmark, ImageNet-C, employs algorith-
mically generated corruptions, revealing the unexpected vulnerability of networks to even simple
perturbations. Following this paradigm, robustness research has expanded into broader areas of vi-
sion tasks, including object detection (Michaelis et al., 2019), pose estimation (Wang et al., 2021),
semantic segmentation (Kamann & Rother, 2020), person re-identification (Chen et al., 2021), and
depth estimation (Kong et al., 2024).

While significant progress has been made in improving the robustness of specific vision tasks, ex-
isting research primarily focuses on individual tasks (Wang et al., 2021; Kamann & Rother, 2020;
Kong et al., 2024). Person search, however, is a multi-task problem involving both detection and
re-identification, each requiring different input types and resulting in conflicting optimization (Lin
et al., 2021). Although previous studies (Michaelis et al., 2019; Chen et al., 2021) have contributed
substantially to our understanding of how models for individual tasks perform under various cor-
ruption scenarios, the robustness of the multi-task framework in person search against corrupted
environments has yet to be sufficiently explored.
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Table 1: Performance of state-of-the-art person search models under corruption. The column
‘CUHK-SYSU’ (‘PRW’) denotes the performance measured on the clean images, and ‘CUHK-
SYSU-C’ (‘PRW-C’) indicates the performance measured on the corrupted images.

Method
CUHK-SYSU CUHK-SYSU-C

Search Detection Search Detection
R@1 mAP Recall AP rR@1 rmAP R@1 mAP rRecall rAP Recall AP

OIMNet 87.7 86.2 87.5 81.1 37.7 36.7 33.0 31.7 78.8 77.4 68.9 62.7
NAE 92.3 91.4 92.3 86.9 44.3 42.4 40.9 38.8 72.7 71.8 67.1 62.3

OIMNet++ 94.0 93.2 92.4 88.9 38.6 37.0 36.3 34.5 77.3 76.3 71.4 67.8
SeqNet 94.5 93.8 92.0 89.2 46.2 44.4 43.6 41.6 74.5 74.1 68.6 66.1
COAT 94.7 94.2 91.3 88.1 52.6 50.4 49.8 47.5 76.4 75.9 69.8 66.9
PSTR 94.9 93.6 89.5 66.9 49.5 46.3 47.0 43.3 71.6 74.1 64.0 49.6

OADG+CIL 94.0 92.9 94.7 90.9 48.5 46.0 45.6 42.8 89.8 88.4 85.0 80.4

Method
PRW PRW-C

Search Detection Search Detection
R@1 mAP Recall AP rR@1 rmAP R@1 mAP rRecall rAP Recall AP

OIMNet 76.7 37.3 93.7 85.0 45.8 23.6 35.2 8.8 79.4 78.8 74.4 66.9
NAE 80.6 42.8 93.3 88.7 42.6 20.9 34.3 8.9 67.3 64.9 62.8 57.6

OIMNet++ 83.2 47.3 96.3 93.2 43.9 19.9 36.5 9.4 75.2 74.2 72.4 69.2
SeqNet 83.4 46.7 96.3 93.9 46.7 22.6 38.9 10.5 74.3 73.6 71.5 69.1
COAT 87.4 53.3 94.9 92.6 49.9 23.7 43.6 12.6 67.1 66.6 63.6 61.7
PSTR 88.1 50.0 90.4 77.7 51.0 23.7 44.9 11.8 69.9 61.7 63.2 47.9

OADG+CIL 85.6 41.6 91.7 89.4 52.0 27.5 44.5 11.5 94.6 93.8 86.7 83.9

3 ROBUSTNESS ANALYSIS ON PERSON SEARCH

3.1 INVESTIGATION OF CORRUPTION ROBUSTNESS ON PERSON SEARCH

Benchmark Dataset Design. To evaluate the robustness of person search models, we propose two
benchmarks: CUHK-SYSU-C and PRW-C. These benchmarks are built upon the widely adopted
CUHK-SYSU (Xiao et al., 2017) and PRW (Zheng et al., 2017) datasets, which have been exten-
sively used in numerous person search studies (Han et al., 2019; Chen et al., 2018; Li & Miao, 2021;
Kim et al., 2021). CUHK-SYSU dataset offers a diverse range of backgrounds from various ur-
ban scenarios, CUHK-SYSU-C retains this diversity while introducing corrupted scenes captured in
those environments. The PRW dataset includes images captured from six distinct viewpoints at each
location, and PRW-C preserves this multi-view feature, adding corruption across various angles. For
evaluation using our benchmarks, we utilize the same test splits from these datasets.

We extend the corruptions used in the pioneering study by Hendrycks & Dietterich (2019) to the
person search task. Considering the characteristics of urban outdoor environments in person search,
we incorporate rain (Chen et al., 2021) and dark (Kong et al., 2024) as corruption types of our bench-
marks. The corruption types of our benchmark include: ‘gaussian noise’, ‘speckle noise’, ‘defocus
blur’, ‘glass blur’, ‘motion blur’, ’gaussian blur’, ‘snow’, ‘frost’, ‘fog’, ‘brightness’, ‘spatter’, ‘rain’,
‘dark’, ‘contrast’, ‘elastic’, ‘pixelate’, ‘jpeg compression’, and ‘saturate’. Each corruption is applied
at five distinct severity levels, with higher severity indicating greater image degradation (i.e., more
severe corruption). The severity levels are established based on the traits of corruption scenarios ob-
served in real-world. As an example, the rain corruption depicted in Figure 1 has various attributes
including slope of rain droplets, color of rain droplets, drop length & width, overall blurriness and
brightness to simulate different severity. Details for all corruptions are available in Appendix.

In person search, the goal is to match a given query image to its corresponding gallery image in
a database; corruption can be applied to either the query or the gallery image. Query and gallery
images may not always exhibit the same type or severity level of corruption. We construct the bench-
marks by randomly applying different corruption types and severity levels to query and gallery im-
ages, similar to prior work in instance retrieval (Chen et al., 2021). We repeat the evaluation process
five times and report the mean performance for experimental results. For benchmark statistics and
further discussion of this design choice, see Appendix C and B, respectively.

Evaluation Models. To explore the corruption robustness of person search models, we employ six
seminal state-of-the-art models including both CNN and transformer architectures: OIMNet (Xiao
et al., 2017), NAE (Chen et al., 2020), OIMNet++ (Lee et al., 2022), SeqNet (Li & Miao, 2021),
COAT (Yu et al., 2022), and PSTR (Cao et al., 2022). More details of these models are provided
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Figure 3: Person search model performance across various corruption severities, evaluated on
the CUHK-SYSU-C benchmark.
in the appendix. For NAE, OIMNet++, SeqNet, PSTR, and COAT, we utilize the official check-
points and configurations provided by the authors. Considering the evolution of training techniques
since OIMNet was published, we re-implement and report the results. We first train the model on
the training splits of CUHK-SYSU and PRW, then evaluate it on the CUHK-SYSU-C and PRW-C
benchmarks. Unless otherwise specified, SeqNet is used for most experiments, as it serves as a
baseline in several preceding works (Li et al., 2022; Jaffe & Zakhor, 2023; Li et al., 2023), thanks
to its simple yet effective architecture.

Evaluation Metrics. Given that person search inherently involves both detection and reID, we
report the performance metrics in two categories: detection and search performance. For search
performance, we adopt the widely used metrics of mean Average Precision (mAP) and Cumulative
Matching Characteristic at Rank-1 (R@1). For detection performance, we utilize Recall and Aver-
age Precision (AP). Following existing corruption studies (Michaelis et al., 2019; Wang et al., 2021;
Schiappa et al., 2022), we also evaluate the relative performance drop caused by corruption, com-
paring the performance on the corrupted set to the clean set. This includes relative mAP (rmAP),
relative Rank-1 (rR@1), relative Recall (rRecall), and relative AP (rAP). For instance, relative mAP
(rmAP) is calculated by dividing the mAP from the corrupted set by the mAP from the clean set
(i.e., rmAP = ‘mAP from corrupted set’/‘mAP from clean set’).

Evaluation Results. We evaluate the performance of state-of-the-art person search models under
corruption. Table 1 presents the performance of each model on both CUHK-SYSU (PRW) and
CUHK-SYSU-C (PRW-C). The results show a significant drop in performance under corruption,
with up to an 80% decline in mAP on PRW-C compared to the clean set. This reveals the vul-
nerability of current person search models to corruption and highlights the necessity of developing
corruption-robust person search models. We also evaluate these models across five different severity
levels of corruption. As shown in Figure 3, both the search and detection capabilities of person
search models decrease as the severity level increases. Specifically, we observe a 20% to 30% de-
cline in search performance with each increase in severity, while detection performance degrades at
a more gradual pace. Performance begins to degrade from the first severity level, and when severity
reaches level 5, overall search performances drop to approximately 10% of mAP.

Evaluation of Combining Existing Robustness Methods. In the last row of the Table 1, we
further investigate whether combining existing corruption-robust detection and reID models can
achieve robust person search. Specifically, we combine two independent models: OADG (Lee et al.,
2024), a robust detection model designed for corrupted environments, and CIL (Chen et al., 2021),
a reID model built for re-identification under corruption scenarios. For a fair comparison, we train
both models on the person search dataset. Specifically, OADG and CIL are initialized with Ima-
geNet (Deng et al., 2009) pre-trained ResNet-50 (He et al., 2016) and trained on the clean CUHK-
SYSU (PRW) dataset. For evaluation, OADG is first used to detect pedestrians on CUHK-SYSU-C
(PRW-C), and the detected individuals are then input into CIL to extract person representations,
following the standard protocol of the two-step approach. The results in Table 1 demonstrate that
this simple integrating approach is not sufficient to achieve robustness to corruption. Although it
shows the best rR@1 and rmAP on PRW-C, its overall performance on the corrupted benchmarks,
especially in R@1 and mAP, remains less effective compared to other person search models.

In summary, these results indicate that, despite the corruption-robust design of these methods, the
simple integration lacks robustness for the multi-task nature of person search. This suggests the
need for methods that enhance corruption robustness while considering the unique aspects of this
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Table 2: Individual evaluation of detection and reID stage of end-to-end person search framework
on CUHK-SYSU-C. ‘Representation against Corruption’ refers to the search performance when ex-
tracting person representation in corrupted images, assuming that detection was performed on clean
images. ‘Detection against Corruption’ denotes the search performance when detection is conducted
on corrupted images, coupled with the representations that are extracted from clean images.

Severity
Representation against Corruption Detection against Corruption

Search Detection Search Detection
R@1 mAP Recall AP R@1 mAP Recall AP

Oracle 95.2 94.5 100.0 100.0 95.2 94.5 100.0 100.0
Clean 94.6 93.7 92.1 89.2 94.6 93.7 92.1 89.2

Level 1 79.1 77.6 92.1 89.2 93.5 92.2 86.2 83.6
Level 2 60.5 59.5 92.1 89.2 91.7 89.1 79.2 76.8
Level 3 42.6 42.5 92.1 89.2 88.6 84.8 71.2 68.7
Level 4 28.8 28.1 92.1 89.2 82.1 74.4 59.6 57.1
Level 5 19.3 18.6 92.1 89.2 69.8 58.9 46.0 44.0

task. In the following sections, we explore the underlying reasons for corruption vulnerabilities in
the person search for developing a method tailored to its unique challenges.

3.2 SENSITIVITY TO CORRUPTION IN DETECTION AND REPRESENTATION STAGES

The experiments in the previous section demonstrate that existing person search models are vulner-
able to corruption. In a typical person search framework, the detection head first identifies person
candidates, and then the reID head extracts representations from the detected regions. Therefore,
we assess the individual sensitivity of both the detection and representation stages to corruption.

To evaluate detection sensitivity to corruption, we first apply the detection head to corrupted images
to obtain predicted bounding boxes. We then extract features from the corresponding regions in
clean images using these box coordinates and perform the search process. Conversely, to evaluate
the representation sensitivity to corruption, we perform detection on clean images to obtain predicted
boxes, then extract features from the corresponding regions in corrupted images, followed by the
search process. We evaluate the model across five severity levels, providing a separate benchmark
for each to observe how the model responds to increasing corruption severity.

The results of these individual sensitivity studies are in Table 2. The ‘Oracle’ row represents per-
formance using ground truth bounding boxes, while the ‘Clean’ row refers to the results where both
detection and search are performed on clean images. The five remaining rows (Level 1 through Level
5) show the impact of increasing the severity level of corruption. The results reveal that performance
degrades more significantly when person representations are extracted from corrupted images. At
level 5 of ‘Detection against Corruption’, although detection performance declines, search perfor-
mance remains relatively stable, with 70% of R@1, indicating that the model retains the search
capability despite noisy detection results. However, when person representations are corrupted (i.e.,
‘Representation against Corruption’), search performance drops significantly, even with relatively
strong detection performance. These findings reveal that both detection and representation stages are
sensitive to corruption, further highlighting that the representation stage is particularly vulnerable.

3.3 INFLUENCE OF FOREGROUND & BACKGROUND FOR ROBUST PERSON REPRESENTATION

Unlike person re-identification, which relies on cropped images to extract person representations,
person search processes entire scenes and thus uses larger receptive fields to extract representations.
As a result, the background can significantly impact person search performance. To investigate the
individual influence of corruption on the foreground and background, we selectively apply corrup-
tion to either region, as illustrated in Figure 4. We then measure search performance based on the
representations obtained from the corrupted images across five severity levels.

Figure 4 presents search and detection performance under three corruption scenarios: corruption
in the foreground (‘fg corrupted’), corruption in the background (‘bg corrupted’), and corruption
on the entire scene (‘both corrupted’). The results show that search performance remains largely
unaffected when corruption is limited to the background. However, when corruption is applied
to the foreground – directly impacting the person’s appearance – there is a notable drop in both
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bg-corrupted image fg-corrupted image

(a) Performance Analysis by Corruption Region (b) Corruption Examples

Figure 4: Performance evaluation on images from CUHK-SYSU where corruption is applied to
either the background or the foreground. ‘bg-corrupted’ indicates performance on images where
corruption is applied only to the background, while ‘fg-corrupted’ refers to performance on images
where corruption is applied only to the foreground (person) regions. ‘both’ represents performance
on the CUHK-SYSU-C dataset, where corruption is applied to the entire image.

search and detection performance, comparable to the degradation observed when the entire scene
is corrupted. This suggests that the integrity of the background plays a minor role in robust person
representations, while corruption on the foreground is much more detrimental. Based on these
observations, in the following section, we introduce a novel foreground augmentation approach
with tailored regularization to achieve more robust person representations under corruption.

4 PROPOSED METHOD FOR ROBUST PERSON SEARCH TO CORRUPTION

4.1 FOREGROUND-AWARE AUGMENTATION.

Data augmentation has proven to be a valuable approach for boosting model robustness in computer
vision (Shorten & Khoshgoftaar, 2019; Rebuffi et al., 2021; Liu et al., 2024b). However, as shown
in Figure 5 (b), applying data augmentation to the entire scene results in severe semantic corruption
and unreliable bounding boxes (e.g., overlapping pedestrians). Our analysis highlights that search
performance remains largely unaffected when corruption is restricted to the background. To this end,
we introduce a foreground-aware augmentation to generate appropriate augmented counterparts for
given input images. We define the areas containing people as foreground and determine these using
ground truth bounding boxes during training. To minimize the role of ground truth bounding boxes
in generating shortcuts during training, we apply a translation to the box coordinates of a person
before applying augmentation to the corresponding region.

In our training process, we incorporate both clean scenes and their augmented counterparts. Let the
input image be denoted by xc, and the set of people appearing in the scene be Pxc = {pc1, . . . , pcnx

}.
Here, nx represents the total number of people appearing in the scene. We create xa by applying T
to each person, where T represents the transformation by augmentation functions. The set of people
appearing in xa is Pxa = {pa1 , pa2 , . . . , panxa } and paj = T (pcj). We employ Augmix (Hendrycks
et al., 2020) and random erasing (Zhong et al., 2020) for our augmentation functions. For a rigorous
robustness evaluation, we exclude augmentations that operate on similar principles to the corruptions
used in creating CUHK-SYSU-C and PRW-C. With this in mind, the augmentations we use in our
method are rotation, shearing, translation, solarization, autocontrast, equalization, and posterization.
We use xc and xa to train the model with the OIM (Xiao et al., 2017) loss. Let zi ∈ {z|z ∈
f(xc; θ) ∪ f(xa; θ)} be the normalized representation of a person pi from a scene, where f(·; θ) is
the function for extracting a set of person candidates on the given scene. Let vl be a vector in the
lookup table where l ∈ {1, ..., L}, and uq be the q-th vector in the queue where q ∈ {1, ..., Q}.
This lookup table serves as a memory bank containing representations for labeled persons, while the
queue is a memory bank that stores representations for unlabeled persons. L and Q are the size of
the lookup table and queue. The OIM loss is adopted as follows:

LOIM = Ez[− log hi], (1)

hi =
exp(v⊤i zi/τ)∑L

l=1 exp(v
⊤
l zi/τ) +

∑Q
q=1 exp(u

⊤
q zi/τ)

, (2)
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(a) Augmentation applied to Foreground (b) Augmentation applied to Entire Image

Figure 5: Illustration of augmentation on foreground (a) and entire image (b). Unlike (a), naı̈ve
augmentation on the entire image can generate severe semantic perturbations. We define the fore-
ground using ground-truth bounding boxes, and augmentation is applied to each area individually.

where τ is a temperature parameter. Each representation in the lookup table is updated with the
momentum parameter η:

vl ← ηzi + (1− η)vl. (3)

4.2 REGULARIZATION FOR ROBUST PERSON REPRESENTATION

In Section 3.2, we observed that the representation stage was proven to be more susceptible to cor-
ruption than the detection stage. In this context, we propose a regularization method for person
search to achieve robust person representation. Our goal is to achieve robust person representation
through regularization by learning invariance between clean input images and their augmented ver-
sions. In person search frameworks, models typically generate multiple detected results for each
person. Our regularization approach exploits this feature by utilizing these multiple detected results.
To limit the excessive contribution of low-quality results, we utilize detected results where the In-
tersection over Union (IoU) with the ground truth bounding box is larger than α. Let hc

j and ha
j

be normalized representations obtained from the j-th person of original scene and its augmented
counterpart. Using hc

j , we define a mixture representation Mj for the j-th person.

Mj =
∑
m

sj,mhc
j,m, (4)

For ha corresponding to detection results satisfying the constraint, we apply the Kullback-Leibler
divergence. The regularization loss Lreg is formulated as follows:

Lreg =
1

n

∑
j

∑
r

sj,rKL[ha
j,r||Mj ], (5)

where

sj,∗ =
exp(sj,∗/τiou)∑n
k exp(sj,k/τiou)

, (6)

sj,∗ denotes the IoU score of hc
j or ha

j and n indicates the number of detected results. Here, we
detach Mj , aiming for invariant representation towards augmentation, and utilize the IoU scores sj
as a weight, considering each target’s quality.

Our proposed method can be seamlessly integrated into existing person search models. In the fol-
lowing section, we apply and validate our method to several state-of-the-art person search models.

5 EXPERIMENTS

Implementation Details. We use an ImageNet (Deng et al., 2009) pre-trained ResNet50 (He et al.,
2016) as the backbone for all methods in our experiments. The queue size is set to 5000 and 500
for CUHK-SYSU and PRW, respectively. We use a gallery size of 100 when evaluating CUHK-
SYSU-C. For PRW-C, the gallery size matches the total number of images in the test set. An initial
learning rate of 0.003 is used. We employ SGD with a momentum of 0.9 and a weight decay of

8
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Table 3: Evaluation of the proposed method on various person search models across clean and
corrupted benchmarks.

Method CUHK-SYSU CUHK-SYSU-C PRW PRW-C
R@1 mAP rR@1 rmAP R@1 mAP R@1 mAP rR@1 rmAP R@1 mAP

OIMNet (Xiao et al., 2017) 87.7 86.2 37.7 36.7 33.0 31.7 76.7 37.3 45.8 23.6 35.2 8.8
+Ours 90.2 89.3 54.0 53.0 48.7 47.4 78.0 40.7 54.3 32.0 40.8 13.0

NAE (Chen et al., 2020) 92.3 91.4 44.3 42.4 40.9 38.8 80.6 42.8 42.6 20.9 34.3 8.9
+Ours 94.3 93.7 65.9 63.7 62.2 59.7 81.1 44.0 56.6 35.2 45.9 15.5

OIMNet++ (Lee et al., 2022) 94.0 93.2 38.6 37.0 36.3 34.5 83.2 47.3 43.9 19.9 36.5 9.4
+Ours 94.2 93.8 62.5 61.2 58.8 57.4 84.5 48.1 57.4 33.8 47.8 16.3

SeqNet (Li & Miao, 2021) 94.5 93.8 46.2 44.4 43.6 41.6 83.4 46.7 46.7 22.6 38.9 10.5
+Ours 94.9 94.3 70.3 68.9 66.7 65.0 84.0 47.0 57.0 33.8 47.8 15.9

COAT (Yu et al., 2022) 94.7 94.2 52.6 50.4 49.8 47.5 87.4 53.3 49.9 23.7 43.6 12.6
+Ours 92.8 92.1 68.9 67.4 63.9 62.0 86.9 53.3 55.4 40.1 55.4 21.4

Table 4: Ablation study of our method on CUHK-
SYSU and CUHK-SYSU-C. Baseline refers to Se-
qNet (Li & Miao, 2021).

Method CUHK-SYSU CUHK-SYSU-C
R@1 mAP R@1 mAP

Baseline 94.5 93.8 43.6 41.6
+ Regularization 94.2 93.4 55.6 53.7

+ Foreground-aware 94.5 94.0 65.0 63.1
+ IoU Score 94.9 94.3 66.7 65.0

Table 5: Evaluation under real cor-
ruption scenarios.

Method Dark Rain
R@1 mAP R@1 mAP

Baseline 33.3 34.7 31.6 35.9
+ Ours 45.1 47.0 41.9 44.1

Method Blur Fog
R@1 mAP R@1 mAP

Baseline 64.0 64.0 56.8 47.8
+ Ours 70.2 68.7 59.8 49.9

0.0005. For the hyper-parameters used in the training, the threshold value α for the IoU is set
to 0.6. The momentum parameter η is set to 0.5, and a temperature value τ is set to 0.2. The
temperature parameter for the IoU score τiou is set to 0.6. We use an NVIDIA RTX 3090 GPU for
the experiments.

Results. The experimental results are shown in Table 3. Our method shows promising perfor-
mance improvements under corruption for all tested models. Specifically, the R@1 for NAE in-
creases by 52% on CUHK-SYSU-C and 34% on PRW-C with our approach. It should be noted
that the impact on clean dataset performance appears to be limited, with variations within ±5%. On
the CUHK-SYSU dataset, our approach enhances the performance of all the original models except
for COAT. COAT’s method incorporates token mixup, which already offers inherent advantages in
augmentation. These results suggest that our approach improves the robustness of person search
models in corrupted environments without compromising their performance in clean conditions.

Note that our method performs better than the combination of well-known robustness methods in
detection and re-identification (OADG+CIL) shown in Table 1. This suggests that our method is
highly competitive with existing approaches to handling corruption.

Ablation Study. We conduct an ablation study on CUHK-SYSU and CUHK-SYSU-C to evaluate
the effectiveness of each technique in Table 4, using SeqNet as our baseline. The second row,
labeled ‘Regularization’, represents the method discussed in Section 4.2 that excludes the IoU score.
The third row, labeled ‘Foreground-aware’, details changes in augmentation application from the
entire scene to just the foreground area, while the fourth row, labeled ‘IoU Score’, shows results
incorporating the IoU score.

Our findings indicate that all techniques—‘Regularization’, ‘Foreground-aware’ and ‘IoU
Score’—enhance search performance in corrupted environments, highlighting the effectiveness of
our proposed method in tackling the challenges of person search under corrupted conditions.

Validation of Proposed Method towards Real Corruptions. To assess our method’s effective-
ness in real-world corruption cases, we collect images from BDD100K (Yu et al., 2020) and use them
for our experiments. Since BDD100K is a comprehensive dataset acquired from tens of thousands
of drivers across various locations, weather conditions, and time frames, it is commonly adopted to
evaluate model robustness in corruption and associated research areas (Kim & Shin, 2024; Cygert
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& Czyżewski, 2021; Kim & Shin, 2023). Although BDD100K is mainly used for detection and
segmentation tasks, as it includes a diverse array of weather and temporal conditions, we gather
scenes corresponding to several corruption scenarios from it and perform manual annotation. From
this dataset, we gather scenes representing dark, rain, blur, and fog scenarios, then manually an-
notate the bounding boxes and identity labels of individuals present in these images. We adhere
to the labeling protocol used in the creation of CUHK-SYSU. For evaluation, we use 100 images
from each of the dark, rain, blur, and fog scenarios (400 total), following the default gallery size
of the CUHK-SYSU evaluation protocol. Following the PRW evaluation protocol, we employ all
images except the one containing the query person as the gallery and use all labeled persons as a
query once. We train the models on the uncorrupted data (CUHK-SYSU) and evaluate their perfor-
mances in each real corruption scenario. We make our annotations publicly available (annotation
only), which include the information on the samples and label data we use (download link in the
appendix).

Table 5 presents the model’s performance evaluated across four real-world corruption scenarios.
Our proposed method demonstrates performance improvements across all real corruption scenarios.
Notably, in the dark corruption scenario, our method achieves a 12.3% mAP performance gain,
showing the effectiveness of the proposed method leveraging our analyses. These results indicate
that the proposed method can work in real-world corruption scenarios. Our method, which performs
effectively under our proposed corruption, shows robustness in real-world corruption scenarios as
well. See the appendix for a qualitative comparison of the proposed and real-world corruptions.

Error

Baseline Ours

Figure 6: Qualitative analysis of frequency sensi-
tivity between baseline (SeqNet) and our method.

Frequency Sensitivity Analysis. To pro-
vide theoretical depth to our experiments,
we analyze our proposed method from the
perspective of frequency sensitivity. The
25x25 heatmap in Figure 6 represents the er-
ror rate (mAP) when evaluating the model us-
ing data corrupted with different frequency
bases. The edges of the heatmap represent
evaluations using data corrupted with high-
frequency bases, while the center represents
experiments performed with low-frequency
bases. Red colors indicate higher error rates,
while blue colors indicate lower error rates.
Compared to the left heatmap (Baseline), the
right heatmap (Ours) shows overall perfor-
mance improvement across low, middle, and
high frequencies. Yin et al. (2019) analyzed
the common corruptions in the frequency domain, showing that fog and contrast have relatively
low-frequency components, noise-related corruptions have high-frequency components, and blur
and pixelate have middle-frequency components. We think that our model’s performance improve-
ment on corruption benchmarks stems from its resilience to various frequency perturbations.

6 CONCLUSION

In this work, we present two benchmarks for evaluating the robustness of person search, CUHK-
SYSU-C and PRW-C, to assess and analyze the robustness of person search models. We explore
how various features of person search influence robustness with the expectation where our findings
will be valuable lessons to the research community in related fields. From the findings obtained
through our experiments, we propose a solution for robust person search that not only achieves
competitive performance on clean datasets, but also demonstrates effective robustness enhancement
in corrupted environments.
Potential Limitations. While our method performs well in simulated environments, we have not
extensively tested its performance under real-world corruption scenarios. To mitigate this gap, we
collect and evaluate our method on real corruption images, which shows the validity of our proposed
approach in the real world. We have not considered scenarios with multiple simultaneous corrup-
tions. Additionally, while we categorize corruption severity into five levels, this discretization may
not fully capture the continuous nature of real-world corruption.
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Ethics Statement
–This section is not included in the page limit.–

7 SOCIAL IMPACT

The development and deployment of person search systems require careful consideration due to their
potential impact on individual privacy and societal norms. While these systems offer substantial ben-
efits for security and surveillance by enhancing the ability to locate and identify individuals across
diverse environments, they simultaneously pose a profound risk to personal privacy. The ability to
track and identify individuals without their consent can lead to a range of privacy violations, from
the unwarranted monitoring of public movements to the potential for misuse in stalking and harass-
ment. It is, therefore, imperative that developers, implementers, and policymakers involved in the
creation and use of person search systems consider these ethical implications from the outset. The
development of these systems should be guided by ethical principles that prioritize the well-being
and privacy of individuals, incorporating mechanisms for accountability and oversight to prevent
misuse. It is our collective responsibility to balance innovation with the imperative to safeguard
human dignity and privacy.

By doing the above, we can harness the benefits of person search systems while mitigating the risks,
ensuring these technologies enhance societal welfare without compromising individual freedoms.
For instance, person search technology can expedite victim identification and rescue efforts in natu-
ral disasters or accidents, improving the effectiveness of emergency responses and potentially saving
lives. Disaster environments often involve challenges like heavy rainfall or snowfall, while accident
scenes may present issues such as varying lighting conditions or spatter-covered camera lenses.
Our study aims to optimize person search techniques to function effectively under these varied and
adverse conditions.

8 FURTHER DISCUSSIONS ABOUT DATASETS

Privacy. Testing person search models in diverse situations and environments requires collecting
new data for various situations with people in them, which can raise ethical issues. Since we provide
18 different scenarios for evaluating the person search models, our benchmarks serve as a good proxy
for evaluating models across diverse environments without collecting new data. The parent datasets
CUHK-SYSU (Xiao et al., 2017), PRW (Zheng et al., 2017) expose people’s faces, and our datasets
(CUHK-SYSU-C, PRW-C) inevitably inherit this issue. To mitigate the issue, we mask faces that
are captured prominently and distinctly visible for the figures used in the paper to ensure their
identities are not recognizable. Future researchers using the proposed CUHK-SYSU-C and PRW-C
must be aware of this and take precautionary measures. When using them in research papers, we
strongly recommend to de-identify individuals when their faces are clearly recognizable. Regarding
the subset collected from BDD100K for Section 5, we ensure that the samples we utilize are from a
data source that has already been publicly available, carefully adhering to its licensing terms.

License. We will release them in the form of code to generate our benchmarks from the parent
datasets(CUHK-SYSU, PRW) rather than as raw images. The authors of the parent datasets provide
guidelines for dataset usage on their respective websites, which are similar to the terms of CC BY-
NC: For CUHK-SYSU, users are permitted to use the data only for non-commercial research and
educational purposes. Users are not permitted to distribute the data. For PRW, they emphasize the
purpose of non-commercial research applications. The dataset requires citation. For these reasons,
we will also release CUHK-SYSU-C and PRW-C under CC BY-NC.
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Appendix

A FURTHER DISCUSSIONS

A.1 FURTHER DISCUSSION OF BENCHMARK DATASET DESIGN IN SECTION 3.1

Table 6 presents the case study that highlights a potential bias in person search models when the
same type of corruption is applied to both query and gallery images. The table compares two sce-
narios: the case where corruption is applied only to the gallery images (‘Gallery corrupted’), and the
other case where the same corruption is applied to both query and gallery images (‘Both corrupted’).
Four different types of corruptions are examined: Brightness, Contrast, Saturate, and Spatter. In-
terestingly, for four corruption types, we observe higher performance when the same corruption is
applied to both query and gallery images. This pattern suggests that when both query and gallery
images are subjected to the same type of corruption, the model’s ability to match them could im-
prove. We consider this potential bias when designing our benchmark dataset, which is to randomly
apply corruption types and severity levels to query and gallery images.

Table 6: Case studies when the same corruption is applied to both query and gallery images,
it could lead to another bias, such that the similarity of the two images increases. CUHK-SYSU-C,
severity level 5, SeqNet are used for the case studies, R@1 is used as an evaluation metric.

Corruptions Brightness Contrast Saturate Spatter
Gallery corrupted 71.5 11.7 55.9 60.9

Both corrupted 77.8 12.8 62.8 63.6

A.2 MODEL EXPLANATION IN SECTION 3.1

In this section, we describe person search models that we examine in Section 3.1. These seminal
state-of-the-art works have contributed to various aspects of the person search field. OIMNet (Xiao
et al., 2017) firstly proposes an end-to-end person search framework by jointly training the detection
and reID head. NAE (Chen et al., 2020) addresses the issue of conflicting learning objectives, a
common challenge in person search and related fields (Xu et al., 2014; Zhang et al., 2021b; Lin
et al., 2021), that arise during the joint learning of the detector and reID head. SeqNet (Li & Miao,
2021) improves the quality of detection results through a stronger detection head by considering
that the detection result influences the training of the reID head. This simple yet effective concept
has prompted subsequent studies to adopt its design (Li et al., 2022; Jaffe & Zakhor, 2023; Li
et al., 2023). OIMNet++ (Lee et al., 2022) improves the widely used OIM (Xiao et al., 2017) loss
and considers the quality of detection results in the training of the reID head. PSTR (Cao et al.,
2022) and COAT (Yu et al., 2022) enable recent one-step person search frameworks to leverage the
advantages of the Transformer (Vaswani, 2017).

A.3 FURTHER DISCUSSION AND VALIDATION FOR EXPERIMENTS IN SECTION 3.2 AND
SECTION 3.3

In Section 3.2 and 3.3 of the main paper, we analyzed which stage (representation or detection) is
more susceptible to corruption and examined the influence of foreground and background regions
on robust person representation. To validate these analyses and provide further insights, we conduct
experiments that simultaneously examine both aspects. We analyze four scenarios: ‘bg-corrupted &
Representation against Corruption’, ‘bg-corrupted & Detection against Corruption’, ‘fg-corrupted
& Representation against Corruption’, and ‘fg-corrupted & Detection against Corruption’. This
experimental design allows us to examine the relative susceptibility of detection and representation
stages under both background-only and foreground-only corruptions.

Table 7 presents our experimental results, revealing several key findings: In the case of ‘fg-corrupted
& Representation against Corruption’, search performances align with the trends observed in both
Figure 4’s ‘fg-corrupt’ and Table 2’s ‘Representation against Corruption’ cases; The performance
from ‘fg-corrupted & Detection against Corruption’ show similar the patterns seen in Figure 4’s
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Table 7: Analysis of corruption effects on detection and representation stages under foreground
and background corruptions. The terms ‘bg-corrupted’, ‘fg-corrupted’, ‘Representation against
Corruption’, and ‘Detection against Corruption’ have the same meanings as those used in Table 2
and Figure 4.

-

bg-corrupted fg-corrupted

Representation
against Corruption

Detection
against Corruption

Representation
against Corruption

Detection
against Corruption

Search Detection Search Detection Search Detection Search Detection

severity R@1 mAP recall AP R@1 mAP recall AP R@1 mAP recall AP R@1 mAP recall AP

oracle 95.2 94.5 100.0 100.0 95.2 94.5 100.0 100.0 95.2 94.5 100.0 100.0 95.2 94.5 100.0 100.0
clean 94.6 93.7 92.1 89.2 94.6 93.7 92.1 89.2 94.6 93.7 92.1 89.2 94.6 93.7 92.1 89.2

level1 93.8 93.1 92.1 89.2 94.6 93.7 91.5 89.2 73.3 72.5 92.1 89.2 93.3 91.8 85.2 81.6
level2 93.7 92.8 92.1 89.2 94.6 93.7 90.9 89.1 54.9 52.5 92.1 89.2 90.5 87.7 77.4 73.0
level3 93.7 92.6 92.1 89.2 94.5 93.7 90.3 88.9 42.5 40.8 92.1 89.2 86.0 80.0 65.8 60.8
level4 92.6 92.0 92.1 89.2 94.5 93.6 89.6 88.3 29.6 28.2 92.1 89.2 80.0 71.2 55.2 49.4
level5 92.3 91.8 92.1 89.2 94.5 93.6 89.2 88.1 19.6 18.8 92.1 89.2 70.5 58.8 44.1 37.8

‘fg-corrupt’ and Table 2’s ‘Detection against Corrupt scenarios’; and both search and detection
performances under background corruption maintain levels similar to the trends obtained with clean
set. These results are consistent with previous findings and validate our observations.

B FURTHER ANALYSIS

B.1 HYPERPARAMETER ANALYSIS

We conduct experiments to analyze four hyperparameters: the temperature for IoU score τiou, types
of augmentation used in T , τ , and threshold α. Table 8 shows the results of our analysis on the effect
of τiou. In this analysis, ‘reverse’ refers to the effect of our τiou applied in reverse. We implement
this by applying 1 − τiou, which inverts the shape of the IoU distribution, before applying τiou.
The ‘uniform’ case represents a uniform IoU distribution, equivalent to not using the IoU score at
all. Our results show that performance improves when using the IoU score (with τiou values of
0.4, 0.6, and 0.8) compared to the ‘uniform’ case where IoU is not used. Moreover, the ‘uniform’
case outperforms the ‘reverse’ effect, suggesting the effectiveness of our method. The performance
remains relatively stable across different hyperparameter values when using the IoU score.

Table 9 presents our analysis of the three hyperparameters: types of augmentation used in T , τ ,
and α. For the analysis of augmentation T , ‘color’ represents the evaluation result of a model
trained using solarization, autocontrast, equalization, and posterization, while ‘geometric’ refers to
the result of a model trained using rotation, shearing, and translation. The results indicate that the
‘both’ setting, which combines color and geometric augmentations, yields the best performance.
This suggests that both types of augmentation contribute positively, with geometric augmentations
showing more effectiveness. Regarding τ and α, we set these parameters as values of 0.2 and 0.6,
respectively, which shows the best performance.

Table 8: Analysis for τiou impact. The number indicates the value set for τiou, uniform denotes not
to apply the concept of IoU score, reverse indicates applying it in reverse.

τiou
CUHK-SYSU-C
R@1 mAP

reverse 64.2 62.4
uniform 65.0 63.1

0.4 66.2 64.2
0.6 66.7 65.0
0.8 66.1 64.4
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Table 9: Analysis for impacts of T , τ , and α.

Type Settings CUHK-SYSU-C Type Settings CUHK-SYSU-C Type Settings CUHK-SYSU-C
R@1 mAP R@1 mAP R@1 mAP

T
color 54.5 52.3

τ
0.1 63.6 61.6

α
0.5 64.8 63.2

geometric 57.5 55.3 0.2 66.7 65.0 0.6 66.7 65.0
both 66.7 65.0 0.3 63.2 62.0 0.7 64.2 62.0

Our proposed corruption Real world corruption Our proposed corruption Real world corruption
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Figure 7: Comparison of proposed corruptions with real-world corruption scenarios for dark, blur, fog,
and rain conditions.

B.2 QUALITATIVE RESULTS

We present the qualitative results of evaluating different models on corruption scenarios. The results
on PRW-C are shown in Figure C.3. Each row represents the results of different models, and each
column shows different query examples and the search results of each model accordingly. Blue
indicates the location of the query person, red represents incorrect detection results by the model,
and green represents correct detection results. By looking at examples 1 to 3, where our model
successfully retrieves a person while other models fail, we can see the efficacy of our method in
extracting robust representations of the person when corruption is applied. We also provide the
result of the real-world corruption data (introduced in Section 5) in Figure C.3.

B.3 QUALITATIVE COMPARISON BETWEEN PROPOSED AND REAL-WORLD CORRUPTIONS

In this section, we compare our proposed corruptions with real-world corruptions gathered as de-
scribed in Section 5. Figure 7 illustrates four corruption scenarios: dark, blur, rain, and fog. Our
proposed corruption can capture distinct features in real-world corruption scenes. For example,
the proposed dark reflects the reduced overall brightness observed in real-world blur scenes, the
proposed blur presents decreased sharpness, and motion traces observed in real-world blur scenes.
While our corruption benchmark assumes the presence of only one type of corruption in a scene,
corruption in real-world images can be more complex. As shown in Figure 7, the real-world fog
image contains some raindrops as well as a fog effect, while the real-world rain image exhibits blur-
riness. We aim to investigate these multiple corruption scenarios in our future research endeavors.
The annotations we use for real-world corruption samples can be accessed in this link1.

B.4 PERFORMANCE COMPARISON ACROSS VARIOUS SEVERITY LEVELS

We conduct the experiment to evaluate the robustness of our proposed method across various severity
levels when applied to five different person search models. The graph in Figure 8 illustrates the
mAP performance of five person search models enhanced with our approach, compared against
the OADG+CIL combination, across five levels of corruption severity. The graph shows a general
downward trend in performance as severity increases. SeqNet+ours and COAT+ours show strong

1Url: https://drive.google.com/drive/folders/13z7nn9gesSTzXHKKSNk131zxvYMRTBoL?
usp=drive_link
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(a) Evaluation of Our Method 
across Various Severities

(b) Qualitative Analysis of 
Foreground-aware Augmentation

Figure 8: (a) Robustness analysis of our method across various corruption severity levels. We
apply our method to existing five different person search models. OADG+CIL refers to the com-
bination of existing works mentioned previously. (b) Qualitative results of foreground-aware
augmentation and Grad-CAM visualization. Comparison of the content in bounding box regions
after augmentation applied based on two regional criteria: entire image and foreground region. The
last two columns denote the Grad-CAM analysis of two types of augmentations on two corruption
scenarios (spatter, fog).

resilience, maintaining high mAP scores even at the most severe corruption levels. We observe
that even the basic OIMNet model, when enhanced with our method, consistently surpasses the
performance of the OADG+CIL combination. This underscores the effectiveness of our approach,
even when applied to simpler baseline models.

B.5 FURTHER ANALYSIS ABOUT FOREGROUND-AWARE AUGMENTATION

To provide a deeper insight into our proposed foreground-aware augmentation, we present addi-
tional qualitative analysis. Figure 8 presents the results with and without foreground-aware strategy,
along with corresponding Grad-CAM (Selvaraju et al., 2017) visualization results. The ‘Entire Im-
age Augmented’ represents cases without foreground-aware strategy, while the ‘Foreground-aware
Augmented’ shows cases with its application. The third, fourth, and fifth columns in each row show
corrupted input images and their corresponding grad-cam results under two different corruptions
(spatter, fog). We observe the bounding box regions cropped from the full images. In the first col-
umn, we can see that the naı̈ve use could lead to the problem, such as severe semantic perturbation
and unreliable bounding boxes. In contrast, the second column shows that our foreground-aware
augmentation successfully applies augmentation while ensuring discriminative parts of the person
remain within the bounding box. Accordingly, the results obtained from our strategy in the fifth
column show that the model better captures the person’s discriminative information.

C BENCHMARK DETAILS

C.1 BENCHMARK STATISTICS

Table 5 presents the statistics of CUHK-SYSU-C and PRW-C. The statistics regarding images, iden-
tities, and pedestrians are the same as those for the test split of CUHK-SYSU and PRW. As men-
tioned in the main paper, each image in CUHK-SYSU-C and PRW-C is randomly assigned to one of
the 18 corruptions and randomly assigned to one of the five severity levels. We repeat this process
several times (5) and report the average performance.
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Table 10: Statistics for CUHK-SYSU-C and PRW-C benchmarks.

# images # identities # pedestrians # images per corruption # images per severity

CUHK-SYSU-C 6,978 2,900 40,871 388.6 1,395.6
PRW-C 6,112 544 25,062 339.5 1,222.4

C.2 BIAS

CUHK-SYSU was collected from various locations in Chinese urban cities and movie scenes, while
PRW was filmed at a Chinese university. Both datasets contain a sufficiently large number of indi-
viduals representing both genders. While PRW features a relatively younger demographic, CUHK-
SYSU includes people of various ages. Both datasets have an ethnicity bias, predominantly featuring
Asian individuals.

C.3 CORRUPTION IMPLEMENTATION DETAILS

In creating the benchmarks for the person search, we consider the typical attributes of scenes used
in person search, where both prominent subjects and multiple small background figures coexist in
the same scene. We conduct the data quality check to ensure that the persons in the images are
still detectable and re-identifiable by humans, even after corruption is applied. The implementation
details of the corruption in CUHK-SYSU-C and PRW-C are as follows:

Snow. We use the method proposed in Hendrycks & Dietterich (2019) to implement the snow
corruption. To represent the diverse features of the snowy scene in the real world, we express
various attributes of snowy scenes and adjust their intensity for different severity levels. Flake Size:
Determines the average size or thickness of the snowflakes. As this value increases, the size of the
snowflakes increases. We set the parameters (0.1, 0.2, 0.55, 0.55, 0.55) to adjust its intensity. Size
Variation: Represents the standard deviation of the size distribution of snowflakes. A larger value
results in greater variation in the sizes of snowflakes. We set 0.3 as a parameter for the intensity.
Snowfall Intensity: Indicates the degree of snowfall intensity applied to the image. Higher values
simulate heavier snowfall. We set the parameters (3, 2, 4, 4.5, 2.5) to adjust its intensity. Snow
Coverage Threshold: Sets the minimum value for snow generation. Snow will not be generated
below this threshold, simulating areas with less snow coverage. We set the parameters (10, 12, 12,
12, 12) to adjust its intensity. Wind Effect: Determines the radius of motion blur. This simulates
the direction and speed of falling snow, affected by wind. We set the parameters (0.5, 0.5, 0.9, 0.85,
0.85) to adjust its intensity. Blurriness: Determines the intensity of motion blur. Higher values
make the snowflakes appear more blurred, simulating faster-falling snow or stronger wind. We set
the parameters (4, 4, 8, 8, 12) to adjust its intensity. Snow Opacity: Determines the mixing ratio
between the original image and the snow effect layer. Values closer to 1 show more of the original
image, while values closer to 0 intensify the snow effect, simulating denser snowfall. We set the
parameters (0.8, 0.7, 0.7, 0.65, 0.65) to adjust its intensity.

Frost. We use the method proposed in Hendrycks & Dietterich (2019) to implement the frost
corruption. This simulates the effect of frost or ice forming on the surface of the image, giving the
appearance of a cold and frosty environment. Frost Intensity: This determines the strength of the
frost effect applied to the image. Higher values result in more pronounced frost, simulating thick ice
or frost on the surface. We set the parameters (1, 0.8, 0.7, 0.65, 0.6) to adjust its intensity. Blending
Ratio: Controls how much the frost image is blended with the original image. A lower value results
in more frost coverage, while a higher value reveals more of the original image beneath the frost
layer. We set the parameters (0.4, 0.6, 0.7, 0.7, 0.75) to adjust the blending ratio.

Fog. We use the method proposed in Hendrycks & Dietterich (2019) to implement the fog cor-
ruption. This simulates the effect of fog or mist, reducing visibility and softening the details in the
image. Fog Density: This determines the density of the fog applied to the image. Higher values
result in denser fog, which obscures more of the image. We set the parameters (1.5, 2.0, 2.5, 2.5,
3.0) to adjust the density. Fog Smoothness: Controls the rate of decay for the fractal noise used
to generate the fog. Lower values create fog with sharper, more defined transitions, while higher
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values produce smoother fog with more gradual transitions. We set the parameters (2, 2, 1.7, 1.5,
1.4) to adjust its smoothness.

Rain We use the method proposed in Saxena (2023) to implement the rain corruption. To simulate
the rain effect on images, we introduce various attributes related to rain and adjust their intensity at
different severity levels. Slope of Rain Droplets: Determines the inclination of rain droplets. This
simulates how much the rain is tilted by the wind. At lower intensities, droplets are lighter and more
easily tilted by wind, forming steeper slopes. At higher intensities, droplets are heavier, causing rain
to fall more vertically and be less affected by wind. We randomly select the slope from within the
range (-20, 20) to adjust its intensity. Color of Rain Droplets: Determines how the rain droplets
reflect light. As the severity increases, the color of the droplets changes from light gray to dark
gray, simulating the visual effect of increasing rain density. This change reflects the reduction of
light reflection and transmission through the air due to heavier rain. The default color is set to light
gray (200, 200, 200), while for heavy rain, it is defined as medium gray (150, 150, 150), and for
torrential rain, it is represented as dark gray (80, 80, 80). Blur Value: Indicates the degree of blur
effect applied to the image. Higher values make the image blurry, simulating reduced visibility
during heavy rainfall. We set the parameters (2, 3, 4, 5, 6) to adjust its intensity. Drop Length:
Sets the length of rain droplets. At higher intensities, the length of droplets increases, creating
a more dramatic rain effect. We set the parameters (10, 20, 30, 40, 50) to adjust its intensity.
Drop Width: Determines the width of rain droplets. At higher intensities, the width of droplets
increases, enhancing the more distinct rain effect. We set the parameters (1, 2, 3, 4, 5) to adjust its
intensity. Brightness Adjustment: Adjusts the overall brightness of the image to simulate the dark
environment of a rainy day. Lower values decrease the overall image brightness, creating a gloomy
atmosphere. We set the parameters (0.7, 0.6, 0.5, 0.4, 0.3) to adjust its intensity.

Dark We use the method proposed in Kong et al. (2024) to implement the dark corruption. To
simulate darkness, we reduce the overall brightness of the image, making it appear darker. The
lower the value, the darker the image becomes. We set the parameters (0.60, 0.54, 0.48, 0.42, 0.36)
to adjust its intensity.

Contrast We use the method proposed in Hendrycks & Dietterich (2019) to implement the con-
trast corruption. To simulate contrast, we adjust the difference in brightness between pixels based
on the average brightness of the image. Lower values result in a reduction of contrast, causing the
image to appear blurrier and colors to become more uniform. We set the parameters (0.4, 0.33, 0.26,
0.18, 0.1) to adjust its intensity.

Gaussian Noise. We use the method proposed in Hendrycks & Dietterich (2019) to implement
the gaussian noise corruption. To simulate the gaussian noise, we adjust the noise intensity, which
controls the standard deviation of the gaussian noise distribution applied to the image. The higher
the value, the more pronounced the noise becomes. We set the parameters (0.05, 0.07, 0.09, 0.12,
0.15) to adjust its intensity.

Speckle Noise We use the method proposed in Hendrycks & Dietterich (2019) to implement
the speckle noise corruption. To simulate the speckle noise, we adjust the noise intensity that is
multiplied by the pixel values themselves. The higher the value, the more the image is disrupted and
appears to have a grainy mixture. We set the parameters (0.1, 0.2, 0.3, 0.4, 0.5) to adjust its intensity.

Gaussian Blur We use the method proposed in Hendrycks & Dietterich (2019) to implement
the gaussian blur corruption. To simulate the gaussian blur, we adjust the standard deviation of the
Gaussian filter applied to the image. The higher the value, the more blurred the image appears. We
set the parameters (1, 2, 3, 4, 5) to adjust its intensity.

Motion Blur. We use the method proposed in Hendrycks & Dietterich (2019) to implement the
motion blur corruption. This simulates the blur caused by the movement of the camera or objects
in the scene during exposure, producing a streaking effect. Motion Trace Length: This controls the
length of the motion blur, representing how far objects have moved during the exposure. A higher
radius results in a more pronounced blur effect, simulating faster movement. We set the parameters
(10, 15, 15, 15, 20) to adjust its intensity. Blur Sharpness: Determines the sharpness of the motion
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blur. Higher values result in a smoother blur, while lower values retain more definition along the
motion streak. We set the parameters (3, 5, 8, 12, 15) to adjust its sharpness. Angle Direction:
Controls the angle at which the motion blur is applied, simulating motion in different directions.
The angle is randomized within a certain range to simulate natural motion blur effects caused by
different movements.

Defocus Blur We use the method proposed in Hendrycks & Dietterich (2019) to implement the
defocus blur corruption. To represent the diverse features of defocus blur in real-world photography,
we express two attributes of defocus and adjust their intensity for different severity levels. Blur
Kernel Size: Determines the size of the blur kernel. As the radius increases, the blurring spreads
over a larger area, causing details to fade into the background. We set the parameters (3, 4, 5, 7, 9)
to adjust its intensity. Blur Smoothness: Controls the smoothness or sharpness of the blur effect.
Higher values produce a smoother, more gradual blur, while lower values retain sharper transitions
at the edges of the blur. This affects the overall softness of the defocus effect. We set the parameters
(0.1, 0.5, 0.5, 0.5, 0.5) to adjust its intensity.

Glass Blur We use the method proposed in Hendrycks & Dietterich (2019) to implement the glass
blur corruption. To represent the diverse features of the glass blur scene in the real world, we express
various attributes of glass blur and adjust their intensity for different severity levels. Blur Strength:
Determines the strength of the glass blur applied to the image, simulating distortion as seen through
the glass. Higher values result in a more blurred and diffused image, where details become softer
and less defined. As sigma increases, the overall smoothness of the blur effect intensifies. We set the
parameters (0.7, 0.9, 1, 1.1, 1.5) to adjust its intensity. Glass Distortion Magnitude: Represents the
degree of distortion caused by imperfections in the glass. As this value increases, the image appears
more warped, simulating the effect of viewing through glass with varying thickness or composition.
We set the parameters (1, 2, 2, 3, 4) to adjust its intensity. Distortion Repetitions (Iterations):
Determines how many times the displacement effect is applied, creating multiple layers of distortion.
More iterations result in a more pronounced and complex glass-like effect. We set the parameters
(2, 1, 3, 2, 2) to adjust its intensity.

Elastic Transform We use the method proposed in Hendrycks & Dietterich (2019) to implement
the elastic transform corruption. To simulate elastic distortion, we apply random, small-scale defor-
mations to the image pixels, adding a flexible, rubber-like warping effect. The higher the value, the
more pronounced the distortions become, making the image appear more heavily warped. We set
the parameters (12.5, 16.25, 21.25, 25, 30) to adjust its intensity.

Spatter. We use the method proposed in Hendrycks & Dietterich (2019) to implement the spatter
corruption. This method simulates liquid splashes or mud spatters on the image, which can occur
in outdoor or dirty environments, distorting visibility and adding a natural effect of environmental
interference. Liquid Amount: This determines the average amount of liquid spattered on the image.
Higher values simulate heavier splashes or more liquid, resulting in larger and more widespread
spatter areas. We set the parameters (0.65, 0.65, 0.65, 0.65, 0.67) to adjust its intensity. Size Vari-
ation: Represents the standard deviation of the size of spatter drops. A larger value results in more
variation in the size of splatter particles, simulating irregular drops. We set the parameters (0.3, 0.3,
0.3, 0.3, 0.4) to adjust its intensity. Blur Radius: Determines the size of the gaussian blur applied to
the liquid layer. Higher values create more diffused spatter, simulating less defined edges and softer
splashes. We set the parameters (4, 3, 2, 1, 1) to adjust the blurriness. Coverage Threshold: This
sets the minimum intensity threshold for spatter formation. Spatter below this threshold is not visi-
ble, simulating splatters that did not adhere to the surface. We set the parameters (0.69, 0.68, 0.68,
0.65, 0.65) to adjust its coverage. Opacity: This controls the opacity of the spatter layer. Higher
values create more opaque spatter, making it more prominent on the image. Lower values create
more transparent splatter effects, simulating thinner layers of liquid. We set the parameters (0.6,
0.6, 0.5, 1.5, 1.5) to adjust its visibility. Mud vs. Water Effect: This determines whether the spatter
simulates water (0) or mud (1). When set to 1, the spatter is brown and more opaque, simulating
thick mud. When set to 0, the spatter simulates pale water splashes. We set the parameters (0, 0, 0,
1, 1) to adjust its effect.
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Saturate. We use the method proposed in Hendrycks & Dietterich (2019) to implement the satu-
rate corruption. To represent varying levels of color saturation in real-world scenarios, we express
different attributes that influence color intensity and adjust them for different severity levels. Satura-
tion Scale: This determines the strength of the color saturation applied to the image. Higher values
result in more vivid and intense colors, while lower values make the image appear more desaturated
or washed out. Both high or low saturation scales can lead to distortion and degradation of the clean
image. We set the parameters (2, 0.2, 0.1, 0.3, 5) to adjust its intensity. Offset: Represents a con-
stant value added to the saturation scale. It controls the base level of saturation applied uniformly
across the image, ensuring that even low saturation images retain some color vibrance. We set the
parameter (0, 0, 0, 0, 0.1) to adjust the base intensity.

Pixelate We use the method proposed in Hendrycks & Dietterich (2019) to implement the pix-
elate corruption. To simulate pixelation, we reduce the resolution of the image, converting it into
larger blocks of pixels, then resizing it back to the original resolution, removing details. The lower
the value, the stronger the pixelation effect, making the image appear more blocky. We set the
parameters (0.6, 0.5, 0.4, 0.3, 0.25) to adjust its intensity.

JPEG Compression We use the method proposed in Hendrycks & Dietterich (2019) to imple-
ment the JPEG compression corruption. To simulate JPEG compression, we adjust the compression
quality level to observe its effects on image quality. The lower the value, the more the image quality
degrades, leading to more artifacts and damage. We set the parameters (25, 18, 15, 10, 7) to adjust
its intensity.

Brightness We use the method proposed in Hendrycks & Dietterich (2019) to implement the
brightness corruption. To simulate brightness, we adjust the overall brightness of the image by
adding a constant value to the pixel values. The higher the value, the brighter the image becomes,
and the lower the value, the darker the image appears. We set the parameters (0.1, 0.2, 0.3, 0.4, 0.5)
to adjust its intensity.

Table 11: Performance by different types of corruptions.
Type Snow Frost Fog Rain Dark Contrast
R@1 59.9 64.6 84.8 72.5 83.5 62.9
mAP 55.5 63.1 83.3 70.0 82.3 58.5
Type Gaussian Noise Speckle Noise Gaussian Blur Motion Blur Defocus Blur Glass Blur
R@1 32.3 71.0 79.2 79.1 79.3 81.5
mAP 27.8 68.9 75.6 74.5 76.5 79.0
Type Elastic Transform Spatter Saturate Pixelate JPEG Compression Brightness
R@1 92.6 79.5 54.2 78.8 78.3 90.3
mAP 91.7 77.7 45.0 76.7 73.2 89.3
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Figure 9: Qualitative results of person search on the PRW-C Dataset. The first row displays query
images, while the second, third, fourth, and fifth rows show the results from OADG+CIL (Lee et al.,
2024; Chen et al., 2021), SeqNet (Li & Miao, 2021), OIMNet++ (Lee et al., 2022), COAT (Yu
et al., 2022), and Ours with SeqNet, respectively. Each column indicates the different query and the
corresponding retrieval results of various models. The blue color denotes the box for a query, the
red color indicates the box for failure cases, and the green color represents the box for success cases.
A total of 18 types of corruption and 5 levels of severity are involved in establishing the PRW-C
dataset.
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Figure 10: Qualitative results of baseline and our method on real-world corruptions. Baseline
refers to SeqNet (Li & Miao, 2021).
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