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Abstract

Solid evaluation of neural machine translation001
(NMT) is key to its understanding and improve-002
ment. Current evaluation of an NMT system003
is usually built upon a heuristic decoding algo-004
rithm (e.g., beam search) and an evaluation met-005
ric assessing similarity between the translation006
and golden reference. However, this system-007
level evaluation framework is limited by evalu-008
ating only one best hypothesis and search errors009
brought by heuristic decoding algorithms. To010
better understand NMT models, we propose a011
novel evaluation protocol, which defines model012
errors with model’s ranking capability over hy-013
pothesis space. To tackle the problem of expo-014
nentially large space, we propose two approx-015
imation methods, top region evaluation along016
with an exact top-k decoding algorithm, which017
finds top-ranked hypotheses in the whole hy-018
pothesis space, and Monte Carlo sampling eval-019
uation, which simulates hypothesis space from020
a broader perspective. To quantify errors, we021
define our NMT model errors by measuring022
distance between the hypothesis array ranked023
by the model and the ideally ranked hypothesis024
array. After confirming the strong correlation025
with human judgment, we apply our evalua-026
tion to various NMT benchmarks and model027
architectures. We show that the state-of-the-art028
Transformer models face serious ranking issues029
and only perform at the random chance level030
in the top region. We further analyze model er-031
rors on architectures with different depths and032
widths, as well as different data-augmentation033
techniques, showing how these factors affect034
model errors. Finally, we connect model errors035
with the search algorithms and provide interest-036
ing findings of beam search inductive bias and037
correlation with Minimum Bayes Risk (MBR)038
decoding.039

1 Introduction040

Sequence-to-sequence models (Sutskever et al.,041

2014; Vaswani et al., 2017) have shown promising042

results in neural machine translation (NMT), where043

methods typically frame a conditional probability 044

distribution from a source sentence to a target sen- 045

tence. One key to the booming of neural machine 046

translation is the sound evaluation, which shows 047

the trajectory to a better model design and architec- 048

ture. The commonly used evaluation protocol of 049

an NMT system comprises two main components: 050

a search algorithm and an evaluation metric. The 051

algorithm is responsible for decoding a translated 052

sentence, and the metric computes the discrepancy 053

between the generated translation and the refer- 054

ence. 055

The above evaluation protocol is preferred as 056

it is consistent with what we serve in production 057

NMT. It has an underlying assumption that the gap 058

between an NMT model and the ideal model can be 059

depicted by the gap between decoded translations 060

and references. However, this assumption does 061

not always hold. Recent literature (Stahlberg and 062

Byrne, 2019; Meister et al., 2020) points out that 063

search errors brought by heuristic decoding meth- 064

ods would hide huge flaws of NMT models (model 065

errors). The empty string is commonly scored with 066

the highest probability among the model’s proba- 067

bilities over all hypotheses. Thus, disentanglement 068

between search algorithms and NMT models is 069

necessary for evaluating NMT systems. 070

Previous approaches disentangle search errors 071

and model errors. However, they only take the 072

mode1 of the hypothesis space, i.e., all hypothesis 073

accompanied with their probabilities, to evaluate 074

model errors, which is not comprehensive. We ask 075

two research questions: 076

• Q1:How to define a more comprehensive eval- 077

uation over the hypothesis space? 078

• Q2:With such evaluation, how do different ar- 079

chitecture/data augmentation/search methods 080

affect model errors? 081

1Mode is the hypothesis with the highest probability in a
distribution.
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To answer these questions, we introduce a new082

paradigm to evaluate model errors in hypothesis083

space. The decoding and evaluation of model errors084

need to fit the requirements of the new paradigm.085

For the decoding algorithm, it should be both exact086

(not affected by search errors) and able to access087

more representative part of hypothesis space. For088

the evaluation, it is essential to identify how good089

or bad these parts are quantitatively. Particularly,090

to deal with prohibitively large search space, we091

introduce two approximations: the top region eval-092

uation, alongside with an exact top-k decoding al-093

gorithm that not only avoids search errors but can094

access the top-ranked region of the whole hypoth-095

esis space, and the Monte Carlo sampling based096

evaluation. In addition, we provide formal defini-097

tions of evaluation in hypothesis space. We use098

hypothesis ranking (HR) as a proxy for measuring099

the distance between the model’s hypothesis space100

and ideal hypothesis space.101

After confirming the strong correlation between102

our evaluation and human judgment, extensive ex-103

periments are conducted over three machine trans-104

lation benchmarks with small, medium, and large105

sizes. We apply our proposed evaluation as a useful106

tool to analyze models and search algorithms. We107

identify that the state-of-the-art Transformer mod-108

els have weak hypothesis ranking abilities only109

about the random chance level in the top region.110

We further analyze model errors on models with111

different depths and widths, as well as applied with112

different data-augmentation techniques, showing113

how these affect model errors. In addition, we114

connect our model errors with search algorithms.115

Specifically, with our top-region evaluation, we116

provide quantitative results on beam search’s lucky117

biases. With sampling-based evaluation, we show118

it correlates well with the promising minimum risk119

decoding. 2120

Our contributions can be summarized as follows.121

• We propose an NMT model error evaluation122

over hypothesis space, with two approximated123

solutions addressing the prohibitively large hy-124

pothesis space and corresponding hypothesis-125

ranking (HR) metrics.126

• We conduct in-depth analysis over various127

NMT techniques and find that the state-128

of-the-art Transformer models face severe129

hypothesis-ranking problems with abilities at130

the random chance level in top region.131
2Codes are uploaded in the supplementary files.

• We show that our evaluation is effective in 132

analyzing the beam search’s lucky biases and 133

correlates well with the MBR decoding. 134

2 Definitions 135

We first introduce definitions of system level, hy- 136

pothesis mode and hypothesis space evaluations. 137

2.1 NMT Model and Hypothesis Space 138

Give an NMT model M , a source sentence x and a 139

reference sentence ŷ. Most of the NMT models are 140

auto-regressive models, which define a conditional 141

distribution for a hypothesis yi as: 142

P (yi|x) =
∏

t∈(1,T )

P (yti |x; y1:t−1
i ), 143

= M(x, yi), (1) 144

where t represents the time step on target side and 145

T is the total length of yi. 146

The hypothesis space of M is defined as the 147

set of all hypotheses given by M along with their 148

probabilities, 149

Y = {(yi, P (yi|x)), ∀P (yi|x) > 0}, (2) 150

and we refer to Y as M ’s hypothesis space. 3 151

2.2 System level Evaluation 152

Given a decoding algorithm F and an evaluation 153

metric such as BLEURT or COMET (Sellam et al., 154

2020; Rei et al., 2020), the system-level evaluation 155

of an NMT system usually proceeds by first decod- 156

ing a hypothesis y′ from the hypothesis space: 157

y′ = F (Y), (3) 158

where F usually selects one or a few translation(s) 159

with the highest step-by-step conditional probabil- 160

ities from hypothesis space according to the auto- 161

regressive modeling. Next, system-level evaluation 162

measures the similarity between y′ and reference ŷ. 163

164

Ssystem = Score(ŷ, y′). (4) 165

2.3 Hypothesis Mode Evaluation 166

It is recognized in previous literature (Niehues 167

et al., 2017; Stahlberg et al., 2018; Stahlberg and 168

Byrne, 2019; Meister et al., 2020) that evaluating an 169

NMT model and the decoding method as a whole 170

system hinders the understanding of NMT model 171

3Note that there is a difference between the hypothesis
space and search space, where the latter one illustrates the
hypotheses that can be searched out.
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errors. Therefore, Stahlberg and Byrne (2019) pro-172

pose an exact decoding method that finds the top-1173

hypothesis ym over hypothesis distribution (mode)174

to evaluate model errors:175

ym = argmaxy∈Y(P (Y)), Sme = Score(ŷ, ym).
(5)176

They find empty strings usually appear to be the177

modes of distributions and use the empty rate of178

modes to quantify the model errors. We call this179

paradigm the mode-level evaluation in the follow-180

ing sections.181

2.4 Hypothesis Space Evaluation182

Selecting only one hypothesis in the whole hypoth-183

esis space loses much information of the hypoth-184

esis distribution and makes the evaluation biased.185

Suppose we have two models A and B. Both of186

them have the mode hypotheses of empty string187

"<EOS>". However, other top hypotheses of A are188

high-quality translations, and those of B are low-189

quality translations. The mode-level evaluation190

will falsely regard them as the same. To avoid such191

in-comprehensive bias, we define a new evaluation192

in the perspective of hypothesis space, which com-193

putes its distance with the ideal hypothesis space194

Yideal:195

Sspace = D(Y,Yideal). (6)196

It is nontrivial to provide a sound definition to197

the ideal hypothesis space Yideal of an NMT model.198

Here we mainly model one key attribute of the199

ideal space, which we call the hypothesis ranking200

ability. Intuitively, the ideal model’s hypothesis201

space should align with the translation qualities202

over all hypotheses. In particular, if the translation203

quality of a specific hypothesis translation yi is204

better than that of yj , the model’s probability over205

yi should also be higher than that over yj .206

P (yi|x) > P (yj |x) if Q(yi) > Q(yj)207

∀yi, yj ∈ Y, (7)208

where Q(yi) is the translation quality function (e.g.,209

COMET), and short for Q(ŷ, yi).210

Hence, by extending such ability from pairwise211

to all hypotheses of a source sentence x, we define a212

proxy for ideal hypothesis space using the perfectly213

ordered hypothesis array of which the indices are214

sorted by translation quality. Formally, we define a215

perfect hypothesis-level ranking (HR) array YHR216

over the hypothesis space Y with,217

YHR = [yI0HR
, yI1HR

, · · · , yInHR
]; (8)218

IHR = argsort([Q(y1), · · · , Q(yn)]). (9)219

Analogously, we define YM as the array sorted by 220

model probabilities, 221

YM = [yI0M , yI1M , · · · , yInM ]; (10) 222

IM = argsort([P (y1|x), · · · , P (yn|x)]). (11) 223

Next, we can now define the model errors over 224

hypothesis space with the distance between these 225

two sorted arrays, 226

Sdist = D(YHR,YM), (12) 227

where D is a certain distance function. 228

3 Our Proposed Evaluation 229

Two key designs of the evaluation over hypothe- 230

sis space are the choice of distance functions and 231

tackling the intractably large space. In this section, 232

we first discuss our distance functions. Then, we 233

propose two methods to simulate the hypothesis 234

space, with the topmost and sampled hypotheses 235

respectively. 236

3.1 Model Errors 237

We propose two distance functions to describe rank- 238

ing distance D in this section. First, we propose an 239

extended version of nDCG (Järvelin and Kekäläi- 240

nen, 2002), which we coin k-approximated Ranked 241

Gains (kRG): 242

kRG(YHR,YM) =
DCGk(YM)

DCGk(YHR)
, (13) 243

DCGk(Y) =
∑
yj∈Y

f(yj)

log2(j + 1)
, (14) 244

f(yj) = k − Rank(yj ,YHR), (15) 245

where f(yj) denotes the relevance score of a cer- 246

tain ranked hypothesis and k is the length for ap- 247

proximated YHR and YM. kRG directly measures 248

the ranking of a model’s hypotheses array, where 0 249

means a completely wrong ranking and 1 means a 250

perfect ranking. 251

Next, in concern of translation quality of selected 252

hypotheses, we further propose k-approximated 253

Quality-based Ranked Gains (kQRG): 254

kQRG(YHR,YM) =
DCGqk(YM)

DCGqk(YHR)
, (16) 255

DCGqk(Y) =
∑
yj∈Y

Q(yj)

log2(j + 1)
, (17) 256

where we replace relevance score with translation 257

quality Q ∈ [0, 1] and normalize over YHR. We 258
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approximate DCGqk(YHR) with its upper-bound:259

DCGqk(YHR) =
∑

yj∈YHR

Q(yj)

log2(j + 1)
(18)260

<=
∑

j∈[0:k]

1.0

log2(j + 1)
. (19)261

kQRG consider both how the hypotheses are262

ranked and whether these hypotheses have good263

translation qualities. Unlike kRG, the bound and264

interpretation of kQRG depends on the choice of265

translation quality functions, which we will discuss266

later.267

3.2 Simulating Hypothesis Space268

As discussed above, it is intractable to obtain the269

HR array YHR and model ranked array YM. Our270

evaluation has to rely on approximations. Here, we271

present two methods to approximate the hypothesis272

space, namely the top hypothesis region and Monte273

Carlo sampling.274

3.2.1 Top Hypothesis Region275

While always being hindered by search errors,276

MAP decoding, the de facto standard search algo-277

rithm in NMT applications, seeks the topmost hy-278

potheses from the whole space. Thus, one reason-279

able approximation is to focus more on hypotheses280

with the highest probabilities, which are regarded,281

by the model, with great importance and are the282

globally optimal solutions for MAP decoding. For-283

mally, we define a top region model array:284

ỸM = YM[0 : k]; ĨM = IM[0 : k], (20)285

where k denotes how many top-ranked hypotheses286

we consider.287

Exact Top-k Decoding To find the topmost hy-288

potheses, we extend the exact decoding algorithm289

(Stahlberg and Byrne, 2019) and propose a top-k290

DFS-based exact decoding algorithm (Algorithm291

1). Our decoding method is guaranteed to find the292

exact top-k hypotheses from the model’s hypothe-293

sis space. Particularly, we traverse the search space294

of an NMT model in a depth-first manner. We enu-295

merate all tokens in the vocabulary at each search296

step and concatenate them with the current history297

as the next possible translation prefixes. During the298

search process, we keep track of the current top-k299

hypotheses that we find. Specifically, a minimum300

heap is used to maintain current top-k hypotheses301

during the search procedure. The hypothesis with302

the lowest score in the minimum heap dynamically303

update our lower bound during searching: Once we304

ALGORITHM 1: DFS-based Top-k Exact Search.
Input :x: Source sentence, y: Translation prefix

(default: []), p: logP (y|x) (default 0.0), k:
Top-k hypotheses to output, V: Vocabulary.

1 , Output :List l contains top-k hypotheses with
log-probabilities.

2 global minHeap
3 global γ ← − inf
4 Function dfsTopK(x, y, p):
5 if y[|y| − 1] =< /s > then
6 push(minHeap, (p, y))
7 if len(minHeap) > k then
8 pop(minHeap)
9 end

10 if len(minHeap) = k then
11 γ ← minHeap[0][0]
12 end
13 end
14 for v ∈ V do
15 p′ ← p+ logP (v|x, y)
16 if p′ ≥ γ then
17 dfsTopK(x, [y; v], p′)
18 end
19 end
20 return minHeap
21 return dfsTopK(x, [], 0.0)

find a newly finished hypothesis (i.e., ended with 305

</s>), we push the hypothesis into the heap and 306

make adjustments to retain the heap size equals k. 307

Then, we update the lower bound and truncate de- 308

coding paths. Finally, the hypotheses stayed in the 309

minimum heap are returned. We use beam search 310

result as the initial bound of the search space and 311

sort the vocabulary before enumeration for a faster 312

update of lower bounds. The implementation tricks 313

and computational cost analysis can be found in 314

Appendix D. 315

3.2.2 Hypothesis Region Sampling 316

Besides the view of topmost region over the hy- 317

pothesis space, we also provide a broad view for 318

hypothesis space. We use Monte Carlo sampling to 319

simulate the whole space as follows. Note that we 320

slightly abuse the notation with k as the number of 321

samples. 322

yi ∼ P (y|x), i ∈ [0, k] (21) 323

ỸM = [yĨ0M
, yĨ1M

, · · · , yĨkM ], (22) 324

ĨM = argsort([Q(y1), · · · , Q(yk)]). (23) 325

In both cases, there will be k items in the array. 326

Then, we reorder hypotheses appeared in ỸM to 327

form a local HR array ỸHR, 328

ỸHR = [yĨ0HR
, yĨ1HR

, · · · , yĨkHR
], (24) 329

ĨHR = argsort([Q(yĨ0M
), · · · , Q(yĨkM

)]). (25) 330
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4 Validation of Our Protocol331

This section validates the proposed protocol from332

the perspectives of translation quality, ranking ca-333

pability and human evaluation.334

Translation Quality. There are a number of335

sentence-level metrics proposed in neural machine336

translation. For example, there are string-based337

metrics like BLEU and ChrF (Papineni et al., 2002;338

Popović, 2015) and neural model-based metrics339

like BLEURT and COMET (Sellam et al., 2020;340

Rei et al., 2020). Recent studies and our hu-341

man evaluation described later show that COMET342

scores are superior to other metrics in the correla-343

tions with human evaluation. (Kocmi et al., 2021;344

Mathur et al., 2020; Freitag et al., 2021b). Thus,345

we use COMET for main results of this paper.346

Ranking Capability. The ranking capability of our347

protocol is evaluated by the nDCG metric, which348

is a widely used metric in many different areas that349

need to quantitatively measure the ranking effica-350

cies (Liu et al., 2018; Agarwal et al., 2020). The351

reliability of nDCG is well supported by previous352

literature. As a result, the validations of translation353

quality and ranking capability enable our protocol354

to be a solid evaluation protocol.355

Human Evaluation. Moreover, we provide the356

human evaluation in this section to strengthen the357

validation of our protocol. We follow (Kocmi et al.,358

2021) to design the human evaluation. Specifi-359

cally, we randomly select our NMT systems trained360

by the NIST Zh-En dataset into three evaluation361

groups. Each of which consists of comparison362

among three different systems, where we sample363

50 sentences from NIST Zh-En test sets and pro-364

vide top-5 exact decoding results (ỸM ). As a result,365

each group has 750 sentences, and we conduct the366

human evaluation on a total of 9 systems.367

We ask three professional Chinese-English trans-368

lators to answer a question: how far are the array369

of translations from the perfect ranked outputs?370

(kQRG) The annotators are required to give a score371

between 1 to 5. However, the scores are sometimes372

hard to give directly. Therefore, we ask human an-373

notators to first have a sentence-level assessment of374

all translated sentences on a scale of [0, 100], fol-375

lowing the source-based Direct Assessment method376

(DA, Graham et al. (2017)). We do not provide the377

reference to avoid the reference bias (Kocmi et al.,378

2021). Then, annotators provide their ranking and379

total quality scores based on their scoring results of380

a system’s top-k (e.g., [40, 75, 40, 80]). We com- 381

pute Pearson’s/Spearman’s Correlations between 382

human scores and the corresponding kQRG on the 383

top-5 translations. The results are 0.8554/0.8506 384

respectively 4, which demonstrate a strong corre- 385

lation between our proposed protocol and human 386

judgments. We also conduct experiments compar- 387

ing the correlation using different translation qual- 388

ity metrics other than COMET in the Appendix 389

A, including Sentence-BLEU, BLEURT (Sellam 390

et al., 2020), ChrF (Popović, 2015), COMET-QE 391

(Rei et al., 2020), and COMET correlates well with 392

human results. We believe the above results vali- 393

date our proposed protocol. 394

5 Experiments and Findings 395

In this section, we use our proposed evaluation 396

protocol to evaluate two crucial factor of NMT 397

systems – model architecture and search algorithm. 398

Setups. All experiments are conducted over three 399

commonly used NMT benchmarks, NIST Chinese- 400

English, WMT’14 English-German, and WMT’14 401

English-French with small, medium, and large 402

sizes. The statistics of datasets, pre-processing 403

and training details can be found in Appendix B. 404

Evaluation Details. We use COMET (Rei et al., 405

2020) as our translation quality function among all 406

experiments. We also provide results with ChrF 407

(Popović, 2015) in the Appendix, as suggested in 408

Kocmi et al. (2021). By default, we use top-10 409

hypotheses for top region and 200 random samples 410

for Monte Carlo sampling in all experiments. 411

Interpretation. We report kRG and kQRG results 412

in our experiments. The kRG measures the ‘lo- 413

cal’ ranking ability of the top region of hypothesis 414

space, directly representing whether the model cor- 415

rectly puts high-quality hypotheses over bad quality 416

ones. The results range from 0 to 100%, where 0 417

denotes a completely wrong ranking, and 100% 418

denotes a perfect ranking. Alternatively, kQRG 419

measures two aspects: ‘local’ ranking ability and 420

hypothesis selection – the quality of hypotheses 421

that we can get from top-region or sampling. Us- 422

ing COMET trained with normalized z-scores, the 423

kQRG values are not bounded by [0, 1] and may 424

have negative values. A z-score above 0 means that 425

the translation is better than average, and below 426

0 is the opposite. Thus, recall our definitions, we 427

have two anchors to interpret kQRG values, where 428

4https://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf
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Method System Mode Top Sample

BLEU # Emp kQRG kQRG

Transformer 27.22 64.70 -60.39 -106.75

w/o LS 26.76 34.85 -17.75 -25.07
w/ para BT 27.36 27.26 -13.04 -19.52
w/ para FT 28.06 0.93 43.27 10.43

w/ 12-layer Enc 27.75 58.11 -50.57 -104.94
w/ 18-layer Enc 28.03 53.58 -43.88 -97.46

w/ Dim 768 28.00 50.18 -43.33 -101.23
w/ Dim 1024 28.49 44.72 -34.56 -84.93

Table 1: Model errors of different models in WMT’14
En-De task. ‘para BT’ and ‘para FT’ denote back-
translation and forward-translation over parallel golden
data, and LS denotes label smoothing.

0 means average translation qualities and 1 means429

perfect rankings with COMET values of 1, which430

is not the highest but a strong score.431

5.1 Findings on NMT Techniques432

Table 1 demonstrates the results for different433

Transformer-based models in WMT’14 En-De. Re-434

sults across different languages and other transla-435

tion metrics can be found in Appendix C and are436

consistent with our main results. We make follow-437

ing observations:438

1. Failure of mode evaluation. Let us take a look439

at the empty rates, the evaluation for model errors440

proposed in previous literature. We find that remov-441

ing label smoothing, adding pseudo-parallel data442

will drastically decrease the number of empty rates,443

even close to 0 (“para FT”), indicating an almost444

perfect model with tiny model errors. However, it445

is not the case. Our kRG and kQRG results indicate446

that the model still has much to improve. These447

demonstrate that mode-level evaluation collapses448

when evaluating certain models and the superiority449

of our evaluation.450

2. The State-of-the-art Transformer models face451

serious ranking problem in top region. In Figure452

1, we plot the kRG results for top region and sam-453

pling. To further investigate the results, we also454

plot a random kRG. Recall definitions in Equa-455

tion (13). The list of relevance scores f(yj) is a456

certain permutation of [0, 1, · · · , k − 1]. The ran-457

dom results are averaged from 100k samples of458

permutations.459

For top region model errors shown on the left,460

the model’s kRG values are close to the random461

10 30 50 70 90
# of Top Region Hypotheses

80
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82
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84

kR
G
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Transformer
Random

25 50 75 100 125 150 175 200
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90.0
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Figure 1: Ranking ability with respect to increasing
number of k. Left: Top Region; Right: Sampling.

400 500 600 700 800 900 1000
Model Dimension

85

80

75

70

65

60

55

kQ
RG

T-kQRG
S-kQRG

4 6 8 10 12 14 16 18
Decoder Depth

75

70

65

60

kQ
RG

T-kQRG
S-kQRG

Figure 2: kQRG for Wide/Deep models. T-/S- denote
Top Region/Sampling. Left: Model Dimension; Right:
Decoder Depth.

line when increasing k. Such behavior indicates 462

severe ranking errors, and the model performs only 463

at the random chance level in the top region. In 464

contrast, by studying the sampled results on the 465

right, the model outperforms the random line with a 466

considerable gap. The model’s opposite behaviors 467

from the top region and sampling approximation 468

are surprising. We conjecture that the NMT model 469

can distinguish good/bad hypotheses coarsely but 470

fail at the top region and fine-grained levels. 471

The above findings provide another explanation 472

on why MBR decoding (Eikema and Aziz, 2020; 473

Freitag et al., 2021a) achieved better performance 474

recently, as the model can better rank the sampling 475

outputs. Rank-sensitive training (Chiang, 2012) 476

might be a possible solution for the ranking errors. 477

478

3. Widening models are more effective in reducing 479

model errors. Recently, many interests have been 480

drawn for using deeper models (Wang et al., 2019; 481

Li et al., 2020) instead of wider models (Yan et al., 482

2020) to increase model capacity. Here we study 483

the model errors of wider and deeper models. 484

Our results are shown in Figure 2. With the 485

increases in model dimensions, model errors with 486

top region and sampling have both been improved. 487

In contrast, a deeper decoder shows smaller model 488

errors in the top region, but larger model errors 489

in sampling (whole hypothesis space), which is 490

counter-intuitive as we would expect that a larger 491

model capacity means smaller model errors. As we 492

do not observe a clear trend in increasing encoder 493

depth, we put these results in the Appendix in case 494

readers are interested. 495
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Method Top Region Beam Search

kRG kQRG kRG kQRG

6-layer 81.37 -74.72 80.82-0.55 19.46+94.19

9-layer 81.38 -74.66 81.16-0.22 20.47+95.13

12-layer 80.62 -66.02 80.84+0.22 22.02+88.04

15-layer 80.94 -66.60 80.90-0.04 22.34+88.94

18-layer 81.42 -73.54 80.69-0.74 22.31+95.85

D384 82.05 -86.18 80.59-1.46 16.46+102.63

D512 81.37 -74.72 80.82-0.55 19.46+94.19

D640 80.82 -67.44 81.16+0.34 21.63+89.06

D768 80.91 -58.92 81.11+0.19 22.28+81.21

D896 80.20 -56.01 80.14-0.06 22.01+78.01

D1024 80.57 -54.26 81.26+0.69 23.26+77.52

Table 2: Hypothesis space evaluation over top-10 out-
puts versus beam top-10 outputs when increasing di-
mensions / enc layers .

4. Model confidence may be crucial to reduc-496

ing model errors. Results show that w/ para FT,497

w/ para BT and w/o LS all show impressive im-498

provements in kQRG in both of our evaluations.499

Nonetheless, their BLEU scores with beam search500

are only comparable/worse than other methods501

like deep/wide models. In this case, system-level502

evaluation fails to capture decent improvements503

over the model’s hypothesis space. As forward-504

translation training and disabling label-smoothing505

are expected to enhance the model confidence, we506

conjecture that model errors are highly related to507

model confidence and leave the exploration as fu-508

ture work. 5509

5.2 Connection to Search Algorithms510

5.2.1 Quantify Beam Search Lucky Biases511

As pointed out in recent work (Meister et al., 2020),512

beam search seems to bring a lucky bias that covers513

some of the model errors. This section utilizes our514

proposed metric to understand the bias brought by515

beam search, since our top-region evaluation finds516

the best solution for MAP decoding with no search517

errors.518

Concretely, we use kRG and kQRG to evaluate519

the errors from both exact top-k and beam search520

top-k outputs and compare the scores to check the521

effect of beam search bias. In this way, the gap be-522

tween two errors represents the lucky bias brought523

by beam search quantitatively. Experiments are524

5Due to the space limitation, we address the ablation with
different base architecture, different datasets, and different
origins in the Appendix.

Method Pearson Cost
MBR 1.000 N2

Beam Search -0.143 N
Sampling 0.975 N
Ours 0.977 N

Table 3: Correlation studies for MBR decoding.

conducted in NIST Zh-En, and results are shown 525

in Table 2. We have several interesting findings. 526

Firstly, beam search leads to a decent improve- 527

ment (from +77% to +102%) in kQRG, which 528

quantitatively proves the existence of beam search’s 529

lucky bias in recent work. 530

Then, beam search generally does not affect 531

ranking abilities. As shown, the gaps of kRG be- 532

tween the beam and exact outputs are generally 533

small and fluctuate around 0. We do not observe a 534

clear trend of beam search bias in ranking abilities. 535

Furthermore, we analyze deeper and wider mod- 536

els and observe different behaviors. There is a 537

clear trend in decreasing the gap between the beam 538

and the exact when increasing the model’s width. 539

Conversely, the lucky biases of beam search retain 540

when increasing the model’s depth, showing deeper 541

models are more compatible with beam search bi- 542

ases than wider ones. Such behaviors concur with 543

the studies, showing that deeper models perform 544

more efficiently and effectively with beam search 545

than wider models (Wang et al., 2019; Li et al., 546

2020). We show that the observed superiority of 547

deep models may stem from their compatibility 548

with beam search’s inductive bias. 549

5.2.2 Correlations with MBR Decoding 550

MBR decoding emerges as a promising and pow- 551

erful decoding algorithm instead of beam search 552

(Eikema and Aziz, 2020; Freitag et al., 2021a), 553

which makes use of sampled hypothesis space and 554

is relevant to our proposed evaluation. Here, it 555

is necessary to study the correlation between our 556

proposed sampling evaluation and MBR decoding. 557

Concretely, we perform experiments over our 558

ten systems with WMT’14 En-De, and we test the 559

Spearsman/Kendall correlation between MBR de- 560

coding translation qualities and our sampled kQRG 561

scores. For MBR, we use 100 samples per source 562

sentences and BLEURT (Sellam et al., 2020) as 563

our utility function, following Freitag et al. (2021a). 564

One salient advantage of our proposed evaluation 565

instead of directly MBR over test sets is the compu- 566

tational cost. For instance, with 100 samples, our 567

7



evaluation uses 100 BLEURT calls per sentence,568

while the naive MBR needs 10k BLEURT calls due569

to its usage of quadratic computations.570

We also report the correlation for the other two571

evaluations, namely beam search and sampling. As572

shown in Table 3, our method performs the best573

among the three evaluations, and it indicates a po-574

tential application for our sampling-based kQRG.575

6 Related Work576

Decoding Methods. Most decoding methods577

in NMT aims to find the hypothesis with the578

highest conditional probability, i.e., maximum-a-579

posterior (MAP) decoding. Among all MAP decod-580

ing methods, beam search is most widely applied581

in the modern NMT systems for evaluation. Naive582

beam search has several known drawbacks, such583

as favoring short translations and its monotonic584

constraint. Hence, many regularization/rescoring585

methods (Bahdanau et al., 2014; Wu et al., 2016;586

He et al., 2016; Yang et al., 2018; Murray and Chi-587

ang, 2018) or beam search variants (Freitag and588

Al-Onaizan, 2017; Shu and Nakayama, 2018) are589

proposed to improve the performance. Other than590

beam search, one promising MAP decoding for591

evaluation is the DFS-based exact search (Stahlberg592

and Byrne, 2019), which finds the mode of model593

distributions. Despite its high computational cost,594

it reveals important information about the learned595

hypothesis space. We follow this approach and596

present a top-k exact search method, which can597

access the top-region of hypothesis space.598

In addition, there are some non-MAP decod-599

ing algorithms. A typical one is the stochastic600

sampling-based decoding methods (Ackley et al.,601

1985; Holtzman et al., 2019), which randomly602

choose candidates from each step’s output distri-603

bution. Further, Eikema and Aziz (2020) intro-604

duces a Minimum Bayesian Risk decoding method605

based on sampling. Leblond et al. (2021) propose606

a metric-driven search approach via Monte-Carlo607

Tree Search (MCTS). The sampling-based meth-608

ods are promising and may incorporate with our609

evaluation in future directions.610

Error Evaluation. Evaluation of NMT errors611

focuses on studying the gap between machine-612

translated results and human-translated references.613

Statistical matching metrics (Papineni et al., 2002;614

Banerjee and Lavie, 2005; Koehn et al., 2007;615

Denkowski and Lavie, 2014; Guo and Hu, 2019)616

and pretrained metrics (Sellam et al., 2020; Rei617

et al., 2020) are two dominant directions in evaluat- 618

ing errors. These metrics prove that linguistic simi- 619

larity between references and machine translations 620

correlates the human evaluation well. However, to 621

the best of our knowledge, these statistical metrics 622

evaluate one best hypothesis decoded from heuris- 623

tic decoding algorithm (i.e., system-level evalua- 624

tion), which incorporate huge search errors and 625

bias understanding of NMT models. 626

Recent efforts (Niehues et al., 2017; Stahlberg 627

et al., 2018; Stahlberg and Byrne, 2019; Meister 628

et al., 2020; Eikema and Aziz, 2020) are devoted 629

to analyzing model errors without search errors 630

and provide meaningful conclusions. Nonetheless, 631

these approaches still evaluate over one hypothe- 632

sis in hypothesis space except with the one with 633

highest probability. This is incomprehensive due 634

to neglecting errors inside the whole hypothesis 635

space. In contrast, we dig into model errors over 636

top regions and provide a more comprehensive eval- 637

uation. In addition, we provide various interesting 638

findings over model errors with regards to NMT 639

techniques and search algorithms. 640

7 Conclusion 641

This paper presents a novel evaluation protocol for 642

model errors in the perspective of rankings over 643

the hypothesis space. Specifically, our evaluation 644

encompasses two approximated evaluations, top 645

region and Monte Carlo Sampling, and two met- 646

rics, kRG and kQRG, measuring the hypothesis 647

ranking ability of hypothesis space. Our evalu- 648

ations correlate well with human judgments and 649

provide interesting findings over NMT techniques 650

and search algorithms. We believe these findings 651

shed light on future development in the NMT field. 652

For future directions, we think the evaluation 653

of NMT models should disentangle with search 654

algorithms, and assess models more comprehen- 655

sively from the perspective of hypothesis space. 656

Furthermore, the effectiveness of different NMT 657

techniques should also be re-evaluated from such 658

a perspective. We expect multi-angle evaluations 659

over the NMT models. Errors we revealed, like the 660

ranking errors, need to be fixed and may have con- 661

nections with the well-known beam search curse 662

problem, which is also a promising direction worth 663

exploring. 664
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A Correlation with Human Judgements915

This section provides the correlation results for dif-916

ferent choices of translation quality metrics. We917

choose four reference-based metrics: sentence-918

BLEU, ChrF, BLEURT, and COMET, and a919

reference-free QE metric: COMET-QE. We test920

both the sentence and system score correlations921

between kQRG and human judgments. The results922

are shown in Table 4.923

Among all translation quality metrics, sentence-924

BLEU performs the worst, and COMET shows the925

strongest correlation in both sentence and system926

levels. This justifies our choice of COMET for927

the main results. We also find that ChrF has good928

correlations with human evaluation. Therefore, we929

provide results for ChrF in the following sections.930

In addition, our evaluation can be incorporated with931

QE metrics and becomes a reference-free evalua-932

tion protocol. However, COMET-QE lags behind933

other reference-based translation quality metrics in 934

terms of correlation. 935

B Experimental Details 936

B.1 Detailed Descriptions of Datasets 937

For our WMT’14 En-De/En-Fr tasks, we use 4.5M 938

/ 35.7M preprocessed data, which is tokenized and 939

split using byte pair encoded (BPE) (Sennrich et al., 940

2016) with 32K/40K merge operations and a shared 941

vocabulary for source and target sides. For En- 942

De, we use newstest2013 as the validation set and 943

newstest2014 as the test set. For En-Fr, we use the 944

combination of newstest2012 and newstest2013 as 945

our validation set and newstest2014 as the test set. 946

For the NIST Zh-En task, we use 1.25M sen- 947

tences extracted from LDC corpora6. To validate 948

the performance of our model, we use the NIST 949

2006 (MT06) test set with 1664 sentences as our 950

validation set. Then, the NIST 2002 (MT02), 2004 951

(MT04), 2005 (MT05), 2008 (MT08) test sets are 952

used as our test sets, which contain 878, 1788, 953

1082, and 1357 sentences, respectively. All re- 954

ported results are averaged over different test sets. 955

The statistics of all three datasets can be found 956

in Table 5. 957

B.2 Training Details 958

Our models are trained using the fairseq toolkit7. 959

We train each of our Transformer models for 960

100k/300k/300k steps for three datasets and val- 961

idate every 5000 steps. The default label smooth- 962

ing is 0.1. The dropout rates for different Trans- 963

former models range from 0.1 to 0.4. The batch 964

sizes are 8k/64k/64k tokens for three datasets. 965

All our Transformer models are pre-norm models. 966

Other hyperparameter settings are the same as in 967

(Vaswani et al., 2017). For evaluation, we report 968

case-sensitive tokenized BLEU scores using multi- 969

bleu.perl8 for both WMT’14 En-De and En-Fr, and 970

case-insensitive tokenized BLEU scores for NIST 971

Chinese-English. We select the best checkpoint 972

on the validation set and report its performance on 973

the test set. All reported results are averaged over 974

all sentences in the test set. For results with beam 975

6The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

7https://github.com/pytorch/fairseq
8https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl
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Translation Quality
Sentence System

Pearson Spearman Pearson Spearman

Sentence-BLEU 0.67 0.80 0.59 0.55

ChrF 0.85 0.86 0.75 0.72

BLEURT 0.86 0.85 0.71 0.61

COMET 0.86 0.85 0.78 0.82

COMET-QE 0.66 0.66 0.71 0.53

Table 4: Pearson and Spearman’s correlation scores with human judgements across different translation quality
functions. Bold and underline represent the 1st and 2nd performing results, respectively.

Name Train Dev Test BPE

NIST Zh-En 1.2M 1664 5105 40K/30K

WMT’14 En-De 4.5M 3000 3003 32K

WMT’14 En-Fr 35.7M 6003 3003 40K

Table 5: Statistics of Datasets

search, the beam size is 5, and the length penalty is976

0.6.977

C Additional Experimental Results on978

Model Errors979

C.1 Various NMT Benchmarks980

This section presents COMET results on the981

WMT’14 English-French and NIST Chinese-982

English tasks. The results are shown in Table 6, 7.983

It is encouraging that the results are all consistent984

and corroborate our findings in the main text. As985

these three datasets have small, medium, and large986

sizes, we prove that our proposed protocol gen-987

eralizes well across different languages and sized988

datasets.989

Furthermore, by comparing results among these990

experiments, we find that model errors for different991

tasks vary vastly. The reason might be either the992

intrinsic difficulties of tasks or other properties of993

the dataset like sizes or cleanliness, etc. We revisit994

the dataset properties in Section C.5.995

C.2 Various Translation Quality Functions996

This section provides model errors with an addi-997

tional reference-based translation quality metric –998

ChrF, which performs second to COMET in our999

correlation studies.1000

In Table 8, we present our results using ChrF1001

with the English-German task. An advantage of1002

Method System Mode Top Sample

BLEU # Emp kQRG kQRG

Transformer 42.47 41.14 -74.72 -60.73

w/o LS 42.44 14.59 -31.78 -11.54
w/ para FT 42.17 17.52 -23.42 -52.83

w/ 12-layer Enc 43.38 36.24 -66.02 -59.63
w/ 18-layer Enc 43.81 43.11 -73.54 -58.85

w/ Dim 768 42.88 40.76 -58.92 -57.17
w/ Dim 1024 43.43 34.03 -54.26 -52.74

Table 6: COMET model errors of different models in
NIST Chinese-English task. kQRG values are not nor-
malized.

Method System Mode Top Sample

BLEU # Emp kQRG kQRG

Transformer 40.78 46.75 -22.69 -96.48

w/o LS 40.70 19.51 28.37 5.69
w/ para FT 40.95 27.26 49.67 -82.75

w/ 12-layer Enc 41.28 44.99 -18.96 -95.62
w/ 18-layer Enc 41.74 53.58 -16.91 -94.56

w/ Dim 768 41.73 46.12 -17.71 -93.17
w/ Dim 1024 42.35 40.42 -11.04 -87.07

Table 7: COMET model errors of different models in
WMT’14 En-Fr task. kQRG values are not normalized.

using ChrF is its bound between 0 and 1, which 1003

makes our kQRG easier to interpret. We observe 1004

that all of our findings in Section 5.1 still hold. This 1005

proves our proposed protocol performs consistently 1006

across different choices of translation metrics. 1007
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Method System Mode Top Sample

BLEU # Emp kQRG kQRG

Transformer 27.22 64.70 31.67 34.58

w/o LS 26.76 34.85 41.64 42.41
w/ para BT 27.36 27.26 42.89 43.31
w/ para FT 28.06 0.93 55.55 49.72

w/ 12-layer Enc 27.75 58.11 33.86 35.11
w/ 18-layer Enc 28.03 53.58 35.33 36.48

w/ Dim 768 28.00 50.18 35.60 35.67
w/ Dim 1024 28.49 44.72 37.75 37.99

Table 8: ChrF model errors of different models in
WMT’14 English-German.

Method BLEU kRG kQRG

Transformer 27.22 80.21 -60.39

RNNSearch 23.07 83.63 -106.26
ConvS2S 26.51 81.76 -77.40

Table 9: Top region model errors with different model
architectures in WMT’14 English-French.

C.3 Various Model Architectures1008

In previous sections, we discuss the model errors1009

of Transformer models. In this section, we ex-1010

tend the experiments to different NMT architec-1011

tures, i.e., ConvSeq2Seq (Gehring et al., 2017)1012

and RNNSearch (Luong et al., 2015). We use the1013

WMT’14 English-German and present our model1014

error (COMET) results in Table 9.1015

Interestingly, we find that RNNSearch performs1016

the best in terms of kRG, indicating the strongest1017

ranking capability. ConvSeq2Seq has a 63.08 score1018

in kRG and is second to RNNSearch. Both of1019

them perform better than the Transformer model1020

in terms of ranking capability and are better than1021

random ranking (58.72 in Section 5.1). Then, the1022

Transformer model outperforms ConvSeq2Seq and1023

RNNSearch in terms of model error and BLEU1024

score, showing a stronger hypothesis selection. On1025

the one side, these results demonstrate that future1026

model design needs to revisit RNN models’ ad-1027

vantages and incorporate them with current Trans-1028

former architectures. On the other side, the RNN1029

model with the best ranking ability only scores1030

66.16 of [0, 100] in kRG, indicating large poten-1031

tials in reducing model errors by improving their1032

ranking abilities.1033

Method Source En Source De

kRG kQRG kRG kQRG

Transformer base 80.84 -84.46 79.58 -36.24
w/ para ft 81.87 35.98 82.42 50.61
w/ para bt 79.47 -33.76 80.46 7.50
Transformer Big 80.63 -59.59 80.59 -9.46

Table 10: Top region model errors on English-original
and German-original part of newstest2014 En-De test-
set.

C.4 Analysis on Original Sources 1034

One interesting result in our main experiments is 1035

that the paraFT model performs much better than 1036

the paraBT model. One possible reason is that 1037

paraFT model overfits the original sides of the 1038

test sets. Therefore, we compare model errors on 1039

the English-original part and German-original part 1040

of newstest2014 to verify this assumption, which 1041

contains 1,500 and 1,503 sentences, respectively. 1042

Table 10 shows the results. Comparing "Source 1043

En" with "Source De", we find that the ranking ca- 1044

pabilities (kRG) are not much affected by the origi- 1045

nal sides. However, models perform substantially 1046

better in kQRG of source German side than that of 1047

the source English side, as translated English sen- 1048

tences are easier to translate than original English 1049

sentences. The gap between paraFT and paraBT 1050

varies to some extent across different origins, but 1051

with both sides, paraFT still strongly outperforms 1052

paraBT. Thus we conclude that original side is not 1053

the main reason. 1054

C.5 Clean and Up-to-date Datasets 1055

There is a concern that the ranking issues are from 1056

the WMT’14 datasets, which are outdated and 1057

noisy (Ott et al., 2018). In this section, we study 1058

properties of the datasets and provide two addi- 1059

tional ablation experiments to support our method. 1060

We introduce two datasets: (1) WMT’14 En-De 1061

dataset filtered by language detection and the fast 1062

align, (2) the WMT’20 En-De dataset, to which 1063

we perform the same filters. These two datasets 1064

contain 3.86M and 37.2M paired sentences, respec- 1065

tively. For language detection, we use the pre- 1066

trained fasttext tool 9 and filter out the sample if 1067

either side of a paired sentence is identified as other 1068

languages. For the fast align (Dyer et al., 2013) 1069

9https://github.com/facebookresearch/
fastText
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Dataset kRG kQRG
WMT’14 En-De (4.5M) 80.21 -60.39

w/ LD 80.24 -50.88
w/ LD + FA 80.32 -45.41

WMT’20 En-De (37M) 80.19 -21.84

w/ Sample 4.5M 79.88 -21.02
w/ Sample 10M 80.09 -23.42
w/ Sample 20M 80.39 -29.95

Table 11: Top region model errors over filtered WMT’14
En-De and WMT’20 En-De tasks. The model we use is
the Transformer-base model. LD denotes filtering with
language detection. FA denotes filtering with fast align.

filtering, we compute both the source-target and1070

target-source alignment scores and filter out sen-1071

tences with an average score less than −6.1072

The results are shown in Table 11. We have1073

four key observations. Firstly, by comparing origi-1074

nal WMT’14 En-De results with datasets after lan-1075

guage detection (LD) and fast align filtering (FA),1076

we find fine-grained cleaning techniques help re-1077

duce model errors. The kQRG values improve1078

significantly, from -60.39% to -45.41%. Secondly,1079

training with an up-to-date dataset dramatically im-1080

proves the model in terms of reducing errors. As1081

the WMT’20 En-De training set (37.2M) is much1082

larger than the WMT’14 En-De (4.5M), we also1083

conduct experiments with different sampled sizes1084

of the WMT’20 dataset from 4.5M to 20M. We find1085

that even with the same training set size (4.5M),1086

the model trained with the WMT’20 dataset out-1087

performs its WMT’14 counterpart (-21.02% versus1088

-29.95%). Thirdly, we attempt to increase the size1089

of training corpus with WMT20 En-De. Surpris-1090

ingly, we observe that top region model errors go1091

slightly up. Fourthly, all our models with clean or1092

updated datasets still do not show stronger ranking1093

abilities than random rankings.1094

All above findings reveal two points: (1) The1095

ranking errors we identified in the main text still1096

exist even with cleaner or up-to-date datasets. The1097

main cause for these ranking problems is not the1098

training set. (2) Using a clean, up-to-date dataset1099

reduces model errors. It helps the model move1100

better hypotheses into the top-region of hypothesis1101

space, thus achieving better kQRG scores. The1102

results for kQRG values are strongly dependent on1103

the datasets.1104
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Figure 3: kQRG for deep encoder models.

C.6 Increasing encoder depth 1105

As discussed in Section 5.1, we plot the model 1106

errors for deep encoders in Figure 3. We do not 1107

observe a clear trend for smaller or larger model 1108

errors when increasing encoder depth. 1109

D Implementation Details of Exact Top-k 1110

Here we explain the implementation details of our 1111

exact top-k algorithm. The detailed algorithm is 1112

shown in Algorithm 2. Our implementation is built 1113

upon uid-decoding10 and sgnmt11 projects, and is 1114

compatible with the models trained with fairseq. 1115

The original implementation of exact top-1 decod- 1116

ing heavily relies on CPU operations. In contrast, 1117

our top-k version moves a number of computations 1118

to GPU, and improves several implementation de- 1119

tails as follows. 1120

• Optimizing the iterating process. As de- 1121

fined the 13-th line of our Algorithm 2, we 1122

need to iterate through all words in the vo- 1123

cabulary. However, the order of iterations 1124

significantly influences the speed because of 1125

the lower bounds. Empirically, we find that 1126

iterating the vocabulary greedily substantially 1127

reduces the run time. 1128

• Batching the hypotheses for each time step. 1129

As stated at the 14-th line of Algorithm 2, 1130

we iterate one word and perform one forward 1131

model inference at a time. However, the GPU 1132

utilization of this scheme is extremely low. 1133

Thus, we use batch technique and batch b 1134

different words for one model forward pass, 1135

which efficiently increases the GPU utiliza- 1136

tion. 1137

10https://github.com/rycolab/
uid-decoding

11https://github.com/ucam-smt/sgnmt
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• Good lower bounds facilitate the search1138

process. We observe that better lower bounds1139

vastly reduce the search time. In our imple-1140

mentation, we use the top n-best list output1141

from the beam search with larger beam sizes1142

than n as our lower bounds.1143

As a result, the speed is improved significantly.1144

D.1 Worst-case Analysis for Exact Search1145

Algorithm1146

This section analyzes the worst-case behaviors1147

of exact search algorithms. First, let us discuss1148

a simple case when the exact search does not1149

use lower bounds. Given a target sentence set1150

Yl = {y|len(y) = l} where all hypotheses in1151

that set have the same length l, it is obvious1152

that the search operations needed for exact top-1153

1 and exact top-k algorithms are the same, i.e.,1154

Nl = |Yl| = |V |l. Thus, the total search operations1155

for all lengths12 l ∈ [1, lmax] can be computed by1156

N =
∑

l∈[1,lmax]
Nl.1157

Next, we consider the case with lower bounds.1158

Since lower bounds help trim the search space, the1159

worst case happens when the search algorithm finds1160

the hypotheses in a reversed order. In that case,1161

lower bounds could not trim any search space and1162

have to iterate all hypotheses. Hence, the numbers1163

of search operations needed for both top-1 and top-1164

k algorithms are identical, i.e., N =
∑

l∈[1,lmax]
Nl1165

operations. On the other hand, both the top-1 and1166

our top-k algorithms are similar to Branch&Bound1167

algorithm (Hendy and Penny, 1982), which cannot1168

lower the time complexity in the worst case, and1169

its time complexity is the same as the one of depth-1170

first-search (DFS) algorithm (Mackworth, 2013).1171

However, it is practically useful because it is proved1172

to be able to improve the search speed significantly.1173

D.2 Empirical Computational Cost1174

This section provides several empirical results to1175

show how different decoding methods perform in1176

terms of computational time. We randomly sam-1177

ple 100 sentences in WMT’14 En-De newstest20141178

and report the corresponding run time as well as the1179

number of expansion operations. The expansion1180

operation, i.e., model’s forward pass, is the most1181

time-consuming operation in the exact search algo-1182

rithm and is linear to the number of computation1183

flops. We report the computational costs for three1184

12We do not use the length constraint in our implementation.
Here, we add the max length constraint for clarity.

ALGORITHM 2: DFS-based Top-k Exact Search.
Input :x: Source sentence, y: Translation prefix

(default: []), p: logP (y|x) (default 0.0), k:
Top-k hypotheses to output

Output :List l contains top-k hypotheses with
log-probabilities.

1 global minHeap
2 global γ ← − inf
3 Function dfsTopK(x, y, p):
4 if y[|y| − 1] =< /s > then
5 push(minHeap, (p, y))
6 if len(minHeap) > k then
7 pop(minHeap)
8 end
9 if len(minHeap) = k then

10 γ ← minHeap[0][0]
11 end
12 end
13 for v ∈ V do
14 p′ ← p+ logP (v|x, y)
15 if p′ ≥ γ then
16 dfsTopK(x, [y; v], p′)
17 end
18 end
19 return minHeap
20 return dfsTopK(x, [], 0.0)

different algorithms, including Beam Search, Exact 1185

Top-1 and Exact Top-5. Each reported number is 1186

the average over four runs with different samples 1187

as inputs. 1188

The results are shown in Table 12. First, we can 1189

see that Beam Search is about ten to twenty times 1190

faster than exact search algorithms. This is con- 1191

sistent with results in previous literature. Second, 1192

compared with previous Exact Search implementa- 1193

tion, our implementation of top-5 search has almost 1194

the same time cost as top-1, which demonstrates 1195

the effectiveness and efficiency of our proposed 1196

approach. 1197

By taking the number of expansions into account, 1198

we notice two more interesting facts – On the one 1199

hand, the number of expansions is not linear to k. 1200

Our top-k algorithm explores only about five times 1201

the search space compared with top-1 algorithm. 1202

On the other hand, our algorithm is significantly 1203

more efficient than the original implementation, 1204

with four times faster in terms of the number of 1205

expansions and only about two times in terms of 1206

the computational cost. In our own experiments, 1207

we use 8 NVIDIA V100 GPUs for decoding, and 1208

it takes about a day to decode exact top-10 on a 1209

standard WMT testset. 1210

D.3 Choice of Different k Values 1211

We first report computational costs with different 1212

values of k, shown in Table 13. The computational 1213
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Method Time Cost (seconds) Num Expansions

Beam Search 453.0 -
Stahlberg and Byrne (2019) 8,064.0 2,769.6

Exact Top-5 w/ BS lower bounds 8,914.4 6,029.4

Table 12: Time cost and number of expansions for exact search algorithms with 4 sampled runs on 100 test sentences.
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Figure 4: kRG and kQRG for Transformer base, paraft
and big models, with top-k varies in {10, 20, 30, 50, 75,
100}

time and the number of expansions grow as k in-1214

creases. When we enlarge the number of k from1215

5 to 10, the time costs grow by about 1.9 times1216

(15,916.2/ 8,914.4), which denotes an almost linear1217

time cost with regard to k. Compared to (Stahlberg1218

and Byrne, 2019), our algorithms are more effi-1219

cient – Our top-5 algorithm operates two times of1220

expansions and performs comparably with their1221

algorithms in terms of computational time.1222

Then, regarding the performance with different1223

top-k, we plot models’ kRG and kQRG with their1224

top [10, 100] outputs. In Figure 4, when we in-1225

crease k, kRG values of Transformer-Base (‘base’)1226

and Transformer-Big (‘big’) stay close to the ran-1227

dom permutation results, while the model trained1228

with forward translation (‘paraft’) achieves a con-1229

siderable gap over the random. The gap remains1230

stable with larger values of k. The kQRG values of 1231

all three models show good discrimination. We do 1232

not observe a trend of changing relative orders. 1233

These results prove one important and favorable 1234

characteristic of our evaluation: Both of our met- 1235

rics are not sensitive to the choice of k, which 1236

validates the usage with a lower value of k to eval- 1237

uate the model’s distribution. 1238

In the main content of our paper, we mainly use 1239

top-10 results for our evaluation method for the 1240

trade-off between efficiency and effectiveness. 1241

E Case Study 1242

This section provides a case study for English- 1243

German translation outputs for our Exact Top-k 1244

decoding algorithm. Table 14 shows the generated 1245

hypotheses, their corresponding log probabilities, 1246

and BLEU scores. 1247

There are several problems of models’ generated 1248

outputs based on the example: First, the ranking 1249

problem we argue in the main content apparently 1250

exists, which is demonstrated in our provided ex- 1251

ample. For instance, the model gives the highest 1252

score to an empty hypothesis (only <EOS>), which 1253

ranks the model’s mode hypothesis the worst in 1254

the hypothesis space. Second, the model ranks 1255

some sub-optimal hypotheses in the top-10 rank- 1256

ings, like 2-nd, 4-th, 7-th, 10-th. However, the best 1257

hypothesis is ranked only at the 10-th position. It 1258

can also prove the existence of the ranking prob- 1259

lem. Third, the model favors shorter hypotheses. 1260

The hypotheses at rank positions 1-st, 6-th, and 1261

9-th are much shorter than the others. The short 1262

hypotheses have roughly similar scores compared 1263

with the longer ones. Furthermore, most of the 1264

hypotheses share a similar prefix, which is similar 1265

to the reference, demonstrating that the model can 1266

find proper translations with incorrect log proba- 1267

bilities. Those problems indicate the existence of 1268

an under-confidence problem, which is in line with 1269

our findings in Section 5.1. 1270
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Method Time Cost (seconds) Num Expansions

Stahlberg and Byrne (2019) 8,064.0 2,769.6

Exact Top-5 w/ BS lower bounds 8,914.4 6,029.4
Exact Top-10 w/ BS lower bounds 15,916.2 10,865.9
Exact Top-20 w/ BS lower bounds 28,313.9 19,155.8

Table 13: Computational time and expansions for exact search algorithms when k increases.

F Limitations1271

We summarize our proposed method has two lim-1272

itations. First, each of our approximations has its1273

own limitations. Speaking of top region, the pro-1274

posed exact search algorithm is computational ex-1275

tensive and local, meaning that it may be limited1276

by its representativeness of the hypothesis space.1277

As for Monte Carlo sampling, the evaluation is fast1278

and more global but captures only coarse-grained1279

model errors. Even so, our two approximations1280

can complement each other’s limitations. Second,1281

our proposed metrics are dependent with the value1282

of k and choice of translation function. Specifi-1283

cally, for kRG, when we increase k (Figure 1), the1284

random result also increases. For kQRG, we use1285

COMET in our main content and report ChrF re-1286

sults in Appendix. These two results have very1287

different scale and upper/lower bounds. This may1288

lead to difficulty in interpretation.1289
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Rank LogProb BLEU hypothesis

Ref - 100.00
Zwei Anlagen so nah beieinander: Absicht oder
Schildbürgerstreich? <EOS>

1 -9.04 00.00
<EOS>

2 -10.13 20.45
Zwei Leuchten so nah beieinander: absichtlich oder einfach
nur ein dummer Fehler? <EOS>

3 -10.40 07.47
Zwei Leuchten so nahe beieinander: absichtlich oder einfach
nur ein dummer Fehler? <EOS>

4 -10.56 22.24
Zwei Leuchten so nah beieinander: absichtlich oder nur
ein dummer Fehler? <EOS>

5 -10.92 08.13
Zwei Leuchten so nahe beieinander: absichtlich oder nur
ein dummer Fehler? <EOS>

6 -10.94 05.89
Zwei Leuchten so nahe beieinander? <EOS>

7 -11.10 22.24
Zwei Leuchten so nah beieinander: absichtlich oder einfach
ein dummer Fehler? <EOS>

8 -11.15 37.60
Zwei Leuchten so nah beieinander: Absicht oder einfach nur
ein dummer Fehler? <EOS>

9 -11.21 17.63
Zwei Leuchten so nah beieinander? <EOS>

10 -11.39 40.90
Zwei Leuchten so nah beieinander: Absicht oder nur ein
dummer Fehler? <EOS>

Table 14: The generated translations with top-10 decoding. The source sentence is "Two sets of lights so close to
one another: intentional or just a silly error?"
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