

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FORMATTING INSTRUCTIONS FOR ICLR 2026 CONFERENCE SUBMISSIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

The abstract paragraph should be indented 1/2 inch (3 picas) on both left and right-hand margins. Use 10 point type, with a vertical spacing of 11 points. The word ABSTRACT must be centered, in small caps, and in point size 12. Two line spaces precede the abstract. The abstract must be limited to one paragraph.

1 SUBMISSION OF CONFERENCE PAPERS TO ICLR 2026

ICLR requires electronic submissions, processed by <https://openreview.net/>. See ICLR's website for more instructions.

If your paper is ultimately accepted, the statement \iclrfinalcopy should be inserted to adjust the format to the camera ready requirements.

The format for the submissions is a variant of the NeurIPS format. Please read carefully the instructions below, and follow them faithfully.

1.1 STYLE

Papers to be submitted to ICLR 2026 must be prepared according to the instructions presented here.

Authors are required to use the ICLR L^AT_EX style files obtainable at the ICLR website. Please make sure you use the current files and not previous versions. Tweaking the style files may be grounds for rejection.

1.2 RETRIEVAL OF STYLE FILES

The style files for ICLR and other conference information are available online at:

<http://www.iclr.cc/>

The file `iclr2026_conference.pdf` contains these instructions and illustrates the various formatting requirements your ICLR paper must satisfy. Submissions must be made using L^AT_EX and the style files `iclr2026_conference.sty` and `iclr2026_conference.bst` (to be used with L^AT_EX2e). The file `iclr2026_conference.tex` may be used as a "shell" for writing your paper. All you have to do is replace the author, title, abstract, and text of the paper with your own.

The formatting instructions contained in these style files are summarized in sections 2, 3, and 4 below.

2 GENERAL FORMATTING INSTRUCTIONS

The text must be confined within a rectangle 5.5 inches (33 picas) wide and 9 inches (54 picas) long. The left margin is 1.5 inch (9 picas). Use 10 point type with a vertical spacing of 11 points. Times New Roman is the preferred typeface throughout. Paragraphs are separated by 1/2 line space, with no indentation.

Paper title is 17 point, in small caps and left-aligned. All pages should start at 1 inch (6 picas) from the top of the page.

054 Authors' names are set in boldface, and each name is placed above its corresponding address. The
 055 lead author's name is to be listed first, and the co-authors' names are set to follow. Authors sharing
 056 the same address can be on the same line.

057 Please pay special attention to the instructions in section 4 regarding figures, tables, acknowledg-
 058 ments, and references.

060 There will be a strict upper limit of **9 pages** for the main text of the initial submission, with unlimited
 061 additional pages for citations. This limit will be expanded to **10 pages** for rebuttal/camera ready.

063 3 HEADINGS: FIRST LEVEL

065 First level headings are in small caps, flush left and in point size 12. One line space before the first
 066 level heading and 1/2 line space after the first level heading.

068 3.1 HEADINGS: SECOND LEVEL

070 Second level headings are in small caps, flush left and in point size 10. One line space before the
 071 second level heading and 1/2 line space after the second level heading.

073 3.1.1 HEADINGS: THIRD LEVEL

074 Third level headings are in small caps, flush left and in point size 10. One line space before the third
 075 level heading and 1/2 line space after the third level heading.

077 4 CITATIONS, FIGURES, TABLES, REFERENCES

080 These instructions apply to everyone, regardless of the formatter being used.

082 4.1 CITATIONS WITHIN THE TEXT

083 Citations within the text should be based on the `natbib` package and include the authors' last names
 084 and year (with the "et al." construct for more than two authors). When the authors or the publication
 085 are included in the sentence, the citation should not be in parenthesis using `\citet{}` (as in "See
 086 Hinton et al. (2006) for more information."). Otherwise, the citation should be in parenthesis using
 087 `\citep{}` (as in "Deep learning shows promise to make progress towards AI (Bengio & LeCun,
 088 2007).").

089 The corresponding references are to be listed in alphabetical order of authors, in the REFERENCES
 090 section. As to the format of the references themselves, any style is acceptable as long as it is used
 091 consistently.

093 4.2 FOOTNOTES

095 Indicate footnotes with a number¹ in the text. Place the footnotes at the bottom of the page on which
 096 they appear. Precede the footnote with a horizontal rule of 2 inches (12 picas).²

098 4.3 FIGURES

100 All artwork must be neat, clean, and legible. Lines should be dark enough for purposes of repro-
 101 duction; art work should not be hand-drawn. The figure number and caption always appear after the
 102 figure. Place one line space before the figure caption, and one line space after the figure. The figure
 103 caption is lower case (except for first word and proper nouns); figures are numbered consecutively.

104 Make sure the figure caption does not get separated from the figure. Leave sufficient space to avoid
 105 splitting the figure and figure caption.

106
 107 ¹Sample of the first footnote

²Sample of the second footnote

108

109 Table 1: Sample table title

110

PART**DESCRIPTION**

111

Dendrite	Input terminal
Axon	Output terminal
Soma	Cell body (contains cell nucleus)

112

113

114

115

116

117

118

119

You may use color figures. However, it is best for the figure captions and the paper body to make sense if the paper is printed either in black/white or in color.

120

121

122

123

124

125

126

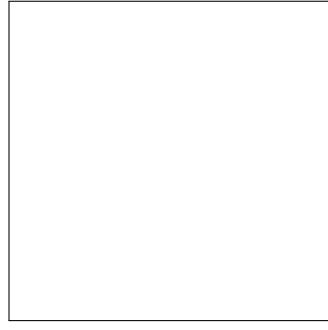
127

128

129

130

131


132

133

134

135

136

137 Figure 1: Sample figure caption.

138

139

140

141

142

143

4.4 TABLES

144

145

All tables must be centered, neat, clean and legible. Do not use hand-drawn tables. The table number and title always appear before the table. See Table 1.

146

147

Place one line space before the table title, one line space after the table title, and one line space after the table. The table title must be lower case (except for first word and proper nouns); tables are numbered consecutively.

148

149

150

151

152

153

154

155

5 DEFAULT NOTATION

156

157

158

159

160

161

In an attempt to encourage standardized notation, we have included the notation file from the textbook, *Deep Learning* Goodfellow et al. (2016) available at https://github.com/goodfeli/dlbook_notation/. Use of this style is not required and can be disabled by commenting out `math_commands.tex`.

Numbers and Arrays

162	a	A scalar (integer or real)
163	\mathbf{a}	A vector
164	\mathbf{A}	A matrix
165	\mathbf{A}	A tensor
166	I_n	Identity matrix with n rows and n columns
167	I	Identity matrix with dimensionality implied by context
168	$e^{(i)}$	Standard basis vector $[0, \dots, 0, 1, 0, \dots, 0]$ with a 1 at position i
169	$\text{diag}(\mathbf{a})$	A square, diagonal matrix with diagonal entries given by \mathbf{a}
170	\mathbf{a}	A scalar random variable
171	\mathbf{a}	A vector-valued random variable
172	\mathbf{A}	A matrix-valued random variable

Sets and Graphs

179	\mathbb{A}	A set
180	\mathbb{R}	The set of real numbers
181	$\{0, 1\}$	The set containing 0 and 1
182	$\{0, 1, \dots, n\}$	The set of all integers between 0 and n
183	$[a, b]$	The real interval including a and b
184	$(a, b]$	The real interval excluding a but including b
185	$\mathbb{A} \setminus \mathbb{B}$	Set subtraction, i.e., the set containing the elements of \mathbb{A} that are not in \mathbb{B}
186	\mathcal{G}	A graph
187	$Pa_{\mathcal{G}}(x_i)$	The parents of x_i in \mathcal{G}

Indexing

188	a_i	Element i of vector \mathbf{a} , with indexing starting at 1
189	a_{-i}	All elements of vector \mathbf{a} except for element i
190	$A_{i,j}$	Element i, j of matrix \mathbf{A}
191	$\mathbf{A}_{i,:}$	Row i of matrix \mathbf{A}
192	$\mathbf{A}_{:,i}$	Column i of matrix \mathbf{A}
193	$A_{i,j,k}$	Element (i, j, k) of a 3-D tensor \mathbf{A}
194	$\mathbf{A}_{:,:,i}$	2-D slice of a 3-D tensor
195	a_i	Element i of the random vector \mathbf{a}

Calculus

207
208
209
210
211
212
213
214
215

216	$\frac{dy}{dx}$	Derivative of y with respect to x
217	$\frac{\partial y}{\partial x}$	Partial derivative of y with respect to x
218	$\nabla_{\mathbf{x}} y$	Gradient of y with respect to \mathbf{x}
219	$\nabla_{\mathbf{X}} y$	Matrix derivatives of y with respect to \mathbf{X}
220	$\nabla_{\mathbf{X}} y$	Tensor containing derivatives of y with respect to \mathbf{X}
221	$\frac{\partial f}{\partial \mathbf{x}}$	Jacobian matrix $\mathbf{J} \in \mathbb{R}^{m \times n}$ of $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$
222	$\nabla_{\mathbf{x}}^2 f(\mathbf{x})$ or $\mathbf{H}(f)(\mathbf{x})$	The Hessian matrix of f at input point \mathbf{x}
223	$\int f(\mathbf{x}) d\mathbf{x}$	Definite integral over the entire domain of \mathbf{x}
224	$\int_{\mathbb{S}} f(\mathbf{x}) d\mathbf{x}$	Definite integral with respect to \mathbf{x} over the set \mathbb{S}

Probability and Information Theory

233	$P(a)$	A probability distribution over a discrete variable
234	$p(a)$	A probability distribution over a continuous variable, or over a variable whose type has not been specified
235	$a \sim P$	Random variable a has distribution P
236	$\mathbb{E}_{x \sim P}[f(x)]$ or $\mathbb{E}f(x)$	Expectation of $f(x)$ with respect to $P(x)$
237	$\text{Var}(f(x))$	Variance of $f(x)$ under $P(x)$
238	$\text{Cov}(f(x), g(x))$	Covariance of $f(x)$ and $g(x)$ under $P(x)$
239	$H(x)$	Shannon entropy of the random variable x
240	$D_{\text{KL}}(P \ Q)$	Kullback-Leibler divergence of P and Q
241	$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$	Gaussian distribution over \mathbf{x} with mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$

Functions

249	$f : \mathbb{A} \rightarrow \mathbb{B}$	The function f with domain \mathbb{A} and range \mathbb{B}
250	$f \circ g$	Composition of the functions f and g
251	$f(\mathbf{x}; \boldsymbol{\theta})$	A function of \mathbf{x} parametrized by $\boldsymbol{\theta}$. (Sometimes we write $f(\mathbf{x})$ and omit the argument $\boldsymbol{\theta}$ to lighten notation)
252	$\log x$	Natural logarithm of x
253	$\sigma(x)$	Logistic sigmoid, $\frac{1}{1 + \exp(-x)}$
254	$\zeta(x)$	Softplus, $\log(1 + \exp(x))$
255	$\ \mathbf{x}\ _p$	L^p norm of \mathbf{x}
256	$\ \mathbf{x}\ $	L^2 norm of \mathbf{x}
257	x^+	Positive part of x , i.e., $\max(0, x)$
258	$\mathbf{1}_{\text{condition}}$	is 1 if the condition is true, 0 otherwise

265
266
267
268
269

270 **6 FINAL INSTRUCTIONS**
271272 Do not change any aspects of the formatting parameters in the style files. In particular, do not modify
273 the width or length of the rectangle the text should fit into, and do not change font sizes (except
274 perhaps in the REFERENCES section; see below). Please note that pages should be numbered.
275276 **7 PREPARING POSTSCRIPT OR PDF FILES**
277278 Please prepare PostScript or PDF files with paper size “US Letter”, and not, for example, “A4”. The
279 -t letter option on dvips will produce US Letter files.
280281 Consider directly generating PDF files using pdflatex (especially if you are a MiKTeX user).
282 PDF figures must be substituted for EPS figures, however.283 Otherwise, please generate your PostScript and PDF files with the following commands:
284285 dvips mypaper.dvi -t letter -Ppdf -G0 -o mypaper.ps
286 ps2pdf mypaper.ps mypaper.pdf
287288 **7.1 MARGINS IN LATEX**
289290 Most of the margin problems come from figures positioned by hand using \special or other
291 commands. We suggest using the command \includegraphics from the graphicx package.
292 Always specify the figure width as a multiple of the line width as in the example below using .eps
293 graphics294 \usepackage[dvips]{graphicx} ...
295 \includegraphics[width=0.8\linewidth]{myfile.eps}
296

297 or

298 \usepackage[pdftex]{graphicx} ...
299 \includegraphics[width=0.8\linewidth]{myfile.pdf}
300301 for .pdf graphics. See section 4.4 in the graphics bundle documentation (<http://www.ctan.org/tex-archive/macros/latex/required/graphics/grfguide.ps>)302 A number of width problems arise when LaTeX cannot properly hyphenate a line. Please give
303 LaTeX hyphenation hints using the \- command.
305306 **AUTHOR CONTRIBUTIONS**
307308 If you’d like to, you may include a section for author contributions as is done in many journals. This
309 is optional and at the discretion of the authors.311 **ACKNOWLEDGMENTS**
312313 Use unnumbered third level headings for the acknowledgments. All acknowledgments, including
314 those to funding agencies, go at the end of the paper.315 **REFERENCES**
316317 Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In *Large Scale Kernel*
318 *Machines*. MIT Press, 2007.
319320 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
321 MIT Press, 2016.322 Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
323 nets. *Neural Computation*, 18:1527–1554, 2006.

324 **A APPENDIX**
325

326 You may include other additional sections here.
327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377