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FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial
Language-Image Pre-Training

Anonymous Author(s)

ABSTRACT
While significant progress has been made in multi-modal learning
driven by large-scale image-text datasets, there is still a noticeable
gap in the availability of such datasets within the facial domain.
To facilitate and advance the field of facial representation learning,
we present FLIP-80M, a large-scale visual-linguistic dataset com-
prising over 80 million face images paired with text descriptions.
The construction of FLIP-80M utilizes large-scale publicly available
image-text-pair dataset, filtering 5 billion samples from general do-
main, and incorporates with AI-Generated Content (AIGC)methods
for quality management and data augmentation. The data creation
process involves a mixed-method pipeline to filter face-related pairs
from both visual and linguistic perspectives, including face detec-
tion, face caption classification, text de-noising, and AIGC augmen-
tation. As a result, FLIP-80M stands as the largest face-text dataset
to date. It shows exceptional data quality and demonstrates the po-
tential to enhance the performance of face representation models.
To assess the efficacy of our dataset, we use contrastive learning
objective to train FLIP (Facial Language-Image Pretraining) and
evaluate its representation capabilities across various downstream
tasks. Experimental results reveal that our FLIP model achieves
state-of-the-art results cross 10 different face analysis tasks like
face parsing, face alignment, and face attribute classification. The
dataset and models will be publicly available.

CCS CONCEPTS
• Computing methodologies → Computer vision; Language
resources; Computer vision representations.
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1 INTRODUCTION
In the rapidly evolving field of computer vision, the comprehen-
sion and interpretation of facial data are vital for various practical
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applications. Recent years have witnessed significant progress in
face analysis tasks, driven by deep neural networks with super-
vised learning. However, these supervised models are typically
trained separately [6, 15–17, 52, 65] using manually annotated la-
bels tailored for specific tasks, which imposes limitations on their
capability to learn generalized facial representations.

In contrast to traditional manual labeling, recent efforts have
explored an alternative approach to learning image representa-
tions directly from raw text data [20, 31, 44, 44] collected from the
Internet. Notably, these studies have demonstrated that a simple
pre-training task, involving the prediction of which caption corre-
sponds to a given image, is an efficient way to learn generalized
visual representations. As a result, this unique approach empowers
the model for zero-shot transferability to various downstream tasks.
In addition, a critical ingredient in these image-text models is the
utilization of large-scale image-text data, necessitating millions of
image-text pairs.

However, when it comes to the domain of facial analysis, the
effectiveness of pre-training with natural language supervision is
relatively unexplored, largely due to the absence of datasets de-
signed specifically for this purpose. Although several pioneering
efforts [3, 4] have been made to learn face representation from text
descriptions, they still face some challenges. For instance, Talk2Face
[33] aims to create a face-text dataset by converting image labels
into textual descriptions, but these descriptions can only provide
limited information. Similarly, LAION-Face [62], while promising,
is built by filtering face-related pairs from a large openly available
image-text dataset. However, it only focuses on detecting the pres-
ence of human face in images and does not check whether text is
related to faces, which limits the relevance of the data from the
perspective of the face domain.

To advance generalized facial representation learning with natu-
ral language guidance, we introduce FLIP-80M: a large-scale visual-
linguistic dataset for Facial Language-Image Pretraining with over
80 million face-text pairs. Instead of collecting face images and
texts from scratch, FLIP-80M is constructed based on the Large-
scale Artificial Intelligence Open Network (LAION-5B) [49] and
integrated with the latest AI-generated content (AIGC) models. To
filter face-related pairs, we employ a mixture of automatic methods
from both visual and linguistic perspectives, including face detec-
tion and face caption classification. Additionally, we incorporate
large language model (LLM) to enhance the text descriptions and
use large language-vision model (LVM) to augment the dataset with
richer text captions and higher-resolution images. To the best of
our knowledge, FLIP-80M stands as the largest face-text dataset to
date.

To validate the value of FLIP-80M, we use contrastive learning
objectives to train image and text representations initialized with
CLIP weights, namely FLIP. We extensively evaluate it on 10 facial
downstream tasks across different scenarios including face attribute
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classification, face parsing, and face alignment. We measure the
performance through zero-shot transfer and linear probing, with
our results consistently surpassing other image-text baseline mod-
els (CLIP[44], FaRL[62], DataComp[14]). Moreover, our models also
outperform previous task-specific supervised models. To further
explore the impact of datasets on model performance, we also pre-
train from scratch using different datasets including our FLIP-80M,
LAION-Face[62] and CC12M[7]. On downstream tasks, the model
trained by FLIP-80M can achieve better results, which suggests
that our data has better quality (relevance and richness) in the face
domain. The main contributions of this work can be summarized:

• We provide an extensive face-text dataset containing over
80 million paired instances, which is 3 times larger than
currently available LAION-Face dataset. We also propose
classification based text filtering and LLM based denoising
to make the fine-grained linguistic description much more
relevant with the paired face images, which offer a valuable
resource for future research in face-related tasks.

• We propose a novel AIGC data construction pipeline, which
serves as a high-quality data augmentation method, abla-
tion study justifies the effectiveness of such augmentation.

• We validate our dataset’s effectiveness by training the FLIP
model and demonstrating its superiority over other image-
text models, i.e. state-of-the-art performances in tasks such
as face attribute classification, face parsing, and face align-
ment, are achieved. CLIP models trained from scratch using
our dataset also shows better performance than that trained
using other face-text datasets.

2 RELATEDWORK
2.1 Face Datasets
Conventional Datasets. Traditional face analysis datasets are typ-
ically constructed with a task-centric approach, where face images
are manually labeled with predefined task labels such as age, race,
gender, expression, and other facial attributes [8, 22, 38, 41, 42]. We
have summarized several datasets from different face analysis tasks
in Table 1. For conventional approach, each dataset is customized to
specific facial task, making them less suitable for training general
facial representation models.

The Apple television may or 
may not come in 2014.

The 25+ Best Acting 
Resume Template 
Ideas On Pinterest

$89 -- Wakeboarding 
Lessons on the Fox River, 
Reg. $209

Figure 1: Examples of ineffective face image and text pairs.
Although faces appear in the images, the text descriptions
are unrelated to the faces.

Face-Text Datasets. To establish a connection between natural
language and facial images, recent efforts, as summarized in Table

Table 1: Existing face domain datasets. The upper section
presents conventional labeled datasets, and features, while
the lower section highlights face-text datasets.

Dataset Samples Supervision

CelebA [38] 203k 40 facial attributes
AffectNet [41] 400k 8 facial expressions
FS2k [12] 2k 24 features depict diverse scenes
ExpW [60] 92k 7 facial expressions
CACD [8] 163k age of 2,000 celebrities
IMDB-WIKI [45] 523k age and gender
FairFace [22] 101k race, gender, and age

FFHQ-Text [64] 8k manually annotated text
MM-CelebA-HQ [28] 300k text generated by syntax tree
CelebAText-HQ [51] 150k manually annotated text
Talk2Face [33] 1M collection of datasets
LAION-Face [62] 20M text-image pairs form Internet
FLIP (ours) 83M text-image pairs form Internet

1, have introduced datasets consisting of images paired with corre-
sponding textual descriptions [28, 33, 64]. However, these datasets
face limitations in terms of diversity and scalability due to their rule-
based design and heavy reliance on manual annotations. Closely
related to our work is the recent LAION-Face dataset [62], which
extracts a subset of 20 million samples containing face images from
the LAION-400M dataset [50]. Nonetheless, as illustrated in Figure 1,
LAION-Face concentrates detecting the presence of human face
in images without taking text descriptions into account, leading
to a large number of samples unrelated to the face domain. In this
work, we adopt a mixed-method approach that filters face-related
pairs from both visual and linguistic perspectives. This includes
face detection, face caption classification, text de-noising, and AIGC
augmentation. As a result,we are able to obtain data with stronger
relevance and richness in the face domain, which has potential to
promote face representation learning.
DataCreation. In computer vision community, constructing datasets
often relies on manual annotation or supervised models to generate
data labels. However, these approaches are limited by human labor
costs and the model’s inherent biases, leading to limitations in the
quality and diversity of the resulting datasets. To address this issue,
CLIP [44] utilizes naturally occurring image-text pairs collected
from the Internet as supervisory signal. It greatly expanded the
scale of the dataset and endowed the model with multimodal ca-
pabilities in both vision and language. Publicly available datasets
like Laion-5B[49], CC12M[7] and DataComp[14] greatly stimulate
research in this area. Nevertheless, due to the varying quality of
these Internet-native image-text pairs, such data are mainly used
for weakly supervised learning.

More recently, researchers have been leveraging large language
models (LLMs) to construct datasets for instruction fine-tuning
automatically. For example, Wang et al. [56] utilizes random seed
topics to guide the model in generating question-answer pairs. In
the multi-modal domain, ShareGPT4V [9] and LLAVA [35] em-
ploy vision-language models (VLMs) to annotate images. These
approaches typically start with a fixed image dataset and use seed
questions to generate image-text pairs with text conversation. How-
ever, self-instruct-based methods are often limited by the diversity
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Skeptical senior man with 
glasses looking at you.
Skeptical senior man with 
glasses looking at you.

Word2Vec
keywords

smile

laughgrin

beamsimper

Face Caption Classifier

BERT
classifier

LAION-5B

Face Detector

2 face0 face

Skeptical senior man with 
glasses looking at you.Text De-noising

text input

Skeptical senior man with 
glasses looking at you.
Skeptical senior man with 
glasses looking at you.
A large bunch of green 
flowers in a field.

FLIP-80M

AIGC Augmentation

Text
Recaption

text output

Image
Generation

gpt3.5

Figure 2: Overview of the FLIP-80M dataset construction pipeline. The original data undergoes several processes, including face
detection, face caption classification, text denoising, and AIGC augmentation, resulting in a total of 83 million face-text pairs
(including 1 million AIGC samples).

of the seed topics. Although the V/LLMs are able to generate dif-
ferent conversations, it is still constrained by the distribution of
the original seeds. Moreover, previous methods primarily focus on
generating (recaption) text based on given images, without redraw-
ing the images. In this paper, we propose a AIGC-augmentation
pipeline, which simultaneously generates both text and correspond-
ing images while constraining the distribution using natural sam-
ples.

2.2 Facial Vision-Language Representation
Learning

In order to learn more transferable visual models, recent models
[18–20, 44] have made a large step forward in multimodal learning
with large-scale image-text data. The core idea is to learn perception
from supervision contained in natural language with contrastive
objectives. After extensive pre-training, they are capable of associ-
ating visual concepts with natural language, facilitating zero-shot
transfer to various downstream tasks. However, the specific impact
of image-text pre-training in the face domain remains largely un-
explored. While pioneering approaches have made attempts, there
are still limitations. Talk2Face [33] introduces a general genera-
tive framework that unifies various tasks in a unified sequence-to-
sequence format. However, it falls short in accurately representing
faces, as texts are mainly converted from face labels. FaRL [62]
attempts to learn facial representations by combining contrastive
learning and masked image modeling, leveraging natural language
supervision. In this work, we aim to explore the impact of data qual-
ity (face-domain relevance and richness) on face representation
learning. We use vanilla CLIP framework to train FLIP model with
our proposed dataset, the experimental results reveal its superiority
in performance, highlighting the value of FLIP-80M in the face
domain.

3 FLIP-80M DATASET
In this section, we present a comprehensive methodology for con-
structing our extensive and text-aligned human face dataset. Specif-
ically, we filter face-related pairs from the LAION-5B dataset by

employing a combination of techniques from both visual and lin-
guistic perspectives. In addition, we conduct a thorough analysis
of the distribution and quality of our dataset, and compare it with
existing related works. Notably, the meticulously curated FLIP-80M
dataset represents the largest image-text dataset in the human face
domain.

3.1 Construction Methodology
Overview. LAION-5B [49] is used as our data source, which is a
publicly available dataset extracted from the Internet and filtered
using the CLIP model. Our focus is specifically on English language
text, which contains 2.3 billion samples. We design a pipeline to
build our dataset from the raw data, involving the following steps:
Visual Filtering for Face-Relevant Images. To ensure the in-
clusion of visually relevant face images, we utilize the RetinaFace
[10] detector to identify images containing human faces. Following
LAION-Face, we selectively collect samples from LAION-5B with
detection scores surpassing 0.9, resulting in approximately 200 mil-
lion face-text pairs. This ensures a high-quality starting point for
our dataset.
Textual Filtering for Face-Relevant Descriptions. We then
train a text classifier to obtain textual descriptions associated with
human faces. The initial step involves training a Word2Vec [40]
model using text descriptions gathered by a face detector. We then
specify 12 words that are strongly associated with human faces,
i.e. “smile”, “nose”, “eyes”, “mouth”, “cheek”, “sad”, “angry”, “upset”,
“scared”, “surprised”, “eyeglasses”, “earrings”. By manual verification,
texts containing these words have a higher probability of describ-
ing human faces. To broaden our exploration, we use the trained
Word2Vec to find the top 10 nearest neighbors for each seed word,
and subsequently extracted the 3 nearest neighbors for each of these
resulting words, yielding a total of 360 words. After eliminating
duplicates and conducting manual screening, we end up with a list
of 155 words that are relevant to face descriptions. A word cloud of
these keywords is shown in Figure 4.

Using these keywords, we recall the text in the pairs containing
face images as positive samples, then randomly sample from the
LAION-5B dataset as negative samples. We collect a total of 50,000
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A little girl in a white 
dress is eating ice 
cream.

Senior beautiful grey-haired woman wearing 
casual sweater and glasses over white 
background thinking looking tired and bored 
with depression problems with crossed arms.

James DeGale insisted he is in great 
condition ahead of his homecoming 
fight on Saturday

Amina Mucciolo has a smile that lights up any room 
and a personality that keeps you smiling, too.

Shahid Kapoor poses for a photograph 
during the promotion of  'Teri Meri 
Kahaani' in Mumbai

Johnny Majors, former Tennessee and Pitt 
coach, dies at 85

Cheerful young 
lady posing in blue 
jeans and red 
blouse photo

Maya high neck midi tulle 
dress with tonal delicate 
sequins

Celebs attend Alesia Raut and 
Siddhaanth Surryavanshi's
starry wedding reception

Young girl and young 
boy sit in studio 
portrait

(a) Samples obtained from Internet (b) Samples generated from AIGC augmentation

A business professional of Black 
descent, donned in a pristine white 
suit, beams with a smile …
background displays his mansion.

A young woman is wearing a black 
leather jacket … Her hair is in a 
bun and she is wearing sunglasses. 
She is walking down the street …

The man had a round face with 
salt-and-pepper hair and a well-
groomed beard … He sat with his 
hands on his knees…  portrait style

This is an oil painting. The Asian 
woman had a gentle face, with soft 
features and a kind expression that 
made you feel instantly at ease.

A young woman is wearing a 
large-brimmed straw hat … she has 
long brown hair and light makeup. 

A middle-aged man wearing a 
black suit and a brown tie … has 
square jawline and piercing eyes.

A handsome young man wearing a 
shirt and jacket in a room, … black 
and white photo.

The girl had an angelic face, with 
rosy cheeks and a sweet innocence 
that made her impossible to resist.

Figure 3: Data examples from FLIP-80M. (a) Samples obtained from Internet. (b) Samples generated from AIGC augmentation.

Figure 4: Word cloud of all keywords used for recalling posi-
tive samples.

samples, ensuring a 1:1 ratio of positive to negative samples. These
samples are then used to fine-tune a BERT [24] text classification
model. We use the classifier to filter the pairs obtained in the previ-
ous step. Any samples with text scores higher than 0.5 are included,
resulting in a total of 82 million pairs.
Text Denoising with Language Models. Given that our data is
sourced from the Internet through Common Crawl, it often includes
irrelevant noise, such as gallery tags, HTML tags, escape symbols,
and so on, which lacks semantic relevance. To address this, we
employ a large language model (gpt3.5-turbo) for text denoising.
Specifically, we instruct LLM with a combination of system prompt
and few-shot examples. In the system prompt, we ask the language
model to act as a text correction engine to optimize the quality of
the input text. Followed by 3-shot examples and user input, the
model is expected to directly output refined text. In this way, we sys-
tematically eliminate extraneous and noisy textual elements. This
process significantly enhances the overall quality of our dataset.
AI-Generated Content Augmentation.

To further improve data quality, we design an AIGC-based data
augmentation process aimed at constructing high-definition and
richly described facial image-text samples. Firstly, given an image
randomly sampled from our dataset, we utilize vision-language

model GPT-4 [1] to generate both general and face-specific cap-
tions. These captions are concatenated to form the recaptioned
text description of the image. Then, we use text-to-image gener-
ation model DALL-E 3[2] to generate an 1024 × 1024 resolution
image based on the above caption. The generated text and image
are treated as an augmented sample. The process is illustrated in
Figure 5.

Through this method, we produced 1 million text-image samples.
Compared with the original samples, these samples feature richer
text description and higher image definition, but more significantly,
they show stronger image-text correlation. It serves as a high-
quality subset of FLIP-80 which can used at a later stage of training
to boost model performance.

Previous self-instruct AIGC data augmentation pipelines [36, 55]
mainly use a list of seed topics or questions to generate new samples,
which has limited diversity. In our method, we directly sample from
naturally distributed images and use the AIGC tool to generate
brand new samples that are completely different from the original
samples, which enriches the diversity.

A young Asian woman is wearing a 
brown straw hat. She has long 
brown hair and is looking down 
with a sad expression on her face…

Original Sample Augmented Sample

Summer Lovely Women 
Straw Bowler Derby Hat 
All-Match Summer

Im
age

G
eneration

Recaption

Facial
Caption

General
Caption

Figure 5: Illustration of the AIGC-based augmentation
method. For an original sample, we first recaption the gen-
eral and facial text descriptions, and then the descriptions
are used to generate new image.
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3.2 Data Analysis
Quality. We evaluate the quality of our data construction method-
ology from several perspectives. For the face detector, we employ
the state-of-the-art RetinaFace method, which achieves an accuracy
of 99.4% on the LFW dataset, which is sourced from real-world
scenes, and the accuracy of human is only 97.5%. For the face cap-
tion classifier, we evaluate it on the test sets of MM-CelebA [28]
and FFHQ-text [64], our classifier demonstrated an accuracy of
99.5% and 97.1%, respectively. For text denoising, we removed 9.5%
of characters, and used the GPT2-large model to evaluate the text
perplexity of the dataset. The results suggest that our denoising
reduced the text perplexity from 88.5 to 68.6 on average (lower is
better).
Statistics. In total, we collected 83 million text-image pairs. The
mean length of text is 85.1 characters, 15.6 words. We perform
statistics on the distribution of images, including age, race, and
the number of faces contained in each image, and the results are
shown in Figure 6. It can be seen that more than half of the faces are
predicted to be between 20 and 29 years old. We speculate that this
is because people in this age group are more active on the Internet
and therefore provide more data. For race classification, white and
black people account for more proportion. This is because only
English texts are considered in the dataset, and English speakers
from other races account for less. Some examples of FLIP-80M are
shown in Figure 3.
Data Release.We release FLIP-80m dataset with two subsets. (1)
82 million text-image pairs crawled from the Internet, with dif-
ferent image resolutions. (2) 1 million of AIGC-based text-image
pairs with a fixed 1024 × 1024 resolution. Metadata in the dataset
contains the following fields: (1) The URL of the image. (2) The text
description. (3) Keywords of text description, which can be used for
clustering or retrieval. (4) Height and width of the image. (5) NSFW
tag. Following LAION-5B, our data is released under CC-BY-4.0
license. For the AIGC-augmented subset, since the data is generated
using commercial AIGC APIs, we are able to claim ownership of
the data and release it under the CC-BY-4.0 license.
Safety. For the safety of dataset, we directly follow LAION-5B’s
pornographic and sexualized content classification (NSFW). 5.4% of
images are detected as NSFW, which can be filtered out by a user
with the NSFW tag.

4 EXPERIMENTS
In this section, we conduct experiments to evaluate the effective-
ness of our proposed dataset. In the experiment, we use contrastive
learning objectives [19] to train FLIP models initialized with CLIP
weights. Then, we evaluate on 10 different downstream tasks cover-
ing face attribute classification, face alignment and face parsing. For
ablation of training dataset, we also compare models pre-trained
from scratch with the same hyperparameters using different data
sources.

4.1 Training FLIP
TrainingObjective.We conduct facial language-image pre-training,
denoted as FLIP, for generalized facial representation learning. Fol-
lowing CLIP [44], we adopt a contrastive objective to learn a simi-
larity representation between text and face image within a batch of

(a) Distribution of ages in images

(c) Distribution of the number of faces in images

(b) Distribution of races in images

Figure 6: Overview of the statistics for our proposed dataset,
detailing distributions across age, race, and the number of
faces in images.

𝑁 pairs {𝑇, 𝐼 }. Specifically, the face images and texts are encoded
using two transformers [11, 53] to extract feature representations,
denoted as 𝐹𝑇 = {𝑓 𝑇1 , 𝑓 𝑇2 , ..., 𝑓 𝑇

𝑁
} and 𝐹 𝐼 = {𝑓 𝐼1 , 𝑓

𝐼
2 , ..., 𝑓

𝐼
𝑁
}. The op-

timization objective aims to increase the cosine similarity of paired
image and text features and decrease it for non-paired features. The
loss function comprises the following two components:

𝐿𝐼 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑐𝑜𝑠 (𝑓

𝐼
𝑖
,𝑓 𝑇
𝑖
)∑𝑁

𝑗=1 𝑒
𝑐𝑜𝑠 (𝑓 𝐼

𝑖
,𝑓 𝑇
𝑗
)

(1)

𝐿𝑇 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑐𝑜𝑠 (𝑓

𝑇
𝑖
,𝑓 𝐼
𝑖
)∑𝑁

𝑗=1 𝑒
𝑐𝑜𝑠 (𝑓 𝑇

𝑖
,𝑓 𝐼
𝑗
)

(2)

Architectures. For fair comparison, we implement our model fol-
lowing prior works [44, 62]. Specifically, the text encoder is based
on Transformer [53] and has an input length of 77 tokens. For the
image encoder, we leverage different Vision-Transformer [11] mod-
els, including ViT-B/32, ViT-B/16, and ViT-L/14, each operating at
a resolution of 224 × 224. Detailed model configurations are shown
in Table 3

Themodels receive 224×224 resolution image as input and divide
them into patches according to the frame size. For example, Vit-
B/16 splits an image into 14×14 patches. In addition, a CLS token is
placed before the input sequence as a global image representation,
resulting in a total of 197 patches.
Hyperparameters. In the main experiment, our FLIP models use
CLIP weights as initialization and post-train for 3 epochs with
FLIP-80M. AdamW [39] with 𝛽1 = 0.9, 𝛽2 = 0.999 is employed for
optimization. The learning rate is initialized with 2𝑒−5 and batch
sizes configured as 1,760 / 876 / 400. In the ablation study, we pre-
train ViT-B/16 FLIP from scratch, using 10 million samples from
different datasets and trained for 5 epochs. We use TencentPretrain
[61] as our framework, and the pre-trained weights will also be
released in the HuggingFace format.
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Table 2: Experiment results on face attribute classification tasks using linear probe and zero-shot evaluation.

Pre-training Settings Linear Probe Zero-Shot Performance

Method Architecture Accuracy (%) ↑
FS2K FairFace RAF-DB AffectNet ExpW CelebA

DataComp [14] ViT-B/32 82.85 54.22 15.42 15.25 9.790 67.02
ViT-B/16 87.21 67.61 14.34 16.98 6.243 63.86

CLIP [44] ViT-B/32 87.69 76.72 29.01 27.70 16.59 71.15
ViT-B/16 87.02 77.76 26.86 31.85 12.30 67.38

FaRL [62] ViT-B/16@16 87.25 75.89 38.17 25.98 11.16 71.59
ViT-B/16@64 86.83 75.95 33.77 24.53 12.88 44.49

FLIP (ours)
ViT-B/32 87.72 76.06 52.02 30.85 17.51 75.81
ViT-B/16 87.79 77.78 61.11 33.60 18.25 75.99
ViT-L/14 88.78 78.51 61.31 35.60 19.48 72.18

Table 3: Configurations of FLIPmodels. V: vision; L: language.

Architecture V/L-Layers Hidden Size V-patches L-tokens

ViT-B/32 12 / 12 512 / 768 50 77
ViT-B/16 12 / 12 512 / 768 197 77
ViT-L/14 24 / 12 768 / 1024 257 77

4.2 Face Attribute Classification
Dataset. Face attribute classification aims to predict various at-
tributes (like gender, age, race, and hair color) from a given face
image. We assess our method’s performance on six datasets, each
offering unique challenges and characteristics. CelebA [38] is a
large dataset with over 202K face images, each annotated with
40 attributes. FS2K [13] is a high-quality Facial Sketch Synthesis
dataset, comprising 2,104 image-sketch pairs that span three sketch
styles and encompass annotations for six facial attributes. FairFace
[23], a race-balanced dataset, includes 108,501 face images anno-
tated with information on race, gender, and age groups. RAF-DB
[32], a large-scale facial expression database, offers around 30K
diverse facial images annotated with seven basic emotions and 12
compound emotions. AffectNet [41], with approximately 0.4 million
images, provides manual labels for eight facial expressions. Finally,
ExpW [60] is a dataset tailored for facial expression recognition,
featuring 91,793 faces labeled with seven basic expressions. This
diverse collection of datasets allows for a comprehensive evalu-
ation of our approach across various face attribute classification
scenarios. Note that we adhere to the original train and test splits,
with the exception of ExpW, where we utilize the entire dataset for
zero-shot evaluation due to the absence of a predefined split.
Experimental Setup. Inspired by Ikezogwo et al. [19], Radford
et al. [44], our experimental design incorporates two evaluation
approaches. Firstly, we apply linear probes to assess the model’s
performance on the FS2K and FairFace datasets. Secondly, we con-
duct zero-shot learning experiments on the remaining datasets.
For linear probes, we extract image features from the vision trans-
former of our FLIP and subsequently train a single linear classifier
for attribute classification, following the methodology outlined in
CLIP [44]. For zero-shot learning, we calculate the cosine similarity
between image embeddings and possible text embeddings, then
obtain the probability distribution via a softmax. Specific prompt

templates such as “a photo of a face with {label} expression” are uti-
lized to extract text embedding for RAF-DB, AffectNet, and ExpW
dataset. In the case of CelebA, we employ “a photo of a face with
{attribute}” and “a photo of a face without {attribute}” as the tem-
plates. Our evaluation is attribute-specific and we present the mean
accuracy for each dataset. In addition, all the images are resized to
224 × 224 in our experiments.
Results. The outcomes are displayed in Table 2. As we can see,
our models achieve superior performance. In the comparison of
models with the same architecture (e.g. ViT-B/16), our model shows
better performance. In addition, our models perform noticeably
better on zero-shot setting, which mainly benefit from the fine-
grained description of face attributes in our dataset. These results
demonstrate the effectiveness of our dataset in enhancing facial
feature learning, positioning it as a valuable resource for advancing
facial attribute classification.

4.3 Face Alignment
Dataset. Face alignment is a task to regress 2D face landmark
coordinates in a given face image. We leverage two widely used
datasets for evaluation: AFLW-19 [66] contains 20,000 training
images and 4,386 testing images, annotated with 19 landmarks;
300W [46–48] includes 3,837 training images and 600 testing images,
each annotated with 68 landmarks.
Experimental Setup. In line with FaRL [62], we train a head on
top of our FLIP model to achieve face alignment. To assess the
few-shot and full-shot performance of various models, we conduct
training with 1%, 10%, and 100% of the training data. The data split
also follows FaRL’s setting. We represent groundtruth landmark
points as Gaussian heatmaps with a size of 128 × 128, normalized
to a range of 0 to 1. The head is trained with a soft-label cross-
entropy loss, and UperNet [59] is utilized to output the heatmap
logits. Evaluation is conducted using the normalized mean error
(NME) as the metric.
Results. The results, as presented in Table 4, consistently highlight
the superiority of our model, FLIP𝐿/14, across different portions of
the training data. Additionally, our approach outperforms models
specifically designed for face alignment tasks on both AFLW-19
and the 300W dataset, as demonstrated in Table 5 and 6.
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Table 4: Face alignment results on AFLW-19 and
300W datasets, evaluated using NME𝑖𝑛𝑡𝑒𝑟 − 𝑑𝑖𝑎𝑔 ↓ and
NME𝑖𝑛𝑡𝑒𝑟 − 𝑜𝑐𝑢𝑙𝑎𝑟 ↓ as metrics, respectively. ↓means lower
is better.

Method AFLW-19 300W
1% 10% 100% 1% 10% 100%

DataComp𝐵/16 [14] 1.40 1.15 1.01 4.74 3.51 3.10
CLIP𝐵/16 [44] 1.30 1.11 0.995 4.18 3.42 3.08
FaRL𝐵/16 [62] 1.35 1.15 0.991 4.25 3.42 3.12

FLIP𝐵/32 1.38 1.18 1.04 4.79 3.67 3.29
FLIP𝐵/16 1.30 1.12 0.987 4.27 3.41 3.07
FLIP𝐿/14 1.25 1.09 0.973 4.02 3.29 2.99

Table 5: Comparison with state-of-the-art face alignment
methods on two AFLW-19 test sets: Full set and Frontal sub-
set.

Method NME𝑖𝑛𝑡𝑒𝑟−𝑑𝑖𝑎𝑔 ↓ NME𝑏𝑜𝑥 ↓ AUC7
𝑏𝑜𝑥 ↑

Full Frontal Full Full

ATF [27] 1.55 - - -
LUVLi [25] 1.39 1.19 2.28 68.0
MHHN [54] 1.38 1.19 - -
DTLD+ [29] 1.37 - - -
SHR-FAN [5] 1.31 1.12 2.14 70.0

LAB (w/ B) [57] 1.25 1.14 - -
DataComp [14] 1.01 0.876 1.432 80.0

FaRL [62] 0.991 0.851 1.402 80.4

FLIP𝐵/32 1.04 0.894 1.47 79.5
FLIP𝐵/16 0.987 0.854 1.396 80.4
FLIP𝐿/14 0.973 0.842 1.376 80.7

Table 6: Comparison with state-of-the-art face alignment
methods on three 300W test sets: Common subset, Challenge
subset, and Full set.

Method NME𝑖𝑛𝑡𝑒𝑟−𝑜𝑐𝑢𝑙𝑎𝑟 ↓
Common Challenge Full

PIPNet [21] 2.78 4.89 3.19
SLPT [58] 2.75 4.90 3.17
FaRL [62] 2.69 4.85 3.12
HIH [26] 2.65 4.89 3.09

DataComp [14] 2.70 4.75 3.10
CLIP [44] 2.69 4.68 3.08

RePFormer [30] - - 3.01
SPIGA [43] 2.59 4.66 2.99

FLIP𝐵/32 2.89 4.91 3.29
FLIP𝐵/16 2.68 4.66 3.07
FLIP𝐿/14 2.62 4.51 2.99

4.4 Face Parsing
Dataset. Face parsing is a task to predict per-pixel labeling of face
images. We utilize two widely used datasets for this task: LaPa [37]
and CelebAMask-HQ [28]. LaPa comprises over 22,000 images, with
18,176 designated for training and 2,000 for test. Each image is anno-
tated with 11-category pixel-level labels. CelebAMask-HQ consists
of around 30,000 facial images, with 24,183 allocated for training

Table 7: Face parsing results on CelebAMask-HQ and LaPa,
with F1 scores (%) ↑ as evaluation metrics. ↑means higher is
better.

Method CelebAMask-HQ LaPa
1% 10% 100% 1% 10% 100%

DataComp𝐵/16 [14] 81.18 85.47 87.54 87.79 90.66 91.91
CLIP𝐵/16 [44] 82.18 85.73 87.75 88.13 90.91 92.21
FaRL𝐵/16 [62] 81.50 85.10 86.72 88.21 90.91 92.32

FLIP𝐵/32 77.52 81.78 84.38 83.77 87.23 88.48
FLIP𝐵/16 82.25 85.74 87.80 88.47 90.94 92.18
FLIP𝐿/14 83.32 86.80 88.41 89.11 91.44 92.46

and 2,824 for test. Each image in CelebAMask-HQ is annotated with
a 19-category label map.
Experimental Setup. Similar to the FaRL’s training and test set-
tings [62], we train a head on top of our FLIP model to achieve face
parsing. The non-cls tokens on each layer of FLIP are reshaped into
a 2D feature map (14 × 14) and transformed into multiple feature
maps using UperNet [59] and a 1 × 1 convolution. AdamW with a
learning rate 1e-3 and weight decay 1𝑒−5 are used for the optimiza-
tion. We also use Tanh-warping [37] to balance the performance
across inner facial components and the hair region. F1 scores of
facial components are used to measure the performance [37, 52].
Results. We also evaluate the few-shot and full-shot performance
of various models by conducting training with 1%, 10%, and 100% of
the training data. The results are shown in Table 7. Our larger model,
FLIP𝐿/14, consistently outperforms CLIP, DataComp, and FaRL
by a considerable margin. Moreover, our smaller model, FLIP𝐵/16,
demonstrates superior performance inmost cases. These results sug-
gest that the model’s effectiveness extends across various training
scenarios, showcasing its capacity to learn robust and generalized
facial features.

4.5 Comparison of Visualized CAMs
We conduct a comprehensive comparison of the visualized Class
Activation Maps (CAMs) from FLIP, FaRL, and CLIP, employing the
CLIP-ES framework [34], based onGradCAM [63]. The featuremaps
are corresponding to the layer preceding the final self-attention
layer in the Vision-Transformer. Figure 7 presents the generated
CAMs from different models. Notably, FLIP demonstrates superior
accuracy in localizing facial areas through text queries. For instance,
in the context of hair, FLIP’s CAM comprehensively covers the
entire hair region, outperforming other models that only capture a
portion. Similarly, in the example involving earrings, CLIP activates
the entire ear, while FLIP precisely identifies the position of the
earring. These results demonstrate the potential of our model to
learn more nuanced and detailed facial features.

4.6 Ablation Study
In previous experiments, we have compared the performance of
the FLIP model. However, since pre-training involves complex pro-
cesses and huge consumption of computing resources, it is difficult
for us to reproduce all models from scratch under the same circum-
stances. To eliminate the impact of different pre-training settings
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Figure 7: Visualization of Class Activation Maps (CAM) gen-
erated with different text queries.

Table 8: Ablation experiment using different datasets to pre-
train image and text contrastive models from scratch. Aug:
AIGC Augmented subset.

Dataset RAF-DB CelebAMask-HQ 300W
Accuracy (%) ↑ F1 scores (%) ↑ NME𝑖𝑛𝑡𝑒𝑟−𝑜𝑐𝑢𝑙𝑎𝑟 ↓

CC12M 14.77 80.54 3.60
LAION-Face 23.04 84.85 3.34

FLIP (w/o Aug.) 25.91 85.34 3.26
FLIP (w/ Aug.) 29.11 85.52 3.26

(for example, FaRL uses additional training targets, CLIP uses larger-
scale distributed training), we set up ablation experiments to train
the models from scratch. It seeks to evaluate the datasets’ influence
on model performance in more detail.

Specifically, we use 10M data sampled from different datasets
for training, including general dataset CC12M [7], face domain
dataset LAION-Face [62], our FLIP-80M w/o AIGC augmentation
and FLIP-80M. The models are randomly initialized and pre-traind
for 5 epochs and then evaluated on representative downstream
tasks.

The results are shown in Table 8. It can be seen that among
models trained with a consistent amount of data, FLIP-80M can
enable the model to achieve better results on downstream tasks.
Moreover, we discover that adding AIGC-enhanced data produces
higher results.

To further explore the impact of dataset quality (image-text
relevance and richness) on model performance, we conduct an
evaluation around data quality. We adopt both human and auto-
mated evaluation. In human evaluation, we divide the text richness
and image-text relevance into 5 levels from the face domain as-
pect. The evaluation criteria and details are shown in the Appendix.
For automatic evaluation, we use CLIP score and text perplexity
(PPL), which are frequently used evaluation metrics of image-text
relevance and text quality.

It can be seen from the results in Table 9 that our proposed
FLIP-80M surpasses the previous related work LAION-Face in
terms of data quality. In addition, the data produced using AIGC-
augmentation obtains much better scores, which indicates that data

Table 9: Evaluation result of image-and-text relevance and
richness in each dataset. Aug: AIGC Augmentation subset.

Dataset Human Eval. Automatic Eval.
Richness↑ Relevance↑ CLIP score↑ Text PPL↓

LAION-Face 2.4 3.0 14.53 115.19
FLIP(w/o Aug.) 2.9 3.2 15.50 68.62
AIGC-Aug. 4.3 4.1 17.02 6.36

with high correlation and richness can boost the performance of
face representation learning.

5 DISCUSSION
Comparison with FaRL. The most related work FaRL[62] primar-
ily focuses on model structure and training methodology, it jointly
learns from contrastive learning and masked image modeling. In
this work, we focus on the importance of data quality. By creating
better quality data, we are able to attain better results while using
the vanilla CLIP training framework. Training data and methodol-
ogy are two key factors that support face representative learning,
FLIP and FaRL concentrate on these two aspects respectively. We
hypothesize that further improvements can be achieved by combin-
ing FaRL’s training method and FLIP-80M dataset, which we leave
for future work.
The benefits of FLIP-80M. Inspired by the scaling law and the
success of large language models, the scaling of model parameters
and data size has gained popularity recently in multi-modal and
computer vision research. These works are supported by large-
scale datasets, and FLIP-80M fills the gap of data resource in the
face domain. Our experiments are limited to face representation
learning due to computational resource constraints, but FLIP-80M
can be applied to a wider range of scenarios. Specifically, high-
quality samples produced by AIGC-augmentation can be utilized for
training face generation, editing, and question-and-answer models.
Limitations. Despite the value of the FLIP-80M dataset for facial
domain research, there are two limitations that need to be consid-
ered. First, FLIP-80M is constructed upon the LAION-5B dataset,
introducing potential biases and imbalances in data distribution. To
mitigate this, we employ a synthesis-based augmentation method.
However, the generated samples constitute only about 1.2% of the
entire dataset, limiting their impact on the overall distribution. Ad-
ditionally, the performance of this augmentation method remains
underexplored due to a lack of comprehensive evaluation methods.

Second, our data processing pipeline incorporates multiple mod-
els, introducing the potential for cumulative errors that may impact
overall data quality. Manual evaluation of the dataset reveals ap-
proximately 6% of samples with false positives, resulting from errors
in the face detection or text classification models.

6 CONCLUSION
This paper presents FLIP-80M, a large-scale visual-linguistic dataset
containing over 80 million face-text pairs. In experiments, we fine-
tune the CLIP model using FLIP-80M, referred to as FLIP. The
performance of FLIP is evaluated in various downstream tasks, high-
lighting the impact of data quality on face representation. Overall,
this work contributes a valuable data source for future research.
Datasets and pre-trained models will be publicly available.
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