
SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding Using
Vision-Language Foundation Models

Edward Ju * 1 Adarsh Kumarappan * 1 Shrujana Kunnam * 1 Raaghav Malik * 1 Dhruv Sheth * 1

Abstract

Understanding how the human brain represents
rich, dynamic visual experiences requires feature
spaces that are both interpretable and decodable
from neural activity. Leveraging large language
models to generate cross-modal embeddings, we
present SYNAPSE (SYstematic Neural Analysis
through Prompt-based Semantic Extraction), a
GPT-4o-based framework for automatic extrac-
tion and categorization of semantically meaning-
ful features from visual stimuli. SYNAPSE gener-
ates interpretable embeddings spanning emotions,
actions, objects, and cinematographic features -
everything from heart-racing tension and joyful
laughter to dramatic close-ups and camera move-
ments - all without manual labeling. We evaluate
our approach by automatically extracting and then
decoding features from single-neuron activity dur-
ing an 8-minute movie clip, using four machine
learning models: logistic regression, a multilayer
perceptron, a long-short term memory network,
and a bidirectional long-short term memory net-
work. From comparison with manual labels, we
find that our automatic labels accurately identify
salient features with a false positive error rate
under 1.5%, and our results show that our frame-
work is reliably able to determine what features
are decodable across models, demonstrating the
viability of our proposed framework in automat-
ically discovering and generating interpretable
representations of dynamic information aligned
with neural activity.

*Equal contribution 1Department of Computing + Mathemat-
ical Sciences, California Institute of Technology, Pasadena, CA,
United States. Correspondence to: Adarsh Kumarappan <aku-
marap@caltech.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Building a mechanistic understanding of how the human
brain processes and encodes complex stimuli remains a fun-
damental challenge in neuroscience. Advances in neural
recording technologies have enabled the acquisition of hu-
man single-neuron recordings to rich, dynamic stimuli, such
as movies (Engel et al., 2005). These naturalistic inputs,
which contain intricate, time-evolving visual, auditory, and
semantic content, present a unique opportunity for studying
brain function in real-world contexts but prove difficult to
characterize and quantify in relation to neural activity.

Current approaches to neural decoding of complex stim-
uli rely on training models on manually defined feature
sets, which often do not capture the full range of relevant
features that drive neural responses. These methods often
require hand-annotated labels or focus on specific stimulus
attributes (e.g., object recognition or face detection) rather
than providing a comprehensive framework for analyzing
multiple feature dimensions simultaneously (Glaser et al.,
2020). Low-dimensional feature spaces are limited in their
generalizability and fail to capture the depth of information
present in naturalistic stimuli, hindering our ability to study
how different brain regions process and integrate various
aspects of real-world experiences.

In this work, we present a framework for analyzing neural re-
sponses to visual stimuli by leveraging large language mod-
els (LLMs) to automatically extract and categorize movie
features. Specifically, we leverage the vision-language ca-
pabilities of GPT-4o (OpenAI et al., 2024) to generate de-
tailed descriptions of movie frames which we convert into
interpretable embeddings, enabling human readability and
consequent neural analysis.

We demonstrate its efficacy by decoding a diverse array
of features, including emotions, actions, shot types, and
scene composition, from single-neuron activity of patients
watching a film clip. Using the extracted features, we train
and evaluate decoding performance of four machine learn-
ing (ML) models: logistic regression, a multilayer percep-
tron (MLP), a long-short term memory (LSTM) network,
and a bidirectional LSTM with attention (BiLSTM with
attention) network. Our tool allows for streamlined recon-

1

SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding

figuration through simple prompt modification to extract
custom features sets and efficiently train diverse models in
neuroscience and broader contexts.

2. Related Work
2.1. Neural Decoding with Naturalistic Stimuli

Early work investigating how the brain represents static
visual stimuli has identified cells in the human medial tem-
poral lobe (MTL) that respond selectively to specific objects,
faces, or people (Kreiman et al., 2000), including single neu-
rons that encode the specific identity of individual stimuli
(Quiroga et al., 2005). More recent studies have turned to
naturalistic stimuli, such as movies, to better capture how
the brain processes information under dynamic conditions.
Intracranial recordings during movie-viewing have revealed
that population-level neural activity encodes high-level fea-
tures such as character identity, scene location, and visual
transitions, which can be decoded with machine learning
models (Gerken et al., 2024). Most of these studies rely
on manual annotations or narrowly trained machine learn-
ing models for object and character recognition, which is
both resource-intensive and limits scalability across varied
contexts. To address this limitation, our work leverages
LLMs to generate generalizable and interpretable embed-
dings directly from visual content, eliminating the need for
hand-annotated labels or task-specific training. This enables
larger and more systematic investigations into how individ-
ual neurons and neural populations represent features of
naturalistic stimuli.

2.2. Deep Learning Methods in Neural Decoding

Deep learning models, particularly recurrent neural net-
works (RNNs), long short-term memory networks (LSTMs),
and transformers, have demonstrated strong performance in
neural decoding tasks requiring temporal sensitivity and ro-
bust feature representation (Zhang et al., 2023). LSTMs
outperform traditional machine learning models in neu-
ral decoding tasks involving temporal dependencies, such
as predicting motor trajectories (Liu et al.), highlighting
their potential for decoding dynamic stimuli such as con-
tinuous movie content. Past research comparing machine
learning models for decoding movie features has shown
that simpler models, such as logistic regression, often per-
form comparably to deep learning models while being less
computationally-expensive (Gerken et al., 2024). This mo-
tivates the application of our framework to various model
architectures, highlighting its flexibility and applicability
across decoding contexts.

2.3. Interpretable Embeddings from Large Language
Models

Recent advancements in LLMs offer a promising alterna-
tive for creating text embeddings, capturing complex rela-
tionships to enable higher quality semantic representations
(Wang et al., 2024) . However, these tools lack interpretabil-
ity, making them challenging for neuroscience where under-
standing the underlying mechanisms of the brain requires
comprehensible feature spaces. The innovation of inter-
pretable question-answer-based LLM embeddings in lan-
guage neuroscience (Benara et al., 2024) provides a frame-
work that we extend to visual stimuli, offering a more gener-
alizable approach for interpreting neural activity. By lever-
aging the multi-modal capabilities of GPT-4o, our approach
enables the generation of comprehensive, structured, and se-
mantically meaningful representations of visual information
for human-interpretable neural analysis.

3. Framework
Our framework is designed to automatically sift through a
large pool of candidate features—drawn from rich, language-
model–generated embeddings—and identify which of those
features are reliably present in single-neuron activity. Rather
than hand-selecting a handful of features for decoding, our
pipeline efficiently evaluates every feature in parallel, flag-
ging only those that achieve above-chance prediction per-
formance, enabling scalable supervised learning from unla-
beled data. Our method consists of the following steps:

1. Automatic Description Generation: We use GPT-
4o via the GPT-4o API for frame-by-frame feature
extraction, enabling structured semantic analysis of
visual content. Frames are sampled, saved as JPEGs,
and processed with prompts configured for concise,
focused API responses. Two tailored prompts are used
for each frame: one to capture surface-level elements
such as objects, actions, and emotions, and another
for deeper narrative and cinematic analysis. These
prompts evolved iteratively to balance structured for-
mats with rich details, ensuring consistent, high-quality
outputs. The resulting natural language descriptions
capture visible scene elements, dynamic movements,
and multi-dimensional emotional indicators, such as
facial expressions, interactions, and mood.

2. Label Extraction: From the generated descriptions,
binary word labels are extracted, capturing relevant
features (e.g., man, tree, car) present in the images. The
labels are systematically organized based on recurrence
patterns (e.g., appearing in at least 10% of the frames).

3. Dataset Construction: The binary word labels are
structurally post-processed through synonym grouping

2

SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding

to build a dataset without requiring manual annotation.
The dataset is stored in an efficient HDF5 format with
features stored hierarchically. Validation and error
handling occur at each step, ensuring data integrity.

4. Model Training: The dataset can then be used in con-
junction with biological data, such as neural activity, to
predict the presence or absence of each concept. This
enables the decoding of semantic information from
biological activity using automated and interpretable
feature embeddings.

4. Evaluation
4.1. Neural Dataset

We use a public dataset from (Keles et al., 2024) consisting
of 16 epilepsy patients undergoing clinical monitoring at
Cedars-Sinai Medical Center. Over 29 sessions, patients
watched an 8-minute black-and-white episode of Alfred
Hitchcock Presents: Bang! You’re Dead while single-unit,
LFP, and iEEG data were recorded from hybrid depth elec-
trodes in medial temporal and frontal areas. This stimulus is
widely used due to its high inter-subject correlation across
cortical regions (Hasson et al., 2009). Neural signals were
acquired at high sampling rates and preprocessed using
spike-sorting and electrode localization.

4.2. Data Processing

We incorporate temporal context and guard against data
leakage by combining two complementary strategies. First,
following the standard “temporal window” approach, each
prediction at frame i includes its preceding (window – 1)
frames as input; we evaluate window sizes of 1, 5, 10, and 20
for all three models (MLP, logistic, and LSTM). Second, be-
cause adjacent movie frames are often nearly identical (e.g.,
a static gun shot spanning many frames), randomly splitting
individual frames can leak information across train/val/test
sets and inflate performance. To address this, we break the
video into contiguous blocks of size 1, 10, 50, 100, 200, 500,
1000, or 2000 frames, then randomly assign entire blocks to
70% train, 15% validation, and 15% test. By training a lo-
gistic regression on human binary labels over 1000 random
splits, we observe that validation and test accuracy stabi-
lize once blocks reach 1000 frames, indicating this block
size best balances leakage prevention with sufficient label
diversity.

Because the prevalence of positive labels varies widely
across word-level features, we also create balanced versions
of each split via oversampling. After dividing into temporal
blocks and assigning them to train/val/test, we identify the
minority class in each set and replicate its samples until
its count matches the majority. When using temporal win-
dows, we oversample entire sequences (frame i through i

+ T – 1) whose terminal label is minority until sequence-
level balance is achieved. This process yields both original
and balanced datasets for every split, ensuring models are
trained and evaluated under comparable class distributions.

4.3. Model Architecture

We train four standard models—logistic regression, MLP,
LSTM, and BiLSTM with attention—to determine whether
each decodable feature’s neural representation is expressed
via linear, nonlinear, or temporal patterns. This allows our
framework to both automatically identify decodable features
and the computational form of their neural representations.
While simpler models like logistic regression help establish
baseline decodability and linear separability of features,
more sophisticated architectures like LSTMs and BiLSTMs
with attention mechanisms are employed to capture potential
temporal integration and complex patterns in neural firing
rates that might align with movie features. Implementation
and architecture details are described in 9.4.

4.4. Assessment Metrics

We evaluate model performance on two separate test sets to
address label imbalance. On a balanced test set, we report
accuracy (overall fraction correct) and balanced accuracy
(average recall across classes). On the naturally unbalanced
set, we use Cohen’s κ, F1 score, AUROC, and PR AUC to
capture chance-corrected agreement, precision–recall trade-
offs, and discrimination ability.

To ensure stability across temporal splits, we run a 3-seed
cross-validation: for each of three random temporal-block
partitions, we train and evaluate the model and then aggre-
gate each metric’s mean and standard deviation.

For statistical validation, we add two circular-shift label
shuffles per seed (random shifts of 2,000–10,000 frames
selected once), yielding six control runs that preserve neu-
ral autocorrelation but destroy feature alignment. We then
compare the real (n = 3) versus control (n = 6) metric distri-
butions using a one-sided Welch’s t-test, computing control
variance by pooling both between-shuffle and within-shuffle
variability, to test whether decoding performance exceeds
chance.

5. Experiments and Results
5.1. Feature Extraction Accuracy

To evaluate the quality of our framework’s feature extrac-
tion, we compared its results against manual annotations
for several of the most frequently occurring labels in our
dataset, including close-up, child, gun, and hat. Overall, the
model achieves strong performance, with particularly high
agreement on visually distinctive features such as hat, which

3

SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding

is predicted with 92.1% accuracy, where most of the errors
are false negatives where hat is present in the background
of the frame but not significant (1).

Across all categories, false positives are rare - typically
under 1.5% and as low as 0.07% for child - suggesting
that GPT-4o’s representations effectively favor perceptu-
ally grounded features and avoid hallucinating extraneous
content. Slight disagreements arise from false negatives,
in which a feature is present in the background of a frame
but not labeled as important by the model. Given the con-
text of neural decoding, this pattern proves favorable: our
framework is designed to identify the most salient aspects
of each frame, mirroring the brain’s tendency to focus on
behaviorally relevant cues.

5.2. Single-Neuron Decoding Performance

To assess how neural signals encode common perceptual
features, we perform binary classification on a subset of
the most cinematically meaningful and commonly extracted
labels of our framework. These include objects and visual
elements (gun, close-up), actions and body states (stand-
ing, holding), and emotional or abstract features (innocent,
happy).

We train four classifiers - logistic regression, MLP, LSTM,
and BiLSTM with attention - to decode the presence or ab-
sence of these features from neural activity. We both report
overall decoding accuracy across selected features, provid-
ing a broad comparison of model performance. While not all
features are equally decodable, some show stronger signal,
particularly those that are more visually prominent and may
be more robustly encoded in neural representations. We then
compare each of these to the controls, showing that close-
up achieves decoding accuracy significantly above chance
across models, with improved performance for nonlinear
and temporal decoding models (Figure 2). This feature’s
high decoding performance highlights the potential of our
framework to capture meaningful neural correlates of high-
level visual concepts. These results further underscore the
flexibility of our framework to different model architectures,
demonstrating its robustness across linear, nonlinear, and
temporal decoding pipelines. Full results, including all p-
values and assessment of other metrics, are described in
Appendix 9.4.

6. Conclusion
In this work, we introduce SYNAPSE, a multi-modal frame-
work that leverages the vision-language capabilities of GPT-
4o to automatically extract interpretable, semantically mean-
ingful features from movie stimuli. By removing the need
for manual annotation, SYNAPSE reduces labor-intensive
labeling and potential annotator bias, while enabling scal-

able and generalizable neural decoding. Our results demon-
strate that certain visually salient features, such as close-up,
can be robustly decoded from single-neuron activity, espe-
cially using nonlinear and temporal decoding models. While
our evaluation focuses on a specific subset of features and a
single dataset, SYNAPSE is inherently extensible to a broad
range of visual concepts, neural modalities, and model archi-
tectures. This flexibility enables researchers to meaningfully
investigate the neural basis of naturalistic perception, con-
tributing to our growing understanding of how the human
brain processes and encodes complex stimuli. Future work
will aim to validate this framework on larger neural datasets
with more complex and diverse visual stimuli, which may
improve decoding performance of extracted feature sets and
further enhance our understanding of human neural repre-
sentation.

7. Impact Statement
This paper introduces a framework for automatically extract-
ing language-based features. By leveraging large vision-
language models to replace manual annotation, SYNAPSE
reduces human bias and enhances scalability in neural de-
coding research. However, we acknowledge that such mod-
els may themselves encode bias from their training data,
and care should be taken when interpreting features in sen-
sitive contexts. Our framework is currently applied post
hoc to publicly available, anonymized human neural data,
but future applications should be developed with careful
consideration to privacy, informed consent, and ethical han-
dling of neural data. We hope our framework enables more
interpretable, ethical approaches to studying human brain
activity.

8. Acknowledgments
We would like to express our gratitude to Kevin J. M. Le,
Geeling Chau, and Dr. Katherine L. Bouman for their in-
valuable mentorship, support, and guidance.

4

SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding

Figure 1: Raster plot comparison of GPT-encoded hat labels with manual labels for movie frames.

References
Vinamra Benara, Chandan Singh, John X. Morris, Richard An-

tonello, Ion Stoica, Alexander G. Huth, and Jianfeng Gao. Craft-
ing interpretable embeddings by asking llms questions, 2024.
URL https://arxiv.org/abs/2405.16714.

Andreas K. Engel, Christian K. E. Moll, Itzhak Fried, and
George A. Ojemann. Invasive recordings from the human brain:
clinical insights and beyond. Nature Reviews Neuroscience, 6
(1):35–47, Jan 2005. ISSN 1471-0048. doi: 10.1038/nrn1585.
URL https://doi.org/10.1038/nrn1585.

Franziska Gerken, Alana Darcher, Pedro J Gonçalves, Rachel
Rapp, Ismail Elezi, Johannes Niediek, et al. Decoding movie
content from neuronal population activity in the human medial
temporal lobe. bioRxiv : the preprint server for biology, 2024.
doi: 10.1101/2024.06.13.598791.

Joshua I. Glaser, Ari S. Benjamin, Raeed H. Chowd-
hury, Matthew G. Perich, Lee E. Miller, and Kon-
rad P. Kording. Machine learning for neural decoding.
eNeuro, 7(4), 2020. doi: 10.1523/ENEURO.0506-19.
2020. URL https://www.eneuro.org/content/7/
4/ENEURO.0506-19.2020.

Uri Hasson, Rafael Malach, and David J Heeger. Reliability of
cortical activity during natural stimulation. Trends Cogn Sci, 14
(1):40–48, December 2009.

Umit Keles, Julien Dubois, Kevin J M Le, J Michael Tyszka,
David A Kahn, Chrystal M Reed, Jeffrey M Chung, Adam N
Mamelak, Ralph Adolphs, and Ueli Rutishauser. Multimodal
single-neuron, intracranial EEG, and fMRI brain responses
during movie watching in human patients. Sci. Data, 11(1):
214, February 2024.

Gabriel Kreiman, Christof Koch, and Itzhak Fried. Category-
specific visual responses of single neurons in the human medial
temporal lobe. Nature Neuroscience, 3(9):946–953, 2000. doi:
10.1038/78868.

Fangyu Liu, Saber Meamardoost, Rudiyanto Gunawan, Takaki
Komiyama, Claudia Mewes, Ying Zhang, EunJung Hwang, and
Linbing Wang. Deep learning for neural decoding in motor
cortex. Journal of Neural Engineering, 19. doi: 10.1088/
1741-2552/ac8fb5.

OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam
Perelman, Aditya Ramesh, et al. GPT-4o System Card, October
2024.

Rodrigo Quian Quiroga, Leila Reddy, Gabriel Kreiman, Christof
Koch, and Itzhak Fried. Invariant visual representation by single
neurons in the human brain. Nature, 435(7045):1102–1107,
2005. doi: 10.1038/nature03687.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan
Majumder, and Furu Wei. Improving text embeddings with
large language models, 2024. URL https://arxiv.org/
abs/2401.00368.

Yuwen Zhang, Zahra M. Aghajan, Matias J. Ison, et al. De-
coding of human identity by computer vision and neuronal
vision. Scientific Reports, 13(1):651, 2023. doi: 10.1038/
s41598-022-26946-w.

9. Appendix
9.1. GPT Feature Extraction Details

Below is the full prompt used for GPT-based feature extrac-
tion. GPT returns a JSON object which is then parsed and

5

https://arxiv.org/abs/2405.16714
https://doi.org/10.1038/nrn1585
https://www.eneuro.org/content/7/4/ENEURO.0506-19.2020
https://www.eneuro.org/content/7/4/ENEURO.0506-19.2020
https://arxiv.org/abs/2401.00368
https://arxiv.org/abs/2401.00368

SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding

Figure 2: Model accuracy comparison across various models and labels. Only a subset of the GPT labels are shown here for
ease of visualization. Our framework allows for the automatic search through a wide range of movie features, and accurately
identifies the neurally decodable features (close-up and centered here).

stored in HDF5 format.

Describe the visual elements in this frame objec-
tively. Focus on:

1. Visible objects

2. Observable actions or movements

3. Emotional indicators including:

- Facial expressions

- Body language

- Character interactions

- Scene mood and atmosphere

- Any visible emotional reactions

Format your response as a valid JSON object with
keys for ’objects’, ’actions’, and ’emotions’. Each
key should have an array of strings as its value. Do
not include any text outside of the JSON object.

Try to be as objective as possible.

For emotions, use only single-word labels, such as
the following: joy, sadness, anger, fear, surprise,
disgust, neutral, calm, excited, tense, relaxed. You
can use multiple labels if appropriate, but stick to
one-word labels.

Important: If there are no people visible in the
frame or no clear emotional indicators, leave the
’emotions’ array empty.

The model returns a JSON object with three primary keys:

{
"objects": ["object1", "object2", ...],
"actions": ["action1", "action2", ...],
"emotions": ["emotion1", "emotion2", ...]
}

In addition, here is another prompt that we used for more
detailed features:

Analyze this frame with the detail and nuance
of a professional film critic, including narrative
context and audience impact. Provide a compre-
hensive analysis of:

1. Visual Composition:

- Framing and camera angles

- Lighting and shadow patterns

- Depth and spatial relationships

- Set design and environmental elements

2. Character and Action Analysis:

- Detailed character descriptions (appearance, cos-
tumes, positioning)

- Precise movements and gestures

- Character interactions and power dynamics

- Background action and ambient movement

6

SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding

- Props and their symbolic significance

3. Emotional and Atmospheric Elements:

- Detailed facial expressions

- Body language and posture

- Character emotional states

- Scene mood and tension

- Interpersonal dynamics

- Symbolic or metaphorical elements

4. Technical Elements:

- Focus and depth of field

- Movement patterns

- Visual effects or notable post-processing

- Frame composition techniques

5. Narrative Context:

- Plot progression indicators

- Scene purpose and dramatic function

- Character development moments

- Story beats and turning points

- Foreshadowing elements

- Scene position in narrative arc

- Relationship to previous/future scenes

6. Audience Experience:

- Expected emotional responses

- Tension and release patterns

- Viewer engagement elements

- Psychological impact

- Key takeaways or realizations

- Memorable or impactful moments

Format your response as a valid JSON object with
the following structure:

{
"visual_composition": {

"framing": [],
"lighting": [],
"spatial_elements": []

},
"character_elements": {

"descriptions": [],
"actions": [],
"interactions": [],
"props": []

},
"emotional_atmosphere": {

"expressions": [],

"body_language": [],
"mood_indicators": [],
"emotional_states": []

},
"technical_aspects": {

"camera_techniques": [],
"composition_notes": [],
"notable_effects": []

},
"narrative_context": {

"plot_progression": [],
"scene_purpose": [],
"character_arcs": [],
"story_position": [],
"foreshadowing": []

},
"audience_impact": {

"emotional_responses": [],
"engagement_elements": [],
"psychological_effects": [],
"key_takeaways": [],
"memorable_moments": []

}
}

Each array should contain detailed string descrip-
tions. Be specific and thorough in your obser-
vations, using professional cinematographic and
critical terminology where appropriate. Consider
both the immediate frame content and its broader
narrative context. If any element is not visible or
applicable, provide an empty array for that cate-
gory.
For narrative elements, analyze how this frame
contributes to the larger story, even if it’s a sub-
tle moment. For audience impact, consider both
immediate emotional responses and deeper psy-
chological effects. Use understanding of story-
telling techniques and viewer psychology to make
informed interpretations.

In addition, we provide the following system prompt to
GPT-4:

You are analyzing frames from the movie de-
scribed below. Use this context to inform your
analysis:

and then input the following summary loaded from a text
file. We determine the scene numbers using a file provided
by our mentors.

This is an 8 minute edited version of a televi-
sion episode of Alfred Hitchcock Presents called

7

SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding

“Bang You’re Dead.” The original version is 20
minutes long. Please use the following descrip-
tion of the movie as context to help annotate the
movie frames.

The episode is about a boy named Jacky who
finds a real gun in his uncle’s suitcase and thinks
it is a toy gun. He loads in a bullet and goes
around pointing the loaded gun at various char-
acters while pulling the trigger. Viewers feel sus-
pense and anxiety thinking that the gun will go
off and kill someone.

The characters in the movie/video clip are:

Jacky: the young boy who carries a real loaded
gun throughout the movie, pointing it at people,
and is at risk of accidentally shooting someone.
He wears a cowboy hat. Friend1: Jacky’s friend
with the striped shirt who shows up at the be-
ginning of the movie with a toy gun that looks
real. Friend2: Friend of Jacky and Friend1. He
only appears in the beginning of the movie and
is hiding behind a tree. Friend1 pretends to shoot
Friend2 with the toy gun. Dad: Jacky’s dad. He
at first dismisses Jacky’s behavior and then helps
ensure that the maid is not shot. Mom: Jacky’s
mom. She initially believed Jacky had a toy gun
but later realizes that Jacky had a real, loaded gun
Uncle: Uncle Rick who has a surprise for Jacky.
Jacky finds a real gun in Uncle’s suitcase and mis-
takes it for his present. Jacky mistook the gun and
bullets to be the present. StoreClerk: LittleGirl:
She tries the mechanical horse ride that Jacky is
riding and insists him to leave. LittleGirlsDad:
Dad initially wants to say no to his daughter but
eventually gives in and tricks Jacky into leaving.
Jacky almost shoots him. Cleo: Maid who Jacky
almost shoots. Other minor characters.

Scene 1:

Friend1 opens the movie with a toy gun that looks
real. Friend1 and Jacky are hiding behind a tree
having a pretend shootout with Friend2 who is
hiding behind another tree. Jacky is wearing a
cowboy hat. Friend1 is wearing a striped shirt and
no hat. Friend1 pretends to shoot Friend2, who is
hiding behind a tree. Friend1 has received a toy
gun that looks real for Friend1’s birthday. Jacky
immediately shows interest in the gun. Jacky is
interested in playing with Friend1’s gun too, but
Friend1 refuses.

Scene 2:

Jacky stands next to his Mom and Uncle. Uncle
talks with Mom. Dad hands Uncle a drink.

Scene 3:

Uncle has a surprise for Jacky and tells him he
will give it to him after the party.

Scene 4: Dad enters the room and hands uncle a
drink. Jacky tells his dad Uncle has a surprise for
him. Dad asks Jacky to unpack for Uncle. Door
closes and Jacky is in the room by himself.

Scene 5: Jacky notices the Uncle’s gun and starts
to play with it. He assumes it is his present. Jacky
takes out bullets and puts them into his pocket. He
places one into the gun and rotates the revolver,
just managing to have the bullet miss the gun’s
exit.

Scene 6: The Uncle speaks about a museum piece.
Jacky pretends to shoot Mom, and she thinks he
is joking. Mom has the strangest feeling that
something is wrong. Dad and Mom ask him to
play outside, and Jacky thanks the Uncle for the
surprise.

Scene 7:

Jacky rides a mechanical horse, pretending to
shoot a stranger. He adds more bullets to the
gun.

Scene 8: Mom realizes Jacky has a real gun. Jacky
thinks the uncle’s revolver he has is a toy.

Scene 9: Dad says he will call the police. Dad,
Mom, and Uncle drive away to find Jacky.

Scene 10: Jacky pretends to shoot more people.
LittleGirl jumps on the horse and wants to ride
it. LittleGirlsDad initially wants to say no to her,
but he gives in and picks Jacky off the horse. He
points the gun at LittleGirlsDad and rotates the
revolver before shooting.

Scene 11: Jacky returns home.

Scene 12: Jacky steps inside and shuts the door
behind him.

Scene 13: Jacky points the gun at Cleo, threaten-
ing to shoot her. Dad throws an object at Jacky
to make him miss Cleo. He takes the gun from
Jacky, and Jacky runs to his Mom shocked. Mom
was relieved that Cleo wasn’t hurt. Dad and Uncle
look at each other in shock.

To ensure output quality and reliability, the pipeline in-
cludes:

• Validation of JSON structure before storage

• Automatic retry mechanisms for failed API calls

• Logging of parse errors and response anomalies

• Regular format verification during checkpointing

8

SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding

To ensure reliable and consistent feature extraction, we im-
plemented several important constraints and guidelines in
our prompting strategy. The prompt explicitly requests rela-
tively objective descriptions in the persona of a movie critic,
reducing potential biases in feature extraction. Emotional
labels are restricted to single-word descriptors, preventing
overly nuanced emotional attributions that could complicate
analysis. The prompt includes explicit instructions to leave
the information empty when no clear indicators are present,
reducing false positives and ensuring annotation reliability
allowing for thorough responses to allow for flexible one-hot
encodings.

Our feature extraction pipeline is implemented as a modu-
lar Python framework that handles the entire process from
video processing to structured data storage. At its core, the
pipeline utilizes OpenCV (cv2) for video frame processing,
GPT-4 Vision within the GPT-4o API for feature extrac-
tion, and HDF5 for efficient data storage and retrieval. The
pipeline processes the video frame by frame. Each sampled
frame is saved as a JPEG image and referenced in the HDF5
output, maintaining a clear link between extracted features
and source frames. Each frame is encoded as a base64 string
and sent alongside our carefully crafted prompt. The API
call is configured with a variable token limit to ensure con-
cise, focused responses while maintaining comprehensive
feature coverage. Our first prompt used a limit of 300 to-
kens, while our (much longer) second prompt used a limit
of 1000 tokens.

The response processing pipeline includes layers of vali-
dation and error handling. It starts by checking API sta-
tus codes for errors, then removes Markdown artifacts like
JSON code block markers using regular expressions. The
cleaned content is parsed as JSON, with unparseable re-
sponses saved as raw content for later review.

Data is stored in a hierarchical HDF5 structure, with each
frame’s data in a separate group labeled by frame num-
ber. Attributes store filenames, and datasets hold extracted
features (objects, actions, emotions). Unicode strings are
converted to UTF-8 bytes, and JSON serialization is used for
lists. To maintain integrity during processing, the pipeline
checkpoints extracted features every 100 frames.

9.2. Neural Data and Experimental Setup

As multiple models of different architectures were used
for decoding, standardization was a critical step to ensure
comparability across models.

9.2.1. TEMPORAL WINDOWS

To aid comparison with LSTMs, we employ a "temporal
window" approach for the MLP and logistic models. Each
window represents how many previous frames are included

as input to the model when making a prediction. Specifically,
for each frame i, we include the previous (window − 1)
frames as input to all three models. We used temporal
window sizes of 1, 5, 10, 20 for analysis.

9.2.2. TEMPORAL BLOCKING

In movies, consecutive frames within a shot exhibit high
temporal correlation (or more simply, they are visually very
similar). For example, in "Bang, You’re Dead," when a
particular angle of a gun is displayed on scene for 2 sec-
onds, many frames identically contain the gun in the same
position. Therefore, the particular train/val/test split used
could drastically affect the model results and lead to an
inaccurate evaluation of the model accuracy. Traditional
random splitting can result in data leakage when similar
frames end up in both training and testing sets, artificially
inflating performance metrics. Therefore, we implement the
following temporal blocking strategy, splitting frames into
70% training, 15% validation, and 15% test sets:

Continuous blocks of frames are kept together during split-
ting, maintaining temporal coherence while reducing data
leakage. We experimented with various block sizes (1, 10,
50, 100, 200, 500, 1000, 2000 frames) to analyze the trade-
off between temporal separation and model performance.
The data is first divided into blocks of the specified size, then
these blocks are randomly assigned to train, validation, and
test sets. This ensures that frames within the same temporal
block remain together.

We aim to identify the block size that can reduce data leak-
age between splits without being so aggressive that some
labels are almost entirely in one split. To determine such a
block size, we train a logistic regression model on the hu-
man binary labels, taking the average and standard deviation
of the percent correct (accuracy) metric over 1000 different
split seeds. As shown in Figure 2, accuracy plateaus after
a block size of 1000, indicating that this block size is ideal
for preventing data leakage while not being too large. We
note that we say similar results with the MLP, corroborating
our choice of 1000 for the block size.

9

SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding

Figure 3: Visualization of random splitting compared to
blocking. Random splitting assigns individual frames to sets
independently, while temporal blocking maintains fixed-size
blocks of consecutive frames.

Figure 4: Logistic model accuracy vs. block size for man
decoding, over 1000 seeds used for randomly assigning
train/val/test to blocks. Note the train accuracy remaining
the same over block sizes (overfitting), but the sharp de-
crease in val/test accuracy as block size initially increases
(data leakage for small block size) and eventual plateauing
(lack of sufficient number of labels in split for large block
size). We choose 1000 as our ideal block size, preventing
data leakage while ensuring some degree of randomness
and sufficient number of labels in split.

9.2.3. BALANCING

The percentage of positive labels varies widely across the
word label features. As such, we balance by oversampling
the minority class:

1. Dataset Loading and Identification of Minority
Class

Let D = {(xi, yi)}Ni=1 be the original dataset, where
yi ∈ {0, 1}.

Identify the minority class:

yminority = argmin
y

|{i | yi = y}|

2. Assigning Blocks to Training, Validation, and Test
Sets
Randomly assign each block Bj to one of the subsets
Train, Val, or Test based on predefined split ratios
(e.g., 70% Train, 15% Val, 15% Test). Ensure that
the block indices are temporally ordered to maintain
chronological integrity.

3. Creating Copies for Balancing
For each subset S ∈ {Train,Val,Test}, create two
copies:

Soriginal and Sbalanced

4. Balancing the Balanced Copies via Oversampling

4.1. Oversampling Without Temporal Windows
For each balanced subset Sbalanced, apply oversam-
pling to the minority class yminority such that:

|yminority| = |ymajority|

This is achieved by replicating blocks from the mi-
nority class until the number of minority samples
equals that of the majority class.

4.2. Oversampling with Temporal Windows
If using temporal windows, ensure that Sbalanced
contains sequences:

{(xi, . . . , xi+T−1, yi+T−1)}

Instead of single vectors (xi, yi).
Oversample sequences where:

yi+T−1 = yminority

to balance the dataset at the sequence level.

5. Finalizing the Balanced and Original Datasets
Define the original and balanced datasets as:

Doriginal = {Trainoriginal,Valoriginal,Testoriginal}

Dbalanced = {Trainbalanced,Valbalanced,Testbalanced}

9.2.4. METRICS

We employ a variety of metrics to account for the unbal-
anced feature labels. Although we evaluate all metrics on
the train, val, and test sets, we make two test sets: one that
is balanced and one that is unbalanced. For the balanced
test set, we compute

10

SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding

• Accuracy: the proportion of correctly predicted labels
out of all predictions. This provides a straightforward
evaluation of overall model performance when the test
data is balanced.

• Balanced Accuracy: Computes the average recall
for all classes, ensuring that performance is measured
fairly even when class distributions are unequal.

For the unbalanced test set, we compute

• Cohen’s Kappa: Evaluates the agreement between
predicted and actual labels, accounting for chance
agreement. Useful for imbalanced datasets where class
proportions may skew simpler metrics.

• F1 Score: The harmonic mean of precision and re-
call, balancing false positives and false negatives. It
is particularly effective for datasets with imbalanced
classes.

• AUROC (Area Under the Receiver Operating Char-
acteristic Curve): Measures the model’s ability to dis-
tinguish between classes across all thresholds. Higher
values indicate better discriminatory power.

• PR AUC (Precision-Recall Area Under Curve): Fo-
cuses on the balance between precision and recall for
different thresholds, especially valuable for imbalanced
datasets where the positive class is of greater interest.

9.2.5. K-SEED CROSS VALIDATION

To ensure robust evaluation of our models’ performance,
we implement a k-seed cross validation strategy with k=3.
This approach provides a more reliable assessment of model
generalization than single-split validation while accounting
for the temporal nature of our data. For each model configu-
ration and feature type, we generate three distinct random
seeds (k=3) for creating different temporal block splits. For
each seed, we create new train/val/test splits while maintain-
ing temporal block structure. Then, we train and evaluate
the model independently for each seed, aggregating results
across all seeds to compute mean performance metrics and
standard deviations. This process helps account for vari-
ance in model performance due to different temporal block
arrangements.

The validation strategy can be formalized as:

Metricsfinal =
1

k

k∑
i=1

Metrics(Modeli) (1)

where Modeli represents the model trained with the i-th
seed’s data split, and Metrics(·) represents our evaluation

metrics (accuracy, F1 score, etc.). This approach provides
more stable performance estimates while capturing the vari-
ance introduced by different temporal block arrangements.

For our experiments, we set k=3 as it provides a good bal-
ance between computational cost and statistical reliability.

9.2.6. STATISTICAL VALIDATION THROUGH CONTROLS

To validate our decoding results, we implement a control
framework that combines k-seed cross validation with mul-
tiple control shuffles. For each of our three cross-validation
seeds, we perform two independent control shuffles of the
binary labels, resulting in a total of nine experimental runs
per word label feature: three for the actual decoding and
six for controls. This design enables statistical comparison
between real and chance-level performance.

The primary control condition implements a temporal shift
in the labels while maintaining the temporal structure of
neural data. Specifically, for each control shuffle, we gener-
ate a random shift value between 2,000 and 10,000 frames
and circularly shift the binary labels by this random amount
using:

ycontrol[i] = yoriginal[(i+ shift) mod N]

where N is the total number of frames. We then maintain
the original temporal structure of neural firing rates.

This approach preserves the temporal autocorrelation struc-
ture of both the neural data and the labels while breaking
their temporal relationship, providing a more stringent con-
trol than random shuffling.

For each feature, we obtain three sets of metrics from the
original data (one per CV seed) and six sets from the controls
(two shuffles per CV seed). We then employ a one-sided
Welch’s t-test to compare these distributions, accounting for
potentially unequal variances:

t =
X̄r − X̄c√

s2r
nr

+
s2c
nc

(2)

where X̄r, s
2
r are the mean and variance of the real decoding

performance across seeds, and X̄c, s
2
c are the mean and

variance of the control performance. The variance of the
control data s2c is approximated by taking the sum of the
variances between control shuffles and between blocking
splits:

s2c = Var
(
{xs}Ss=1

)
+

1

S

S∑
s=1

Var
(
{xs,b}Bb=1

)
(3)

11

SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding

where:

S is the total number of control shuffles,
B is the number of splits in each shuffle,
xs is the average metric for shuffle s,

xs,b is the metric for shuffle s and split b,
Var denotes variance.

This statistical framework allows us to account for variance
in both real and control performance, handle unequal sample
sizes between real (n=3) and control (n=6) results, and pro-
vide rigorous p-values for assessing decoding significance.

The combination of k-seed cross validation with multiple
control shuffles per seed provides a robust framework for
validating our decoding results against chance-level perfor-
mance while accounting for the temporal structure of the
data.

9.3. Results from other metrics

From the features extracted using the ChatGPT feature ex-
traction pipeline, we run binary classification for all the
models, MLP, Logistic, LSTM and BiLSTM using our stan-
dardized process with balancing, cross validation and evalu-
ation methods detailed above.

From the accuracy plot below and associated p-values, we
find that man and close-up are consistenly significantly de-
codable across models, performing better than controls, in-
dicating the model is detecting and decoding relevant neural
signals for these labels. Additionally, centered and standing
are also decodable, but only for logistic and LSTM and BiL-
STM with certain temporal window sizes. We later observe
that some of the metrics have skewed results such as AU-
ROC and we add this to the appendix for future inspection.
We hypothesize that our balencing strategies for each of
the decoded labels is not the most optimal which causes
these metrics to be skewed. Future work could include an
in-depth exploration of the effects of balencing on different
metrics.

Figure 5: Comparison of the metric accuracy across all
models across all labels with controls for each model type
on Test data

Figure 6 shows that for the labels that are decodable (man,
close-up) and centered/standing for specific temporal win-
dow sizes and specific models, the AUROC score is gener-
ally above 0.5, indicating the decoding is not happening by
chance. However, compared to the accuracy plot (5) it seems
that the controls generally perform similar to the original
datasets with regards to AUROC. This is because AUROC is
based on relative ranking of predictions instead of the actual
prediction values, so even if certain labels are decodable,
the label shift causes a similar ranking of predictions.

Figure 6: Comparison of the metric AUROC across all
models across all labels with controls for each model type
on Test data

Figure 7: Comparison of the metric AUPRC across all mod-
els across all labels with controls for each model type on
Test data

12

SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding

Figure 8: Comparison of the metric F1 across all models
across all labels with controls for each model type on Test
data

Figure 9: Comparison of the metric Accuracy across all
models across all labels with controls for each model type
on Train data

Figure 10: Comparison of the metric AURPC across all
models across all labels with controls for each model type
on Train data

Figure 11: Comparison of the metric F1 across all models
across all labels with controls for each model type on Train
data

5-8 show results across all models and labels, where labels
are ordered by frequency. From the accuracy plot below
(5) and associated p-values, we find that "man" and "close-
up" are consistently significantly decodable across models,
performing better than controls. This indicates that the
model is detecting and decoding relevant neural signals for
these labels. Additionally, "centered" and "standing" are
also decodable, but only for Logistic, LSTM, and BiLSTM
with certain temporal window sizes.

Overall, the analysis reveals that while certain labels like
"man" and "close-up" are universally decodable, others like
"gun" and "centered" rely on specific models or temporal
information.

9.4. Model Architectures and Implementation

The training procedure uses binary cross-entropy with logits
loss and the Adam optimizer for all models. We imple-
mented all models with PyTorch Lightning.

Multi-Layer Perceptron (MLP) The MLP architecture
consists of a four-layer network. The input layer accepts
population firing rates from recorded neurons, followed by
three hidden layers with progressively decreasing sizes and
a single output neuron with sigmoid activation for binary
classification. Each hidden layer employs ReLU activation
and includes dropout (rate=0.2) for regularization.

Training parameters for the MLP were optimized through
preliminary experiments, leading to the following configu-
ration:

• Hidden layer size: 64 units

• Batch size: 256

• Number of epochs: 100

• Dropout rate: 0.2

• Learning rate: 0.0001

13

SYNAPSE: A Multi-Modal Framework for Interpretable Neural Decoding

Logistic Regression The logistic model serves as our
baseline model for binary classification. A high regular-
ization constant of 10,000 was used as it was found that this
leads to the least overfitting and highest validation accuracy.

LSTM (Long Short-Term Memory) The LSTM architec-
ture implements a sequence modeling approach to capture
temporal dependencies in neural firing patterns. The model
consists of multiple stacked LSTM layers with the following
structure:

• Input Representation: The input layer accepts
sequences of neural population firing rates with
shape (batch_size, sequence_length, input_dimension),
where input_dimension corresponds to the number of
recorded neurons.

• LSTM Layers: Two stacked LSTM layers process
the temporal sequences, each with hidden_dimension
units. These layers maintain internal cell states and
hidden states, allowing the model to learn both short-
term and long-term dependencies in the firing patterns.
A dropout rate of 0.2 is applied between layers for
regularization.

• Output Layer: The final hidden state from the last
LSTM layer is passed through a fully connected layer
to produce the classification output.

The LSTM’s ability to selectively remember or forget infor-
mation through its gating mechanisms makes it particularly
suitable for capturing temporal patterns in neural activity
that might extend beyond immediate time windows.

BiLSTM with Attention The Bidirectional LSTM with
Attention mechanism extends the basic LSTM architecture
to capture more complex temporal relationships:

• Bidirectional Processing: The input sequence is
processed in both forward and backward directions
using two separate LSTM layers, each with hid-
den_dimension units. This bidirectional approach al-
lows the model to capture dependencies from both past
and future time steps at each point in the sequence.

• Attention Mechanism: An attention layer is imple-
mented on top of the BiLSTM outputs, computing
attention weights for each time step. This mechanism
allows the model to dynamically focus on relevant parts
of the input sequence when making predictions. The
attention weights are learned during training and pro-
vide interpretable importance scores for different time
points in the neural activity.

• Output Processing: The attention-weighted context
vector is passed through two dense layers with dropout
(0.2) for final classification. The first dense layer uses
ReLU activation and reduces dimensionality, while the
final layer produces the classification output.

The combination of bidirectional processing and attention
mechanisms allows this architecture to capture more nu-
anced temporal relationships in the neural data, potentially
identifying key moments in the firing patterns that are most
relevant for predicting the target variables.

For binary classification tasks, we employ grid search over
key hyperparameters: learning rates [1e-3, 1e-4], hidden
dimensions [32, 64], and number of layers [1, 2]. The
BiLSTM architecture concatenates forward and backward
hidden states, effectively doubling the model’s capacity
to capture temporal dependencies at the cost of increased
computational complexity.

9.5. Model-Wise P-Values by Feature

Model Centered Hat Close-Up Child

MLP 0.0985 0.8160 0.0398 0.9737
LSTM 0.0707 0.9342 0.0338 0.9790
BiLSTM 0.0457 0.8414 0.0281 0.9897
Logistic 0.0698 0.7304 0.0090 0.7785

Model Soft Gun Standing Happy

MLP 0.5390 0.5614 0.3405 0.7461
LSTM 0.5631 0.6172 0.0827 0.7646
BiLSTM 0.1557 0.6010 0.0650 0.5939
Logistic 0.7913 0.8022 0.0674 0.7083

Table 1: P-values across model types (left) and extracted
feature labels (top). Bold indicates p < 0.05. Italics indi-
cates p < 0.1.

14

	Introduction
	Related Work
	Neural Decoding with Naturalistic Stimuli
	Deep Learning Methods in Neural Decoding
	Interpretable Embeddings from Large Language Models

	Framework
	Evaluation
	Neural Dataset
	Data Processing
	Model Architecture
	Assessment Metrics

	Experiments and Results
	Feature Extraction Accuracy
	Single-Neuron Decoding Performance

	Conclusion
	Impact Statement
	Acknowledgments
	Appendix
	GPT Feature Extraction Details
	Neural Data and Experimental Setup
	Temporal Windows
	Temporal Blocking
	Balancing
	Metrics
	K-Seed Cross Validation
	Statistical Validation Through Controls

	Results from other metrics
	Model Architectures and Implementation
	Model-Wise P-Values by Feature

