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Abstract

Complementary-label learning (CLL) is a weakly-supervised learning paradigm that aims to
train a multi-class classifier using only complementary labels, which indicate classes to which
an instance does not belong. Despite numerous algorithmic proposals for CLL, their practical
applicability remains unverified for two reasons. Firstly, these algorithms often rely on assump-
tions about the generation of complementary labels, and it is not clear how far the assumptions
are from reality. Secondly, their evaluation has been limited to synthetically labeled datasets.
To gain insights into the real-world performance of CLL algorithms, we developed a protocol
to collect complementary labels from human annotators. Our efforts resulted in the creation
of four datasets: CLCIFAR10, CLCIFAR20, CLMicroImageNet10, and CLMicroImageNet20,
derived from well-known classification datasets CIFAR10, CIFAR100, and TinyImageNet200.
These datasets represent the very first real-world CLL datasets, namely CLImage, which
are publicly available at: https://github.com/ntucllab/CLImage_Dataset. Through ex-
tensive benchmark experiments, we discovered a notable decrease in performance when
transitioning from synthetically labeled datasets to real-world datasets. We investigated the
key factors contributing to the decrease with a thorough dataset-level ablation study. Our
analyses highlight annotation noise as the most influential factor in the real-world datasets.
In addition, we discover that the biased-nature of human-annotated complementary labels
and the difficulty to validate with only complementary labels are two outstanding barriers
to practical CLL. These findings suggest that the community focus more research efforts
on developing CLL algorithms and validation schemes that are robust to noisy and biased
complementary-label distributions.

∗These authors contributed equally to this work.
†Corresponding author.
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1 Introduction

Ordinary multi-class classification methods rely heavily on high-quality labels to train effective classifiers.
However, such labels can be expensive and time-consuming to collect in many real-world applications. To
address this challenge, researchers have turned their attention towards weakly-supervised learning, which
aims to learn from incomplete, inexact, or inaccurate data sources (Zhou, 2018; Sugiyama et al., 2022). This
learning paradigm includes but is not limited to noisy-label learning (Frénay & Verleysen, 2014), partial-label
learning (Cour et al., 2011), positive-unlabeled learning (Denis, 1998), and complementary-label learning
(Ishida et al., 2017).

In this work, we focus on complementary-label learning (CLL). This learning problem involves training a
multi-class classifier using only complementary labels, which indicate the classes that a data instance does not
belong to. Although several algorithms have been proposed to learn from complementary labels, they were
only benchmarked on synthetically labeled datasets with some idealistic assumptions on complementary-label
generation (Ishida et al., 2017; 2019; Chou et al., 2020; Wang et al., 2021; Liu et al., 2023). Thus, it remains
unclear how well these algorithms perform in practical scenarios.

In particular, current CLL algorithms heavily rely on the uniform assumption for generating complementary
labels (Ishida et al., 2017), which specifies that complementary labels are generated by uniformly sampling
from the set of all possible complementary labels. To alleviate the restrictiveness of the uniform assumption,
(Yu et al., 2018) considered a more general class-conditional assumption, where the distribution of the
complementary labels only depends on its ordinary labels. These assumptions have been used in many
subsequent works to generate the synthetic complementary datasets for examining CLL algorithms (Ishida
et al., 2019; Chou et al., 2020; Feng et al., 2020; Wang et al., 2021; Wei et al., 2022; Liu et al., 2023). Although
these assumptions simplify the design and analysis of CLL algorithms, it remains unknown whether these
assumptions hold true in practice and whether violation of these assumptions will significantly affect the
performance of CLL algorithms. In addition to the uniform or class-conditional assumptions, most existing
studies implicitly assumes that the complementary labels are noise-free. That is, they do not mistakenly
represent the ordinary labels. While some studies claim to be more robust to noisy complementary labels (Lin
& Lin, 2023), they were only tested on synthetic scenarios. It remains unclear how noisy the real-world
datasets are, and how such noise affects the performance of current CLL algorithms.

To understand how much the real-world scenario differs from the assumptions, we collect human-annotated
complementary-label datasets and conduct benchmarking experiments. We begin by constructing the
CLCIFAR10 and CLCIFAR20 datasets, derived from the widely used CIFAR datasets for multi-class
classification (Krizhevsky, 2009). Building upon this foundation, we further extend our collection to include
two additional human-annotated datasets, CLMicroImageNet10 and CLMicroImageNet20, derived from
TinyImageNet200 (Le & Yang, 2015). For all four datasets, we analyze the collected complementary
labels, including their noise rates and non-uniform nature. Then, we perform benchmark experiments with
diverse state-of-the-art CLL algorithms and conduct dataset-level ablation study on the assumptions of
complementary-label generation using the collected datasets.

Our studies reveal annotation noise as the most influential factor affecting the performance of CLL algorithms
in real-world datasets. The claim is evidenced by our ablation study results on both synthetic and real-world
complementary datasets. Notably, classification accuracy drops from 64.18% on CIFAR10 to 34.85% on
CLCIFAR10, highlighting the detrimental impact of noisy complementary labels. To further investigate the
role of label noise in the performance gap across different CLL algorithms, we conducted an ablation study
that examined various noise levels. The results consistently reinforce our conclusion that the performance
disparity between human-annotated complementary labels and synthetically generated complementary labels is
primarily driven by label noise. Moreover, through thorough analysis we confirmed that the non-uniform nature
of human-annotated complementary labels makes certain CLL algorithms more susceptible to overfitting,
although its impact is less pronounced compared to label noise.

These findings immediately suggest that the community focus more research efforts on developing CLL
algorithms that are robust to noisy and non-uniform complementary-label distributions. In addition, we used
the collected datasets to demonstrate that existing complementary-label-only validation schemes are not
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mature yet, suggesting the community a novel research direction for making CLL practical. Our contributions
are summarized as follows:

• We designed a collection protocol of complementary labels (CLs) for images, and verified that the
protocol collects reasonable human-annotated CLs across different datasets.

• We collected the set of four real-world CL datasets and plan to release CLImage1 to support the
continuous research of the community.

• We analyzed the collected datasets with extensive benchmarking experiments, which provides novel
and valuable insights for the community.

2 Preliminaries on CLL

2.1 Complementary-label learning

In ordinary multi-class classification, a dataset D = {(xi, yi)}n
i=1 that is i.i.d. sampled from an unknown

distribution is given to the learning algorithm. For each i, xi ∈ RM represents the M -dimension feature of
the i-th instance and yi ∈ [K] = {1, 2, . . . , K} represents the class xi belongs to. The goal of the learning
algorithm is to learn a classifier from D that can predict the labels of unseen instances correctly. The
classifier is typically parameterized by a scoring function g : RM → RK , and the prediction is made by
arg maxk∈[K] g(x)k given an instance x, where g(x)k denotes the k-th output of g(x). In contrast to ordinary
multi-class classification, CLL shares the same goal of learning a classifier but trains with different labels. In
CLL, the ordinary label yi is not accessible to the learning algorithm. Instead, a complementary label ȳi is
provided, which is a class that the instance xi does not belong to. The goal of CLL is to learn a classifier that
is able to predict the correct labels of unseen instances from a complementary-label dataset D̄ = {(xi, ȳi)}n

i=1.

2.2 Common assumptions on CLL

Researchers have made some additional assumptions on the generation process of complementary labels
to facilitate the analysis and design of CLL algorithms. One common assumption is the class-conditional
assumption (Yu et al., 2018). It assumes that the distribution of a complementary label only depends on its
ordinary label and is independent of the underlying example’s feature, i.e., P (ȳi | xi, yi) = P (ȳi | yi) for each
i. One special case of the class-conditional assumption is the uniform assumption, which further specifies
that the complementary labels are generated uniformly. That is, P (ȳi = k|yi = j) = 1

K−1 for all k ∈ [K]\{j}
(Ishida et al., 2017; 2019; Lin & Lin, 2023).

For convenience, a K ×K matrix T , called transition matrix, is often used to represent how the complementary
labels are generated under the class-conditional assumption. Tj,k is defined to be the probability of obtaining
a complementary label k if the underlying ordinary label is j, i.e., Tj,k = P (ȳ = k | y = j) for each j, k ∈ [K].
The diagonals of T hold the conditional probabilities that a complementary label mistakenly represents the
ordinary label. That is, they indicate the noise level of the complementary labels. When T contains all zeros
on its diagonals, the CLL scenario is called noiseless. For instance, the uniform and noiseless assumption can
be represented by Tj,j = 0 for each j ∈ [K] and Tj,k = 1

K−1 for each k ̸= j. Class-conditional CLL scenarios
based on any other non-uniform T are often called biased.

2.3 A brief overview of CLL algorithms

The pioneering work by Ishida et al. (2017) studied how to learn from complementary labels under the
uniform assumption by converting the risk estimator in ordinary multi-class classification to an unbiased
risk estimator (URE) in CLL (Ishida et al., 2017). URE is then found to be prone to overfitting because
of negative empirical risks, and is upgraded with two tricks, non-negative risk estimator (URE-NN) and
gradient accent (URE-GA) (Ishida et al., 2019). The surrogate complementary loss (SCL) algorithm
mitigates the overfitting issue of URE by a different loss design that decreases the variance of the empirical

1https://github.com/ntucllab/CLImage_Dataset
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estimation. However, these algorithms either rely on the uniform assumption in design or are only tested on
the synthetically labeled datasets that obeys the uniform assumption.

To make CLL one step closer to practice, researchers have explored algorithms to go beyond the uniform (and
thus noiseless) assumption. (Yu et al., 2018) utilized the forward-correction loss (FWD) to accommodate
biased complementary label generation by adapting techniques from noisy label learning (Patrini et al., 2017)
to change the loss. Additionally, (Gao & Zhang, 2021) proposed the L-W algorithm based on discriminatively
modeling the distribution of complementary labels through a weighting function, further improving the
performance in bias scenario. Furthermore, (Ishiguro et al., 2022) designed robust loss functions for learning
from noisy CLs, including MAE and WMAE, by applying the gradient ascent technique (Ishida et al.,
2019) to handle noisy scenarios.

Besides CLL algorithms, a crucial component for making CLL practical is model validation. In ordinary-label
learning, this can be done by naively calculating the classification accuracy on a validation dataset. In CLL,
this scheme can be intractable if there are not enough ordinary labels. One generic way of model validation is
based on the result of (Ishida et al., 2019) by calculating the unbiased risk estimator of the zero-one loss, i.e.,

R̂01(g) = 1
N

N∑
i=1

e⊤
yi

(T −1)ℓ01(g(xi)) (1)

where eyi
denotes the one-hot vector of yi, ℓ01(g(xi)) denotes the K-dimensional vector

(ℓ01(g(xi), 1), . . . , ℓ01(g(xi)), K))T , and ℓ01(g(xi), k) = 0 if arg maxk∈[K] g(xi) = k and 1 otherwise, rep-
resenting the zero-one loss of g(xi) if the ordinary label is k. This estimator will be used in the experiments
in Section 6. Another validation objective, surrogate complementary esimation loss (SCEL), was proposed by
(Lin & Lin, 2023). SCEL measures the log loss of the complementary probability estimates induced by the
probability estimates on the ordinary label space. The formula to calculate SCEL is as follows,

R̂SCEL(g) = 1
N

N∑
i=1

− log
(
e⊤

yi
T ⊤ softmax(g(xi))

)
. (2)

3 Construction of the CLImage collection

In this section, we introduce the four complementary-labeled datasets that we collected, CLCIFAR10,
CLCIFAR20, CLMicroImageNet10 and CLMicroImageNet20. All datasets are labeled by human annotators
on Amazon Mechanical Turk (MTurk)2.

3.1 Datasets and goals

The complementary-labeled datasets are derived from ordinary multi-class classification datasets. CIFAR10,
CIFAR100 and TinyImageNet200 (Krizhevsky, 2009; Le & Yang, 2015; Russakovsky et al., 2015). This
selection is motivated by the real-world noisy label dataset by (Wei et al., 2022). Building upon the CIFAR
and TinyImageNet200 datasets allow us to estimate the noise rate and the empirical transition matrix easily,
as they already contain nearly noise-free ordinary labels. In addition, many of the state-of-the-art CLL
algorithms have been benchmarked on synthetic complementary labels with the CIFAR datasets (Dosovitskiy
et al., 2021; Kolesnikov et al., 2020; Oquab et al., 2024). Our CLCIFAR counterparts immediately allow a
fair comparison to those results with the same network architecture.

In addition to our CLCIFAR extensions, we are the first to introduce (Tiny)ImageNet-derived datasets to the
CLL literature. Such datasets serve two purposes. First, it allows us to confirm the validity of our collection
protocol and findings beyond CIFAR-derived datasets. Second, ImageNet knowingly contains images of
higher complexity than CIFAR and can thus be used to challenge the ability of existing CLL algorithms more
realistically.

There is a historical note that is worth sharing with the community: We initially attempted to collect
complementary labels based on the 100 classes in CIFAR100. But some preliminary testing soon revealed

2https://www.mturk.com/
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that state-of-the-art CLL algorithms cannot produce meaningful classifiers for 100 classes even on synthetic
complementary labels that are uniformly and noiselessly generated. We thus set our collection goals to be
10-class classification, which is the focus of most current CLL studies, and 20-class classification, which
extends the horizon of CLL and matches the 20 super-class structure in CIFAR.

3.2 Complementary label collection protocol

To collect only complementary labels from the CIFAR, TinyImageNet datasets, for each image in the training
split, we first randomly sample four distinct labels and ask the human annotators to select any of the incorrect
one from them. To leave room for analyzing the annotators’ behavior, each image is labeled by three different
annotators. The four labels are re-sampled for each annotator on each image. That is, each annotator possibly
receives a different set of four labels to choose from. An algorithmic description of the protocol is as follows.
For each image x,

1. Uniformly sample four labels without replacement from the label set [K].

2. Ask the annotator to select any one of the complementary label ȳ from the four sampled labels.

3. Add the pair (x, ȳ) to the complementary dataset.

Note that if the annotators always select one of the correct complementary labels uniformly, the empirical
transition matrix will also be uniform in expectation. We will inspect the empirical transition matrix in
Section 4. The labeling tasks are deployed on MTurk by dividing them into smaller we first divide the total
images into smaller human intelligence tasks (HITs). For instance, for constructing the CLCIFAR datasets,
we first divide the 50,000 images into five batches of 10,000 images. Then, each batch is further divided into
1,000 HITs with each HIT containing 10 images. Each HIT is deployed to three annotators, who receive 0.03
dollar as the reward by annotating 10 images. To make the labeling task easier and increase clarity, the size
of the images are enlarged to 200 × 200 pixels.

4 Dataset Characteristic

Next, we closely examine the collected complementary labels. We first analyze the error rates of the collected
labels, and then verify whether the transition matrix is uniform or not. Finally, we end with an analysis on
the behavior of the human annotators observed in the label collection protocol.

(a) CLCIFAR10 (b) CLMicroImageNet10

Figure 1: The label distribution of CLCIFAR10 and CLMicroImageNet10 datasets.

Observation 1: noise rate compared to ordinary label collection We first look at the noise rate of
the collected complementary labels. A complementary label is considered to be incorrect if it is actually the
ordinary label. The mean error rate made by the human annotators is 3.93% for CLCIFAR10, 2.80% for
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CLCIFAR20, 5.19% for CLMicroImageNet10 and 3.21% for CLMicroImageNet20. In theory, we can estimate
a random annotator achieves a noise rate of 1

K for complementary label annotation and a noise rate of K−1
K for

ordinary label annotation. If we compare the human annotators to a random annotator, then for CLCIFAR10,
human annotators have 60.7% less noisy labels than the random annotator whereas for CIFAR10-N, human
anotators have 78.17% less noisy labels. This demonstrates that human annotators are more competent
compared to a random annotator in the ordinary-label annotation. Similarly, human annotators have 44%
less noise than a random annotator for CLCIFAR20 and 73.05% less noise for CIFAR100N-coarse (Wei et al.,
2022). This observation reveals that while the absolute noise rate is lower in annotating complementary
labels, it may be more difficult to be competent against random labels than the ordinary label annotation.

Observation 2: imbalanced complementary label annotation Next, we analyze the distribution
of the collected complementary labels. The frequency of the complementary labels for the CLCIFAR10
and CLMicroImageNet10 (CLMIN10) datasets are reported in Figure 1. As we can see in the figure, the

(a) CLCIFAR10 (b) CLMicroImageNet10

Figure 2: The empirical transition matrices of CLCIFAR10 and CLMicroImageNet10.

annotators exhibit specific biases towards certain labels. For instance, in CLCIFAR10, annotators prefer
“airplane” and “automobile”, while in CLMIN10, they prefer “pizza” and “torch”. In CLCIFAR10, the bias is
towards labels in different categories, as vehicles (“airplane”, “automobile”) versus animals (“cat”, “bird”).
In contrast, in CLMIN10, the bias is towards items that are easily recognizable (“pizza” and “torch”) and
against those that are less familiar (“cardigan” or “alp”).

Observation 3: biased transition matrix Finally, we visualize the empirical transition matrix using
the collected CLs in Figure 2. Based on the first two observations, we could imagine that the transition
matrix is biased. By inspecting Figure 2, we further discover that the bias in the complementary labels are
dependent on the true labels. For instance, in CLCIFAR10, despite we see more annotations on airplane and
automobile in aggregate, conditioning on the transportation-related labels (“airplane”, “automobile”, etc), the
distribution of the complementary labels becomes more biased towards other animal-related labels (“bird”,
“cat”, etc.) Furthermore, this observation holds true on CLMIN10 as well. Next, we study the impact of the
bias and noise on existing CLL algorithms.

We discovered similar patterns in all four human-annotated datasets, validating that our design methodology
is practical for collecting real-world CLL image datasets. Due to space limitations, we have included the
detailed analysis of CLCIFAR20 and CLMicroImageNet20 in Appendix A.4.
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5 Experiments

In this section, we benchmarked several state-of-the-art CLL algorithms on CLImage. A significant performance
gap between the models trained on the humanly annotated CLCIFAR, CLMicroImageNet dataset and those
trained on the synthetically generated complementary labels (CL) was observed in Section 5.1, which motivates
us to analyze the possible reasons for the gap with the following experiments. To do so, we discuss the effect
of three factors in the label generating process, feature dependency, noise, and biasedness, in Section 5.2,
Section 5.3, and Section 5.4, respectively. From our experiment results, we conclude that noise is the dominant
factor affecting the performance of the CLL algorithms on CLCIFAR3.

5.1 Standard benchmark on CLImage

Baseline methods Several state-of-the-art CLL algorithms were selected for this benchmark. Some of
them take the transition matrix T as inputs, which we call T -informed methods, including two version of
forward correction (Yu et al., 2018): FWD-U and FWD-R, two version of unbiased risk estimator with
gradient ascent (Ishida et al., 2019): URE-GA-U and URE-GA-R, and robust loss (Ishiguro et al., 2022)
for learning from noisy CL: CCE, MAE, WMAE, GCE, and SL4. We also included some algorithms that
assume the transition matrix T to be uniform, called T -agnostic methods, including surrogate complementary
loss SCL-NL and SCL-EXP (Chou et al., 2020), discriminative modeling L-W and its weighted variant
(L-UW) (Gao & Zhang, 2021), and pairwise-comparison (PC) with the sigmoid loss (Ishida et al., 2017).
The details of the algorithms mentioned above are discussed in Appendix B.

Implementation details We collected and released three CLs per image to prepare for future studies.
However, for this standard benchmark, we chose the first CL from the collected labels for each data instances
to form a single CLL dataset, ensuring reproducibility. Then, we trained a ResNet18 (He et al., 2016) model
using the baseline methods mentioned above on the single CLL dataset using the Adam optimizer for 300
epochs without learning rate scheduling. Detailed results from the ablation study on various neural network
architectures, which further justify our choice of ResNet18 as the backbone, are available in Appendix A.6.
The training settings included a fixed weight decay of 10−4 and a batch size of 512. The experiments were
run with Tesla V100-SXM2. For better generalization, we applied standard data augmentation technique,
RandomHorizontalFlip, RandomCrop, and normalization to each image. The learning rate was selected from
{10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5} using a 10% hold-out validation set. We selected the learning rate
with the best classification accuracy on the validation dataset. Note that here we assumed the ordinary
labels in the validation dataset are known. We will discuss other validation objectives that rely only on
complementary labels in Section 6. As CLL algorithms are prone to overfitting (Ishida et al., 2019; Chou
et al., 2020), some previous works did not use the model after training for evaluation. Instead, previous works
were performed by evaluating the model on the validation dataset and selecting the epoch with the highest
validation accuracy. In this work, we also follow the same aforementioned technique to validate testing set.
For reference, we also performed the experiments on synthetically-generated CLL dataset, where the CLs
were generated uniformly and noiselessly, denoted uniform-CIFAR.

Results and discussion As we can observe in Table 1, there is a significant performance gap between the
humanly annotated dataset, CLCIFAR, and the synthetically generated dataset, uniform-CIFAR. The differ-
ence between the two datasets can be divided into three parts: (a) whether the generation of complementary
labels depends on the feature, (b) whether there is noise, and (c) whether the complementary labels are
generated with bias. A negative answer to those questions simplify the problem of CLL. We can gradually
simplify CLCIFAR to uniform-CIFAR by chaining those assumptions as follows 5:

3Due to space and time constraints, we only provide the results and discussion on the CLCIFAR datasets.
4Due to space limitations, we only provided the results of MAE. The remaining results and discussions related to the robust

loss methods can be found in Appendix A.3
4Note that FWD-R and URE-GA-R assume the empirical transition matrix Te to be provided. The empirical transition

matrix is computed from the labels in the training set, so it is slightly different from a uniform transition matrix Tu in the
uniform-CIFAR datasets. As a result, the performances of FWD-R and URE-GA-R do not exactly match those of FWD-U and
URE-GA-U, respectively, in the uniform-CIFAR datasets.

5The “interpolation” between CLCIFAR and uniform-CIFAR does not necessarily have to be this way. For instance, one
can remove the biasedness before removing the noise. We chose this order to reflect the advance of CLL algorithms. First,
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Table 1: Standard benchmark results on CLCIFAR/ CLMicroImageNet(CLMIN) and uniform-CIFAR/
MicroImageNet(MIN) datasets. Mean accuracy (± standard deviation) on the testing dataset from four trials
with different random seeds. Highest accuracy in each column is highlighted in bold.

uniform-CIFAR10 CLCIFAR10 uniform-CIFAR20 CLCIFAR20 uniform-MIN10 CLMIN10 uniform-MIN20 CLMIN20

FWD-U 64.19±0.57 34.83±0.50 21.54±0.37 8.03±0.74 36.30±1.12 23.85±2.76 12.57±2.94 6.33±1.04
FWD-R 61.32±0.90 38.13±0.88 21.50±0.38 20.27±0.53 35.70±1.19 30.15±1.83 14.85±1.75 10.60±0.82
URE-GA-U 50.24±1.11 34.72±0.40 16.67±1.35 10.49±0.52 35.70±1.97 22.90±2.97 11.65±1.90 5.75±0.43
URE-GA-R 50.73±1.83 30.23±0.70 17.57±0.61 6.17±0.82 33.65±1.40 13.25±5.11 9.78±3.88 6.50±0.35
SCL-NL 63.76±0.09 34.77±0.60 21.37±1.18 8.02±0.36 37.05±1.40 21.80±1.85 13.00±2.80 6.17±0.49
SCL-EXP 63.29±1.02 35.18±0.67 21.57±1.13 7.70±0.41 36.55±1.28 24.80±1.14 12.95±3.38 5.58±0.13
L-W 54.32±0.41 32.99±1.01 19.59±0.99 7.71±0.35 33.80±2.66 23.80±2.64 12.70±2.35 6.40±0.29
L-UW 57.52±0.59 34.69±0.32 20.71±0.92 8.15±0.30 35.10±2.74 22.40±1.67 12.12±3.13 6.35±0.86
PC-sigmoid 37.78±0.80 32.15±0.80 14.48±0.47 12.11±0.46 29.10±0.98 23.15±0.46 10.72±1.38 6.90±1.04
ROB-MAE 59.38±0.63 20.23±1.02 18.17±1.31 5.40±0.59 31.50±1.81 14.15±0.68 6.35±0.86 5.38±0.33

CIFAR10 CIFAR20 MIN10 MIN20

standard supervision 82.80±0.28 63.80±0.49 68.70±1.53 63.90±1.00

CLCIFAR Section 5.2==================⇒
Remove feature dependency

Section 5.3=========⇒
Remove noise

Section 5.4============⇒
Remove biasedness

uniform-CIFAR

In the following subsections, we will analyze how these three factors affect the performance of the CLL
algorithms.

5.2 Feature dependency

In this experiment, we verified whether the performance gap resulted from the feature-dependent generation of
practical CLs. Conceivably, even if two images belong to the same class, the distribution on the complementary
labels could be different. On the other hand, the distributional difference could also be too small to affect
model performance, e.g., if P (ȳ | y, x) ≈ P (ȳ | y) for most x. Consequently, we decided to further look into
whether this assumption can explain the performance gap. To observe the effects of approximating P (ȳ | y, x)
with P (ȳ | y), we generated two synthetic complementary datasets, CLCIFAR10-iid and CLCIFAR20-iid
by i.i.d. sampling CLs from the empirical transition matrix in CLCIFAR10 and CLCIFAR20, respectively.
We proceeded to benchmark the CLL algorithms on CLCIFAR-iid and presented the accuracy difference
compared to CLCIFAR in Table 2.

Results and discussion From Table 2, we observed that the accuracy barely changes on the resampled
CLCIFAR-iid, suggesting that even if the complementary labels in CLCIFAR could be feature-dependent,
this dependency does not affect the model performance significantly. Hence, there might be other factors
contributing to the performance gap.

Table 2: Mean accuracy difference (± standard deviation) of different CLL algorithms. A plus indicates the
performance on is calculated as CLCIFAR-i.i.d. accuracy minus CLCIFAR accuracy.

FWD-U FWD-R URE-GA-U URE-GA-R SCL-NL SCL-EXP L-W L-UW PC-sigmoid

CLCIFAR10-iid -1.1±2.17 -0.36±1.15 -3.03±1.25 0.74±0.35 -0.67±1.81 -1.97±1.16 -2.5±0.56 -3.53±1.36 -2.03±2.05
CLCIFAR20-iid -0.64±0.39 -3.53±1.13 -0.37±0.51 1.79±2.34 -0.28±0.61 -0.39±0.69 -0.5±1.37 -0.82±0.04 -2.24±0.52

5.3 Labeling noise

In this experiment, we further investigated the impact of the label noise on the performance gap. Specifically,
we measured the accuracy on the noise-removed versions of CLCIFAR datasets, where varying percentages
(0%, 25%, 50%, 75%, or 100%) of noisy labels are eliminated.

Results and discussion We present the performance of FWD trained on the noise-removed CLCIFAR10
dataset in the left figure in Figure 3. From the figure, we observe a strong positive correlation between
researchers address the uniform case (Ishida et al., 2017), then generalize to the biased case (Yu et al., 2018), then consider noisy
labels (Ishiguro et al., 2022). There is no work considering feature-dependent complementary labels yet.
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Figure 3: Accuracy of FWD-U and FWD-R on the noise-removed CLCIFAR10 dataset (Left) and the
uniform-CIFAR10 dataset with uniform noise (Right) at varying noise rates.

the performance and the proportion of removed noisy labels. When more noisy labels are removed, the
performance gap diminishes and the accuracy approaches that of the ideal uniform-CIFAR dataset. Therefore,
we conclude that the performance gap between the humanly annotated CLs and the synthetically generated
CLs are primarily attributed to the label noise. The results for FWD-(U/R) and SCL-(NL/EXP) of the
noise-removed CLCIFAR10 and CLCIFAR20 datasets are presented in the Figure 4. The other results for
other algorithms can be found in Appendix C.

5.4 Biasedness of complementary labels

To further study the biasedness of CL as a potential factor contributing to the performance gap, we removed
the biasedness from the noise-removed CLCIFAR dataset and examined the resulting accuracy. Specifically,
we introduced the same level of uniform noise in uniform-CIFAR dataset and reevaluated the performance of
FWD algorithms.

Results and discussion The striking similarity between the two curves in the right figure in Figure 3 shows
that the accuracy is significantly influenced by label noise, while the biasedness of CL has a negligible impact
on the results. Furthermore, we observe that the accuracy difference between the results of the last epoch
and the best accuracy of validation set (or early-stopping: ES) results becomes smaller when the model is
trained on the uniformly generated CLs. That is, the T -informed methods are more prone to overfitting when
there is a bias in the CL generation.

With the experiment results in Section 5.2, 5.3, and 5.4, we can conclude that the performance gap between
humanly annotated CL and synthetically generated CL is primarily attributed to label noise. Additionally,
the biasedness of CLs may potentially contribute to overfitting, while the feature-dependent CLs do not
detrimentally affect performance empirically. It is worth noting that in the last row of Table 1, the MAE
methods that can learn from noisy CL fails to generalize well in the practical dataset. These results suggest
that more research on learning with noisy complementary labels can potentially make CLL more realistic.

Following above conclusion, the label noise and biasedness of CL emerge as the two primary factors contributing
to overfitting. To gain a better understanding, we conducted deeper investigation into this phenomenon. We
demonstrated the necessity of employing data augmentation techniques to prevent overfitting and attempted
to address the issue of overfitting by employing an interpolated transition matrix for regularization.

Ablation on data augmentation To further investigate the significance of data augmentation, we conducted
identical experiments without employing data augmentation during the training phase. As we can observe in
the training curves in Figure 5, data augmentation could improve the testing accuracy of all the algorithms
we considered.
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(a) FWD-(U/R) on CLCIFAR10 (b) FWD-(U/R) on CLCIFAR20

(c) SCL-(NL/EXP) on CLCIFAR10 (d) SCL-(NL/EXP) on CLCIFAR20

Figure 4: Accuracy of FWD-(U/R) and SCL-(NL/EXP) on the noise-removed CLCIFAR10 dataset (Left)
and the CLCIFAR20 dataset with uniform noise (Right) at varying noise rates.

Table 3: The overfitting results when there is no data augmentation.

uniform-CIFAR10 CLCIFAR10 uniform-CIFAR20 CLCIFAR20

methods valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES)

FWD-U 48.44 49.33 21.29 25.59 17.4 17.97 6.91 7.32
FWD-R - - 14.97 28.3 - - 6.82 14.67
URE-GA-U 39.55 39.67 21.0 23.53 13.52 14.08 5.55 8.38
URE-GA-R - - 19.81 20.8 - - 5.0 6.43
SCL-NL 48.2 48.27 21.96 26.51 16.55 17.54 7.1 7.92
SCL-EXP 46.79 47.52 21.89 27.66 16.18 17.89 6.9 7.3
L-W 27.02 44.78 20.06 27.6 10.39 16.3 5.64 8.02
L-UW 31.3 46.38 20.28 26.26 12.33 16.32 6.03 8.14
PC-sigmoid 18.97 33.26 - - 7.67 10.41 - -

Ablation on interpolation between Tu and Te In Table 1, we discovered that the T -informed methods
did not always deliver better testing accuracy when Te is given. Looking at the difference between the
accuracy of using early-stopping and not using early-stopping, we observe that when the Tu is given to the
T -informed methods, the difference becomes smaller. This suggests that T -informed methods using the
empirical transition matrix has greater tendency to overfitting. On the other hand, T -informed methods
using the uniform transition matrix could be a more robust choice.
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Figure 5: The Overfitting accuracy curve of FWD, URE, SCL-NL, L-W. The dotted line represents the
accuracy obtained without data augmentation, while the solid line represents the accuracy with data
augmentation included for reference. The accuracy of FWD, SCL-NL, SCL-EXP, L-W, L-UW methods
reaches its highest at approximately the 50 epoches and converges to some lower point. The detail numbers
are in Table 3

We observe that the uniform transition matrix Tu acts like a regularization choice when the algorithms overfit
on CLCIFAR. This results motivate us to study whether we can interpolate between Tu and Te to let the
algorithms utilize the information of transition matrix while preventing overfitting. To do so, we provide
an interpolated transition matrix Tint = αTu + (1 − α)Te to the algorithm, where α controls the scale of
the interpolation. As FWD is the T -informed method with the most sever overfitting when using Tu, we
performed this experiment using FWD adn reported the results in Figure 6. As shown in Figure 6, FWD can
learn better from an interpolated Tint, confirming the conjecture that Tu can serve as a regularization role.

Figure 6: The last epoch accuracy of CLCIFAR10 and CLCIFAR20 for FWD algorithm with an α-interpolated
transition matrix Tint. The five solid points on each cruve represent different noise cleaning rate: 0%, 25%,
50%, 75%, 100% from left to right.

6 Validation Objectives

Validation is a crucial component in applying CLL algorithms in practice. With the collection of the real-world
datasets, we are now able to estimate the difference between using ordinary labels for validation (the common
practice in existing CLL studies, as what we do in Section 5) and using complementary labels for validation.
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Validation objectives As discussed in Section 2, validating the model performance solely with complementary
labels poses a non-trivial challenge. To the best of our knowledge, only two existing CLL studies offer some
possibility to evaluate a classifier with only complementary labels. They are URE (Ishida et al., 2019) and
SCEL (Lin & Lin, 2023). We take these two validation objectives to select the optimal learning rate from
{10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5} and provides the accuracy on testing set in Table 5. We compare
the result to another validation objective that computes the accuracy on an equal number of ordinary labels.
Our goal was to determine the gap between using complementary labels and ordinary labels for validation.
We selected the best learning rate based on the validation objectives for URE, SCEL, and ordinary-label
accuracy, and then report the test performance, as shown in Table 4 for synthetically labeled datasets and
Table 5 for real-world datasets.

Table 4: The testing accuracy of models evaluated with URE and SCEL.

uniform-CIFAR10 uniform-CIFAR20 uniform-MIN10 uniform-MIN20
URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓)

FWD-U 53.41±5.51 50.36±3.25 64.19±0.57 10.78 16.73±2.29 16.52±2.61 21.54±0.37 4.81 33.65±2.84 33.20±3.16 36.30±1.12 2.65 10.10±2.66 9.15±1.68 12.57±2.94 2.47
FWD-R 52.55±4.06 49.17±3.11 61.32±0.90 8.77 18.29±0.39 16.61±2.65 21.50±0.38 3.21 32.15±3.40 33.10±2.03 35.70±1.19 2.60 12.72±3.28 11.57±2.91 14.85±1.75 2.12
URE-GA-U 48.68±1.11 49.29±1.67 50.24±1.11 0.95 15.23±2.35 16.09±1.23 16.67±1.35 0.58 28.10±5.24 34.35±2.39 35.70±1.97 1.35 8.53±1.55 8.52±1.38 11.65±1.90 3.12
URE-GA-R 50.49±1.21 50.25±1.57 50.73±1.83 0.25 15.68±1.35 16.12±0.95 17.57±0.61 1.45 29.85±4.73 34.10±1.90 33.65±1.40 -0.45 7.15±2.13 7.12±2.42 9.78±3.88 2.63
SCL-NL 54.32±6.71 51.03±3.12 63.76±0.09 9.44 15.65±3.06 16.32±3.11 21.37±1.18 5.05 32.95±3.13 33.20±3.69 37.05±1.40 3.85 11.50±3.76 9.28±2.55 13.00±2.80 1.50
SCL-EXP 50.98±6.83 41.61±3.52 63.29±1.02 12.30 16.71±2.72 16.15±2.55 21.57±1.13 4.86 32.95±2.91 29.70±2.83 36.55±1.28 3.60 10.53±2.02 8.83±3.19 12.95±3.38 2.43
L-W 46.88±9.44 50.36±0.47 54.32±0.41 3.95 16.26±1.93 14.67±1.59 19.59±0.99 3.33 17.70±9.90 28.60±5.15 33.80±2.66 5.20 8.58±1.25 7.70±0.35 12.70±2.35 4.12
L-UW 52.47±3.63 51.15±1.61 57.52±0.59 5.05 16.10±1.51 15.58±1.97 20.71±0.92 4.62 22.10±7.68 25.60±7.14 35.10±2.74 9.50 10.60±2.36 8.28±2.02 12.12±3.13 1.52
PC-sigmoid 35.29±1.67 34.82±1.24 37.78±0.80 2.49 13.41±0.95 13.40±0.72 14.48±0.47 1.07 25.55±5.99 27.05±5.66 29.10±0.98 2.05 7.75±1.73 8.72±0.26 10.72±1.38 2.00
ROB-MAE 57.99±1.72 57.79±2.03 59.38±0.63 1.39 17.07±2.02 15.62±1.79 18.17±1.31 1.11 30.15±4.22 29.15±2.90 31.50±1.81 1.35 5.42±0.27 5.03±0.54 6.35±0.86 0.92

Table 5: The testing accuracy of models evaluated with URE and SCEL.

CLCIFAR10 CLCIFAR20 CLMIN10 CLMIN20
URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓)

FWD-U 33.13±1.30 31.86±1.52 34.83±0.50 1.70 6.70±0.46 7.10±0.48 8.03±0.74 0.93 20.75±2.12 20.20±0.72 23.85±2.76 3.10 4.97±0.72 4.55±0.81 6.33±1.04 1.35
FWD-R 33.70±3.38 35.64±1.37 38.13±0.88 2.49 17.35±2.32 18.40±1.56 20.27±0.53 1.86 22.15±4.15 29.15±1.93 30.15±1.83 1.00 8.60±1.32 9.90±1.19 10.60±0.82 0.70
URE-GA-U 30.45±3.58 33.21±1.12 34.72±0.40 1.51 7.03±0.61 8.71±0.74 10.49±0.52 1.79 17.05±3.35 21.30±3.01 22.90±2.97 1.60 4.27±0.80 5.03±0.48 5.75±0.43 0.72
URE-GA-R 27.39±1.89 28.32±1.38 30.23±0.70 1.91 3.58±0.47 5.42±0.96 6.17±0.82 0.75 8.90±1.03 10.30±1.53 13.25±5.11 2.95 5.15±0.62 5.57±1.54 6.50±0.35 0.93
SCL-NL 33.55±0.79 33.70±1.33 34.77±0.60 1.07 6.73±0.51 7.47±0.56 8.02±0.36 0.55 19.55±1.37 22.15±1.76 21.80±1.85 -0.35 4.83±1.12 5.20±0.51 6.17±0.49 0.98
SCL-EXP 31.30±2.62 33.47±1.16 35.18±0.67 1.71 6.83±0.23 7.03±0.62 7.70±0.41 0.66 18.35±1.60 20.65±1.39 24.80±1.14 4.15 5.05±0.56 4.45±0.74 5.58±0.13 0.52
L-W 27.49±4.30 30.32±2.40 32.99±1.01 2.67 5.90±0.29 7.18±0.31 7.71±0.35 0.53 19.30±4.66 18.95±2.30 23.80±2.64 4.50 5.97±0.33 5.55±0.17 6.40±0.29 0.43
L-UW 28.90±2.01 29.78±2.69 34.69±0.32 4.91 6.40±0.42 8.16±0.30 8.15±0.30 -0.01 18.25±4.31 19.80±1.61 22.40±1.67 2.60 5.82±0.77 6.48±1.03 6.35±0.86 -0.13
PC-sigmoid 24.83±5.94 31.48±1.93 32.15±0.80 0.67 7.98±2.47 10.59±0.87 12.11±0.46 1.51 12.55±1.31 17.85±4.61 23.15±0.46 5.30 6.40±1.19 5.33±1.28 6.90±1.04 0.50
ROB-MAE 18.80±1.64 18.75±0.99 20.23±1.02 1.43 4.70±0.43 4.87±0.32 5.40±0.59 0.53 11.80±2.92 14.35±1.59 14.15±0.68 -0.20 5.08±0.44 4.62±0.66 5.38±0.33 0.30

Results and discussion Firstly, there appears no clear winner between URE and SCEL, both using only
CLs for validation. Validating with the ordinary-label accuracy generally provides stronger performance
than URE/SCEL, and the test performance gap between validating with ordinary labels and validating with
complementary labels can be as big as nearly 5%. These findings suggest that using purely complementary
labels for validation, whether through URE or SCEL, still suffers from a non-negligible performance drop
compared to using ordinary validation. That is, the numbers reported in existing studies, which validates
with ordinal labels, can be optimistic for practice. Whether this gap can be further reduced remains an open
research problem and the community can pay more attention on that to make CLL more practical.

7 Alternative to Current Data Collection Protocol
In this work, we used a specific protocol to collect complementary labels, but we acknowledge there are
several alternative protocols that could also be considered. Here we highlight possibilities while explaining
the rationale behind our current design choices.

The first alternative would be to provide annotators with more than four classes. However, realistically,
increasing the number beyond four would significantly increase the effort required from annotators. We
chose four because it is a common standard for multiple-choice scenarios and was effectively employed in
prior research (Wei et al., 2022) that used human annotations to collect noisy labels in real-world settings.
Nevertheless, we admit exploring different numbers of labels beyond four presents an interesting area for
future research in complementary dataset.
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(a) Transition matrix (b) Label distribution

Figure 7: The transition matrix (a) and label distribution (b) of CLMicroImageNet10 with the true labels
hidden.

A second alternative, we considered was using a simple “yes/no” format. However, this approach posed
two main issues. First, it would generate a dataset containing both true and complementary labels, which
conflicts with our goal of creating a purely complementary dataset. Second, the resulting dataset would likely
contain increased noise, complicating clear analysis and validation of the label transition assumptions.

Another possible protocol involves explicitly hiding the true label during annotation to minimize noise.
However, this approach is less realistic since, in real-world scenarios, true labels are typically unknown
(otherwise complementary annotation will not be necessary). Note that part of our current dataset, which
does not have choices that include the true label, can be taken to analyze the effect of such a protocol. We
show in Figure 7) that such a protocol does not lead to much change of the transition matrix (except for the
diagonal noise removal) and label distribution, when compared with our original choice of protocol.

We view our work as an initial exploration into collecting complementary labels, and we hope that this work
will inspire the future work on other possible collection protocols of complementary label.

8 Conclusion

In this paper, we devised a protocol to collect complementary labels from human annotators. Utilizing
this protocol, we curated four real-world datasets, CLCIFAR10, CLCIFAR20, CLMicroImageNet10, and
CLMicroImageNet20 and made them publicly available to the research community. Through our meticulous
analysis of these datasets, we confirmed the presence of noise and bias in the human-annotated complementary
labels, challenging some of the underlying assumptions of existing CLL algorithms. Extensive benchmarking
experiments revealed that noise is a critical factor that undermines the effectiveness of most existing CLL
algorithms. Furthermore, the biased complementary labels can trigger overfitting, even for algorithms
explicitly designed to leverage this bias information. In addition, our study on the validation objective for
CLL suggests that validating with only complementary labels causes significant performance degrading. These
findings emphasize the need for the community to dedicate more effort on those issues. The curated datasets
pave the way for the community to create more practical and applicable CLL solutions.

9 Limitations

To ensure the compatibility with previous CLL algorithms, our work focuses on image datasets based on
CIFAR10/100, and TinyImageNet. It is worth investigating the real-world CLL datasets on larger datasets,
such as ImageNet, and other domains. On the other hand, the proposed protocol focuses on collecting
real-world complementary labels for analyzing the common assumptions on CLL. That said, it is also crucial
to understand efficient ways to collect complementary labels in practice, e.g., by asking annotators binary
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questions to collect ordinary and complementary labels simultaneously. We leave these directions as future
works and hope that our work can open the way for the community to understand these questions.

Broader Impact Statement

It is known that weakly-supervised learning can be used for some privacy-preserving applications. While
our CLImage datasets do not fall under such privacy-preserving applications, we suggest that practitioners
exercise caution when exploring these use cases.
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Appendix

A More discussion on practical noise and extended ablation study

Our work found out that the labeling noise is the main factor contributing to the performance gap between
synthetic CL and practical CL. Hence, we conducted deeper investigation into some directions to handle the
practical noise. In Section A.1, we discussed the performance improvement when more human-annotated
complementary labels were available. In Section A.2, we designed the synthetic CLCIFAR-N dataset to study
the difference between synthetic uniform noise and practical noise. In Section A.3, we provided the benchmark
results of all robust loss methods to emphasize the essence of studying a practical complementary label
dataset. In Section A.4, we discussed result analysis of CLCIFAR20 and CLMicroImageNet20 datasets and
described the process how MicroImageNet10 and MicroImageNet20 datasets were generated in Section A.5. In
Section A.6, we provided an ablation study on different network architectures commonly used in complementary
label learning.

A.1 Multiple complementary labels

In this experiment, we studied the case when there were multiple CLs for a data instance. We duplicated
the data instance and assigned them with another practical label from the annotators. The results of this
experiment were summarized in Table 6.

For CLCIFAR10, we observe that the model achieved better learning performance when trained on data
instances with more CLs. However, the issue of overfitting persists even with the increased number of labels.
In the case of CLCIFAR20, we found that without employing early stopping techniques, it is challenging to
achieve improved results as the number of labels increased. Furthermore, the overfitting problem becomes
more pronounced with the increased number of labels. Overall, these findings shed light on the challenges
posed by multiple CLs and the persistence of overfitting.

A.2 Benchmarks with synthetic noise

Generation process of CLCIFAR-N Inspired by the conclusions drawn in Section 5.3, we investigated
another avenue of research: the generalization capabilities of methods when transitioning from synthetically
labeled datasets with uniform noise to practical datasets. To obtain a general synthetic dataset with minimum
assumption, we introduced CLCIFAR-N. This synthetic dataset contains unifrom CL and uniform real world
noise from CLCIFAR dataset. The complementary labels of CLCIFAR-N are i.i.d. sampled from Tsyn, where
the diagonal entries are set to be 3.93%/10 (for generating CL for CIFAR10) or 2.8%/20 (for generating CL
for CIFAR20). The non-diagonal entries are uniformly distributed. This construction allows us to generate a
synthetic dataset that mimics real-world scenarios more closely with minimum knowledge.

Benchmark results We ran the benchmark experiments with the identical settings as in Section 5.1 and
present the results in Table 7. The performance difference between sythetic noise and practical noise are
illustrated in the diff columns. A smaller difference indicates a better generalization capability of the models.
Interestingly, the robust loss methods exhibit superiority on the synthetic CLCIFAR10-N dataset but struggle
to generalize well on real-world datasets. This finding suggests the existence of fundamental differences
between synthetic noise and practical noise. Further investigation into these differences is left as an avenue
for future research.

A.3 Results of the robust loss methods

The original design of the robust loss aims to obtain the optimal risk minimizer even in the presence of
corrupted labels. However, their methods do not generalized well on practical datasets. The results are
provided in Table 8. In other words, solely considering synthetic noisy CLs does not guarantee performance
on real-world datasets. These results once again underscore the importance of the CLCIFAR dataset.
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Table 6: Learning with Multiple CL: The figure shows the classification accuracy of each task with early
stopping indicated in brackets. The highest accuracy in each column is bolded for ease of comparison.

CLCIFAR10 CLCIFAR20

num CL 1 2 3 1 2 3

FWD-U 34.09(36.83) 41.95(41.53) 42.88(45.18) 7.47(8.27) 8.28(8.78) 8.15(10.27)
FWD-R 28.88(38.9) 34.33(47.07) 37.84(49.76) 16.14(20.31) 16.99(23.41) 15.54(24.19)
URE-GA-U 34.59(36.39) 45.71(44.85) 45.97(47.97) 7.59(10.06) 8.42(11.52) 8.53(12.75)
URE-GA-R 28.7(30.94) 42.73(43.34) 44.73(47.36) 5.24(5.46) 6.77(6.92) 5.0(5.55)
SCL-NL 33.8(37.81) 40.67(42.58) 43.39(45.2) 7.58(8.53) 6.77(6.92) 5.0(5.55)
SCL-EXP 34.59(36.96) 40.89(42.99) 44.4(47.9) 7.55(8.11) 7.42(8.39) 8.0(9.31)
L-W 28.04(34.55) 34.96(41.83) 39.05(47.46) 7.08(8.74) 8.06(8.76) 8.03(10.18)
L-UW 30.63(35.13) 38.05(43.32) 39.49(45.82) 7.36(8.71) 7.03(8.55) 7.86(10.11)
PC-sigmoid 24.38(35.88) 25.63(39.82) 33.89(43.75) 9.27(14.26) 11.91(16.07) 17.68(14.13)

Table 7: Benchmark results on CLCIFAR-N datasets. The classification accuracy difference is calculated by
subtracting the practical CLCIFAR dataset from the performance on the synthetic CLCIFAR-N dataset.

CLCIFAR10-N diff(↓) CLCIFAR20-N diff(↓)
FWD-U 37.1 2.2 7.58 0.11
FWD-R - - - -
URE-GA-U 31.29 -3.3 8.1 0.5
URE-GA-R - - - -
SCL-NL 37.79 2.06 7.75 0.16
SCL-EXP 35.86 3.19 6.95 -0.59
L-W 30.1 2.06 6.16 -0.91
L-UW 32.69 2.05 6.89 -0.47
PC-sigmoid 19.64 -4.73 6.54 -2.72
CCE 32.34 13.45 5.71 0.71
MAE 41.34 23.09 6.83 1.83
WMAE 37.62 22.26 6.36 1.08
GCE 35.00 18.71 6.7 1.7
SL 29.98 12.29 6.08 1.05

A.4 Result analysis of CLCIFAR20 and MicroImageNet20

In this section, we further investigate the complementary labels collected from the CLCIFAR20 and MicroIm-
ageNet20 datasets. We followed similar observation and analyzed in the Section 4. Our observation and
analysis are described as below:

Observation 1: noise rate compared to ordinary label collection We observed that the noise rates
for the complementary labels collected from the CLCIFAR20 and MicroImageNet20 datasets are 2.80% and
3.21%, respectively. This finding is consistent with the observations discussed in Section 4. The lower noise
rate in the CLCIFAR20 dataset compared to MicroImageNet20 can be attributed to the greater difficulty in
labeling the MicroImageNet20 dataset.

Observation 2: imbalanced complementary label annotation Next, we analyzed the distribution of the
collected complementary labels. The frequencies of these labels for the CLCIFAR20 and CLMicroImageNet20
(CLMIN20) datasets are shown in Figure 8. The figure reveals that annotators exhibit specific biases towards
certain labels. For example, in CLCIFAR20, annotators show a preference for labels such as “fish”, “flowers”,
“people”, “trees”, “food container”, and “transportation vehicles”. In CLMIN20 6, they favor “iPod” and
“tractor”. In CLCIFAR20, the bias tends towards labels with shorter, more concrete, and understandable
names. Conversely, in CLMIN20, the preference is for easily recognizable items as “iPod”, and “tractor”,
while less familiar items such as “bannister”, “american lobste”, “snorkel”, and “gazelle” are less favored.

Observation 3: biased transition matrix Finally, we visualized the empirical transition matrix using the
collected complementary labels, as shown in Figure 9. Our observations indicate that the transition matrix

6The mapping between class numbers and labels for CLCIFAR10 and CLMIN20 is provided in Appendix E.
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Table 8: Standard benchmark results on CLCIFAR and uniform-CIFAR datasets for the robust loss method.
Mean accuracy (± standard deviation) on the testing dataset from four trials with different random seeds.
Highest accuracy in each column is highlighted in bold.

uniform-CIFAR10 CLCIFAR10 uniform-CIFAR20 CLCIFAR20

methods valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES)

CCE 46.57±1.75 49.51±0.73 16.18±2.97 20.18±3.39 12.54±0.40 14.62±1.29 5.07±0.05 5.41±0.30
MAE 57.37±0.48 58.50±0.97 16.30±2.27 19.44±4.41 16.72±1.52 17.63±1.63 5.11±0.11 5.87±0.26
WMAE - - 13.01±1.89 15.51±0.75 - - 5.31±0.27 6.65±0.65
GCE 58.10±1.54 59.44±2.30 14.31±1.44 18.97±2.16 15.86±1.93 17.09±1.19 5.21±0.29 5.76±0.32
SL 41.13±1.64 42.64±0.11 16.45±2.80 19.28±3.16 13.60±0.55 15.70±1.23 5.44±0.29 6.59±0.43

is biased. Specifically, we discovered that the bias in the complementary labels is dependent on the true
labels, as depicted in Figure 9. In CLCIFAR20, there are more annotations for labels with shorter, more
concrete, and understandable names, such as “fish”, “flowers”, “people”, and “transportation vehicles”. This
results in a distribution that is more biased towards these labels. A similar pattern of bias is observed in
CLMIN20, where annotators favored easily recognizable items like “iPod” and “tractor”, while less familiar
items received fewer annotations.

(a) CLCIFAR20 (b) CLMicroImageNet20

Figure 8: The label distribution of CLCIFAR20 and CLMicroImageNet20 datasets. The full label names are
provided in Appendix E.

A.5 MicroImageNet dataset generation

To generate the MicroImageNet10 and MicroImageNet20 datasets, we began by randomly selecting 10 classes
from the 200 available in MicroImageNet to create MicroImageNet10. Similarly, we randomly selected 20
classes to form MicroImageNet20. The selected classes are listed in Table 11 of Appendix E. Each class
in the TinyImageNet200 dataset contains multiple labels. To ensure reproducibility and facilitate human
annotation, we chose the first label to represent the primary label of each class, as detailed in Appendix E.
Each class in the MicroImageNet10/20 datasets comprises 500 images for the training set and 50 images for
the validation set. To collect complementary labels for the MicroImageNet10/20 datasets, we followed a
protocol similar to the one described in Section 3.2.

A.6 Result analysis of different neural network architectures

We chose to begin benchmarking with simpler models due to the known issue of overfitting in CLL (Chou et al.,
2020). Simpler models are typically less prone to overfitting, making them suitable for initial benchmarking.
We conducted an ablation study comparing different neural network architectures, including ResNet18,
ResNet34, ResNet50, and DenseNet121, to determine the most suitable architecture for our complementary
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(a) CLCIFAR20 (b) CLMicroImageNet20

Figure 9: The empirical transition matrices of CLCIFAR20 and CLMicroImageNet20. The label names of
CLCIFAR20 and CLMicroImageNet20 are abbreviated as indexes to save space. The full label names are
provided in Appendix E.

dataset. Results shown in Table 9 indicate that ResNet18 achieved the best performance. Additionally,
ResNet18 closely aligns with ResNet architectures commonly used in CLL studies (Ye et al., 2024; Xu et al.,
2020). Thus, we selected ResNet18 for benchmarking purposes.

Table 9: Performance of various neural network architectures using SCL-NL and FWD-R algorithms on our
real-world complementary datasets. The highest accuracy in each column is highlighted in bold.

CLCIFAR10 CLCIFAR20 CLMIN10 CLMIN20
ResNet18 ResNet34 ResNet50 DenseNet121 ResNet18 ResNet34 ResNet50 DenseNet121 ResNet18 ResNet34 ResNet50 DenseNet121 ResNet18 ResNet34 ResNet50 DenseNet121

SCL-NL 34.77 25.13 24.55 31.42 8.02 5.62 7.45 7.98 21.80 12.60 10.40 11.40 6.17 5.00 3.60 5.10
FWD-R 38.12 27.60 26.06 27.09 20.27 12.21 13.78 14.26 30.15 15.20 21.00 15.80 10.60 5.80 6.80 6.50

B An overview of the complementary-label learning algorithms

In this section, we review the algorithms benchmarked in Section 5.

B.1 T-informed CLL algorithms

Some of them take the transition matrix T as inputs, which we call T -informed methods, including

• Two versions of forward correction method (Yu et al., 2018): FWD-U and FWD-R. They utilize a
uniform transition matrix Tu and an empirical transition matrix Te as input, respectively.

• Two versions of unbiased risk estimator with gradient ascent (Ishida et al., 2019): URE-GA-U with
a uniform transition matrix Tu and URE-GA-R with an empirical transition matrix Te.

• Robust loss methods (Ishiguro et al., 2022) for learning from noisy CL, including CCE, MAE,
WMAE, GCE, and SL7. We applied the gradient ascent technique (Ishida et al., 2019) as recom-
mended in the original paper.

7Due to space limitations, we only provided the results of MAE. The remaining results and discussions related to the robust
loss methods can be found in Appendix A.3.
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In practice, the empirical transition matrix Te is not accessible to the learning algorithm, but we assume that
the correct Te is given to FWD-R, URE-GA-R and the robust loss methods for simplicity.

T-informed CLL algorithms are those that has the transition matrix as inputs, includes but not limited
to Forward loss correction (FWD) and Unbiased risk estimate (URE). They are expected to utilize the
information of the transition matrix to provide better performance when the complementary labels are not
generated uniformly. The transition matrix, however, may not be accessible in practice. In this case, a
uniform transition matrix Tu is typically provided to the algorithms as a default choice. In the benchmark in
Section 5, we considered both scenarios in which the empirical transition matrix Te or the uniform transition
matrix Tu was provided.

FWD Forward loss correction utilizes the information of a transition matrix T in its loss function as in Eq.
3 (Yu et al., 2018). Essentially, this method trains model f by minimizing the following loss function.

R(g) = 1
N

N∑
i=1

ℓ(T ⊤ softmax(g(xi)), ȳi) (3)

where T is the transition matrix provided to the method. We use FWD-U and FWD-R to indicate the
cases that T equals Tu and Te, respectively.

URE-GA (Ishida et al., 2017) proposed an unbiased risk estimator (URE) for learning from complementary
label. The loss of the URE is defined as follows,

R(g) = 1
N

N∑
i=1

e⊤
yi

(T −1)ℓ(g(xi)) (4)

URE, however, can go below zero during the optimization procedure, leading to overfitting of the model. To
address this issue, (Ishida et al., 2019) proposed two tricks, non-negative risk estimator (NN) and gradient
accent(GA). The former zeros out the gradient when the mini-batch loss goes below zero while the latter
reverse the mini-batch gradient when the loss from any of the complementary class goes below zero. We
replace the transition matrix T in the risk estimator 4 with Tu and Te for URE-GA-U and URE-GA-R.

B.2 T-agnostic CLL algorithms

T-agnostic CLL algorithms are those that do not take the information of the transition matrix, includes but
not limited to Surrogate complementary loss (SCL) and Discriminative modeling (L-W/L-UW).

SCL (Chou et al., 2020) proposed to use the surrogate complementary loss (SCL) to address the overfitting
tendency in URE. The loss function is defined as follows,

R(g) = 1
N

N∑
i=1

ϕ(ȳi, g(xi)), (5)

where ϕ(·) is a surrogate loss for 0 − 1 loss. For instance, SCL-NL uses the negative log loss ϕ(ȳ, g(x)) =
− log(1 − pȳ) and SCL-EXP uses the exponential loss ϕ(ȳ, g(x)) = exp(pȳ).

L-W/L-UW (Gao & Zhang, 2021) proposed to use discriminative modeling to directly model the distribu-
tion of complementary labels. To do so, they proposed the following loss functions,

R(g) = 1
N

N∑
i=1

− log(softmax(1 − softmax(g(x))))ȳi
, (6)

They also proposed a weighting function to further improve the performance. The unweighted version is
denoted as L-UW and the weighted version is denoted as L-W.
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B.3 Robust loss methods

(Ishiguro et al., 2022) studied two conditions on loss functions: weighted symmetric condition and relaxation
of weighted symmetric condition. Five loss functions that can be robust against the estimation error of the
transition matrix were proposed. Their results can be further generalized to noisy complementary label
learning. More experiment details for reproduction can be found in their paper.

C Additional charts for CLCIFAR dataset with data cleaning

We remove 0%, 25%, 50%, 75%, 100% of the noisy data in CLCIFAR10 and CLCIFAR20 datasets. We
discover that by removing the noisy data in the practical dataset, the practical performance gaps vanish for
all the CLL algorithms. Therefore, we can conclude that the main obstacle to the practicality of CLL is label
noise.

(a) URE-GA-(U/R) on CLCIFAR10 (b) URE-GA-(U/R) on CLCIFAR20

(a) L-(W/UW) on CLCIFAR10 (b) L-(W/UW) on CLCIFAR20
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(a) PC-sigmoid on CLCIFAR10 (b) PC-sigmoid on CLCIFAR20

D Analysis between multiple label collection trials

We carried out the same protocol for three independent trials to ensure the consistency of our results. The
noise rates of CLCIFAR10 are 0.0398, 0.03882, and 0.03928 for three trials respectively. On the other hand,
the noise rates of CLCIFAR20 are 0.02322, 0.02902, and 0.03196. These results show that the obtained
noise rates are reliable and consistent. Besides, we also analyzed the distribution of complementary label
within three trials as reported in Figure 13. The consistent distribution of complementary labels reveals
the empirical human annotating biasedness within our protocol. Both analyses show that our protocol and
discovery are solid and stable.

(a) CLCIFAR10 (b) CLCIFAR20

Figure 13: The complementary label distribution of three independent trials of CLCIFAR10 dataset (Left)
and CLCIFAR20 dataset (Right). The full label names of CLCIFAR20 are provided in Appendix E.
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E Label names of CLCIFAR20 and CLMicroImageNet20

Table 10: The correspondence between index and label names of CLCIFAR20 and CLMicroImageNet20
datasets.

Index CLCIFAR20 Label Name CLMicroImageNet20 Label Name
0 aquatic mammals tailed frog
1 fish scorpion
2 flowers snail
3 food containers american lobster
4 fruit, vegetables and mushrooms tabby
5 household electrical devices persian cat
6 household furniture gazelle
7 insects chimpanzee
8 large carnivores and bear bannister
9 large man-made outdoor things barrel
10 large natural outdoor scenes christmas stocking
11 large omnivores and herbivores gasmask
12 medium-sized mammals hourglass
13 non-insect invertebrates iPod
14 people scoreboard
15 reptiles snorkel
16 small mammals suspension bridge
17 trees torch
18 transportation vehicles tractor
19 non-transportation vehicles triumphal arch

Table 11: The selected classes/folders for MicroImageNet10 (MIN10) and MicroImageNet20 (MIN20) are
drawn from the TinyImageNet200 dataset. The labels provided in the table represent the first ordinary label
for these classes.

Index MIN10 Folder MIN10 Label Name Index MIN20 Folder MIN20 Label Name
0 n02281406 sulphur-butterfly 0 n01644900 tailed frog
1 n02769748 backpack 1 n01770393 scorpion
2 n02963159 cardigan 2 n01944390 snail
3 n03617480 kimono 3 n01983481 american lobster
4 n03706229 magnetic-compass 4 n02123045 tabby
5 n03838899 oboe 5 n02123394 persian cat
6 n04133789 scandal 6 n02423022 gazelle
7 n04456115 torch 7 n02481823 chimpanzee
8 n07873807 pizza 8 n02788148 bannister
9 n09193705 alp 9 n02795169 barrel

10 n03026506 christmas stocking
11 n03424325 gasmask
12 n03544143 hourglass
13 n03584254 iPod
14 n04149813 scoreboard
15 n04251144 snorkel
16 n04366367 suspension bridge
17 n04456115 torch
18 n04465501 tractor
19 n04486054 triumphal arch
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F AutoAugment

In addition to the standard data augmentation, RandomCrop and RandomHorizontalFlip, we also considered
a more advanced one, AutoAugment (Cubuk et al., 2019). The benchmark results using AutoAugment are
provided in Table 12. We observe that AutoAugment can improve the performance in almost all of the
secenarios with a cost of around double running time compared to standard data augmentation. Also, the
overfitting tendency of the previous algorithms remains unsolved although we observe that early-stopping
can still deliver better performance when using AutoAugment.

Table 12: Comparison of performance using AutoAugment on CLCIFAR and uniform-CIFAR datasets in
relation to tab:exp-1. The accuracy changes are shown in subscript, with enhanced accuracy values being
highlighted in bold.

uniform-CIFAR10 CLCIFAR10 uniform-CIFAR20 CLCIFAR20

methods valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES)

FWD-U 75.72+6.55 77.02+7.23 42.46+8.37 43.52+6.69 26.8+6.56 26.93+6.31 7.38−0.09 8.76+0.49
FWD-R 75.53+5.79 76.06+6.47 40.37+11.49 42.13+3.23 26.74+6.74 26.98+6.27 20.71+4.57 24.77+4.46
URE-GA-U 60.24+5.62 59.9+4.96 37.78+3.19 38.48+2.09 17.08+1.67 18.59+2.0 8.88+1.29 9.7−0.36
URE-GA-R 58.36+5.06 59.42+2.40 31.98+3.28 33.08+2.14 18.2+3.34 19.72+2.39 10.85+5.61 9.89+4.43
SCL-NL 76.6+9.45 76.83+8.19 38.4+4.6 43.22+5.41 23.11+3.07 26.62+5.94 7.34−0.24 8.34−0.19
SCL-EXP 75.9+11.04 75.75+10.35 40.95+6.36 41.63+4.67 24.96+5.56 26.64+5.61 7.21−0.34 8.47+0.36
L-W 67.2+10.99 71.07+11.89 33.89+5.85 38.16+3.61 22.28+7.93 23.19+4.08 7.58+0.5 8.64−0.1
L-UW 72.39+11.51 73.26+10.83 34.61+3.98 40.3+5.17 23.31+7.3 24.41+4.99 7.47+0.11 8.96+0.25
PC-sigmoid 45.72+17.52 46.53+7.24 33.24+8.86 40.72+4.84 12.81+3.09 13.84−2.61 14.15+4.88 17.06+2.8
MAE 61.26+3.89 63.41+4.91 21.74+5.44 23.65+4.21 20.03+3.41 21.79+4.16 5.18+0.07 6.68+0.81

G Datasheets for Datasets

We refer to the template and guiding questions provided in ‘Datasheets for Datasets’ by (Gebru et al., 2021).

G.1 Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap
that needed to be filled? Please provide a description.

The dataset was created to enable research on complementary label learning to gain insights into the real-
world performance of CLL algorithms, we developed a protocol to collect complementary labels from human
annotators.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?

The datasets were created by: Computational Learning Lab, Dept. of Computer Science and Information
Engineering, National Taiwan University.

Who funded the creation of the dataset? If there is an associated grant, please provide the name of the
grantor and the grant name and number.

Funding was provided from those distinct sources: the National Science and Technology Council in Taiwan
via NSTC 113-2628-E-002-003, NSTC 113-2634-F-002-008, NSTC 112-2628-E-002-030, and National Center
for High-performance Computing (NCHC) of National Applied Research Laboratories (NARLabs) in Taiwan
for providing computational and storage resources.

Any other comments?

None.
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G.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and interactions
between them; nodes and edges)? Please provide a description.

The instances are the images which are derived the published datasets including CIFAR10, CIFAR100,
TinyImageNet.

How many instances are there in total (of each type, if appropriate)?

The CLCIFAR10 and CLCIFAR20 datasets each contain 50,000 training instances and 10,000 testing
instances. For the CLMicroImageNet datasets, CLMicroImageNet10 has 5,000 training instances and 500
testing instances, whereas CLMicroImageNet20 includes 10,000 training instances and 1,000 testing instances.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample
representative of the larger set (e.g., geographic coverage)? If so, please describe how this representativeness
was validated/verified. If it is not representative of the larger set, please describe why not (e.g., to cover a
more diverse range of instances, because instances were withheld or unavailable).

For details regarding the CLCIFAR10 and CLCIFAR20 datasets, please refer to Section 3.1. The CLMicroIm-
ageNet10 and CLMicroImageNet20 datasets are described in Appendix A.5.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)or features? In
either case, please provide a description.

Each instance consists of an image associated with three complementary labels. The images in the CLCI-
FAR10 and CLCIFAR20 datasets have dimensions of 32x32 pixels, while those in CLMicroImageNet10 and
CLMicroImageNet20 have dimensions of 64x64 pixels.

Is there a label or target associated with each instance? If so, please provide a description.

The label is the negative labels of picture, called complementary label. The complementary label derived
from other labels, which an instance does not belong.

Is any information missing from individual instances? If so, please provide a description, explaining
why this information is missing (e.g., because it was unavailable). This does not include intentionally removed
information, but might include, e.g., redacted text.

Everything is included. No data is missing.

Are relationships between individual instances made explicit (e.g.,users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit.

None explicitly.

Are there recommended data splits (e.g., training, development/validation, testing)? If so, please
provide a description of these splits, explaining the rationale behind them.

The datasets are included the testing set. Results are measured in classification accuracy.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description.

Please refer to Section 4, and Appendix A.4 for detailed information.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees
that they will exist, and remain constant, over time; b) are there official archival versions of the complete
dataset (i.e., including the external resources as they existed at the time the dataset was created); c) are there
any restrictions (e.g., licenses, fees) associated with any of the external resources that might apply to a dataset
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consumer? Please provide descriptions of all external resources and any restrictions associated with them, as
well as links or other access points, as appropriate.

The dataset is entirely self-contained.

Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctor–patient confidentiality, data that includes the content of
individuals’ nonpublic communications)? If so, please provide a description.

All are image which contents vehicles, animals, etc. It is not considered confidential.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why.

No.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these
subpopulations are identified and provide a description of their respective distributions within the dataset.

No.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? If so, please describe how.

No.

Does the dataset contain data that might be considered sensitive in any way (e.g., data
that reveals race or ethnic origins, sexual orientations, religious beliefs, political opinions or
union memberships, or locations; financial or health data; biometric or genetic data; forms
of government identification, such as social security numbers; criminal history)? If so, please
provide a description.

No.

Any other comments?

None.

G.3 Collection Process

How was the data associated with each instance acquired? Was the data directly observable (e.g.,
raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived from
other data (e.g., part-of-speech tags, model-based guesses for age or language)? If the data was reported by
subjects or indirectly inferred/derived from other data, was the data validated/verified? If so, please describe
how.

The data was mostly observable as raw image. The data was collected by downloading the link at: https:
//www.cs.toronto.edu/~kriz/cifar.html, http://cs231n.stanford.edu/tiny-imagenet-200.zip.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or
sensors, manual human curation, software programs, software APIs)? How were these mechanisms
or procedures validated?

Please refer to Section 3.2 for detailed information.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?

Please refer to Section 3.1, and Appendix A.5 for detailed information.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)?
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The labeling tasks were deployed on Amazon MTurk by dividing the overall dataset into manageable Human
Intelligence Tasks (HITs). Specifically, to construct the CLCIFAR and CLMicroImageNet datasets, we
first partitioned the total of 50,000 images into five batches, each containing 10,000 images. Each batch
was then further divided into 1,000 HITs, with each HIT containing 10 images. Each HIT was assigned to
three annotators, who received a reward of 0.03 dollar per HIT (10 images). The decision to set the reward
at 0.03 dollar per HIT was based on the understanding that assigning complementary labels requires less
effort and lower expertise compared to assigning true labels. We conducted preliminary research on typical
reward ranges on Amazon MTurk and determined that this amount appropriately compensates annotators
at approximately 6 dollar per hour, reflecting a fair balance between annotator effort, data quality, and
cost-effectiveness.

Over what timeframe was the data collected? Does this timeframe match the creation timeframe of
the data associated with the instances (e.g., recent crawl of old news articles)? If not, please describe the
timeframe in which the data associated with the instances was created.

The CLCIFAR datasets have been collected in 2023 and CLMicroImageNet has been collected in 2024 to
expand our complementary datasets.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so,
please provide a description of these review processes, including the outcomes, as well as a link or other access
point to any supporting documentation.

N/A.

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)?

All datasets are labeled by human annotators on Amazon Mechanical Turk (MTurk).

Were the individuals in question notified about the data collection? If so, please describe (or show
with screenshots or other information) how notice was provided, and provide a link or other access point to,
or otherwise reproduce, the exact language of the notification itself.

No. All data have been asked the same question “What is the incorrect label of the picture?” and following
by four multiple choices.

Did the individuals in question consent to the collection and use of their data? If so, please
describe (or show with screenshots or other information) how consent was requested and provided, and provide
a link or other access point to, or otherwise reproduce, the exact language to which the individuals consented.

N/A.

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? If so, please provide a description, as well as a link or
other access point to the mechanism (if appropriate).

N/A.

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a
data protection impact analysis) been conducted? If so, please provide a description of this analysis,
including the outcomes, as well as a link or other access point to any supporting documentation.

N/A.

Any other comments?

None.

G.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
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of missing values)? If so, please provide a description. If not, you may skip the remaining questions in this
section.

None.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.

Is the software that was used to preprocess/clean/label the data available? If so, please provide a
link or other access point.

Any other comments?

None.

G.5 Uses

Has the dataset been used for any tasks already? If so, please provide a description.

This datasets have been derived from public datasets–CIFAR10, CIFAR100, TinyImageNet200– which are
popular datasets from classification learning in Computer Vision domain.

Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point.

For detail information, please refer our repository.

What (other) tasks could the dataset be used for?

The dataset could be used for anything related to modeling or understanding of how to model learning from
inexact, incorrect data (complementary label learning).

Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? For example, is there anything that a
dataset consumer might need to know to avoid uses that could result in unfair treatment of individuals or
groups (e.g., stereotyping, quality of service issues) or other risks or harms (e.g., legal risks, financial harms)?
If so, please provide a description. Is there anything a dataset consumer could do to mitigate these risks or
harms?

None.

Are there tasks for which the dataset should not be used? If so, please provide a description.

The datasets are collected specifically for complementary label learning, where models are trained using
weaker labeling information rather than exact true labels. Consequently, predictions about true labels are
inferred indirectly. Due to this indirect labeling approach, there is a potential increased risk of privacy leakage
if applied to sensitive or personally identifiable image data. Thus, the datasets should not be used in contexts
where the protection of user privacy is critical, or where indirect inferences might inadvertently compromise
sensitive personal information.

Any other comments?

None.

G.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? If so, please provide a description.

Yes, the dataset is publicly available on the internet.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset
have a digital object identifier (DOI)?
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The dataset will be hosted on our GitHub to ensure accessibility to the community. For the official DOI,
please refer the official publication on TMLR.

When will the dataset be distributed?

The original datasets were first released in 2012 for CIFAR and 2015 for TinyImageNet. Our complementary
dataset is released via this link.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and provide
a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU, as well as any
fees associated with these restrictions.

The crawled data copyright belongs to the authors of the reviews unless otherwise stated. There is no
license, but there is a request to cite the corresponding paper if the dataset is used: Learning multiple layers
of features from tiny images, Alex Krizhevsky, University of Toronto, 05 2012, and Tiny imagenet visual
recognition challenge, Ya Le and Xuan S. Yang, 2015. The CLImage datasets and accompanying code are
available under the MIT License. For further information, please refer our GitHub.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? If so, please describe these restrictions, and provide a link or other access point to, or otherwise
reproduce, any relevant licensing terms, as well as any fees associated with these restrictions.

No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to, or otherwise
reproduce, any supporting documentation

These datasets have been driven from CIFAR10, CIFAR100, TinyImageNet200, which are known as the
public datasets.

Any other comments?

None.

G.7 Maintenance

Who will be supporting/hosting/maintaining the dataset?

Computational Learning Lab, Dept. of Computer Science and Information Engineering, National Taiwan
University.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

Prof. Hsuan-Tien Lin, htlin@csie.ntu.edu.tw.

Is there an erratum? If so, please provide a link or other access point.

Currently, this dataset just has one version.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
If so, please describe how often, by whom, and how updates will be communicated to dataset consumers (e.g.,
mailing list, GitHub)?

All updates and changes related to the CLImage dataset will be reflected in this repository.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were the individuals in question told that their data would be retained
for a fixed period of time and then deleted)? If so, please describe these limits and explain how they
will be enforced.

N/A.
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Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to dataset consumers.

This dataset has been hosted and maintained via our repository.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism
for them to do so? If so, please provide a description. Will these contributions be validated/verified? If so,
please describe how. If not, why not? Is there a process for communicating/distributing these contributions to
dataset consumers? If so, please provide a description.

Others may do so and should contact the original authors about incorporating fixes/extensions.

Any other comments?

None.
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