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Abstract

Multiple-choice visual question answer-001
ing (VQA) is to automatically choose a correct002
answer from a set of choices after reading an003
image. Existing efforts have been devoted004
to a separate generation of an image-related005
question, a correct answer, or challenge006
distractors. By contrast, we turn to a holistic007
generation and optimization of questions,008
answers, and distractors (QADs) in this study.009
This integrated generation strategy eliminates010
the need for human curation and guarantees011
information consistency. Furthermore, we first012
propose to put the spotlight on different image013
regions to diversify QADs. Accordingly, a014
novel framework ReBo is formulated in this015
paper. ReBo cyclically generates each QAD016
based on a recurrent multimodal encoder, and017
each generation is focusing on a different018
area of the image compared to those already019
concerned by the previously generated QADs.020
In addition to traditional VQA comparisons021
with state-of-the-art approaches, we also022
validate the capability of ReBo in generating023
augmented data to benefit VQA models.024

1 Introduction025

Visual Question Answering (VQA) (Antol et al.,026

2015; Goyal et al., 2017; Krishna et al., 2017)027

represents a burgeoning research domain that ne-028

cessitates the development of algorithms capable029

of responding to arbitrary natural language ques-030

tions of a given image. A specific subset of VQA,031

known as multiple-choice (MC) VQA (Zhu et al.,032

2016; Kembhavi et al., 2017; Lu et al., 2022b),033

involves the algorithm choosing the correct an-034

swer from a predefined list of distractors. MC-035

VQA, which requires vision-language understand-036

ing and cross-modality reasoning, is the represen-037

tative benchmark for Large Vision-Language Mod-038

els (LVLMs) (Zhu et al., 2023; Liu et al., 2024c;039

Dai et al., 2024). In the era of large models, the040

imperative for large-scale, high-quality MC-VQA 041

datasets has become increasingly pronounced. 042

The traditional process of manually generating 043

data is both labor-intensive and error-prone. Many 044

automated methods are available today to indepen- 045

dently generate questions (Zhang et al., 2016), an- 046

swers (Li et al., 2018), and distractors (Lu et al., 047

2022a) (QADs) by machines based on images. 048

However, these machine-generated QADs are of- 049

ten created independently, making it challenging 050

to ensure intrinsic dependencies between them. To 051

address this issue and enhance the capabilities of 052

large models in vision-language understanding and 053

cross-modality reasoning, our work focuses on the 054

unified generation of QADs. 055

In the process of jointly generating QADs, how 056

to comprehensively understand an image and di- 057

versify its generated QADs is rarely touched. As 058

illustrated in Figure 1, the three bounding boxes 059

focused on by GPT-4o are significantly intersected, 060

inducing redundant questions such as “who is in 061

the photo” and “what animal is in the photo”. In 062

contrast, the QADs generated by our model, ReBo, 063

are semantically rich and comprehensive for com- 064

prehending the image, as a broad union region with 065

small intersections is concentrated on. 066

In the long run, addressing the above challenge 067

come down to how to align image understanding 068

across QADs. We tackle this issue in two folds. 069

First, we automate the generation of QADs in a 070

unified manner, ensuring a consistent image under- 071

standing from questions to answers and distractors. 072

Next, we research the generation of a series of 073

QADs by diversifying their focuses across image 074

regions, which prevents information redundancy 075

and provides a comprehensive understanding of the 076

entire image. 077

From the methodological point of view, we in- 078

troduce a Recurrent multimodal encoder to gen- 079

erate groups of QADs considering the Bounding 080

boxes (ReBo) of the given image. ReBo takes the 081
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Figure 1: An example of the vision regions that different QADs focus on. Compared with GPT-4o, our model
generates semantically rich QADs and provides a more comprehensive understanding of the entire image.

QADs generated in previous steps as part of the082

input to generate QAD in the next step. In addition,083

ReBo considers the union and intersection of image084

bounding boxes, ensuring that each group of QADs085

focuses on diverse regions. In this way, ReBo dis-086

perses its attention on a broad area of the image and087

boosts the diversity of the generated QADs. We088

conduct extensive experiments to validate the per-089

formance of ReBo in different scenarios. Moreover,090

a further experimental analysis suggests that the091

QADs generated by ReBo can be used to promote092

existing VQA models in VQA tasks.093

Our main contributions are listed as follows:094

• We propose a recurrent multimodal encoder-095

based framework ReBo to jointly generate a se-096

ries of QADs for an image in a unified way.097

• We introduce to diversify QAD generations by098

broadening observation and insight for a compre-099

hensive understanding of an image.100

• We conduct quantitative and qualitative evalua-101

tions which demonstrate that ReBo can lead to102

excellent performance in diverse scenarios.103

• We validate the superiority of our generated104

QADs in improving existing VQA models.105

2 Related Work106

Most prior research focused on generating a part or107

parts of QADs, that is, question, answer, or distrac-108

tors. For instance, the studies of Visual Question109

Generation aim at generating questions related to110

an image or a video. Zhang et al. (2016) took111

images and captions as inputs to generate ques-112

tions with different types. Johnson et al. (2016)113

introduced Densecap to produce region captions,114

providing additional context to steer the process115

of question generation. Krishna et al. (2019) for-116

mulated a visual question generation framework117

by optimizing the mutual information between the118

generated question and the pair of image and antic-119

ipated answer. Shen et al. (2020) explored a visual120

question generation approach based on a Double 121

Hint strategy concerning textual answers and re- 122

gions of visual interests. 123

On the other hand, the studies of VQA deploy 124

attention on generating correct answers by under- 125

standing images, questions, and their interactions. 126

For example, Li et al. (2018) proposed iQAN by 127

taking Visual Question Generation as a dual task 128

to improve VQA performance. Xiong and Wu 129

(2020) designed question-generating mechanisms 130

and encouraged collaborative learning interactions 131

among question-answering agents. Changpinyo 132

et al. (2022) used neural models to generate tex- 133

tual questions and question answering. In recent 134

years, some research has broken into the joint 135

generation of question-answer pairs. Yang et al. 136

(2021) employed variational inference to generate 137

question-answer pairs considering diversity and 138

consistency. Su et al. (2021) presented an end-to- 139

end Generator-Pretester Network, which generated 140

question-answer pairs from videos. 141

In contrast to Visual Question Generation and 142

VQA, Visual Distractors Generation is a newly ris- 143

ing research field, which targets to generate chal- 144

lenging distractors according to the image, ques- 145

tion, and answer. For example, Lu et al. (2022a) 146

introduced a reinforcement learning approach to 147

generate distractors in the context of visual images. 148

In this study, we explore a joint generation of 149

groups of QADs as well as take into account their 150

diversified discriminative correlations. Our pro- 151

posed framework is capable of capturing the infor- 152

mation from a broad region of the image, thereby 153

enhancing the diversity and contextuality of the 154

generated QADs. 155

3 Our Method: ReBo 156

We propose the unified framework ReBo to gener- 157

ate QADs as diverse as possible. In this section, 158

we first introduce the model architecture in Section 159

3.1. Then, we describe the recurrent multimodal 160
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Figure 2: The model architecture of ReBo. We freeze the Image Encoder and LLM Decoder and introduce a
Recurrent Multimodal Encoder to generate various QADs. The Recurrent Multimodal Encoder module takes the
prefix and previously generated QADs as text inputs and helps the LLM decoder to generate QADs in each step. We
also use IoU and UoT of to guide the generation. The training processing will be removed during inference.

encoder in Section 3.2, followed by the details of161

the diversifying QAD generations in Section 3.3.162

3.1 Model Architecture163

Our model comprises an image encoder, a recur-164

rent multimodal encoder, and a LLM decoder. We165

freeze the parameters of the image encoder and the166

LLM decoder, and train the recurrent multimodal167

encoder.168

Given n groups of QADs to be generated for a169

given image, we divide the generation process into170

n steps. In each generation step, the recurrent mul-171

timodal encoder takes all of the QADs generated172

in previous steps as part of the text input to help173

the LLM decoder generate the QAD at current step.174

At each step, the generated QAD will focus on a175

different area of the image. After n steps, the Rebo176

model will generate QADs considering the union177

and intersection of diverse visual regions.178

As shown in Figure 2, an image is fed into the179

frozen image encoder to obtain its visual represen-180

tation. On the other hand, the text representation is181

composed of two elements: a fixed prefix and the182

ground truth QADs. The fixed prefix contains the183

number of QADs and the type information of each184

question, and the ground truth QADs comprise all185

of the QADs in previous steps. In specific, the input186

text in step i is the concatenation of the fixed prefix187

and all of the ground-truth QADs in previous i− 1188

steps. The recurrent multimodal encoder takes both189

the visual representation and text representation as190

inputs, and the frozen LLM decoder predicts one 191

single QAD in each step. 192

We record the language modeling loss in each 193

step and accumulate them as the total language 194

modeling loss. An additional cross-entropy loss is 195

introduced to optimize the predicted QADs, and its 196

combination with the total language modeling loss 197

is taken as the final loss function of ReBo. 198

To ensure that the generated QADs have a com- 199

prehensive understanding of the total image and 200

share less redundant information, we present a 201

novel mechanism to analyze the union and inter- 202

section of regions of interest in the image focused 203

on by various QADs, which will be introduced in 204

Section 3.3. 205

3.2 Recurrent Multimodal Encoder 206

For a global optimum, simultaneously generating 207

and optimizing n groups of QADs is suggested. A 208

straightforward solution is to use only one decoder 209

to generate a unified representation of all groups 210

of QADs. However, this method cannot model 211

the specific representation of each individual QAD 212

as well as their inherent correlations. These are 213

crucial for generating an informative and compre- 214

hensive QADs combination, as will be analyzed 215

in Section 3.3. Therefore, we design a recurrent 216

multimodal encoder module to cyclically generate 217

each group of QADs from a single input image. 218

To generate n groups of QADs for a given image, 219

we divide the generation process into n steps. In 220
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each step, we recurrently utilize the recurrent mul-221

timodal encoder to help the LLM decoder generate222

different QADs. To be more specific, the recurrent223

multimodal encoder takes the image feature of this224

image as the visual input, and the text input in each225

step is formed by concatenating the prefix and all226

of the previous ground-truth QADs in the training227

process. As portrayed in Figure 2, the text input in228

step 1 is merely the prefix, that in step 2 is the prefix229

and the ground-truth QAD1, and that is the prefix,230

ground-truth QAD1, and ground-truth QAD2 in231

step 3. In contrast, the output of the LLM decoder232

in each step is a single group of QAD. All groups of233

QADs will be generated cyclically according to the234

recurrent multimodal encoder and LLM decoder235

for the given image. During the inference process,236

we replace the ground truth with the predict result237

of the LLM decoder in each step.238

3.3 Diversifying QAD Generations239

One bounding box can help induce a group of QAD,240

and we can obtain n groups of QADs for the given241

image with n bounding boxes. To make the gen-242

erated QADs focus on diversified image regions,243

we evaluate the scores of different bounding boxes244

combinations of and employ these scores to super-245

vise the QADs generation, as illustrated in Figure 2.246

Given an image with n bounding boxes and Ri247

representing the i-th one, we can obtain its bound-248

ing box combination set C as follows:249

C = Rn = R× ...×R,R = {Ri}ni=1, (1)250

where Rn denotes the n-fold Cartesian product251

of the bounding box set R. The cardinality of C252

is nn, and its each element represents a possible253

combination of bounding boxes based on which we254

can induce groups of QADs.255

Then, we introduce Intersection over256

Union (IoU) and Union over Total (UoT) to257

score each element in C. The IoU of the k-th258

bounding box combination Ck is defined as259

follows:260

IoUk =

∑
Ri,Rj∈Ck,i ̸=j

(
Ri

⋂
Rj/Ri

⋃
Rj

)
n(n− 1)/2

.

(2)261

IoUk denotes the intersection region of the bound-262

ing boxes in Ck, and a higher score typically im-263

plies more redundant discriminative information264

provided by Ck.265

In addition to reduce the intersection attention266

region of different QADs, we also expect to enlarge267

the total union attention region of all QADs to cover 268

as much of the image area as possible. Therefore, 269

we define the UoT of Ck as follows: 270

UoTk =

⋃
Ri∈Ck

Ri

H ×W
, (3) 271

where H and W denote the height and width of the 272

image, respectively. 273

Finally, we can obtain the score vector s whose 274

each element describes the overall score of each 275

bounding box combination as follows: 276

s =
[
sk

]nn

k=1
, sk =

UoTk

IoUk
. (4) 277

The score vector s can serve as the ground truth 278

to guide ReBo in generating diverse QADs. That 279

is, we can minimize the soft cross-entropy loss 280

between s and the prediction probability p to gener- 281

ate less redundant and more comprehensive QADs. 282

Suppose the embeddings of n predicted QADs 283

E = [ ei ]
n
i=1 and the ground-truth embeddings 284

E∗ = [ e∗j ]ni=1. Their cosine similarities can be 285

calculated as 286

sim(ei, e
∗
j ) =

ei
Te∗j∥∥∥ei∥∥∥∥∥∥e∗j∥∥∥ . (5) 287

A large sim(ei, e
∗
j ) indicates a high probability of 288

predicting the j-th QADs as the i-th one. Then, 289

the prediction probabilities of all of the possible 290

bounding box combinations can be calculated as 291

p =
[
pk

]nn

k=1
, pk =

∏
Ri,Rj∈Ck

sim(ei, e
∗
j ), (6) 292

where ei and e∗j are the predicted embedding and 293

ground-truth embedding of QADi and QADj in- 294

duced respectivley from the region Ri and Rj . 295

The final loss function of ReBo is defined as 296

Loss =
n∑

i=1

LMi +H(s, p), (7) 297

where LMi denotes the language modeling loss 298

at the step i, s is the score vector in Eq. (4), p is 299

the prediction probability in Eq. (6), and H(s, p) 300

represents their cross entropy. 301

4 Experiments 302

4.1 Datasets and Metrics 303

Visual7W. Visual7W (Zhu et al., 2016) is collected 304

on 47,300 COCO (Lin et al., 2014) images, consist- 305

ing of 327,939 QA pairs together with 1,311,756 306
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multiple-choices. We refer to telling QA of Vi-307

sual7W in our experiments and take no extra op-308

erations. Each question starts with one of six Ws,309

what, where, when, who, why, and how. We only310

select the QADs that contain bounding boxes from311

the dataset. To cover as many regions of the image312

with as few QADs as possible, for images con-313

taining QADs up to 3, we calculate the bounding314

box scores for all possible combinations of three315

bounding boxes associated with QADs. The QADs316

combination with the highest bounding box score317

is selected as the corresponding QADs for each318

image. We also remove the images that only have319

one QAD. The final dataset contains 8k/5k images320

and 21k/13k QADs for training and testing.321

A-OKVQA. A-OKVQA (Schwenk et al., 2022)322

is a knowledge-based visual question-answering323

benchmark. A-OKVQA is an augmented324

successor of OK-VQA (Marino et al., 2019)325

and contains a diverse set of 17.1k/1.1k/6.7k326

questions/answer/rationale triplets for train-327

ing/validation/testing. We use the A-OKVQA328

dataset to assess whether the generated QADs of329

ReBo can enhance existing VQA models.330

Metrics. We employ BLEU (Papineni et al., 2002),331

ROUGE (Lin, 2004), METEOR (Banerjee and332

Lavie, 2005), and CIDEr (Vedantam et al., 2015)333

with ground-truth QADs to evaluate the quality of334

the generated QADs.335

4.2 Baselines336

We compare ReBo with the following models:337

• VisualBert† (Li et al., 2020) is a pre-trained338

vision-and-language encoder for multimodal un-339

derstanding, and we add a Bert decoder to gener-340

ate QADs.341

• BLIP† (Li et al., 2022) proposes a novel dataset342

bootstrapping method CapFilt, a captioner capa-343

ble of generating synthetic captions given noisy344

web images, and a filter designed to eliminate the345

noisy texts.346

• BLIP2† (Li et al., 2023) adapts frozen large lan-347

guage models to understand visual features ex-348

tracted from the frozen image encoder in image-349

to-text generation tasks.350

• VQADG† (Ding et al., 2024) first presents to351

generate questions, answers, and distractors in352

a unified way. This paper also incorporates con-353

trastive learning to improve the quality of QADs.354

• Qwen-VL† (Bai et al., 2023b) is a large vision-355

language model based on language model (Bai356

et al., 2023a). We select Qwen-VL-Chat in this 357

paper, which is a multimodal LLM-based AI as- 358

sistant trained with human alignment techniques. 359

We also compare ReBo with LLMs, including 360

Llama-2 (Touvron et al., 2023), Mistral (Jiang 361

et al., 2023), ChatGPT (Ouyang et al., 2022), 362

Qwen1.5 (Team, 2024b), and Llama-3 (Team, 363

2024a), as well as LVLMs, involving LLaVA- 364

1.5 (Liu et al., 2024a), CogVLM (Wang et al., 365

2023), and LLaVA-NeXT (Liu et al., 2024b). The 366

implementation details can be found in Appendix 367

B. The source code of our model will be released 368

once acceptance. 369

4.3 Results and Analysis 370

In this section, we will introduce the performance 371

of ReBo and validate the performance of the gen- 372

erated QADs in promoting existing VQA models. 373

We will also conduct human evaluations and case 374

studies to demonstrate the effectiveness of ReBo. 375

4.3.1 Main Results 376

For LLMs and LVLMs, we provide examples and 377

instruct the LLMs to generate QADs, and image 378

captions are employed. The prompts used for 379

LLMs and LVLMs are provided in Appendix A. 380

We retrain all of the V&L baseline models on the 381

same dataset. We extend two variants of generation 382

type to conduct a more comprehensive evaluation 383

of the recurrent multimodal encoder. The concate- 384

nation generation type implies that the QADs as- 385

sociated with one image are generated at once in 386

a naive manner, which means the output would be 387

“QAD1<sep>QAD2<sep>QAD3”. The recurrent 388

generation type entails generating QADs for each 389

step using the recurrent multimodal encoder, which 390

means the output would be “QADi” in step i. All 391

V&L baseline models are retrained in the concate- 392

nation generation type. We evenly partitioned the 393

entire dataset into ten subsets and calculated the 394

mean and variance of the results over ten runs. 395

The experimental results of generating QADs on 396

the benchmark are summarized in Table 1, from 397

which we can observe that: (1) the performance 398

of ReBo is promising across five metrics, and (2) 399

Llama-3, LLaVA-1.5, and Qwen-VL achieve peak 400

performance respectively in the families of LLMs, 401

LVLMs, and V&L models. Table 2 further summa- 402

rizes the separate evaluation results for questions, 403

answers, and distractors. We can conclude that: (1) 404

ReBo can generate more image-related questions, 405
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Model FT V&L PLM BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr

Llama-2 ✗ ✗ Llama-2-7B-Chat 17.02±4.28 2.52±0.42 25.41±1.57 21.73±6.27 8.65±7.14
Mistral ✗ ✗ Mistral-7B-Instruct-v0.2 18.69±0 2.95±0 26.70±0 23.69±0 13.13±0
ChatGPT ✗ ✗ GPT-3.5-Turbo 21.23±0.01 2.37±0 25.46±0 23.28±0.01 6.61±0
Qwen1.5 ✗ ✗ Qwen1.5-7B-Chat 21.55±0.01 3.93±0 27.58±0 25.38±0.01 14.03±0.03
Llama-3 ✗ ✗ Llama-3-8B-Instruct 24.61±0 4.77±0 28.78±0 27.84±0.01 23.09±0.09

LLaVA-NeXT ✗ ✓ Mistral-7B-Instruct-v0.2 19.83 2.89 24.96 20.32 8.45
CogVLM ✗ ✓ Vicuna-7B-v1.5 23.02 5.67 26.16 23.43 14.49
LLaVA-1.5 ✗ ✓ Vicuna-7B 27.5 6.56 28.28 27.36 22.34

VisualBert† ✓ ✓ BERT 19.52±6.44 3.77±0.41 25.29±0.05 22.19±2.26 10.18±16.83
BLIP† ✓ ✓ BERT 23.76±2.11 6.53±0.35 26.35±0.14 26.20±0.62 9.62±8.80
BLIP2† ✓ ✓ FlanT5-XL 27.91±0.33 7.13±0.21 28.30±0.11 28.29±0.23 34.88±8.56
VQADG† ✓ ✓ T5 28.72±0.83 7.20±0.15 27.22±0.04 29.73±0.23 30.89±1.59
Qwen-VL† ✓ ✓ Qwen-7B-Chat 29.34±0.32 7.62±0.11 26.70±0.11 29.62±0.08 34.45±2.21

ReBo ✓ ✓ FlanT5-XL 31.19±0.63 9.40±0.19 29.52±0.08 31.78±0.49 48.28±7.60

Table 1: Performance evaluation for different models on the Visual7W dataset. FT denotes a fine-tune model,
V&L denotes a vision and language model, PLM denotes a pre-trained language model, and “†” denotes our
re-implementation.

decent answers, and challenging distractors with a406

superiority ranging from 2-11%, and (2) the perfor-407

mance gap of VQADG behind ReBo indicates that408

simply concatenating the single part of QADs is409

not a promising strategy, which is consistent with410

the argument in Introduction.411

4.3.2 Augmenting VQA models412

To verify the boosting effects of ReBo over existing413

VQA models, we employ the QADs generated by414

ReBo as additional data to train the InstructBLIP415

on the VQA task in this section.416

To ensure fairness, we use ReBo to generate417

QADs according to the images from the valida-418

tion split dataset of the Visual7W, we then train419

a VQA model separately on Visual7W and Vi-420

sual7W+generated dataset, and finally evaluate the421

accuracy on the A-OKVQA dataset. To ensure422

the diversity of the generated QADs, we extract423

three question types at a time from all six ques-424

tion types (e.g., “what”, “where”, and “when” for425

one iteration) for ReBo to generate QADs. 500k426

QADs can be yielded as training data after 300 iter-427

ations. Then, we filter high-quality QADs respec-428

tively from the views of questions and answers: (1)429

For questions, we select the QADs with less over-430

lapped information with the ground truth based431

on their cosine similarities; (2) as to answers, we432

calculate the cosine similarities between our gen-433

erated answers and the pseudo-answers generated434

by InstructBLIP, and preserve those with high sim-435

ilarities as the final augmented data. After filtering,436

the final QADs are used as the augmented data to437

train the VQA model InstructBLIP.438

Figure 3: Augmenting existing VQA model. Raw
denotes the model trained only on the raw Visual7W
dataset. Raw+Ours denotes the model trained on both
the raw Visual7W and the generated dataset.

To ensure the generalization of this evaluation, 439

we employ the A-OKVQA dataset for testing in 440

addition to the QADs generated on the Visual7W 441

dataset for training as aforementioned. The perfor- 442

mance is depicted in Figure 3. It can be observed 443

that the vision-language capability of InstructBLIP 444

is boosted by our generated QAD data over train- 445

ing, validation, and testing splits of A-OKVQA, 446

ranging from 0.91 to 2.93 points. It is noteworthy 447

that our proposed method is model-agnostic and it 448

can be applied to any model on any benchmark. 449

4.3.3 Ablation Study 450

We conduct ablation experiments to verify the per- 451

formance of the components of ReBo. We remove 452

both bounding box combination scores (BBCS) 453

and recurrent multimodal encoder (RME) to refor- 454

mulate ReBo into the model with concatenation 455
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Model Question Answer Distractor
BLEU-1 CIDEr BLEU-1 CIDEr BLEU-1 CIDEr

Mistral 31.55±0 35.90±0 8.63±0 35.34±0 8.86±0 10.34±0
ChatGPT 32.31±0 19.01±0.2 9.02±0 7.8±0.07 9.60±0.04 8.02±0
Llama-2 36.63±2.79 41.64±53.97 7.12±0.36 24.71±12.71 7.61±0.41 7.38±0.28
Qwen1.5 37.97±0.01 45.1±0.09 10.33±0.04 39.53±0.92 9.65±0.01 9.32±0.15
Llama-3 37.19±0 51.50±1 17.41±0.04 59.27±2.23 11.47±0.02 13.58±0.08

LLaVA-NeXT 31.76 25.61 6.71 15.63 4.79 4.52
LLaVA-1.5 46.61 73.64 13.8 42.43 9.67 9.69
CogVLM 48.46 77.46 2.88 2.47 4.58 6.06

BLIP† 49.45±2.07 61.40±80.89 8.57±38.23 10.55±20.05 2.71±3.09 0.57±0.10
VisualBert† 46.68±0.54 70.96±23.55 15.05±0.62 34.38±18.44 4.63±0.50 2.30±0.52
BLIP2† 46.64±0.61 101.43±44.32 24.38±0.90 78.52±20.73 11.30±0.37 15.69±3.84
Qwen-VL† 50.69±0.56 105.96±18.36 22.23±0.61 67.67±15.65 12.88±0.13 16.35±1.69
VQADG† 51.33±0.88 119.55±97.17 27.26±1.12 84.06±31.54 14.58±0.93 20.07±3.83

ReBo 50.11±1.25 128.25±37.75 30.63±1.61 95.44±24.89 16.16±2.44 22.55±10.10

Table 2: Separate comparisons of question, answer, and distractor on the Visual7W dataset.

Figure 4: The ablation results for ReBo. ReBo (w/o) in-
dicates ReBo without bounding box combination scores
and the recurrent multimodal encoder.

generation types. Experimental results in Figure 4456

demonstrate that both modules contribute to achiev-457

ing good performance for ReBo.458

Excluding BBCS and RME seems not to signif-459

icantly affect the BLEU-1 and ROUGE-L perfor-460

mance of ReBo, yet they help generate informative461

QADs that focus on diverse regions. More details462

can be found in the case studies in Figure 5 and463

Appendix C.464

4.3.4 Human Evaluations465

To further assess the effectiveness of ReBo, we466

conducted a human evaluation of 300 images.467

We generate three QADs separately using BLIP2,468

VQADG, Qwen, and ReBo for each image. The469

total human evaluation data comprises 300 images470

and 3600 QADs.471

We recruit six annotators to rate them from 1472

Model Q A D I U

BLIP2 3.68 2.79 2.87 3.15 3.26
VQADG 3.73 3.45 3.21 3.32 3.57
Qwen-VL 3.88 3.49 2.98 3.34 3.59

ReBo 4.07 3.72 3.26 3.70 4.02

Table 3: Human evaluation of the generated QADs.
Q, A, and D denote the total quality score of questions,
answers, and distractors, I denotes the intersection be-
tween different QADs, and U denotes the union score
for all QADs associated with a given image.

to 5 points on five qualitative aspects: (1) Quality 473

The overall quality of the generated QADs includes 474

question relevance, answer accuracy, and the con- 475

fusion level of distractors. (2) Intersection The 476

intersection score represents whether the seman- 477

tic contents of generated QADs for a given image 478

are dissimilar. (3) Union The union score repre- 479

sents whether the generated QADs can summarize 480

the overall content of the image. A higher score 481

implies that the model performs better. Table 3 482

displays the results of human evaluation, revealing 483

that ReBo achieves the highest scores across all 484

five metrics. Experimental results demonstrate that 485

our recurrent multimodal encoder and bounding 486

box scores are not only capable of generating high- 487

quality QADs, but also facilitate the generalization 488

of QADs with small intersections among each other 489

and cover more information from the image. 490
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Figure 5: Case studies. The focus regions of the QADs generated by different models are portrayed. Our model
ReBo can generate QADs focusing on diverse image regions.

4.3.5 Case Studies491

We present case studies to demonstrate the QADs492

generated by GPT-4o, ReBo without BBCS and493

RME, and ReBo in Figure 5. For GPT-4o, we494

design the prompt and give examples to generate495

questions, answers, and distractors. The prompt496

can be found in Appendix A. We present three497

groups of QADs generated by each method and498

highlight their focus regions.499

It shows from the figure that GPT-4o and ReBo500

without BBCS and RME can generate complete501

QADs, yet they may produce some inappropriate or502

incorrect answers and/or distractors. For example,503

GPT-4o generates a distractor “a snowboarder”,504

which is almost indistinguishable from the correct505

answer “a skier”. ReBo without BBCS and RME506

generates an incorrect answer “yellow” for the507

question “What color is the man’s jacket?”. Our508

ReBo can generate meaningful questions, correct509

answers, and misleading distractors. Furthermore,510

the QADs generated by ReBo focus on a broad511

region of the image, comprising the regions of peo-512

ple, background trees, and ground snow. In con-513

trast, GPT-4o and ReBo without BBCS and RME 514

disregard the semantic richness of the generated 515

QADs and are likely to be concerned with over- 516

lapped regions. More case studies are presented in 517

Appendix C. 518

5 Conclusion 519

In this paper, we propose a novel framework with 520

a recurrent multimodal encoder and bounding box 521

scores to generate a series of QADs. The mul- 522

timodal encoder recurrently generates different 523

QADs for an image, utilizing the previous QADs 524

as part of the input to generate current QADs. The 525

bounding box scores consider the intersection over 526

union and the union over total image, which can 527

facilitate the generation of QADs that attend to 528

as large and diverse areas as possible for one im- 529

age. We conduct experiments on the benchmark to 530

demonstrate a significant advantage of our model 531

in the evaluation metrics. Additionally, our gener- 532

ated QADs, as supplementary data to the original 533

dataset, exhibit the capability to promote the per- 534

formance of existing VQA models. 535
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6 Limitations536

Our focus in this study is devoted on generating537

diverse QADs jointly. This task is challenging as538

it involves learning interactions between QADs,539

as well as encoding, generating, and evaluating540

QADs. We notice that there is still large room for541

progress. For example, how to tailor our model542

specific to different types of question, answer, and543

distractors and how to evaluate the generated QADs544

in a human-like manner remain untouched and will545

be tackled in our future study.546
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A Prompts for Large Languege Models737

Table 4 presents the prompts used by ChatGPT,738

Mistral, Qwen1.5, Llama-2, and Llama-3 for739

QADs generation. For LLaVA-1.5, LLaVA-NeXT,740

CogVLM, and GPT-4o we directly use image in-741

stead of image caption.742

QADs Generation Prompt Input

Image caption: The image depicts a man sit-
ting at a desk with a laptop computer and a
monitor in front of him. There is also a cup
of coffee on the desk, indicating that the man
is working in an office environment. There
are several other items scattered around the
workspace, including a pair of headphones, a
pen, and a bottle of water. The man is likely
working in an office environment, as he has
a laptop computer and a monitor in front of
him. There is also a cup of coffee on the desk,
indicating that the man is working in an office
environment.

Refer to the following example and based on
the above image caption, generate three ques-
tions starting with ‘what’, ‘who’, and ‘where’,
and generate the answer and three distractors
for each question, the distractors should be
seperated with numbers like (1) (2) (3).

Example:
Question 1: What is on the bookshelf?
Answer 1: books
Distractor 1: (1) small plant (2) picture frame
(3) book ends

Question 2: Who is wearing a watch?
Answer 2: the lady
Distractors 2: (1) the umpire (2) the man (3)
the girl

Question 3: Where is the image taken?
Answer 3: near to house
Distractors 3: (1) in the park (2) on the beach
(3) on the highway

Table 4: Prompts used for QADs generation.

B Implementation Details743

We adapt our model based on the modular architec-744

ture of InstructBLIP (Dai et al., 2024). We retain745

the image encoder and the LLM decoder while 746

adapting the Q-Former into a recurrent multimodal 747

encoder. We implement our model with the im- 748

age encoder ViT-g/14 (Fang et al., 2023) and the 749

large language model FlanT5-XL (Chung et al., 750

2024), which is an instruction-tuned model based 751

on the encoder-decoder Transformer T5 (Raffel 752

et al., 2020). We refer (Ding et al., 2024) to em- 753

ploy an extra contrastive learning loss function to 754

normalize the embeddings of prediction results and 755

ground truth. For the hyper-parameters, we set the 756

maximum text length to 60 and the minimum text 757

length to 20 for the recurrent generation type and 758

60 to 180 for the concatenation generation type. 759

The image size in all models is resized to 224. We 760

use the batch size 8 and 32 for training and testing 761

and fine-tune the datasets for 10 epochs. Other 762

parameters are set according to the original arti- 763

cles. For Large Language Models, we calculated 764

the mean and variance of the results over three runs. 765

For Large Vision-Language Models, we report only 766

one result due to consistent outputs. For our model 767

and all other baselines, we divided the training and 768

testing data into ten splits and calculated the mean 769

and variance of the results over ten runs. We use 770

the HuggingFace1 transformers library implemen- 771

tation for LLMs and LVLMs. Our experiments are 772

run on 1 NVIDIA A40 48G GPU. 773

C More Case Studies 774

Figure 6 and Figure 7 present two additional case 775

studies. In both two cases, ReBo generates QADs 776

that focus on diverse regions, whereas GPT-4o and 777

ReBo without BBCS and RME generate QADs 778

with semantic overlap. 779

1https://huggingface.co/
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Figure 6: Case study 1. Only ReBo generates QADs focusing on different visual regions.

Figure 7: Case study 2. Although Rebo without BBCS and RME can still generate QADs focusing on various
image regions, it unfortunately produces the incorrect answer “white”.
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