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ABSTRACT

Graphical User Interfaces (GUIs) are critical to human-computer interaction, yet
automating GUI tasks remains challenging due to the complexity and variability
of visual environments. Existing approaches often rely on textual representations
of GUIs, which introduce limitations in generalization, efficiency, and scalability.
In this paper, we introduce AGUVIS, a unified pure vision-based framework for au-
tonomous GUI agents that operates across various platforms. Our approach lever-
ages image-based observations, and grounding instructions in natural language to
visual elements, and employs a consistent action space to ensure cross-platform
generalization. To address the limitations of previous work, we integrate explicit
planning and reasoning within the model, enhancing its ability to autonomously
navigate and interact with complex digital environments. We construct a large-
scale dataset of GUI agent trajectories, incorporating multimodal reasoning and
grounding, and employ a two-stage training pipeline that first focuses on general
GUI grounding, followed by planning and reasoning. Through comprehensive ex-
periments, we demonstrate that AGUVIS surpasses previous state-of-the-art meth-
ods in both offline and real-world online scenarios, achieving, to our knowledge,
the first fully autonomous pure vision GUI agent capable of performing tasks in-
dependently without collaboration with external closed-source models. We will
open-source all datasets, models, and training recipes to facilitate future research.

1 INTRODUCTION

Graphical User Interfaces (GUIs) are a cornerstone of human-computer interaction, providing a
structured yet intuitive platform for users to accomplish tasks across various digital environments:
website, desktop, and mobile devices (Deng et al., 2023; Zhou et al., 2024; Xie et al., 2024; Rawles
et al., 2024b). Automating GUI operations through autonomous agents can revolutionize productiv-
ity by enabling seamless task execution on various applications using existing human-centric tools.
Moreover, this approach lays the groundwork for advanced AI systems that can interact with and
learn from rich digital environments in ways that mirror human behavior.

To effectively perform GUI tasks autonomously, a GUI agent requires three core competencies: un-
derstanding, grounding, and planning & reasoning. For GUI understanding, the agent must first
comprehend high-resolution and complex interfaces designed for human users, enabling it to grasp
the context and perform subsequent reasoning tasks. GUI grounding involves mapping natural lan-
guage instructions to visual observations of the interface. For planning and reasoning, the agent must
synthesize and analyze the current multimodal observations of the environment with previous ob-
servations and action histories, enabling it to generate coherent and effective next steps to ultimately
achieve the task goal. Although recent advances in large vision-language models (LVLMs) (OpenAI,
2024; Reid et al., 2024; Li et al., 2024a; Wang et al., 2024a) have significantly enhanced the ability
of AI systems to interpret complex visual interfaces, there remain critical challenges in grounding
and reasoning specifically tailored for GUI tasks. We identify three primary challenges that must be
addressed to advance the capabilities of GUI agents:

Enhancing Pure Vision Framwork. Previous approaches (Gur et al., 2024; Kim et al., 2023; Deng
et al., 2023; Zhou et al., 2024; Xie et al., 2024) predominantly focus on mapping natural language
instructions to textual representations of GUIs, such as HTML or accessibility trees. This method
presents several limitations. Firstly, GUIs are inherently visual, and leveraging image-based repre-
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sentations aligns more closely with human cognitive processes. Secondly, textual representations
can vary widely across different environments, complicating the generalization of the model and
limiting the availability of consistent training data. Finally, these textual representations are often
verbose and complex, leading to increased inference times compared to more compact image en-
codings (Figure 2). By unifying observations across platforms as images and grounding instructions
to image coordinates, GUI agents can generalize more effectively across diverse environments with
varying resolutions.

Unification Across GUI Environments. The action spaces and control APIs for GUI interactions
vary significantly across diverse environments, particularly when the observations are textual. Even
within the same platform, the action space can differ greatly. This heterogeneity limits the amount
of training data available for each environment, impeding the development of a model that can gen-
eralize effectively across different platforms and scale further. A unified action space that abstracts
these environmental differences is crucial for creating robust and adaptable GUI agents. Previous
work (Chen et al., 2024b; Zeng et al., 2024) has attempted to unify digital agent data across diverse
environments, such as combining GUI, game, and CLI interfaces for joint training. However, these
interfaces do not share the same interaction logic. In contrast, GUIs on desktop, web, and mobile
platforms naturally share similar human-computer interaction (HCI) logic. This commonality fa-
cilitates their unification, enabling consistent visual observations and action spaces that mutually
benefit both visual grounding and reasoning.

Integrating Planning and Reasoning with Grounding. Current methodologies (Zheng et al.,
2024a) often depend on the reasoning capabilities of closed-source large language models
(LLMs) (OpenAI, 2024) to plan the completion of GUI tasks or, alternatively, train agents to make
direct action decisions through grounding without an explicit reasoning process. This dichotomy re-
sults in either a lack of grounding abilities or a lack of comprehensive reasoning abilities. Recently,
some works (Gou et al., 2024; Lu et al., 2024) attempt to use closed-source LLMs with specialized
GUI grounding models together and communicate with natural language instruction to utilize both
abilities. However, on the one hand, natural language communication between the two models usu-
ally results in information loss. On the other hand, most importantly, this approach is not further
scalable to solve GUI interaction since grounding has been improved close to the upper bound with
data synthesis, and most remaining problems are planning related. However, the GUI planning and
reasoning ability of closed-source LLMs cannot be further improved.

To address these challenges, we introduce a unified framework for GUI agents that harmonizes pure
vision observation and consistent action spaces across diverse environments. Our approach lever-
ages vision-based grounding to improve generalization and reduce inference costs while employing
a standardized action space with a plugin system to facilitate consistent learning and interaction
across various platforms. After a unified GUI grounding training stage, we demonstrate that unified
augmented datasets can effectively build a model capable of executing complex GUI grounding in-
structions on various platforms. In addition, we integrate explicit visual planning and reasoning into
the same model, enabling autonomous navigation and interaction within complex digital environ-
ments. Since existing GUI agent trajectories do not fully support these demands, we have unified the
existing planning datasets on different platforms and constructed a large-scale, pure vision, cross-
platform, multi-step dataset of agent trajectories, featuring comprehensive multimodal reasoning
and grounding. Through extensive experiments across various scenarios, we demonstrate the effec-
tiveness of our approach in advancing the state-of-the-art for pure vision-based autonomous GUI
agents. To our knowledge, this is the first model that can autonomously complete tasks in real-world
online environments without relying on higher reasoning abilities from closed-source models.

Our contributions are as follows:

• We introduce a unified pure vision framework for building generalizable GUI agents that
operate with vision-based observations and a plugin-enabled action system, enhancing
cross-platform adaptability.

• We develop a comprehensive data pipeline that unifies existing GUI grounding annotations
and integrates explicit planning and reasoning. This enables the construction of large-scale
datasets for grounding and multi-step agent trajectory datasets across platforms.

• Starting with a VLM, we present a two-stage training process—first for GUI grounding,
followed by planning and reasoning—resulting in AGUVIS, the first cross-platform au-
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tonomous GUI agent capable of performing complex tasks independently without relying
on closed-source models. All data, models, and training resources will be open-sourced.

2 AGUVIS

2.1 PROBLEM FORMULATION

We model the autonomous GUI agent’s interaction with the environment as a Partially Observable
Markov Decision Process (POMDP), characterized by the tuple (S,A,O, T,O). In this formulation,
S represents the set of possible states of the environment, A denotes the set of actions the agent can
take, and O refers to the set of observations the agent can receive. The state transition function,
T : S × A × S → [0, 1], defines the probability of transitioning from one state to another given an
action, while the observation function, O : S×A×O → [0, 1], specifies the probability of receiving
a particular observation given a state and an action.

At each time step t, the agent receives an image observation ot from the GUI environment, updates
its belief state bt based on its previous actions and observations, and generates an inner mono-
logue (Huang et al., 2022). This inner monologue consists of three components: a natural language
description of the current observation (dt), internal reasoning (ht) based on the high-level goal G,
the observation description dt, and previous thoughts ht−1, and finally, a low-level action instruc-
tion (ainstr

t ) in natural language that specifies the next action. The agent then executes the action at
based on the instruction ainstr

t , receives a new observation ot+1, and repeats this process until it either
achieves the goal G or reaches a terminal state.

2.2 UNIFIED PURE VISION FRAMEWORK

Stage 2: Planning & Reasoning Training

Stage 1: Grounding Training

Image Observation
Screenshot of current 
GUI.

Low-level Instruction
Detailed action w/ 
grounded target.


Action
Atomic actions w/ 
coordinates


Aguvis-GVLM Aguvis

Goal

High-level Instruction

Image Observation

Screenshot of 
current GUI.

Low-level Instruction

Inner monologue

Detailed action w/ 
grounded target.


Observation + Reasoning

Action

Atomic actions w/ 
coordinates.


Figure 1: Overview of the two-stage training paradigm for autonomous GUI agents.

In this work, we propose to unify observation and action space via pure vision and standard
pyautogui commands with a pluggable action system (Table 8). For observation, pure vision
does not require the model to understand different UI source codes of the interfaces of different
platforms, such as HTML of the webpage, and accessibility tree of desktop and mobile operating
systems, which can help improve the generalization. Meanwhile, pure vision can reduce the input
token length. Generally, the input length of accessibility tree observation is 6k tokens, and HTML
is 4k tokens (Figure 2), depending on the complexity of the interface. Compared with relatively
long input, the token cost of image observation does not vary across different interfaces but only
depends on model design, which in our case is 1200 tokens for 720p image observation.

For unified action space, we choose the widely used standard pyautogui action space with a
pluggable action system. This library leverages the high-level programming language Python to
replicate and replay various human inputs into computers through code, allowing us to construct
a universal and complete representation of actions. We show the action space in Table 8. We use
pyautogui commands to unify basic GUI operations of all platforms including web, desktop, and
mobile. Over this action space, an agent model can then learn to generate actions in order to control
GUI without any action space description.
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While mouse and keyboard inputs form the core of GUI interactions, they are not comprehensive.
Certain platforms require additional actions. For example: (1) specific actions on mobile platforms
such as swiping; (2) shortcuts that efficiently perform a series of actions like opening apps; (3)
communication actions such as providing answers or terminating after completion. To address these
extended requirements, we introduce a pluggable action system. This system allows us to expand
the action space by aligning new actions with the existing pyautogui commands where possi-
ble. For actions that cannot be directly mapped, the pluggable system provides the flexibility to
incorporate them with detailed action descriptions. This enables the model to generalize effectively
to environments where new actions are introduced. By combining pure vision observations with a
unified action space and a flexible pluggable system, our framework enables the training of a single
model that can operate across diverse platforms. This setup not only simplifies the training process
but also ensures the model can generalize and adapt to novel environments and tasks.

2.3 THE AUGVIS COLLECTION

GUI agent trajectories are a low-resource data source compared with its challenges. This is because
the observation and action space vary across different environments even on the same platform.
Fortunately, GUI environments share the same operation logic and similar action space. We can
efficiently unify existing data to scale the training set. Therefore, we propose THE AUGVIS COL-
LECTION, a large-scale GUI agent training dataset collected and augmented with existing GUI agent
data. This data collection consists of two splits: grounding split (Table 9) and planning & reasoning
split (Table 10), corresponding to the two important GUI abilities.

Template-augmented Grounding Data. Vision-based grounding requires the model to ground
the natural language intent to the image observation with coordinates. On one hand, there are
several previous works that have built datasets on different platforms, including natural language
instructions and corresponding target elements. We collected and unified them into pyautogui
commands format. On the other hand, we found that there are many datasets proposed for user
interfaces on different platforms that contain a large amount of metadata, including the positions of
all text/icons/widgets in the current interface. Using this type of data we constructed templates for
pyautogui actions. We randomly generated grounding data pairs through these templates to train
models to ground these elements based on images. This operation greatly expanded the amount of
data we could use.

VLM-augmented Planning & Reasoning Trajectories. High-quality GUI agent trajectories con-
tain several key components: a high-level goal, a sequence of interleaved observations, natural lan-
guage reasoning, and grounded actions. Existing approaches typically rely on human annotation to
collect these trajectories (Deng et al., 2023; Rawles et al., 2024b; Li et al., 2024c). Most of the agent
trajectory data contains high-level goals, observations, and grounded actions. However, the inter-
mediate reasoning process and low-level action instructions are not included. This makes it difficult
for existing data to train agents to perform chain-of-thought or inner monologue reasoning to help
the model plan the next action, resulting in poor agent performance.

To augment the agent trajectories with detailed reasoning and low-level action instructions, we em-
ploy a vision-language model (VLM) to generate the inner monologue for each step in the trajectory.
Specifically, for each time step t, given the high-level goal G, the current image observation ot, and
the grounded action at, we prompt the VLM to produce the inner monologue components: ob-
servation description dt, thoughts ht, and low-level action instruction ainstr

t . To assist the VLM in
generating accurate and contextually relevant monologues, we highlight the target element asso-
ciated with the grounded action at on the image observation ot. This visual cue helps the model
focus on the relevant part of the interface. Additionally, we include the previous low-level action
instructions ainstr

1 , ainstr
2 , . . . , ainstr

t−1 to provide the VLM with the action history, ensuring continuity
and coherence in the generated reasoning.

The prompting strategy is carefully crafted to guide the VLM in generating inner monologues that
are predictive and goal-oriented, without relying on hindsight or revealing future actions. By sim-
ulating the agent’s thought process in a first-person perspective, we encourage the generation of
actionable instructions that align with the high-level goal and current observation. This approach re-
sults in a large-scale dataset of agent trajectories enriched with detailed reasoning and instructions.
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2.4 MODEL ARCHITECTURE

Unlike grounding agents that rely on structured UI representations (such as accessibility trees) as
their textual input, vision-based grounding requires the model to map intents directly to visual ob-
servations. This means the model needs to encode high-resolution images while preserving their
original aspect ratios. Recent advances in VLMs have made these capabilities possible. We choose
Qwen2-VL (Wang et al., 2024b) as our starting VLM. It uses NaViT as an image encoder with native
dynamic resolution support (Dehghani et al., 2023). Unlike its predecessor, Qwen2-VL can now
process images of any resolution, dynamically converting them into a variable number of visual to-
kens. To support this feature, ViT is modified by removing the original absolute position embeddings
and introducing 2D-RoPE (Su et al., 2024) to capture the two-dimensional positional information
of images. Based on these unique features, Qwen2-VL is highly suitable for GUI agents’ needs. It
can encode high-resolution images of any ratio with relatively fewer image token costs. Therefore,
we chose Qwen2-VL as our starting VLM to build our GUI agent.

LLaVA-OneVision (Li et al., 2024a) is another suitable VLM as it also supports high-resolution
any ratio image encoding, although its image token cost is relatively higher than Qwen2-VL. We
also apply our data recipe and training strategy to LLaVA and show that our framework is model-
independent and generally works for high-resolution VLMs details are shown in Section 4.2..

2.5 TRAINING PARADIGM

We begin with a Vision-Language Model (VLM) that possesses advanced image understanding ca-
pabilities, and the training process is divided into two main stages: Grounding Training and Planning
& Reasoning Training. Each stage utilizes a distinct data split from our THE AUGVIS COLLECTION
to progressively enhance the VLM’s abilities.

Stage 1: Grounding Training In this stage, we focus on enabling the model to understand and
interact with objects within a single GUI screenshot. GUI environments typically feature multiple
interactable objects within a single screenshot, generating a large volume of grounding data but
leading to shorter, less diverse interaction sequences, which can limit training efficiency.

We train our model with a grounding packing strategy where multiple instruction-action pairs are
bundled into a single image, resulting in a single-image-multiple-turn format. This technique allows
the model to process several grounding examples from one screenshot, reducing redundant train-
ing overhead while retaining a high level of grounding performance. This approach significantly
accelerates training by maximizing the use of each image without compromising accuracy. Upon
completing this stage, the model is referred to as AGUVIS-G. After this training stage, we assume
the agent model AGUVIS-G possesses a robust capability for GUI understanding and grounding,
which is the foundation of further planning and reasoning.

Stage 2: Planning & Reasoning Training Building on the foundation of AGUVIS-G, the second
stage introduces more complex decision-making and reasoning processes. This phase is designed to
teach the model how to execute multi-step tasks by reasoning through agent trajectories that vary in
complexity and environments, encompassing diverse reasoning modes.

Thanks to our detailed inner monologue trajectory data, we implement a reasoning mixture ap-
proach, where the model is exposed to various levels of cognitive complexity, from straightfor-
ward low-level action instructions to full inner monologues that include observation descriptions,
thoughts, and detailed action plans. By dynamically adjusting the complexity of these trajectories,
we train the model to be adaptable, fostering step-by-step reasoning and high-level decision-making
abilities. This diversity in reasoning ensures that the model can handle a wide range of tasks with
nuanced understanding and precision. After this stage, the fully trained model is called AGUVIS,
which can be employed in both offline and online GUI tasks across diverse environments.

3 EXPERIMENTS

To evaluate the effectiveness of GUI agent models on various platforms, we conduct experiments on
several GUI benchmarks: GUI Grounding Evaluation and Offline/Online GUI Agent Evaluation.
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3.1 GUI GROUNDING EVALUATION

Table 1: Comparison of various planners and grounding methods on ScreenSpot across various de-
vice and input modalities. The top part of table shows the results on original instructions evaluation
setting while the bottom part shows results on self-plan evaluation setting. Best results are in bold.

Planner Grounder Mobile Desktop Web Avg
Text Icon/Widget Text Icon/Widget Text Icon/Widget

-

GPT-4 22.6 24.5 20.2 11.8 9.2 8.8 16.2
GPT-4o 20.2 24.9 21.1 23.6 12.2 7.8 18.3
CogAgent 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick 78.0 52.0 72.2 30.0 55.7 32.5 53.4
Qwen2-VL 75.5 60.7 76.3 54.3 35.2 25.7 55.3
UGround 82.8 60.3 82.5 63.6 80.4 70.4 73.3
AGUVIS-G-7B 88.3 78.2 88.1 70.7 85.7 74.8 81.8

GPT-4
SeeClick 76.6 55.5 68.0 28.6 40.9 23.3 48.8
OmniParser 93.9 57.0 91.3 63.6 81.3 51.0 73.0
UGround 90.1 70.3 87.1 55.7 85.7 64.6 75.6

GPT-4o SeeClick 81.0 59.8 69.6 33.6 43.9 26.2 52.3
UGround 93.4 76.9 92.8 67.9 88.7 68.9 81.4

AGUVIS-7B 95.6 77.7 93.8 67.1 88.3 75.2 84.4
AGUVIS-72B 94.5 85.2 95.4 77.9 91.3 85.9 89.2

ScreenSpot. We first assess the performance of GUI grounding, which is a foundational capability
of GUI agent models. Following previous work (Cheng et al., 2024; Gou et al., 2024), we evalu-
ate models on ScreenSpot (Cheng et al., 2024). This dataset encompasses a variety of grounding
instructions tailored for mobile, desktop, and website platforms, and is assessed under two distinct
settings: (1) Original Instructions: models perform grounding actions directly following the original
instructions; and (2) Self-plan: models are required to generate plans in natural language based on
the original instructions before executing grounding actions.

The performance illustrated in Table 1 demonstrates that AGUVIS exhibits impressive GUI ground-
ing capabilities under two settings across various platforms. We observe that with the proposed
grounding training, AGUVIS-G-7B significantly outperforms existing models with the original in-
structions, suggesting that AGUVIS has strong universal GUI grounding capability. After training
on high-quality planning trajectory data, AGUVIS shows strong planning capability and outperforms
previous models that rely on external closed-source LLMs (like GPT-4o). Moreover, further scaling
parameters, AGUVIS-72B achieves state-of-the-art performance, attaining an average score of 89.2.

Table 2: Performance comparison on Multimodal Mind2Web across different settings. We report
element accuracy (Ele.Acc), Operation F1 (Op.F1), and step success rate (Step SR). Best results are
in bold. “T” means the textual HTML code as inputs. “I” means the GUI images as inputs.

Obs. Planner Grounder Cross-Task Cross-Website Cross-Domain
Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR

T GPT-3.5 Choice 19.4 59.2 16.8 14.9 56.5 14.1 25.2 57.9 24.1
GPT-4 Choice 40.8 63.1 32.3 30.2 61.0 27.0 35.4 61.9 29.7

T + I GPT-4 Choice 46.4 73.4 40.2 38.0 67.8 32.4 42.4 69.3 36.8
GPT-4 SoM 29.6 - 20.3 20.1 - 13.9 27.0 - 23.7

I - SeeClick 23.8 - - 15.3 - - 16.2 - -
- CogAgent 54.2 - - 50.0 - - 54.7 - -

I
GPT-4o SeeClick 32.1 - - 33.1 - - 33.5 - -
GPT-4V OmniParser 42.4 87.6 39.4 41.0 84.8 36.5 45.5 85.7 42.0
GPT-4o UGround 47.7 - - 46.0 - - 46.6 - -

I AGUVIS-7B 64.2 89.8 60.4 60.7 88.1 54.6 60.4 89.2 56.6
AGUVIS-72B 69.5 90.8 64.0 62.6 88.6 56.5 63.5 88.5 58.2
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3.2 OFFLINE GUI AGENT EVALUATION

Multimodal-Mind2Web. We utilize Multimodal-Mind2Web (Zheng et al., 2024a) for evaluat-
ing the offline planning capabilities of GUI agents on websites, which builds on the original
Mind2Web (Deng et al., 2023). We compare with previous work including closed LLMs taking
text-only (Deng et al., 2023) or SoM as inputs (Zheng et al., 2024a) and recent prue vision-based
agent models. Following previous work (Cheng et al., 2024; Gou et al., 2024), AGUVIS only use the
GUI screenshot as observation. We report element accuracy (Ele.Acc), Operation F1 (Op.F1), and
step success rate (Step SR). As shown in Table 2, AGUVIS consistently achieves superior perfor-
mance, with a notable improvement in Step SR (+51.9% averaged), indicating enhanced reasoning
capabilities regarding planning.

AndroidControl. We assess the planning performance of GUI agent models on mobile devices
using AndroidControl (Li et al., 2024d). Following the setting in Li et al. (2024d), we randomly
sample 500 step-actions to create a subset, and we report the step accuracy on out-of-domain (OOD)
data within both high-level and low-level tasks. The high-level task setting necessitates that the
model plans and executes actions, whereas the low-level task setting requires the model to simply
adhere to human-labeled instructions for executing the next-step action. We compare with baselines
that take textual accessibility tree or images as GUI observations. Table 3 shows that AGUVIS
achieves the best performance under both settings.

Table 3: Step Accuracy of out-of-domain (OOD) data on AndroidControl under high-level tasks and
low-level tasks. Best performance is in bold. “Acc.Tree” means the textual accessibility tree of GUI
interface as inputs.

Observation Planner Grounder Step Accuracy
High-Level Low-Level

Acc. Tree GPT-4-Turbo Choice 42.1 55.0
PaLM 2S (Specialized) Choice 58.5 77.5

Image

GPT-4-Turbo SeeClick 39.4 47.2
GPT-4-Turbo UGround 46.2 58.0
GPT-4o SeeClick 41.8 52.8
GPT-4o UGround 48.4 62.4

Image AGUVIS-7B 61.5 80.5
AGUVIS-72B 66.4 84.4

3.3 ONLINE GUI AGENT EVALUATION

Beyond offline planning, we test AGUVIS on real-time interaction benchmarks: Mind2Web-
Live (Pan et al., 2024b), AndroidWorld (Rawles et al., 2024a) and MobileMiniWob (Rawles et al.,
2024b). We introduce each benchmark below and more details are shown in C.3

Mind2Web-Live. Mind2Web-Live is a dynamic dataset in a real web-based environment derived
from the original Mind2Web. The benchmark evaluates whether each required step within a task has
been completed and uses the task success rate (Task SR) as the reported metric.

AndroidWorld. AndroidWorld is a benchmark operating on an Android virtual environment, ca-
pable of dynamically instantiating with randomly generated parameters to generate unique tasks for
automatic evaluation. To assess the pure vision agent models, we follow the instructions in Rawles
et al. (2024b), installing a Pixel 6 phone simulator on our computers to serve as the experimental
environment. The AndroidWorld benchmark incorporates a fully automated task-level evaluation
system that automatically assesses whether a state has successfully completed a designated task.

MobileMiniWob. MobileMiniWob is the instantiation of 92 tasks from MiniWob++ (Zheng et al.,
2024b) in AndroidWorld environment. Thus, we adopt the same observation and action space uti-
lized in AndroidWorld and use a real-time evaluation function to determine task success rate.
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Table 4: Task Success Rate (SR) and efficiency costs on Mind2Web-
Live. USD Efficiency is calculated by dividing the model’s total infer-
ence cost in USD by the number of successful steps.

Inputs Planner Grounder Task SR USD Efficiency

HTML

GPT-4-Turbo Choice 21.1 -
GPT-4o Choice 22.1 0.142
Llama-3.1-405B Choice 24.0 0.174
Llama-3.1-70B Choice 20.2 0.031
GPT-3.5-turbo Choice 17.3 0.092

Image
GPT-4-Turbo UGround 23.1 -
GPT-4o UGround 19.2 -
GPT-4o AGUVIS-7B 24.0 0.106

Image AGUVIS-72B 27.1 0.012

Figure 2: Comparison of Input
Tokens per Step and USD Effi-
ciency in GUI Interaction. The
bar chart shows the input tokens
required per step during GUI in-
teractions, while the line graph il-
lustrates USD Efficiency for all
models.
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Table 5: Task Success Rates (SR) on AndroidWorld and MobileMiniWob. Best results are in bold.

Input Planner Grounding AndroidWorldSR MobileMiniWobSR

AXTree GPT-4-Turbo Choice 30.6 59.7
Gemini 1.5 Pro Choice 19.4 57.4

Image + AXTree GPT-4-Turbo SoM 25.4 67.7
Gemini 1.5 Pro SoM 22.8 40.3

Image
GPT-4-Turbo UGround 31.0 -
GPT-4o UGround 32.8 -
GPT-4o AGUVIS-7B 37.1 55.0

Image AGUVIS-72B 26.1 66.0

In our online experiments, we explore two distinct configurations. The first configuration employs
GPT-4o as the planner, collaborating with our AGUVIS, which serves as the grounder. The second
setup utilizes our model in a dual role, acting as both the planner and the grounder. We compare
the performance of these configurations with existing SOTA methods that use GPT-4(o) models
as planners. Unlike existing methods that rely on Set-of-Mark (SoM) or textual HTML/AXTree
information, AGUVIS uses only screenshots as observations and is restricted to pyautogui actions
A in all environments: We set the screenshot viewport to a resolution of 1280 × 720 and disabled
all actions based on HTML/AXTree selection.

As shown in Table 4 and Table 5, when incorporating the GPT-4o as planner, AGUVIS-7B outper-
forms existing work in task success rate across various benchmarks. We further adopt our AGUVIS-
72B both as the planner and grounder, achieving the best performance on Mind2Web-Live and Mo-
bileMiniWob, which demonstrates the advantage potential of employing purely visual agent models
for autonomous GUI interactions. By employing AGUVIS-72B as both the planner and the grounder,
we achieve the best performance on Mind2Web-Live and MobileMiniWob. This underscores the
advantages of utilizing a unified purely visual agent model for autonomous GUI interactions. Fur-
thermore, we observe that our model demonstrates a significant advantage in terms of efficiency
costs compared to both closed-source and open-source models (as discussed below), demonstrating
that there is considerable potential for applying purely visual agents in real-world online scenarios.

4 ANALYSIS

4.1 ABLATION

To assess the impact of each stage in the training pipeline of AGUVIS, we conduct ablation exper-
iments. Specifically, we evaluate the performance of the following variants: (a) a model trained
without the second stage (planning training), referred to as AGUVIS-G-7B, and (b) a base model,
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Table 6: Ablation on AGUVIS-7B on MM-Mind2Web and AndroidControl benchmarks. We report
the step success rate.

Settings Multimodal-Mind2Web AndroidControl
Cross-Task Cross-Website Cross-Domain High-Level Low-Level

AGUVIS-7B 58.5 55.4 54.8 61.5 80.5
(a) - Stage 2 Training 50.9 45.2 45.3 58.0 75.6
(b) - Stage 1 & 2 Training 50.9 44.9 47.7 59.1 59.2

Qwen2-VL (Wang et al., 2024a), without both stages of our specialized training. We report the
results of these ablations on two key benchmarks, Multimodal-Mind2Web and AndroidControl, fo-
cusing on the step success rate as the evaluation metric (Table 6). The findings show a clear decline
in performance when either training stage is omitted. Notably, omitting the second stage (planning
and reasoning) has a more significant negative effect on the model’s step success rate, indicating that
planning training is critical for enhancing the agent’s ability to handle complex GUI tasks.

4.2 GENERAZATION ON OTHER VLM BACKBONE

Table 7: Performance of AGUVIS based on LLaVA-
OneVision backbone. We report the average score on
ScreenSpot and the step success rate of each split in
Multimoda-Mind2Web. These results demonstrate that
our framework and data recipe are model independent
and the planning stage can largely improve the perfor-
mance of both grounding and planning ability.

Models ScreenSpot MM-Mind2Web
Average Task Website Domain

Previous SOTA 73.3 39.4 36.5 42.0
AGUVISOV-G-7B 70.0 - - -
AGUVISOV-7B 81.2 55.3 50.0 50.8

Figure 3: Error analysis on Screenspot dataset
under the self-plan setting.

Self Plan Enforced Plan
0

0.2

0.4

0.6

0.8

1 Planning Bonus

Ambiguous Error Grounding Error

In our experiments, we also implement a version of AGUVIS based on another typical VLM LLaVA-
OneVision (Li et al., 2024a), named AGUVISOV-7B, to explore the generalizability of AGUVIS. We
report the average score of ScreenSpot and the step success rate of Multimoda-Mind2web. These
results demonstrate that our framework and data recipe are model-independent and the planning
training stage can largely improve the performance of both grounding and planning ability.

4.3 EFFICIENCY

We investigate the efficiency costs of AGUVIS on the online planning benchmark Mind2Web-Live.
Following Pan et al. (2024a), we adopt the USD Efficiency Score to evaluate the efficiency of our
model in completing tasks. Specifically, this Score is calculated as the total dollar cost of tokens
used by the model to complete all tasks in the dataset divided by the total Success Steps. A lower
USD Efficiency Score indicates that the model requires fewer USD to complete a successful step.
In addition to the USD Efficiency Score, we calculated the number of tokens consumed during the
completion of the whole dataset divided by the total number of steps taken by agent models. This
reflects the average number of tokens consumed per step.

As shown in Figure 2, AGUVIS significantly reduces the efficiency costs by reducing 93% USD
costs and 70% input tokens per step compared to GPT-4o, which indicates considerable potential for
applying purely visual agents in practical applications.

4.4 ERROR ANALYSIS

We conduct an error analysis of AGUVIS on 50 samples from the ScreenSpot dataset under the self-
plan setting to understand the impact of planning on performance. As shown in Figure 3, our findings

9
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reveal that 40% of errors are due to ambiguous instructions that could refer to multiple grounding
targets, while the remaining 60% are grounding errors. We observe that in these error cases, the
model tends to perform direct grounding action rather than planning explicitly before acting. No-
tably, when we enforce planning by prompting the agent model to generate low-level instructions
before execution, it resolved 20% of the grounding errors. This suggests that while the agent model
possesses strong grounding capabilities, there remains significant potential for improvement in ef-
fectively leveraging planning and reasoning. These insights highlight opportunities for future work,
including improving instruction clarity through the agent model itself, developing adaptive planning
mechanisms, and refining training data to include more diverse planning scenarios. Addressing these
aspects could further enhance our GUI agent model’s robustness on various tasks and environments.

5 RELATED WORK

5.1 BENCHMARKS AND DATASETS FOR GUI AGENT

Recent advancements in autonomous GUI agents have led to the development of numerous
benchmarks and datasets. Web-based benchmarks such as Mind2Web (Deng et al., 2023), We-
bArena (Zhou et al., 2024; Koh et al., 2024a), WebLINX (Lù et al., 2024), WorkArena (Drouin
et al., 2024) and WebCanvas (Pan et al., 2024b) focus on evaluating agents’ performance in web
environments. For desktop and mobile platforms, datasets like OSWorld (Xie et al., 2024), Win-
dowsAgentArena (Bonatti et al., 2024), AitW (Rawles et al., 2024b), AitZ (Zhang et al., 2024b),
AMEX (Chai et al., 2024), GUI-Odyssey (Lu et al., 2024) and AndroidControl (Li et al., 2024b)
have been introduced to assess agents’ capabilities across different operating systems and device
types. Cross-platform datasets such as ScreenSpot (Cheng et al., 2024), OmniACT (Kapoor et al.,
2024), GUICourse (Chen et al., 2024a), and CRAB (Xu et al., 2024a) aim to provide comprehensive
evaluation frameworks spanning multiple devices and interfaces. Evaluations on specialized appli-
cations have also emerged, such as WonderBread (Wornow et al., 2024)’s focus on business process
management tasks and Spider-2V (Cao et al., 2024)’s on data science and engineering workflows. In
this work, we extensively test benchmarks under both online and offline task settings to thoroughly
evaluate and demonstrate the model’s planning and grounding capabilities.

5.2 MODELS AND APPROACHES FOR GUI AGENT

In parallel with dataset development, significant progress has been made in creating more capa-
ble GUI agents. Models like WebGPT (Nakano et al., 2021), Lemur (Xu et al., 2024b), Agent-
Lumos (Yin et al., 2024), CogAgent (Hong et al., 2024), AutoWebGLM (Lai et al., 2024) and
xLAM (Zhang et al., 2024a) have demonstrated improved performance in web navigation tasks.
Auto-GUI (Zhang & Zhang, 2024), AppAgent (Zhang et al., 2023), and ScreenAgent (Niu et al.,
2024) propose novel approaches for direct GUI interaction without relying on application-specific
APIs. SearchAgent (Koh et al., 2024b) introduces an inference-time search algorithm to enhance
multi-step reasoning and planning in interactive web environments. These advancements collec-
tively contribute to developing more sophisticated and capable GUI agents, pushing the boundaries
of what’s possible in automated task completion across various digital platforms.

6 CONCLUSION

In this paper, we introduced AGUVIS, a unified pure vision-based framework for building au-
tonomous GUI agents that operate across diverse platforms. By only leveraging vision-based ob-
servations and a consistent action space, AGUVIS addresses the key challenges of GUI grounding,
planning, and reasoning. Our framework unifies and augments existing datasets, enabling more ef-
fective cross-platform generalization while reducing inference costs. Extensive experiments demon-
strate that AGUVIS outperforms existing methods in both offline and online GUI tasks, showcasing
the first fully autonomous pure vision GUI agent capable of completing real-world tasks without
reliance on closed-source models. We will open-source all data, models, and training recipes to
facilitate future research in this exciting domain.
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Piotr Padlewski, Alexey Gritsenko, Mario Lučić, and Neil Houlsby. Patch n’ pack: Navit, a
vision transformer for any aspect ratio and resolution, 2023. URL https://arxiv.org/
abs/2307.06304.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design ap-
plications. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology, 2017.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samual Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. In Advances in Neural Information
Processing Systems, 2023.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
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A DETAILS OF ACTION SPACE IN AGUVIS

In this section, we introduce our unified action space of our pure vision agent framework AGUVIS.
As shown in Table 8, we use default standard pyautogui actions with pluggable actions as the
action space of AGUVIS, which ensures the agent model’s universality across environments as well
as its flexibility in the specific environment.
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Table 8: Default standard pyautogui actions A with pluggable actions.

Category Action Space

Basic
Actions

pyautogui.moveTo(x, y)
pyautogui.click(x, y)
pyautogui.write(‘text’)
pyautogui.press(‘enter’)
pyautogui.hotkey(‘ctrl’, ‘c’)
pyautogui.scroll(200)
pyautogui.dragTo(x, y)

Pluggable
Actions

browser.select option(x, y, value)
mobile.swipe(from, to)
mobile.home()
mobile.back()
mobile.open app(name)
terminate(status)
answer(text)

... ...

B DATA CURATION OF THE AUGVIS COLLECTION

B.1 DETAILED DATASET STATISTICS

We present the detailed statistical information of all training datasets utilized in both the grounding
and planning & reasoning stages. The statistics are shown in Table 9 and Table 10, respectively.

Table 9: The grounding split of THE AUGVIS COLLECTION. Each example in this split consists of
a single-step trajectory.

Data source Platform Instruction #Trajectory

SeeClick (Cheng et al., 2024) Website Augmented 271K
GUIEnv (Chen et al., 2024a) Website Augmented 328K
GUIAct (Chen et al., 2024a) Website Original 67K
WebUI (Wu et al., 2023) Website Augmented 57K
Widget Captioning (Li et al., 2020b) Mobile Original 101K
RicoSCA (Li et al., 2020a) Mobile Original 173K
UI RefExp (Bai et al., 2021) Mobile Original 16K
RICO Icon (Deka et al., 2017) Mobile Augmented 16K
OmniACT (Kapoor et al., 2024) Desktop & Website Original 7K

Total 1.036M

Table 10: The planning & reasoning split of THE AUGVIS COLLECTION.

Data source Platform Inner Monologue Avg. Steps #Trajectory

MM-Mind2Web (Zheng et al., 2024a) Website Generated 7.7 1,009
GUIAct (Chen et al., 2024a) Website Generated 6.7 2,482
MiniWoB++ (Zheng et al., 2024b) Website Generated 3.6 2,762
AitZ (Zhang et al., 2024b) Mobile Original 6.0 1,987
AndroidControl (Li et al., 2024d) Mobile Original 5.5 13,594
GUI Odyssey (Lu et al., 2024) Mobile Generated 15.3 7,735
AMEX (Chai et al., 2024) Mobile Generated 11.9 2,991
AitW (Rawles et al., 2024b) Mobile Generated 8.1 2,346

Total 35K

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C EVALUATION BENCHMARKS

In this section, we introduce more details of evaluation benchmarks used in our work.

C.1 GUI GROUNDING EVALUATION

ScreenSpot. ScreenSpot (Cheng et al., 2024)is a typical benchmark designed specifically for GUI
visual grounding, consisting of 1.2K single-step instructions and coordinates of the target elements.
This dataset encompasses a variety of grounding instructions tailored for mobile, desktop, and web-
site platforms, and categorizes element types into text and icons/widgets. The benchmark is assessed
under two distinct settings: (1) Original Instructions: models perform grounding actions directly fol-
lowing the original instructions; and (2) Self-plan: models are required to generate plans in natural
language based on the original instructions before executing grounding actions.

C.2 OFFLINE GUI AGENT EVALUATION

Multimodal-Mind2Web. We utilize Multimodal-Mind2Web (Zheng et al., 2024a) for evaluat-
ing the offline planning capabilities of GUI agents on websites, which builds on the original
Mind2Web (Deng et al., 2023). We report element accuracy (Ele.Acc), Operation F1 (Op.F1), and
step success rate (Step SR).

AndroidControl. Following the setting in Li et al. (2024d), we randomly sample 500 step-actions
from AndroidControl full test set to create a subset, and we report the step accuracy on out-of-
domain (OOD) data within both high-level and low-level tasks. The high-level task setting necessi-
tates that the model plans and executes actions, whereas the low-level task setting requires the model
to simply adhere to human-labeled instructions for executing the next-step action.

C.3 ONLINE GUI AGENT EVALUATION

Mind2Web-Live. We adopt Mind2Web-Live (Pan et al., 2024b) to evaluate GUI agents’ online
planning, a derived dynamic data set from Mind2Web, comprising 104 real-time interactive web
tasks. It evaluates whether each required step within a task has been successfully completed and uses
the task success rate (Task SR) as the reported metric. The original Mind2Web-Live is built with
WebCavas (Pan et al., 2024a), which is a text-based agent framework. To better accommodate the
unified observation and action space of pure vision models, we utilize BrowserGym (Drouin et al.,
2024) as the evaluation environment for online web tasks which provide support for pure vision-
based agent models. BrowserGym is a browser testing environment built on the Playwright (Mi-
crosoft, 2024) engine. We incorporate all Mind2Web-Live tasks and evaluation into BrowserGym,
involving registering all Mind2Web-Live tasks, setting up the entry points for these tasks, and port-
ing the Mind2Web-Live evaluation functions to BrowserGym.

As Mind2Web-Live is a text-based benchmark, we have to adapt its evaluation function to suit our
pure vision-based model. To achieve this, we introduce the two modifications following:

• For the Mind2Web-Live benchmark’s click verification, we adapt our coordinate-based
approach by comparing the ground truth CSS selector’s bounding box (when available)
with our click coordinates, as we cannot directly identify HTML elements.

• Similarly, for input validation, we retrieve and compare the value of the ground truth input
element (if present) with the expected value, circumventing the need for precise HTML
element identification based on CSS selectors.

The Mind2Web-Live environment relies on real-world websites, many of which implement detection
systems for automated browser testing and reCAPTCHA challenges. These factors created difficul-
ties during evluation on the Mind2Web-Live dataset, resulting in a lower task success rate (Task
SR). Specifically, we observed the following websites to have significant issues with automation
detection:

• kohls. Model using the search functionality on the Kohls website through Playwright di-
rectly results in a 502 Bad Gateway error.
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• target. We are unable to open target’s job website using Playwright due to network con-
nection error.

• united. We are unable to open united website using Playwright due to network connection
error.

In addition to the websites that were consistenly prone to failure, several other sites intermittently
blocked our Playwright access during testing. In total, we encountered 18 network errors and 6
reCAPTCHA tasks that the model was unable to complete, preventing our model from scoring on
these 24 tasks.

AndroidWorld. AndroidWorld (Rawles et al., 2024b) is a benchmark operating on an Android
virtual environment, capable of dynamically instantiating with randomly generated parameters to
generate unique tasks for automatic evaluation. It spans 20 real-world applications, encompassing
116 diverse tasks. To assess the pure vision agent models, we follow the instructions in Rawles
et al. (2024b), installing a Pixel 6 phone simulator on our computers to serve as the experimental
environment. The benchmark incorporates a fully automated task-level evaluation system that auto-
matically assesses whether a state has successfully completed a designated task. The AndroidWorld
environment supports optional inputs such as Set-of-Mark (SoM) and textual AXTree information,
which most multimodal models currently rely on to complete tasks. However, we solely use raw
screenshots as the observation input and restrict the model to coordinate-level actions and basic
mobile functions.

MobileMiniWob. MobileMiniWob (Rawles et al., 2024b) is the instantiation of 92 tasks from
MiniWob++ (Zheng et al., 2024b) in the AndroidWorld environment. Thus, we adopt the same
observation and action space used in AndroidWorld and use a real-time evaluation function to deter-
mine task success.
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