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ABSTRACT

Metagenomic binning aims to cluster DNA fragments from mixed microbial sam-
ples into their respective genomes, a critical step for downstream analyses of mi-
crobial communities. Existing methods rely on deterministic representations, such
as k-mer profiles or embeddings from large language models, which fail to cap-
ture the uncertainty inherent in DNA sequences arising from inter-species DNA
sharing and from fragments with highly similar representations. We present the
first probabilistic embedding approach, UncertainGen, for metagenomic binning,
representing each DNA fragment as a probability distribution in latent space. Our
approach naturally models sequence-level uncertainty, and we provide theoret-
ical guarantees on embedding distinguishability. This probabilistic embedding
framework expands the feasible latent space by introducing a data-adaptive met-
ric, which in turn enables more flexible separation of bins/clusters. Experiments
on real metagenomic datasets demonstrate the improvements over deterministic
k-mer and LLM-based embeddings for the binning task by offering a scalable and
lightweight solution for large-scale metagenomic analysis.

1 INTRODUCTION

Genomic sequences encode the blueprint of life, and analyzing them is fundamental for understand-
ing biological processes, evolutionary relationships, and microbial ecosystems (Falkowski et al.,
2008; Timmis et al., 2017; Cavicchioli et al., 2019). In recent years, advances in high-throughput
DNA sequencing technologies have enabled large-scale studies of complex microbial communities
directly from environmental samples. However, these technologies typically produce fragmented
DNA sequences (called reads) rather than complete genomes. This fragmentation poses a signifi-
cant challenge: recovering the full DNA sequences of the microbes in a sample requires assembling
these reads and organizing them according to their origin.

The process of organizing reads from a mixed microbial sample is known as metagenomic binning,
which aims to cluster DNA fragments so that each cluster corresponds to a distinct genome (Kunin
et al., 2008). Accurate binning is critical for downstream analyses, such as functional annotation,
phylogenetic profiling, and strain-level variation studies (Temperton & Giovannoni, 2012; Meyer
et al., 2022). At its core, metagenomic binning relies on a representation of DNA fragments that
preserves genomic similarity and inter-species dissimilarity, enabling meaningful comparisons be-
tween reads or assembled contiguous sequences (i.e. contigs).

Traditionally, DNA sequences are represented using k-mer profiles, wherein sequences are decom-
posed into substrings of length k to construct the feature vectors of DNA fragments (see Figure
1 (a-c)). Numerous methods leverage these k-mer–based representations to learn latent represen-
tations (i.e., embeddings) to later cluster the DNA fragements for metagenomic binning (Teeling
et al., 2004; Chan et al., 2008; Pan et al., 2023; Çelikkanat et al., 2024; Ji et al., 2021). Recent
studies employs large language models that operate directly on raw sequences—eschewing ex-
plicit k-mer feature vectors—to generate embeddings with the aim of capturing richer contextual
information (Nguyen et al., 2023; Zhou et al., 2023; 2024). However, recent works also indicate
that k-mer–based embeddings achieve comparable performance while offering orders-of-magnitude
greater computational efficiency than large genome foundation models (Çelikkanat et al., 2024).
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CTGCTACT

CTACTGCT

TGGACTGC

(AA, · · ·, AC, AG, · · ·, CT, · · ·, GA, GC, GG, TA, TC, TG, TT)

TGCTAAGC

TG GG GA AC CT TG GC

CT TG GC CT TA AC CT

CT TA AC CT TG GC CT

TG GC CT TA AA AG GC

(  0, · · ·, 1, 0, · · ·, 1, · · ·, 1, 1, 1, 0, 0, 2, 0)

(  0, · · ·, 1, 0, · · ·, 3, · · ·, 0, 1, 0, 1, 0, 1, 0)

(  1, · · ·, 0, 1, · · ·, 1, · · ·, 0, 2, 0, 1, 0, 1, 0)

(  0, · · ·, 1, 0, · · ·, 3, · · ·, 0, 1, 0, 1, 0, 1, 0)

a) DNA Fragments b) 2-mer Decomposition c) Construction of 2-mer count vectors d) Learning embeddings

Figure 1: Illustration of the metagenomic binning process. Starting from a set of DNA sequences
(a), the process ends with their two-dimensional embeddings derived from 2-mer profiles (d). In
general, these embeddings allow the DNA fragments from two different species to be correctly
clustered. However, the second and third DNA sequences in (a) pose an exception: although distinct,
their k-mer representations shown in (c) are highly similar and, consequently, their embeddings are
also very close (shown as the two empty circled points in (d)). Because the k-mer profiles of DNA
within a species tend to be (locally) similar, the contrastive learning procedure attempts to position
such fragments in both clusters but, since this is not possible, ultimately places them between them.

A shared characteristic of these methods is that they produce deterministic embeddings, mapping
each DNA fragment to a single fixed point in the embedding space that is subsequently clustered
and assigned to a single group representing the reconstructed species’ DNA (Figure 1 illustrates this
process). However, many DNA sequences can appear in multiple genomes—for instance through
horizontal (lateral) gene transfer (Arnold et al., 2022)—and should ideally be assigned to their cor-
rect clusters. But this is impossible for any clustering algorithm because such sequences will be
represented by the same point in the embedding space. A further limitation arises with k-mer–based
representations: distinct sequences, potentially belonging to different clusters, can exhibit highly
similar k-mer profiles and are therefore projected to similar embedding vectors, making it very dif-
ficult for the clustering algorithm to assign them accurately. Figure 1 visually illustrates this point.

In this work, we provide a mathematical formalization of the above issues and show that determinis-
tic embeddings cannot resolve them. To address this limitation, we propose the use of probabilistic
embeddings (Shi & Jain, 2019; Warburg et al., 2023; Karpukhin et al., 2024), where each fragment
is mapped not to a single point but to a distribution (i.e., a region) in the embedding space. These
distributions explicitly encode the ambiguity of fragments that may belong to multiple clusters and,
more specifically, capture the uncertainty that a given k-mer profile can belong to multiple speies.

Previous work on probabilistic embeddings in computer vision, NLP, and graph representation
learning have typically relied on heuristically selected distributional distances, such as the Kull-
back–Leibler or Wasserstein divergence to compare objects (Muzellec & Cuturi, 2018). In contrast,
our framework employs a contrastive-learning formulation in which non-Euclidean distances be-
tween embeddings emerge naturally from a probability distribution defined over the embedding
space. This formulation yields closed-form expressions for the expected pairwise likelihood, en-
abling efficient and scalable optimization. Moreover, we present a theoretical analysis identifying
the types of sequences producing large covariance terms, thereby offering insight into how and why
the model captures uncertainty arising from ambiguous or multi-class sequences.

To the best of our knowledge, we propose the first framework for probabilistic embeddings of DNA
sequences for the metagenomic binning task that extends the k-mer-based representation approaches
(Çelikkanat et al., 2024; Pan et al., 2023). We provide a scalable approach, UNCERTAINGEN, for
embedding DNA sequences, offering both theoretical insights and practical performance gains.

• We introduce a novel probabilistic sequence embedding framework for metagenomic binning
that models the uncertainty inherent in DNA sequences arising from inter-species DNA sharing
and from fragments with highly similar representations

• We derive theoretical guarantees on the distinguishability of both deterministic and probabilistic
embeddings, showing how the probabilistic embeddings expand the feasible latent space and
improve the model’s capacity to separate DNA fragments.

• We empirically demonstrate the effectiveness of our approach on real metagenomic datasets,
showing improvements over deterministic k-mer and LLM-based embeddings.

The implementation of the proposed approach will be made publicly available after acceptance.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2 RELATED WORKS

Embedding models for DNA sequences. Representations of DNA sequences have advanced
rapidly in recent years. Classical approaches are based on k-mer profiles (frequency vectors of
length-k substrings) (Wu et al., 2016; Kang et al., 2019), and many practical binners continue to
rely on such features (Nissen et al., 2021; Wang et al., 2024; Kutuzova et al., 2024). More recently,
the field has seen a surge of genome foundation models that adapt transformers or other long-context
architectures to genomic data. DNABERT (Ji et al., 2021) introduced a BERT-style encoder with
k-mer tokenization, while DNABERT-2 (Zhou et al., 2023) replaced fixed k-mers with byte-pair
encoding (BPE) to improve efficiency and downstream performance. DNABERT-S (Zhou et al.,
2024) further refined this line of work by introducing a curriculum contrastive learning strategy
with manifold instance mixup loss to address the metagenomic binning task. HYENADNA (Nguyen
et al., 2023) extended the context window further by modeling single-nucleotide tokens with a long-
range convolutional architecture, reducing the cost of dense attention. Other approaches explore
alternative geometries, such as HCNN Khan et al. (2025), which learns sequence representations in
hyperbolic space.

In parallel, lightweight but task-specific models have been developed for metagenomics. SEMIBIN2
Pan et al. (2023) and related methods Wang et al. (2024) employ self-supervision and contrastive
objectives tailored to binning, producing embeddings that cluster effectively by genome of origin.
Recent work (Çelikkanat et al., 2024) has revisited the foundations of k-mer features, showing
both their scalability and the limits of when k-mer profiles alone can separate genomes in practice.
These results highlight a central trade-off: while foundation models offer expressive, context-aware
representations, lightweight contrastive or k-mer-based approaches can rival or even outperform
them in realistic binning scenarios.

Probabilistic embeddings for contrastive learning. Probabilistic embeddings have previously
been explored, both generally (Warburg et al., 2023; Karpukhin et al., 2024; Bansal et al., 2025) and
within a task specific context (Vilnis & McCallum, 2015; Shi & Jain, 2019). For example, in the
context of face embeddings, Shi & Jain (2019) represents each images as a multivariate Gaussian
distribution in embedding space, where a mutual likelihood score (MLS) is used to capture the
likelihood of pairs of images belonging to the same person. Shi & Jain (2019) (Proposition 1)
show that the proposed MLS score with fixed variance terms in the embedding space corresponds
to a scaled and shifted negative squared Euclidean distance. Our results (Corollary 3.3.1) extends
Proposition 1(Shi & Jain, 2019) by characterizing the (limited) expressivity of the equivalent of
a fixed variance MLS score, while at the same time also showing that modeling capacity can be
increased by allowing for varying covariance terms.

Probabilistic embedding have also been explored in a variational context. For instance, Oh et al.
(2019) learns probabilistic embeddings using a soft contrastive loss while relying on a variational
information bottleneck principle for optimization (Alemi et al., 2017). Jeong et al. (2025) reinter-
prets the InfoNCE loss as a reconstruction term in the ELBO objective through an approximation
of the decoder model, which effectively also makes the representation decoder free. Kirchhof et al.
(2023) posits a contrastive generative process and extends the InfoNCE loss to learn the correct pos-
terior embedding distribution in latent space (up to rotation) for an unbounded number of negative
samples; the correctness result relies on a known concentration parameter of the generative pro-
cess for the positive samples. In contrast, we provide expressivity results related to model capacity,
independent of any model specific parameters defining the data generating process.

3 PROPOSED MODEL

Let S ⊂ ΣL be the set of sequences of length L < ∞ over alphabet Σ := {A,C,G, T}. In many
genomic sequence clustering tasks, sequences originate from unknown genomes, and only sparse
pairwise similarity information is available. In this regard, our goal is to learn an embedding function
ϕ that captures the underlying cluster structure while also modeling the uncertainty in embedding
space. Each cluster is expected to contain DNA fragments belonging to the same species.
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Objective: We aim to learn an embedding function, ϕ, that maps sequences into a latent space,
where the distance reflects cluster membership. Specifically, for a given threshold τ > 0, we require:

∥ϕ(s)− ϕ(r)∥ < τ if and only if ℓ(s) = ℓ(r) = k for some k ∈ [K], (1)

where ℓ(s) denotes the cluster label of the DNA sequence s ∈ S.

Therefore, an embedding function satisfying this condition maps sequences from the same cluster
close together, and sequences from different clusters remain well separated.

Light-Weight Metagenomic Bining: Our work builds on Çelikkanat et al. (2024); Pan et al. (2023),
which introduced a state-of-the-art metagenomic binning algorithm. These methods achieve com-
petitive accuracy while being several orders of magnitude faster than large genomic foundation
models because they construct embeddings from efficient k-mer representations rather than using
heavy sequence transformers. We adopt this principle of lightweight non-linear embeddings as the
starting point for our approach.

In the works of Çelikkanat et al. (2024); Pan et al. (2023), each DNA sequence in the dataset is split
into two equal-length segments to form a positive pair, while negative pairs are created by combining
segments from two distinct sequences chosen at random. For every segment, we compute its k-mer
profile and pass both profiles through a shared neural network that maps them into an embedding
space. The contractive loss used there encourages embeddings of positive pairs to be close and em-
beddings of negative pairs to be far apart, thereby learning a genome-aware representation without
supervision. These embeddings are later clustered with a standard algorithm. All DNA fragments
in a cluster are assumed to belong to a single species.

Formally, let S = {si}Ni=1 denote the set of DNA sequences in our dataset, with s
(l)
i and s

(r)
i being

the left and right halves of each sequence. We construct triplets
{
(s

(l)
i , s

(r)
j , yij)

}
(i,j)∈I , where

I is the set of sequence index pairs, and yij = 1 if the two segments originate from the same
sequence (positive) and yij = 0 otherwise (negative). The neural network parameters Ω are trained
by minimizing

L
(
Ω
)
= −

∑
(i,j)∈I

[
yij logP (Yij = 1|s(l)i , s

(r)
j ) + (1− yij) log

(
1− P (Yij = 1|s(l)i , s

(r)
j )
)]

, (2)

with success probability P (Yij = 1|si, sj) = exp
(
−∥ϕΩ(si)− ϕΩ(sj)∥2

)
, where ϕΩ denotes the

embedding function defined as a simple two-layer network with sigmoid activation functions.

Since we suppose that our dataset contains many different genomes, negative pairs are most likely
to originate from different genomes. Similarly, the positive pairs contain DNA fragments from
the same genome due to the nature of the construction procedure. Therefore, the model learns to
produce similar embeddings for k-mer profiles from the same genome and dissimilar embeddings
for profiles from different genomes.

Motivation: While the above contrastive framework provides an efficient way to learn genome-
aware embeddings, its reliance on squared Euclidean distances between deterministic points (non-
uncertain representations) in latent space imposes a fundamental limitation. As discussed in the
introduction, many DNA fragments do not belong exclusively to a single cluster: they may gen-
uinely occur in multiple genomes (e.g., through horizontal gene transfer (Arnold et al., 2022)) or,
conversely, fragments from distinct genomes may yield indistinguishable k-mer feature vectors. In
both cases, the fixed-point embeddings produced by the above model collapses such sequences to
the same location in the latent space, preventing any clustering algorithm from assigning them con-
sistently. Lemma 3.3 and Corollary 3.3.1 (below) formalize this limitation by showing that, under
deterministic embeddings, it is not always possible to satisfy all pairwise constraints. In particu-
lar, when the set of DNA sequences is sufficiently large and originates from different clusters, they
cannot simultaneously be mapped close to a cluster centroid to represent their membership while
also being placed far apart from one another to reflect their pairwise dissimilarities.. This motivates
our shift to probabilistic embeddings, where each fragment is represented by a distribution in the
latent space, explicitly encoding ambiguity and thereby expanding the embedding space’s flexibility
to better separate multi-cluster or otherwise indistinguishable sequences.

Proposed model: Our approach uses two encoder networks outputting a mean–covariance pair
(µ,S) so that every fragment is represented as a Gaussian distribution. This provides a principled
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way of modelling sequence-level ambiguity rather than evaluating the success probability p(Yij =
1 | si, sj) at fixed points. We define a new conditional distribution that marginalizes over the
uncertainty of both embeddings (zi, zj),

Ezi∼N (µi,Si)
zj∼N (µj ,Sj)

[p(Yij = 1 | zi, zj)] = Ezi∼N (µi,Si)
zj∼N (µj ,Sj)

[
exp

(
−1

2
(zi − zj)

⊤K−1
ij (zi − zj)

)]
, (3)

where Kij ≻ 0 is a positive definite matrix. The inner part of the expectation captures the (un-
normalized) Gaussian likelihood of the embedding difference zi − zj ∼ N (0,Kij), and Kij can
therefore be seen as representing the uncertainty in the distance between zi and zj providing differ-
ent weights to the differences across each embedding dimension; Kij can thus also be interpreted as
a local metric tensor. By Lemma 3.1, we can find the closed-form solution of the expectation term
over embeddings (proofs of all formal results are placed in Appendix A.2):
Lemma 3.1. (Closed-form expectation) Let zi ∼ N (µi,Si) and zj ∼ N (µj ,Sj) be independent
random variables. For a given positive definite matrix Kij ≻ 0, Eq. 3 can be computed as

1√
|K−1

ij (Si + Sj) + I|
exp

(
−1

2
(µi − µj)

⊤ (Si + Sj +Kij)
−1

(µi − µj)

)
. (4)

A natural choice for Kij is Kij := α(Si + Sj), so that (the local metric tensor) Kij reflects
the point-wise uncertainty in the embeddings with more ”uncertain” points contributing less to the
similarity measure. The parameter α is learnable, but in the remainder of the paper we set α = 1;
Appendix A.1 includes further insight into the role of α ∈ R+. With this choice, the expectation in
Eq. 3 simplifies algebraically to

Ezi∼N (µi,Si)
zj∼N (µj ,Sj)

[p(Yij = 1 | · · · )] = 1√
2D

exp

(
−1

4
(µi − µj)

⊤ (Si + Sj)
−1

(µi − µj)

)
, (5)

where D is the latent dimension size. Here, it is worth emphasizing that both the mean vectors
(µi, µj) and covariance matrices (Si,Sj) are parameterized by two simple neural networks denoted
by ϕµ and ϕσ . In our experimental setup, they consist of a single hidden layer including 512 units
with sigmoid activation functions, and the output dimension (i.e., D) is set to 256.

It is important to note that the expectation in Eq. 5 does not yield a properly normalized Bernoulli
success probability, because its value ranges only from 0 up to 1/

√
2D rather than the full [0, 1]

interval. To obtain a valid probability measure, we therefore renormalize this quantity by multiplying
it with

√
2D. This rescaling defines our final success probability, denoted by q

(
Yij = 1 | si, sj

)
,

which is guaranteed to lie between 0 and 1.

We optimize the parameters of these neural networks by maximizing the same loss given in Eq. 2,
but using q

(
Yij = 1 | si, sj

)
as a sucess probability for positive pairs.

Definition 3.2. For a given ϵ ∈ (0, 1/2), a mapping function ϕ : S → RD × RD
+ , where ϕ :=

(ϕµ, ϕσ) with ϕµ : S → RD and ϕσ : S → RD
+ , satisfying

q
(
Yij = yij | si, sj

)
≥ (1− ϵ)

for all ((si, sj), yij) ∈ S × Y is called an ϵ-distinguishable embedding function for S × Y , where
S ⊂ ΣL × ΣL denote the set of sequence pairs with associated labels Y .

For notational convenience, we omit Y whenever it is clear from the context. Intuitively, an ϵ-
distinguishable embedding function guarantees that positive pairs remain close in the latent space,
while negative pairs are sufficiently separated. Lemma 3.3 formalizes this relationship by provid-
ing explicit bounds on the Euclidean distance between the embedding means as a function of the
corresponding variances, thus offering theoretical guarantees for pairwise distinguishability.
Lemma 3.3. Let ϵ ∈ (0, 1/2), and let ϕ : S → RD × RD

+ be an ϵ-distinguishable embedding
function for a pair (si, sj) ∈ S2 and label yij ∈ {0, 1} where ϕ := (ϕµ, ϕσ) with ϕµ : S → RD

and ϕσ : S → RD
+ . Then the following bounds hold:

min
d

{(ϕσ(si) + ϕσ(sj))d} log
(

1

ϵ4

)
≤ ∥ϕµ(si)− ϕµ(sj)∥22 if yij = 0, (6)

max
d

{(ϕσ(si) + ϕσ(sj))d} log
(

1

(1− ϵ)4

)
≥ ∥ϕµ(si)− ϕµ(sj)∥22 if yij = 1. (7)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

τ

τ

Figure 2: Packing number (PD
τ )

These bounds highlight the critical role of variances in our setting.
Intuitively, if a sequence is associated with multiple clusters, its
mean representation cannot be simultaneously close to all corre-
sponding centroids, since these centroids must remain sufficiently
separated. For instance, Figure 2 depicts six blue points placed at
distance τ from a central green point, while also being pairwise
τ -separated. In this two-dimensional configuration, it is not pos-
sible to place an additional point (such as the red point) that lies
within distance τ of the green point while remaining more than τ
away from all the blue points. Hence, the covariance terms ϕσ(s)
must adaptively increase to satisfy the distinguishability condition
in Eq. 3.2.

Before stating the following corollary, we need to first introduce
the packing number PD

τ which is the maximum number of τ -
separated distinct points in a ball of radius τ in D-dimensional
space (Vershynin, 2018). It will help us to formalize the funda-
mental limitations of the embedding function.

Corollary 3.3.1. Let ϕ : S → RD×RD
+ be an embedding function for the set S where ϕ := (ϕµ, ϕσ)

with ϕµ : S → RD and ϕσ : S → RD
+ . If ϕσ(si)d = ϕσ(sj)d for all si, sj ∈ S , and ∀d ∈ [D],

and if there exists PD
τ + 2 sequences, s0, s1, . . . , sPD

τ +1 ∈ S such that each (s0, si) is a positive
pair (i.e. y(0,i) = 1) for all i ∈ {1, . . .PD

τ + 1} and (si, sj) is a negative pair (i.e. y(i,j) = 0) for
1 ≤ i < j ≤ PD + 1, then it cannot be ϵ-distinguishable function for ϵ ∈ (0, 1/2).

From Corollary 3.3.1, we see that fixed-variance embeddings have intrinsic limitations in expres-
siveness: they cannot simultaneously satisfy the pairwise constraints of a sufficiently large sequence
set. Allowing covariance terms to vary introduces additional degrees of freedom, enhancing the
modeling capacity of the embedding function. Theorem 3.4 relies on this insight, showing that se-
quences belonging to multiple clusters tend to have larger covariance terms in order to handle the
desired complex proximity relationship among sequences, building on distances in a latent space.

Theorem 3.4. An embedding function ϕ : S → RD × RD
+ with bounded means (i.e. ∥ϕµ(s)∥ <

∞) is ϵ-distinguishable for some ϵ ∈ (0, 1/2) if and only if there exists a set of sequences
{s0, s1, . . . , sN} ⊆ S where each (s0, si) is a positive pair and (si, sj) is negative pair satisfy-
ing ϕσ(si)d < ∞ for 1 ≤ i ≤ N and ϕσ(s0)d → ∞ for all d ∈ [D] with N > PD

τ .

This result underscores the importance of probabilistic embeddings: by having covariance terms, the
model can represent complex relationships among sequences that deterministic embeddings cannot
capture. In the following section, we will demonstrate the effectiveness of this approach on artificial
and real genomic datasets.

4 EXPERIMENTS

We evaluated UNCERTAINGEN under the same experimental setup as (Zhou et al., 2024; Çelikkanat
et al., 2024) to ensure a fair comparison with previous deterministic and large genome foundation
models while highlighting the benefits of probabilistic embeddings for metagenomic binning. Due
to page limitations, we provide the detailed information about the baseline models in Appendix B.

Datasets. For our experiments, we adopt the benchmark datasets introduced in prior work on the
metagenomic binning task (Zhou et al., 2024). The datasets are constructed from reference genomes
in GenBank and consist of viral, fungal, and bacterial sequences. The training data contains more
than 2 million sequence pairs of length 1000bp. For testing, we have six datasets (Reference
5/6, Plant 5/6, and Marine 5/6 ) with species represented by highly variable numbers of sequences
(10–4, 599), ranging from 2-20 kbp in length. While Reference datasets consist of DNA fragments
from 250-330 fungal and viral genomes, and Marine and Plant-associated environments contain
70k-125k sequences from roughly 180-520 species.

Training procedure. For our method, training was performed within a contrastive learning frame-
work by optimizing the objective function given in Eq. 2 with our new success probability
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(a) Learned Embeddings (b) Variance Distribution

Figure 3: Visualization of the learned embeddings and the variance distribution of the sequences.

q(yij | · · · ). Positive pairs were obtained by splitting each fragment into two halves, guarantee-
ing that both subsequences come from the same genome. Negative pairs were formed by randomly
pairing fragments from the dataset, and this procedure ensures, with high probability, that the paired
sequences come from different genomes.

We trained our model using the Adam optimizer with a learning rate of 10−2. The model consists of
2 two-layer neural networks, as described in Section 3, that output the mean and variance terms of
the multivariate normal distribution for a given input sequence. To improve stability, we first train
the mean network alone for 50 epochs, and then train the variance network only for an additional
20 epochs. From the original dataset consisting of 2 × 106 pairs (Zhou et al., 2024), we randomly
subsample 105 pairs to demonstrate that our method is effective even with smaller training sets
compared to large genome foundation models. For each positive pair, we generated 200 negative
pairs, resulting in a total of 2, 01× 107 pairs. Training was also performed with a batch size of 105.

4.1 TOY EXAMPLE WITH k-MER DATASET

To investigate the behavior of our model in a controlled setting, we designed a synthetic dataset
of 4-mer sequences. This setup allows us to assess whether the model can learn meaningful low-
dimensional embeddings that reflect cluster structure and how it represents sequences that span
multiple classes. Due to the space limitations, we provide the details in Appendix B.1.

We generated sequences of length 100 from multinomial distributions defining 5 distinct classes,
each with a characteristic 4-mer compositions. To simulate ambiguity, we additionally generated 5
”multi-class” sequences by combining k-mer counts from multiple classes, representing inputs that
do not belong exclusively to a single class. This design allows us to evaluate how the model handles
both well-separated clusters and overlapping class memberships.

Positive sequence pairs were formed by sampling sequences from the same class, while negative
pairs were drawn across different classes, which introduces the possibility of false negatives. For
multi-class sequences, pairs were also constructed with sequences from their contributing classes,
allowing the model to learn representations that account for both pure and mixed memberships.

We learn the sequence embeddings in a 2-dimensional latent space, enabling direct visualization
of the learned geometry without relying on dimensionality reduction techniques that could distort
structural relationships (Figure 3a). The resulting embeddings reveal well-separated clusters corre-
sponding to distinct species, while sequences that belong to multiple classes occupy intermediate
regions (black points). For each sequence, our model also predicts a diagonal covariance matrix,
which quantifies the degree of uncertainty in its placement. This uncertainty is particularly shown
for sequences belonging to multiple classes, as reflected in their larger covariance values in Figure
3b. In line with our theoretical results (Lemma 3.3 and Theorem 3.4), the minimum variance across
dimensions (i.e. mind{(ϕσ(s))d}) provides a lower bound on pairwise distances, and sequences
associated with multiple classes indeed display a higher minimum variance. This confirms that the
model not only separates clusters effectively, but also encodes the uncertainty of ambiguous cases.
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Table 1: Detailed comparison of REVISITKMERS and UNCERTAINGEN. The counts indicate the
number of detected high-quality bins (i.e., number of clusters whose F1-score is greater than 0.9).

Reference 5 Plant 5 Marine 5 Reference 6 Plant 6 Marine 6

REVISITKMERS 126 29 112 128 28 125
UNCERTAINGEN 135 32 124 132 23 127

Figure 4: Metagenomic binning results. Cluster counts are segmented by F1-score quality ranges.
The dark blue portion highlights the highest-quality bins for each model-dataset combination.

4.2 METAGENOMICS BINNING

We evaluate our methods on the metagenomic binning task, where the objective is to cluster se-
quences into species-level groups without prior knowledge of the number of clusters. In this regard,
we adopt the modified K-Medoid algorithm of Zhou et al. (2024), which jointly estimates the clus-
ter assignments and the underlying number of species. This setting is particularly challenging as it
requires models to provide representations that are simultaneously discriminative and robust under
unsupervised partitioning. For computing similarities between sequences, we employ cosine simi-
larity for all genome-scale foundation models as well as the KMERS(COSINE) baseline. In contrast,
we use an exponential kernel over the ℓ1 distance for KMERS(ℓ1), and ℓ2 distance for REVITK-
MERS. We use an exponential kernel over the generalized Mahalanobis term in Eq. 5 as a natural
choice for our model.

Following established evaluation strategies, we stratify clusters into 5 quality tiers based on their F1

scores. High-quality bins, defined as clusters with F1 > 0.9, are highlighted in dark blue in Figure
4. Across datasets, UNCERTAINGEN consistently outperforms its deterministic counterpart, with
the sole exception of the Plant-6 dataset (see Table 1 for a detailed comparison). Moreover, while
the strongest competing genome-scale foundation model, DNABERT-S, achieves slightly higher
performance on the Reference dataset, our method surpasses it on the Marine dataset when focus-
ing on high-quality bins. These results demonstrate that our approach is not only competitive with
state-of-the-art foundation models but also offers the added benefit of a principled probabilistic for-
mulation, enabling more robust and interpretable clustering in metagenomic settings with a smaller
number of parameters.
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Figure 5: Ablations studies examining the behavior of the proposed UncertainGen model.

4.3 ABLATION STUDIES

To better understand the behavior of our model, we perform a series of ablation studies. Due to
space constraints, we discuss the results for the Reference datasets in the main text but a more
comprehensive analysis across all datasets is provided in Appendix B.2.

Distribution of variances. We first analyze the distribution of the predicted variance terms for
sequences in the test data. Specifically, we report

∑
d=1 log (ϕσ(s)d + 1), which aggregates uncer-

tainty across dimensions. As shown in Figure 5a, both variants of the Reference dataset exhibit mul-
timodal distributions, suggesting that the model captures non-trivial heterogeneity in sequence-level
uncertainty. This indicates that the variance estimates are not merely noise but encode meaningful
structure about the underlying sequence distributions.

Sequence filtering. We filter out sequences with the largest log-determinant values to examine
which sequences the model identifies as uncertain, and we report the number of clusters having a re-
call score ≥ 0.9 (Figure 5b). For comparison, we also include a random filtering baseline. To ensure
fairness, removed sequences are assigned to a ”garbage” label so that they do not artificially inflate
false negatives. Our results show that filtering by model uncertainty consistently retains a larger
number of high-recall clusters compared to random filtering. This shows that the model assigns
higher uncertainty to sequences from low-quality bins or to those that would otherwise contribute to
false negatives, thereby acting as an effective mechanism for uncertainty-aware sequence selection.

Dimension size. As discussed in our theoretical analysis (Section 3), incorporating covariance terms
provides the model with additional representational capacity compared to squared Euclidean dis-
tance: beyond capturing predictive uncertainty, the embedding space approximates a non-Euclidean
Riemannian manifold. This enhanced geometry allows the model to better separate complex se-
quence structures. Empirical results in Figure 5c support this intuition. We observe consistent
improvements when covariance terms are included, with the gains being especially pronounced in
lower-dimensional settings where representational bottlenecks are most restrictive.

5 CONCLUSIONS, LIMITATIONS AND FUTURE WORKS

We introduced UNCERTAINGEN, the first probabilistic embedding framework for metagenomic bin-
ning. Unlike deterministic k-mer or LLM-based representations, our method maps each DNA frag-
ment to a distribution in latent space, explicitly encoding sequence-level uncertainty. Theoretical
analysis showed how variance terms enlarge the feasible embedding space and improve pairwise
distinguishability, while experiments on both synthetic and real metagenomic data demonstrated
consistent gains in binning quality over strong deterministic baselines.

Our study also reveals some limitations. We relied on a simplified semi-supervised pairing strat-
egy and two-layer networks; more expressive architectures or richer positive/negative sampling
schemes may further enhance performance. In addition, although variance terms estimates uncer-
tainty, whether these estimates are calibrated or not remains an open question.

Future work will extend UNCERTAINGEN beyond k-mer based representations, explore hierarchi-
cal or non-Gaussian distributions for even richer uncertainty modeling, and integrate our embed-
dings into end-to-end pipelines for metagenome reconstruction. We hope this framework stimulates
broader adoption of uncertainty-aware representations in computational genomics.
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REPRODUCIBILITY

We will make our code publicly available upon acceptance and provide an accessible link in the
paper. In the supplementary materials, we include the datasets and an anonymized version of the
implementation to enable verification during the review process. The hyperparameter configurations
and training procedures used in our experiments are described in Appendix B. In addition, all the-
oretical contributions are supported by complete proofs, which are also provided in Appendix A.2.
Together, these resources ensure that our results can be reliably reproduced.

USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to enhance the clarity and readability of the paper. Their use was limited to im-
proving the writing style and rephrasing certain statements.
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A APPENDIX

A.1 THE ROLE OF α IN Kij = α(Si + Sj)

Consider the closed form expectation of Lemma 3.1:

Ezi∼N (µi,Si)
zj∼N (µj ,Sj)

[
exp

(
−1

2
(zi − zj)

⊤K−1
ij (zi − zj)

)]
=

1√
|K−1

ij (Si + Sj) + I|
exp

(
−1

2
(µi − µj)

⊤ (Si + Sj +Kij)
−1

(µi − µj)

)
. (8)

By setting Kij = α(Si + Sj) we have

1√
|K−1

ij (Si + Sj) + I|
=

1√
|α−1I+ I|

=
1√

|(1 + α−1I|

= (1 + α−1)−D/2

and

−1

2
(µi−µj)

⊤ (Si + Sj +Kij)
−1

(µi − µj)

= −1

2
(µi − µj)

⊤ (Si + Sj + α(Si + Sj))
−1

(µi − µj)

= −1

2
(µi − µj)

⊤ ((1 + α)(Si + Sj))
−1

(µi − µj)

= − 1

2(1 + α)
(µi − µj)

⊤ (Si + Sj)
−1

(µi − µj).

Hence

1√
|K−1

ij (Si + Sj) + I|
exp

(
−1

2
(µi − µj)

⊤ (Si + Sj +Kij)
−1

(µi − µj)

)

= (1 + α−1)−D/2 exp

(
− 1

2(1 + α)
(µi − µj)

⊤ (Si + Sj)
−1

(µi − µj)

)
→
{
1 as α → ∞
0 as α → 0

.

A.2 THEORETICAL ANALYSIS

Lemma A.1. (Closed-form expectation) Let zi ∼ N (µi,Si) and zj ∼ N (µj ,Sj) be independent
random variables. For a given positive definite matrix Kij ≻ 0, the expectation term is equal to

Ezi∼N (µi,Si)
zj∼N (µj ,Sj)

[
exp

(
−1

2
(zi − zj)

⊤K−1
ij (zi − zj)

)]
=

1√
|K−1

ij (Si + Sj) + I|
exp

(
−1

2
(µi − µj)

⊤ (Si + Sj +Kij)
−1

(µi − µj)

)
(9)

Proof. Since zi ∼ N (µi,Si) and zj ∼ N (µj ,Sj) are independent random variables, the differ-
ence, zi − zj is also normally distributed so we can write zi − zj ∼ N (µi − µj ,Si + Sj). In other
words, zij ∼ N (µij ,Sij) where µij := µi − µj , zij := zi − zj , and Sij := Si + Sj , then we can
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write the expected term as follows:

Ezi∼N (µi,Si)
zj∼N (µj ,Sj)

[
exp

(
−1

2
(zi − zj)

⊤K−1
ij (zi − zj)

)]
(10)

= Ezi−zj∼N (µij ,Sij)

[
exp

(
−1

2
(zi − zj)

⊤K−1
ij (zi − zj)

)]
(11)

= Ezij∼N (µij ,Sij)

[
exp

(
−1

2
z⊤ijK

−1
ij zij

)]
(12)

=

∫
1√

(2π)D|Sij |
exp

(
−1

2
(zij − µij)

⊤S−1
ij (zij − µij)

)
exp

(
−1

2
z⊤ijK

−1
ij zij

)
dzij (13)

=
1√

(2π)D|Sij |

∫
exp

(
−1

2

(
(zij − µij)

⊤S−1
ij (zij − µij)

)
+ z⊤ijK

−1
ij zij

)
dzij (14)

By expanding and regrouping the terms in the integral, we can write that:∫
exp

(
−1

2

(
(zij − µij)

⊤S−1
ij (zij − µij) + z⊤ijK

−1
ij zij

))
dzij (15)

=

∫
exp

(
−1

2

(
z⊤ijK

−1
ij zij + z⊤ijS

−1
ij zij − 2z⊤ijS

−1
ij µij + µ⊤

ijS
−1
ij µij

))
dzij (16)

=

∫
exp

(
−1

2

(
z⊤ij(K

−1
ij + S−1

ij )zij − 2z⊤ijS
−1
ij µij + µ⊤

ijS
−1
ij µij

))
dzij (17)

=

∫
exp

(
−1

2

(
z⊤ijAijzij − 2z⊤ijS

−1
ij µij + µ⊤

ijS
−1
ij µij

))
dzij (18)

=

∫
exp

(
− 1

2

(
(zij −A−1

ij S−1
ij µij)

⊤Aij(zij −A−1
ij S−1

ij µij)−

µ⊤
ijS

−1
ij A−1

ij S−1
ij µij + µ⊤

ijS
−1
ij µij

))
dzij (19)

=
√

(2π)D|A−1
ij | exp

(
−1

2

(
−µ⊤

ijS
−1
ij A−1

ij S−1
ij µij + µ⊤

ijS
−1
ij µij

))
dzij (20)

where Aij := K−1
ij +S−1

ij . In Eq. 19, we add and substract the term µ⊤
ijS

−1
ij A−1

ij S−1
ij µij so that the

first component depends only on zij . It also corresponds to the numerator of a normal distribution
with mean A−1

ij S−1
ij µij and covariance A−1

ij . Hence, the last equality follows from the standard
Gaussian integral:∫

exp

(
−1

2
(zij −A−1

ij S−1
ij µij)

⊤Aij(zij −A−1
ij S−1

ij µij)

)
dzij =

√
(2π)D

∣∣A−1
ij

∣∣
Therefore, the expectation term in Eq. 12 can then be rewritten as follows:

Ezi∼N (µi,Si)
zj∼N (µj ,Sj)

[
exp

(
−1

2
(zi − zj)

⊤K−1
ij (zi − zj)

)]
(21)

=
1√

(2π)D|Sij |

∫
exp

(
−1

2

(
2z⊤ijK

−1
ij zij + (zij − µij)

⊤S−1
ij (zij − µij)

))
dzij (22)

=
1√

(2π)D|Sij |

√
(2π)D|A−1

ij | exp
(
−1

2

(
−µ⊤

ijS
−1
ij A−1

ij S−1
ij µij + µ⊤

ijS
−1
ij µij

))
(23)

=
1√

|Aij ||Sij |
exp

(
−1

2

(
−µ⊤

ijS
−1
ij A−1

ij S−1
ij µij + µ⊤

ijS
−1
ij µij

))
(24)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

where |A−1
ij | = |Aij |−1. By substituting Aij with (K−1

ij +S−1
ij ) and applying the Woodbury Matrix

Identity, we can obtain

Ezi∼N (µi,Si)
zj∼N (µj ,Sj)

[
exp

(
−1

2
(zi − zj)

⊤K−1
ij (zi − zj)

)]
(25)

=
1√

|Aij ||Sij |
exp

(
−1

2

(
−µ⊤

ijS
−1
ij A−1

ij S−1
ij µij + µ⊤

ijS
−1
ij µij

))
(26)

=
1√

|K−1
ij + S−1

ij ||Sij |
exp

(
−1

2

(
−µ⊤

ijS
−1
ij (K−1

ij + S−1
ij )−1S−1

ij µij + µ⊤
ijS

−1
ij µij

))
(27)

=
1√

|K−1
ij Sij + I|

exp

(
−1

2
µ⊤
ij

(
S−1
ij − S−1

ij (K−1
ij + S−1

ij )−1S−1
ij

)
µij

)
(28)

=
1√

|K−1
ij Sij + I|

exp

(
−1

2
µ⊤
ij (Sij +Kij)

−1
µij

)
(29)

Finally, by substituting the terms, µij and Sij , we can conclude that

Ezi∼N (µi,Si)
zj∼N (µj ,Sj)

[
exp

(
−1

2
(zi − zj)

⊤K−1
ij (zi − zj)

)]
(30)

=
1√

|K−1
ij (Si + Sj) + I|

exp

(
−1

2
(µi − µj)

⊤ (Si + Sj +Kij)
−1

(µi − µj)

)
(31)

Lemma A.2. Let ϵ ∈ (0, 1/2), and let ϕ : S → RD × RD
+ be an ϵ-distinguishable embedding

function for a pair (si, sj) ∈ S2 and label yij ∈ {0, 1} where ϕ := (ϕµ, ϕσ) with ϕµ : S → RD

and ϕσ : S → RD
+ . Then the following bounds hold:

min
d

{(ϕσ(si) + ϕσ(sj))d} log
(

1

ϵ4

)
≤ ∥ϕµ(si)− ϕµ(sj)∥22 if yij = 0, (32)

max
d

{(ϕσ(si) + ϕσ(sj))d} log
(

1

(1− ϵ)4

)
≥ ∥ϕµ(si)− ϕµ(sj)∥22 if yij = 1. (33)

Proof. Let us define σ2 := ϕσ(si) + ϕσ(sj) and µ = ϕµ(si)− ϕµ(sj). We first establish the lower
bound for a negative pair (yij = 0). By ϵ-distinguishability, we assume that q(Yij = 0 | · · · ) ≥ 1−ϵ

then exp
(
− 1

4 µ
⊤S−1

ij µ
)
≤ ϵ, where Sij := diag(σ2). Hence, µ⊤S−1

ij µ ≥ −4 log (ϵ), and we can
obtain

min
d

{σ2
d} log

(
ϵ−4
)
≤ min

d
{σ2

d}µ⊤S−1
ij µ (34)

= min
d

{σ2
d}

D∑
d=1

µ2
d

σ2
d

(35)

≤ min
d

{σ2
d}
(

1

mind{σ2
d}

D∑
d=1

µ2
d

)
(36)

= ∥ϕµ(si)− ϕµ(sj)∥22. (37)

Since ϵ ∈ (0, 1/2), the left-hand side is strictly positive, giving a nontrivial lower bound.
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For a positive pair (yij = 1), similarly, we have exp
(
− 1

4 µ
⊤S−1

ij µ
)

≥ 1 − ϵ, which implies

µ⊤S−1
ij µ ≤ 4 log

(
1

1−ϵ

)
. Then, we can write

max
d

{σ2
d} log

(
1

(1− ϵ)4

)
≥ max

d
{σ2

d}µ⊤S−1
ij µ (38)

= max
d

{σ2
d}

D∑
d=1

µ2
d

σ2
d

(39)

≥ max
d

{σ2
d}
(

1

maxd{σ2
d}

D∑
d=1

µ2
d

)
(40)

=

D∑
d=1

µ2
d (41)

= ∥ϕµ(si)− ϕµ(sj)∥22. (42)
This establishes the upper bound for the embedding distances when yij = 1.

Lemma A.3. Let τ > 0 and z0 ∈ RD. Then, there exist at most PD
τ distinct points {zi}i≥1 ⊂ RD

such that

∥zi − z0∥ ≤ τ and ∥zi − zj∥ ≥ τ for all 1 ≤ i < j ≤ PD
τ , (43)

where PD
τ is the packing number of a unit Euclidean ball in RD.

Proof. By definition, the packing number, PD
τ , is the maximal number of points that can fit in

B(z0, τ) such that any two points are at least τ apart. Therefore, any set of points in B(z0, τ)
satisfying ∥zi − zj∥ ≥ τ can contain at most PD

τ points.

Corollary A.3.1. Let ϕ : S → RD × RD
+ be an embedding function for the set S where ϕ :=

(ϕµ, ϕσ) with ϕµ : S → RD and ϕσ : S → RD
+ . If ϕσ(si)d = ϕσ(sj)d for all si, sj ∈ S , and

∀d ∈ [D], and if there exists PD
τ + 2 sequences, s0, s1, . . . , sPD

τ +1 ∈ S such that each (s0, si)

is a positive pair (i.e. y(0,i) = 1) for all i ∈ {1, . . .PD
τ + 1} and (si, sj) is a negative pair (i.e.

y(i,j) = 0) for 1 ≤ i < j ≤ PD + 1, then it cannot be ϵ-distinguishable function for ϵ ∈ (0, 1/2).

Proof. Assume for contradiction that such an ϵ-distinguishable function ϕ : S → RD × RD
+ exists

for some ϵ ∈ (0, 1/2) with constant variance terms σ2 := ϕσ(si)d = ϕσ(sj)d for all (si, sj) ∈ S2

and d ∈ [D] so Lemma 3.3 implies that

σ2 log

(
1

ϵ4

)
≤ ∥ϕµ(si)− ϕµ(sj)∥22 if yij = 0 (44)

σ2 log

(
1

(1− ϵ)4

)
≥ ∥ϕµ(si)− ϕµ(sj)∥22 if yij = 1. (45)

for all (si, sj) ∈ S pairs. Note that we have

log

(
1

ϵ4

)
− log

(
1

(1− ϵ)4

)
= log

(
(1− ϵ)4

ϵ4

)
= 4 log

(
ϵ−1 − 1

)
> 0 (46)

so let’s define τϵ :=
(
log(ϵ−4) + log((1− ϵ)−4)

)
/2, then we can write

∥ϕµ(si)− ϕµ(sj)∥2 > σ
√
τϵ, (47)

for all negative pairs (si, sj) 1 ≤ i < j ≤ PD + 1 and we have
∥ϕµ(s0)− ϕµ(si)∥2 < σ

√
τϵ (48)

for all positive pairs (s0, si) where 1 ≤ i ≤ PD
τ + 1. In other words, each ϕµ(si) (i ≥ 1) lies

within a ball of radius σ
√
τϵ centered at ϕµ(s0). However, the condition in Eq. 47 requires that all

negative pairs have to be at least σ
√
τϵ apart from each other at the same time but the maximum

number of points that are σ
√
τϵ apart in B(ϕµ(s0), σ

√
τϵ) is at most PD

τ . Therefore, we obtain a
contradiction.
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Theorem A.4. An embedding function ϕ : S → RD × RD
+ with bounded means (i.e. ∥ϕµ(s)∥ <

∞) is ϵ-distinguishable for some ϵ ∈ (0, 1/2) if and only if there exists a set of sequences
{s0, s1, . . . , sN} ⊆ S where each (s0, si) is a positive pair and (si, sj) is negative pair satisfy-
ing ϕσ(si)d < ∞ for 1 ≤ i ≤ N and ϕσ(s0)d → ∞ for all d ∈ [D] with N > PD

τ .

Proof. Suppose there exists such a set of sequences s0, s1, . . . , sN ∈ S for N > PD
τ . Since each

(s0, si) is a positive pair for 1 ≤ i ≤ N , we have

log
(
(1− ϵ)−4

)
≥
(
ϕµ(s0)− ϕµ(si)

)⊤(
S0 + Si

)−1(
ϕµ(s0)− ϕµ(si)

)
(49)

where S0 := diag(ϕσ(s0)) and Si := diag(ϕσ(si)). Similarly, for a negative pair (si, sj), we can
write (

ϕµ(si)− ϕµ(sj)
)⊤(

Si + Sj

)−1(
ϕµ(si)− ϕµ(sj)

)
≥ log

(
ϵ−4
)

(50)

for 1 ≤ i < j ≤ N . Note that log
(
ϵ−4
)
> log

(
(1− ϵ)−4

)
for ϵ ∈ (0, 1/2) so it implies that(

ϕµ(s0)− ϕµ(si)
)⊤(

S0 + Si

)−1(
ϕµ(s0)− ϕµ(si)

)(
ϕµ(si)− ϕµ(sj)

)⊤(
Si + Sj

)−1(
ϕµ(si)− ϕµ(sj)

) ≤ log
(
(1− ϵ)−4

)
log (ϵ−4)

→ 0 as ϵ → 0 (51)

Since the embeddings are bounded, i.e. ∥ϕµ(s)∥2 < ∞ ∀s ∈ S, then either (ϕσ(si)d +ϕσ(sj)d) →
0+ holds for some d ∈ [D] or (ϕσ(s0)d + ϕσ(si)d) → ∞ for every d ∈ [D]. The first case cannot
happen by Lemma A.3, and Corollary A.3.1 so ϕσ(s0)d → ∞+ for every d ∈ [D].

For the other direction of the statement, assume that ϕσ(si)d < ∞ and 1 ≤ i ≤ N and ϕσ(s0)d →
∞ for every d ∈ [D]. Then, for a given ϵ ∈ (0, 1/2), we can find Mϵ such that mind{(ϕσ(s0)d +

ϕσ(si)d)} ≥ Mϵ ≥ 1
4ϵ∥ϕσ(s0 − ϕσ(si)∥22, and it implies that ϵ > 1

4
∥ϕµ(s0)−ϕµ(si)∥2

2

mind{(ϕσ(s0)d+ϕσ(si)d)} ≥
1
4

∑D
d=1

(ϕµ(s0)−ϕµ(si))
2
d

(ϕσ(s0)+ϕσ(si))d
so

1− ϵ ≤
(
1− 1

4

D∑
d=1

(ϕµ(s0)d − ϕµ(si)d)
2

(ϕσ(s0)d + ϕσ(si)d)

)
(52)

≤ exp

(
−1

4

D∑
d=1

(ϕµ(s0)d − ϕµ(si)d)
2

(ϕσ(s0)d + ϕσ(si)d)

)
(53)

= exp

(
−1

4
(ϕµ(s0)− ϕµ(si))

⊤
(S0 + Si)

−1
(ϕµ(s0)− ϕµ(si))

)
(54)

= βEzi∼N (µi,Si)
zj∼N (µj ,Sj)

[
p(y(i,j) = 1 | · · · )

]
(55)

= q(Yij = 1 | · · · ) (56)
and the second line follows from the inequality 1− x ≤ exp(−x) for all x ∈ R.

For negative pairs, similarly, let Mϵ := maxd{ϕσ(si)d+ϕσ(sj)d} ≤ D
4 log(1/ϵ) ∥ϕµ(si)− ϕµ(sj)∥22

for all 1 ≤ i < j ≤ N .
1− ϵ = 1− exp(− log(1/ϵ)) (57)

= 1− exp

(
−1

4

D∑
d=1

4 log(1/ϵ)

D

)
(58)

≤ 1− exp

(
−1

4

1

maxd{ϕσ(si)d + ϕσ(sj)d}
∥ϕµ(si)d − ϕµ(sj)d∥22

)
(59)

≤ 1− exp

(
−1

4

D∑
d=1

(ϕµ(si)d − ϕµ(sj)d)
2

(ϕσ(si)d + ϕσ(sj)d)

)
(60)

= 1− exp

(
−1

4
(ϕµ(si)− ϕµ(sj))

⊤
(Si + Sj)

−1
(ϕµ(si)− ϕµ(sj))

)
(61)

= 1− βEzi∼N (µi,Si)
zj∼N (µj ,Sj)

[
p(y(i,j) = 1 | · · · )

]
(62)

= q(Yij = 0 | · · · ) (63)
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(a) k-mer Frequencies (b) Learned Embeddings (c) Variance Distribution

Figure 6: Visualization of the input k-mer features with learned embeddings and the variances.

Therefore, the function ϕ : S → RD × RD
+ is an ϵ-distinguishable embedding function.

B EXPERIMENTS

Datasets. For our experiments, we adopt the benchmark datasets introduced in prior work on the
metagenomic binning task (Zhou et al., 2024). The datasets are constructed from reference genomes
in GenBank and consist of viral, fungal, and bacterial sequences. The training data contains more
than 2 million sequence pairs of length 1000bp. For testing, we have six datasets (Reference
5/6, Plant 5/6, and Marine 5/6 ) with species represented by highly variable numbers of sequences
(10–4, 599), ranging from 2-20 kbp in length. While Reference datasets consist of DNA fragments
from 250-330 fungal and viral genomes, and Marine and Plant-associated environments contain
70k-125k sequences from roughly 180-520 species.

Baselines. KMER(COSINE) and KMER(ℓ1) are the classical representations based on 4-mer fre-
quencies, where sequence similarity is computed using either cosine similarity or an exponential
kernel over the ℓ1 distance. HYENADNA (Nguyen et al., 2023) is a genome foundation model,
operating at single-nucleotide resolution with context lengths up to 106 to efficiently capture long-
range dependencies beyond the reach of standard transformers. DNABERT-2 (Zhou et al., 2023)
is also a foundation model that replaces fixed k-mer tokenization with Byte Pair Encoding (BPE)
to improve modeling efficiency. DNABERT-S (Zhou et al., 2024) leverages DNABERT-2 as a
pretrained backbone, fine-tuned with contrastive objectives tailored to metagenomic binning. RE-
VISTKMERS (Çelikkanat et al., 2024) is a lightweight model that learns sequence embeddings via a
two-layer neural network applied to 4-mer profiles. It provides a strong deterministic baseline and
can be viewed as the non-probabilistic counterpart of our approach. REVISTKMERS is thus also the
main baseline in the experimental setup as the proposed model shares the lightweight characteristics
of REVISTKMERS.

B.1 TOY EXAMPLE WITH k-MER DATASET

To evaluate the behavior of our model in a controlled setting, we designed a synthetic toy dataset of
k-mer sequences. The goal of this study is twofold: (i) to verify that the model can learn meaningful
low-dimensional embeddings that reflect the underlying class structure, and (ii) to assess how the
model represents sequences belonging to multiple classes with their mean and variance terms.

The dataset consists of sequences generated from multinomial distributions with a clear class struc-
ture, enabling us to systematically analyze the effect of sequence overlap and class separability on
the learned embeddings.

Data Generation. We generated sequences of length 100 composed of 4-mers, resulting in 256 pos-
sible k-mer types. The sequences were then divided into 5 classes, each containing 25 sequences.
For each class, a multinomial distribution was defined such that the probability mass was concen-
trated on a distinct subset of k-mer dimensions, with a small uniform smoothing 10−2 to avoid zero
probabilities. It ensured that sequences within the same class had similar k-mer compositions, while
sequences from different classes were distinguishable (Figure 6a). To further test the model’s ability
to handle ambiguity, we introduced 5 “multi-class” sequences sampled by combining k-mer counts
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Figure 7: Distribution of the log-determinant of covariance matrices across datasets.

from multiple classes. This design simulates sequences that do not belong exclusively to a single
class and allows us to probe how the model handles overlapping class structures.

Pair construction. We constructed positive sequence pairs by sampling two sequences from the
same class, effectively assuming full access to positive examples (i.e., yij = 1). Negative pairs were
generated using the same random sampling strategy described in Section 4, which naturally intro-
duces the possibility of false negatives. For the multi-class sequences, we additionally constructed
pairs with sequences from their contributing classes, enabling the model to learn representations that
account for both pure and mixed class memberships.

Results. We learn sequence embeddings directly in a 2-dimensional latent space (Figure 6b), avoid-
ing any dimensionality reduction steps that could distort the geometric structure of the embedding
space. Visualization of the learned embeddings reveals that sequences from distinct classes form
well-separated groups, while sequences belonging to multiple classes occupy intermediate regions.
Importantly, our model also predicts a diagonal covariance matrix for each sequence, capturing the
uncertainty associated with sequences that span multiple clusters.

By Lemma 3.3 and Theorem 3.4, the minimum variance across dimensions provides a lower bound
on pairwise distances. Therefore, we expect multi-class sequences to exhibit larger variance values.
Figure 6c illustrates the distribution of mind{ϕσ(s)d} for each sequence s ∈ S. As predicted by
our theoretical analysis, sequences associated with multiple classes indeed show larger minimum
variances across dimensions, reflecting their position between clusters in the latent space.

B.2 ABLATION STUDIES

Distribution of variances. We begin our uncertainty analysis by inspecting the distribution of the
predicted variance terms. Recall that for a given sequence s ∈ S, the model produces dimension-
wise variance estimates ϕσ(s) ∈ RD

≥0 corresponding to the diagonal entries of the covariance matrix.
We compute

u(s) =

D∑
d=1

log
(
ϕσ(s)d + 1

)
, (64)

which is in fact the log-determinant of the covariance matrix, and we have the +1 term in order to
ensure numerical stability. Therefore, it captures the sequence-level dispersion in the embedding
space.

Figure 7 shows the empirical distribution of u(s) over sequences in the testing datasets. The multi-
modal distributions of u(s) are very clear for Reference 5/6 and Plant 5/6 datasets. This indicates
that the model partitions the sequence space into distinct regimes of predictive uncertainty, which
might point out the two distinct sets of species (Please see Section 4 for the dataset details.). Impor-
tantly, the observed distributions are neither degenerate (collapsed near zero) nor uniform. Instead,
they encode structured variability that reflects properties of the underlying data distribution. This
finding supports the hypothesis that the variance terms carry semantically meaningful information
rather than merely acting as nuisance parameters. Hence, these results establish that our model
produces non-trivial and interpretable uncertainty estimates.

Sequence Filtering Across Datasets. To further probe the role of predictive uncertainty, we conduct
a sequence filtering experiment in which we selectively remove sequences with the largest variance
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Figure 8: Filtering sequences with varying ratios over all testing datasets.

scores. Specifically, we sort sequences by their aggregated log-determinant values, u(s) (as defined
in Eq. 64,) and iteratively filter out the highest-uncertainty items. After filtering, we evaluate cluster
quality by reporting the number of clusters that achieve a recall score ≥ 0.9. For comparison, we
include a random filtering baseline in which the same number of sequences is removed uniformly at
random. To ensure a fair comparison, all removed sequences are assigned to a dedicated ”garbage”
cluster so that they do not artificially inflate false negatives.

Figure 8 summarizes results for all the benchmarks, and we observe the consistent trends across
all datasets. Filtering by predictive uncertainty consistently yields a larger number of clusters with
recall ≥ 0.9 compared to the random baseline. This suggests that uncertainty-guided filtering pre-
serves the integrity of high-quality clusters while selectively removing sequences that would oth-
erwise degrade cluster purity. The sequences assigned the highest variance values might typically
originate from low-quality or noisy bins. These sequences might also tend to coincide with cases
that contribute to false negatives in the unfiltered setting. By removing them, the model effectively
reduces noise in the evaluation and highlights clusters that better reflect true structure in the data.
Therefore, the model’s variance estimates can serve as a practical mechanism for uncertainty-aware
sequence selection and downstream decision making.

Effect of embedding dimension size. As discussed in our theoretical analysis (Section 3), incor-
porating covariance terms provides the model with additional representational capacity compared to
squared Euclidean distance: beyond capturing predictive uncertainty, the embedding space approx-
imates a non-Euclidean Riemannian manifold. This enriched geometry has the potential to separate
complex sequence structures more effectively, particularly when the embedding dimension is small
and representational bottlenecks are most restrictive.

Figure 9) demonstrates this effect on the Reference dataset very clearly, where covariance-aware
embeddings consistently outperformed the Euclidean baseline. The performance gains were espe-
cially pronounced in low-dimensional regimes, aligning well with our theoretical motivation. For
the Plant and Marine datasets, the magnitude of the improvement is marginal and approaches the
range of experimental noise. Hence, these results suggest that while covariance terms indeed enrich
the representational geometry in a theoretically appealing way and can yield measurable improve-
ments in practice, the empirical benefits are not universal across datasets. Instead, the extent of
improvement appears to be dataset-dependent, reflecting differences in the underlying structure and
complexity of the sequences.
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Figure 9: Impact of dimension size for different metrics.
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