

Contrastive Classification via Linear Layer Extrapolation

Anonymous ACL submission

Abstract

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064

Early-exiting predictions in a deep Transformer network evolve from layer to layer in a somewhat smooth process. This has been exploited in language modeling to improve factuality (Chuang et al., 2023), with the observation that factual associations emerge in later layers. We find that a similar process occurs in standard multiway emotion classification, motivating us to propose Linear Layer Extrapolation, which finds stable improvements by recasting contrastive inference as linear extrapolation. Experiments across multiple models and emotion classification datasets find that Linear Layer Extrapolation outperforms standard classification on fine-grained emotion analysis tasks.

1 Introduction

Identifying the emotion present in a text passage is a well-studied problem in natural language processing (NLP), key to gaining insights from web-scale data (Zhang et al., 2023; Barbieri et al., 2020). The task feeds into a variety of downstream applications ranging from detecting harmful online behavior to creating conversational agents capable of better social interactions. Identifying the correct emotion is a challenging problem. Most current systems focus on identifying the mutually disjoint emotions(joy, sadness, surprise) that are mutually exclusive. However, this is not true for fine-grained emotions e.g. grief and remorse are closely related but represent different emotions. Thus, fine-grained emotion classification presents an exciting challenge to current large language models (Demszky et al., 2020) with much room for improvement.

Meanwhile, large language models have shown the ability to learn general-purpose syntactic and semantic information from text, finding success across a wide range of other NLP tasks. (Brown et al., 2020; Wei et al., 2022) But despite their rapid improvements, language models still struggle on a number of tasks. For example, even very large

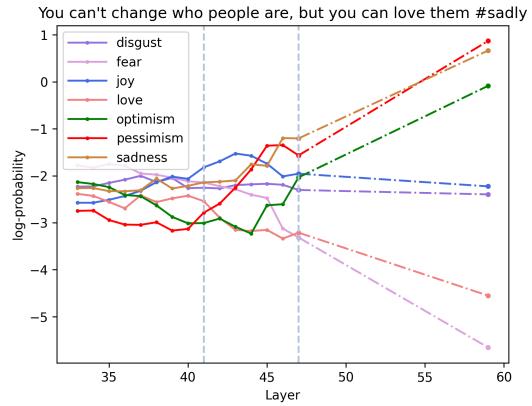


Figure 1: Linearly extrapolating class scores from amateur and expert layers to a nonexistent future layer correctly flips the output from sadness to pessimism

models often make mistakes on grade-school-level and commonsense reasoning tasks. (Fu et al., 2023) Further, models are prone to hallucinating incorrect information. (Ji et al., 2023) Notably, language models also struggle to identify fine-grained emotion and opinions. (Zhang et al., 2023)

Recently, a class of *contrastive* methods, which maximize the difference between a desirable “expert” and undesirable “amateur” model, have been proposed to ameliorate some of these problems. For example, contrastive decoding (CD) (Li et al., 2022; O’Brien and Lewis, 2023) uses a large-model expert and small-model amateur to improve both open-ended generation and reasoning performance. DExperts (Liu et al., 2021) reduces toxicity by fine-tuning an amateur model to be toxic and contrasting against its predictions. Decoding by contrasting layers, or *DoLa*, (Chuang et al., 2023) uses contrastive action on the intermediate layers of the same model. In particular, DoLa uses the intermediate layers of models with early exiting (Teerapittayanan et al., 2016; Elbayad et al., 2020; Schuster et al., 2022) as amateur models. DoLa is predicated on the observation that layers of LLMs pro-

065 gressively learn and insert information over the
066 course of a forward pass, and that this change can
067 be contrastively exploited to increase factuality in
068 generated text.

069 While some of these methods are task-dependent,
070 others like CD and DoLa (Chuang et al., 2023)
071 are not. Recent work on emotion quantification
072 (Sharma et al., 2023) showed that intermediate
073 layer features can be used to quantify emotions
074 and perform equivalent to the final classification
075 layer. It is therefore natural to ask whether these
076 methods can improve performance on fine-grained
077 emotional classification.

078 Given the utility of intermediate network repre-
079 sentations in capturing semantic meaning, as well
080 as their centrality to DoLa, we explore the merits
081 of layerwise contrastive inference for fine-grained
082 emotional classification.

083 The main contributions of the paper are:

- 084 1. Demonstrating the merits of layer contrast on
085 fine-tuned classifiers; in particular, for fine-
086 grained emotion classification.
- 087 2. Improving stability of contrastive methods by
088 reinterpreting contrastive inference as linear
089 extrapolation to dynamically determine the
090 strength of the contrastive penalty.

091 2 Knowledge pattern across layers

092 Fine-grained emotion analysis is a challenging clas-
093 sification task, as the labels are not mutually exclu-
094 sive. Different emotions can have similar polarity
095 yet have different meanings. Hence, it is difficult to
096 learn a high probability against the correct emotion.
097 Moreover, the class imbalance over emotions can
098 further lead to bias towards more frequent emotions
099 in data.

100 To study the change in probability distribution
101 for emotions across layers, we performed early ex-
102 iting on different layers of our fine-tuned models
103 to visualize how the distributions across emotions
104 evolve. We observed that for some emotions, the
105 model makes a decision very early, passing it along
106 the layers without much change. For others, the
107 distribution tends to change in later layers, suggest-
108 ing that the model is still adding information. We
109 observed this pattern mostly around classes that
110 are rarer in the training data or more closely re-
111 lated to each other. Figure 2 shows the change in
112 distribution for two examples.

Drawing from these observations, we combine
the idea of contrastive decoding and DoLa for fine-
grained emotion analysis. We build on DoLa, using
the early exited intermediate layers as amateur mod-
els. We then use contrastive action against the final
layer distribution chosen as our expert model. Addi-
tionally, we deduce a method to dynamically select
the contrastive strength which we show leads to
better performance on fine-grained emotion tasks.

122 3 Related Work

123 Fine-grained Emotion Analysis: Much work has
124 been done in identifying the sentiment of text
125 (Rosenthal et al., 2017; Socher et al., 2013). Efforts
126 have also been made to understand the emotions
127 present in interactions on social media (Moham-
128 mad et al., 2018; Chatterjee et al., 2019; Meaney
129 et al., 2021). However, most of this work fo-
130 cuses on a limited taxonomy of emotions. Recent
131 datasets on fine-grained emotion analysis (Dem-
132 szky et al., 2020; Rashkin et al., 2019) show that
133 there is still a considerable scope for improvement
134 in this area.

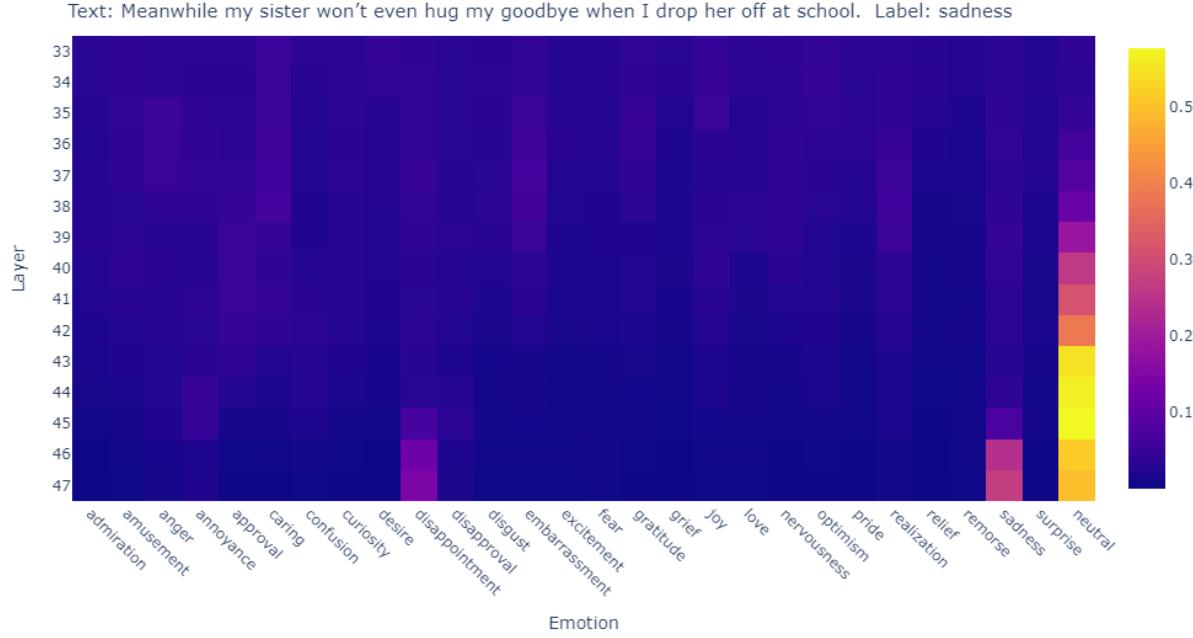
135 Contrastive Steering: Contrastive methods,
136 which optimize the difference in predictions be-
137 tween a favorable “expert” and an unfavorable “am-
138 ateur,” have been shown to successfully steer text
139 decoding in language models in a number of ways.
(Liu et al., 2021)

140 GeDi (Krause et al., 2020) contrasts between
141 class-specific control codes to improve text-
142 conditioned factuality and emotion control. Co-
143 herence boosting (Malkin et al., 2021) provides
144 the language model with only the final k tokens
145 of the prompt to obtain amateur scores, encour-
146 aging longer-term coherence over locality. Con-
147 trastive Decoding (Li et al., 2022; O’Brien and
148 Lewis, 2023) improves long-form generation and
149 reasoning ability by contrasting between large and
150 small models of the same family. Other works use
151 CD-like methods to reduce model toxicity, surface
152 biases and increase faithfulness to a provided con-
153 text. (Liu et al., 2021; Yona et al., 2023; Shi et al.,
154 2023)

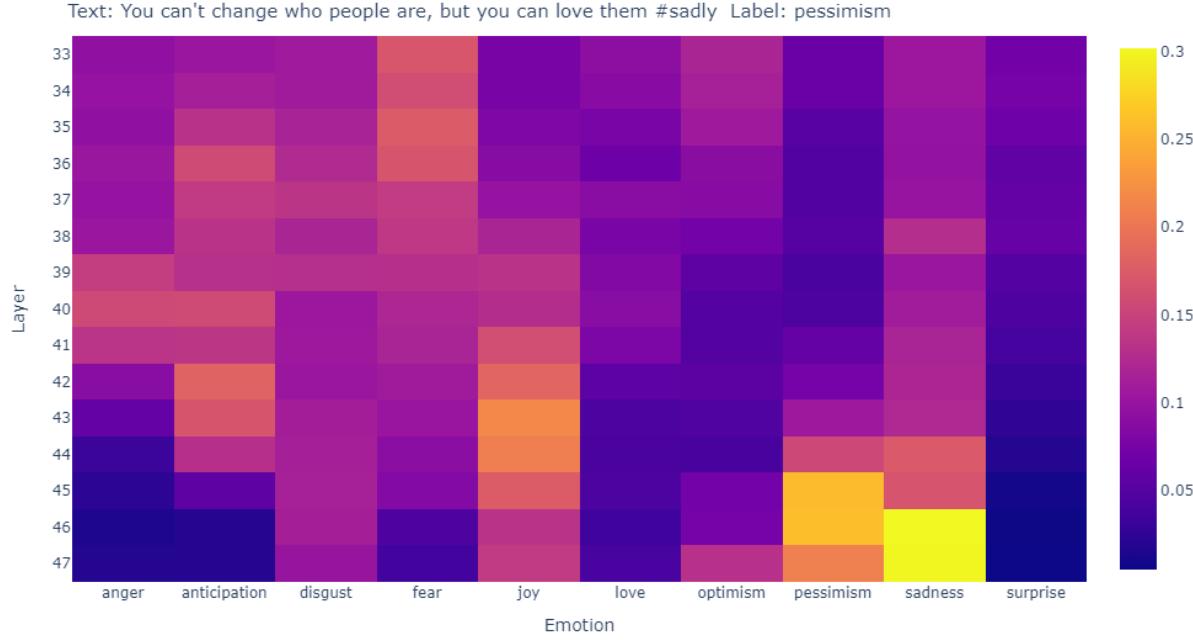
156 4 Method

157 4.1 Approach

158 Here we define the main components of CD and
159 DoLa, as well as our proposed method to dy-
160 namically select contrastive strength. We use the



(a)



(b)

Figure 2: Probability distribution across the finetuned layers of DeBERTa-xl for a sample from each (a) goEmotions and (b) tweetEmotion dataset. In the goEmotions sample, the model initially identifies the label as neutral but increases the probabilities assigned to sadness and disappointment (the true label) over subsequent layers. For the tweetEmotion sample, the probability distribution changes across layers and the model fails to assign a high probability to a single emotion.

161 early exit probability distributions to select an amateur layer and contrast it against the final layer
 162 distribution chosen as our expert. We then apply
 163 the contrastive action on these distributions
 164 based on a plausibility constraint (used for filtering
 165 low-probability labels). Finally, we experiment
 166 with two different ways of deciding the contrastive
 167

168 strength (static β and dynamic β). We discuss the
 169 details of each of these components next.

170 4.2 Contrastive Classification

171 We use the formulation of contrastive decoding
 172 defined by O'Brien and Lewis (2023). Let p_a be
 173 the amateur probability scores and p_e be the ex-

174 pert probability scores. We define the contrastive
175 classification function as:

$$176 \quad f_{CC}^{(i)} = \begin{cases} (1 + \beta) \log p_e^i - \beta \log p_a^i & i \in \mathcal{V}_{valid} \\ -\infty & i \notin \mathcal{V}_{valid} \end{cases}$$

177 where $\max(f_{CC}^{(i)})$ is taken as the correct label. β
178 here controls the strength of the contrastive penalty.
179 \mathcal{V}_{valid} is the adaptive plausibility constraint (Li
180 et al., 2022) which defines the set of candidate
181 classes on which contrastive action is applied. Let
182 p_e^c be the expert probability for class $c \in C$. Then
183 \mathcal{V}_{valid} is defined as:

$$184 \quad \mathcal{V}_{valid} = \{c \in C, p_e^c \geq \alpha \max_{c \in C} p_e^c\}$$

185 α here is a hyperparameter that gates labels by the
186 scores assigned to them by the expert, protecting
187 against instabilities when dividing the scores of
188 two low-probability candidates. Thus \mathcal{V}_{valid} admits
189 only high-probability labels defined using α ratio
190 with the max probability token of the expert model
191 helping avoid false negatives.

192 4.3 Dynamic premature layer selection

193 The central challenge with inference-time con-
194 trastive methods is the selection of a good amateur
195 model. The model must be similar enough to the
196 expert to model its error distribution, but not so
197 powerful that desirable behavior is penalized.

Contrasting against early-exiting layers provides
many potential amateurs to choose from. DoLa
selects the “amateur” from a pre-validated set of
earlier layers, selecting the one with the most dif-
ferent early-exit token distribution from the final
predictions, as measured by Jensen-Shannon Diver-
gence. In short, the amateur layer ℓ_a is chosen as
follows:

$$\ell_a = \operatorname{argmax}_{\ell \in \mathcal{L}_{valid}} \operatorname{dist}(\mathcal{P}(\ell), \mathcal{P}(\ell_{final}))$$

198 where \mathcal{L}_{valid} is the pre-validated set of layers, \mathcal{P}
199 maps a latent layer to its early-exited softmax dis-
200 tribution, and dist is some divergence metric between
201 two probability distributions.

202 The original paper uses Jensen-Shannon Diver-
203 gence (JSD) for this metric, but we find slightly
204 better performance with cosine distance.

205 4.4 Linear Layer Extrapolation

206 Consider the classification of a single sample x to
207 $c \in \mathcal{C}$, where $\mathcal{C} := \{1, 2, \dots, |\mathcal{C}|\}$. For this sam-
208 ple, let $f_c(i)$ be the un-normalized score assigned

209 by the model to class c by early-exiting at layer i .
210 f_c is defined over the discrete space \mathcal{C} .

211 Let ℓ_a be the index of the selected early-exit
212 “amateur” layer, $\ell_f > \ell_a$ be the index of the final
213 model layer, and ℓ_t be the layer where we would
214 like to make predictions from. Note that ℓ_t need
215 not be discrete.

216 Now let \hat{f}_c be the linear function passing through
217 $(\ell_a, f(\ell_a))$ and $(\ell_f, f(\ell_f))$.

$$\hat{f}_c(\ell) = f(\ell_f) + \left(\frac{f(\ell_f) - f(\ell_a)}{\ell_f - \ell_a} \right) (\ell - \ell_f)$$

218 Now we can compare this extrapolative form
219 against the common form of contrastive decoding
220 in order to solve for the contrastive strength, β .

$$221 \quad \hat{f}_c(\ell_t) = (1 + \beta)f(\ell_f) - \beta f(\ell_a)$$

222 Combining the two, we obtain

$$223 \quad \beta = \frac{\ell_t - \ell_f}{\ell_f - \ell_a} \quad (1)$$

224 DoLa keeps β fixed, implicitly allowing ℓ_t to
225 vary based as different earlier layers ℓ_a are adap-
226 tively chosen. We find more stable performance by
227 fixing ℓ_t and modifying β based on the earlier cho-
228 sen layer ℓ_a , a process which we refer to as Linear
229 Layer Extrapolation. Choosing an earlier layer will
230 result in a reduced β value, and vice versa.

231 5 Experimental Setup

232 5.1 Datasets

233 **goEmotions** (Demszky et al., 2020) introduces a
234 new emotion taxonomy of emotions named goEmo-
235 tions consisting of 28 emotions with neutral. The
236 27 emotion classes are fine-grained over 7 emotions
237 defined in Ekman taxonomy. It contains roughly
238 58k samples overcoming the problems with ear-
239 lier emotion datasets which were small in size and
240 covered a very limited taxonomy. The dataset con-
241 tained a few multilabel data-points, which we filter
242 out for our experiments.

243 **SuperTweetEval** (Antypas et al., 2023) aims to
244 provide a unified benchmark to evaluate the per-
245 formance of models on NLP tasks across social
246 media. It is a heterogeneous collection of multiple
247 datasets spanning NER, QA, and classification. For
248 our experiments, we use tweetEmotion and tweet-
249 Hate focused on multi-class classification, with
250 each dataset containing 12 and 8 classes.

251 **EmpatheticDialogues** (Rashkin et al., 2019)
252 was introduced as a benchmark for training and

evaluating models and their capability to understand and acknowledge empathetic text. The dataset contains conversations distributed across 32 emotions. We use the first text of the conversation and the corresponding emotion for defining our fine-grained classification task.

5.2 Evaluation metrics

We evaluate performance with precision, recall and F1 scores, all calculated as macro averages and suitable for class-imbalanced datasets.

5.3 Models

We conduct experiments with Flan-T5 (L, XL) (Chung et al., 2022) and DeBERTa (L, XL). (He et al., 2021) after finetuning them on each dataset independently. We finetuned DeBERTa-xlarge after freezing the initial layers (34/48); for DeBERTa-large, we finetuned all the layers. For Flan-T5, we finetuned both large and xlarge variants after freezing the first (14/24) layers. Finetuning Flan-T5 with layer freezing was more stable and led to better results. We used the Adam optimizer (Kingma and Ba, 2015) with learning rates ranging from 1e-6 to 5e-6 for DeBERTa and 1e-4 to 5e-4 for Flan-T5.

5.4 Decoding Hyperparameters:

Amateur layer: For selecting the amateur layer, we use the dynamic amateur layer selection as defined in Section 4.3. We restrict the amateur layer search space to only the finetuned layers. Let $L = \{\ell_k, \ell_{k+1}, \ell_{k+2}, \dots, \ell_f\}$ be a subset of the finetuned layers, where k is a hyperparameter defining the start of the search space and, ℓ_f is the final layer of the network. In our experiments, we sweep through the values of k starting from the first finetuned layer and pick the one that results in the best performance. Results of the hyperparameter sweep can be found in Appendix A.

Contrastive Strength (β): We experiment with various fixed values of β between 0 to 1, finding that the best β varies over the selection of model and dataset. In general, values outside the range of (0, 1) harmed performance.

Dynamic Contrastive Strength (β): As discussed in Section 4.4, the post-contrast output is equivalent to a linear extrapolation between the amateur and the expert layer for a future layer(ℓ_t). We use that idea to dynamically decide the value of contrastive strength β . We use ℓ_t as a hyperparameter and then calculate β as a function of amateur layer ℓ_a

and expert layer ℓ_f , where $t \in (f, f + 25)$ in our experiments.

6 Results

Table 1 contains the results of our experiments. Next, we discuss the results in detail.

Traditional vs Contrastive Classification: We observe that contrastive classification improves the performance significantly in terms of Recall and F1 score. This trend holds for all models used in our experiments.

β vs Dynamic β : Dynamic β selection tends to improve the overall performance over the static β for F1 and recall scores. Figure 3a shows the trend of recall scores across different models for dynamic β selection on the goEmotions dataset. Figure 3b shows the trend of F1 score across different models against dynamic β for the tweetEmotion dataset. Additionally, we observe that dynamic β is more robust to changes in the hyperparameter k , which defines the start of the search space across earlier amateur layers. Figure 4 shows no clear or stable relationship between k and end performance when varying β values. However, switching to linear layer extrapolation creates a constant trend with minor variance as k is varied, a trend that holds for multiple values of extrapolative layer t . This can be interpreted as stabilizing the contrastive method to be more robust to the dynamic choice of amateur layer.

goEmotions: For the goEmotions dataset, we see a general improvement across all models for the recall and F1 scores. Analysis showed that key improvement in recall was due to flipping of the *neutral* samples to other under-represented classes. Appendix B shows the statistics of the flipped labels.

tweetEmotion: Contrastive classification with dynamic β performs significantly better over traditional classification. We see a general increase in recall and F1 with a slight harm to Precision. We also observed the emotions corrected by contrastive action were highly correlated. Appendix B contains more details about their statistics.

tweetHate: We see the maximum improvement in the performance of this dataset across all models. This improvement owes in large part to corrected predictions on underrepresented classes.

EmpatheticDialogue: For this dataset, we only see a slight increase in performance using the DeBERTa-xl model. Analyzing the probability

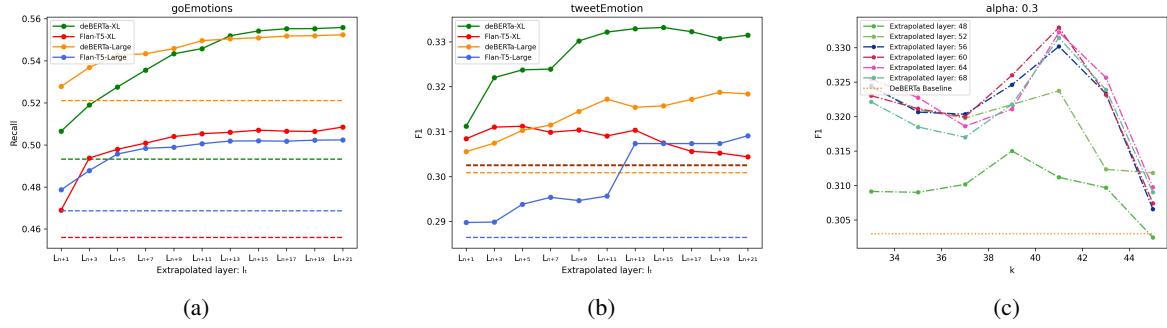


Figure 3: (a) Recall vs. ℓ_t on goEmotions; increasing the extrapolative strength improves recall. (b) F1 vs. ℓ_t on tweetEmotions exhibits a similar trend (c) F1 vs. k for tweetEmotion using DeBERTa-xl; including layers 40 to 42 in the valid layers is found to be particularly useful.

Model	Type	EmpatheticDialogue			tweetHate			tweetEmotion			goEmotions			Avg. F1
		Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	
Flan-T5-large	✗	.551	.556	.543	.565	.577	.570	.298	.296	.286	.521	.469	.478	.469
Flan-T5-large	✓	.551	.557	.543	.579	.606	.590	.300	.299	.291	.513	.485	.487	.478
Flan-T5-large	β	.551	.557	.543	.590	.636	.610	.349	.311	.309	.493	.502	.489	.488
Flan-T5-xl	✗	.582	.569	.565	.566	.566	.559	.320	.300	.302	.503	.456	.465	.473
Flan-T5-xl	✓	.581	.570	.565	.690	.603	.615	.318	.314	.313	.499	.494	.486	.495
Flan-T5-xl	β	.582	.570	.565	.695	.605	.619	.316	.314	.313	.513	.494	.490	.497
DeBERTa-large	✗	.614	.601	.592	.647	.601	.622	.322	.299	.301	.570	.521	.534	.512
DeBERTa-large	✓	.616	.606	.597	.676	.643	.658	.313	.311	.308	.562	.536	.540	.526
DeBERTa-large	β	.618	.609	.601	.708	.675	.690	.312	.331	.319	.558	.543	.541	.538
DeBERTa-xl	✗	.604	.605	.590	.607	.596	.599	.324	.300	.303	.529	.493	.502	.498
DeBERTa-xl	✓	.610	.606	.594	.727	.668	.686	.335	.324	.325	.509	.530	.514	.523
DeBERTa-xl	β	.614	.609	.597	.725	.668	.685	.333	.340	.334	.505	.555	.522	.535

Table 1: Results of our experiments. ✗, ✓, and β each represent normal classification, static β , and dynamic β

distributions across layers, we observed no major change in probability distribution for different emotions across layers. The probability was distributed over a single label, increasing gradually across layers. This led to minimal contribution from the contrastive action.

Effect of amateur layer selection: We use a bucket of layers for amateur layer selection defined by hyperparameter k . Figure 3c shows the trend of k against F1 using the DeBERTa-xl for tweetEmotions dataset. We observe that the performance generally increases up to a layer where the benefit of contrastive action is maximum, followed by a drop in performance. Upon evaluating early-exiting on intermediate layers, we observed that some layers are more adept at identifying specific classes than others, providing a variety of skills to contrast against for improved performance.

7 Conclusion

We introduce the linear extrapolation view of layerwise contrastive decoding as a method for dynamically choosing the contrastive strength. We successfully extend this idea to fine-grained emotion classification tasks, finding that contrastive

classification combined with dynamic β selection improves classifier performance by better selecting under-represented classes. This strengthens the promise of layer-contrast methods in domains other than text generation, and provides a technical contribution that reduces the variance of the method with respect to a core hyperparameter k , encouraging further research into how best to exploit the layerwise emergence of textual understanding to improve performance on a wide range of NLP tasks.

8 Limitations

Our study is restricted to fine-grained emotion classification with relatively small models (FLAN-T5 and DeBERTa). It remains to be seen whether our analysis of extrapolative classification will hold for prompt-based classification with larger models or across other datasets. We also found the contrastive action for smaller models sensitive to finetuning hyperparameters. Additionally, based on our results on EmpatheticDialogue we observe that CD tends to work better when model uncertainty is high i.e. probability distribution across labels changes more often across layers as shown in Figure 2. Extending

400 the method to identify and better handle these cases
401 is left to future work.

402 References

403 Dimosthenis Antypas, Asahi Ushio, Francesco Barbieri,
404 Leonardo Neves, Kiamehr Rezaee, Luis Espinosa-
405 Anke, Jiaxin Pei, and Jose Camacho-Collados. 2023.
406 *SuperTweetEval: A challenging, unified and hetero-*
407 *geneous benchmark for social media NLP research.*
408 In *Findings of the Association for Computational*
409 *Linguistics: EMNLP 2023*, pages 12590–12607, Sin-
410 *gapore. Association for Computational Linguistics.*

411 Francesco Barbieri, José Camacho-Collados, Leonardo
412 Neves, and Luis Espinosa-Anke. 2020. *Tweeteval:*
413 *Unified benchmark and comparative evaluation for*
414 *tweet classification.* *ArXiv*, abs/2010.12421.

415 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
416 Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
417 Neelakantan, Pranav Shyam, Girish Sastry, Amanda
418 Askell, Sandhini Agarwal, Ariel Herbert-Voss,
419 Gretchen Krueger, T. J. Henighan, Rewon Child,
420 Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
421 Winter, Christopher Hesse, Mark Chen, Eric Sigler,
422 Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
423 Clark, Christopher Berner, Sam McCandlish, Alec
424 Radford, Ilya Sutskever, and Dario Amodei. 2020.
425 *Language models are few-shot learners.* *ArXiv*,
426 abs/2005.14165.

427 Ankush Chatterjee, Kedhar Nath Narahari, Meghana
428 Joshi, and Puneet Agrawal. 2019. *SemEval-2019 task*
429 *3: EmoContext contextual emotion detection in text.*
430 In *Proceedings of the 13th International Workshop*
431 *on Semantic Evaluation*, pages 39–48, Minneapolis,
432 Minnesota, USA. Association for Computational
433 Linguistics.

434 Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon
435 Kim, James R. Glass, and Pengcheng He. 2023. *Dola:*
436 *Decoding by contrasting layers improves factuality*
437 *in large language models.* *ArXiv*, abs/2309.03883.

438 Hyung Won Chung, Le Hou, Shayne Longpre, Barret
439 Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
440 Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
441 bert Webson, Shixiang Shane Gu, Zhuyun Dai,
442 Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
443 ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
444 Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
445 Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
446 Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
447 cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
448 and Jason Wei. 2022. *Scaling instruction-finetuned*
449 *language models.*

450 Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo
451 Ko, Alan Cowen, Gaurav Nemade, and Sujith Ravi.
452 2020. *GoEmotions: A dataset of fine-grained emo-*
453 *tions.* In *Proceedings of the 58th Annual Meeting of*
454 *the Association for Computational Linguistics*, pages
455 4040–4054, Online. Association for Computational
456 Linguistics.

457 Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael
458 Auli. 2020. *Depth-adaptive transformer.* In *Inter-*
459 *national Conference on Learning Representations.*

460 Yao Fu, Litu Ou, Mingyu Chen, Yuhao Wan, Hao Peng,
461 and Tushar Khot. 2023. *Chain-of-thought hub: A*
462 *continuous effort to measure large language models’*
463 *reasoning performance.*

464 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
465 Weizhu Chen. 2021. *{DEBERTA}: {DECODING}-*
466 *{enhanced} {bert} {with} {disentangled} {attention}.*
467 In *International Conference on Learning Representa-*
468 *tions.*

469 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
470 Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
471 Madotto, and Pascale Fung. 2023. *Survey of hallucin-*
472 *ation in natural language generation.* *ACM Comput-*
473 *ing Surveys*, 55(12):1–38.

474 Diederik P. Kingma and Jimmy Ba. 2015. *Adam: A*
475 *method for stochastic optimization.* In *3rd Inter-*
476 *national Conference on Learning Representations,*
477 *ICLR 2015, San Diego, CA, USA, May 7-9, 2015,*
478 *Conference Track Proceedings.*

479 Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
480 Nitish Shirish Keskar, Shafiq R. Joty, Richard Socher,
481 and Nazneen Rajani. 2020. *Gedi: Generative discrimi-*
482 *nator guided sequence generation.* In *Conference on*
483 *Empirical Methods in Natural Language Processing.*

484 Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang,
485 Jason Eisner, Tatsunori Hashimoto, Luke Zettle-
486 moyer, and Mike Lewis. 2022. *Contrastive decoding:*
487 *Open-ended text generation as optimization.* In *An-*
488 *nual Meeting of the Association for Computational*
489 *Linguistics.*

490 Alisa Liu, Maarten Sap, Ximing Lu, Swabha
491 Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
492 and Yejin Choi. 2021. *Dexperts: Decoding-time con-*
493 *trolled text generation with experts and anti-experts.*
494 In *Annual Meeting of the Association for Compu-*
495 *tational Linguistics.*

496 Nikolay Malkin, Zhen Wang, and Nebojsa Jojic. 2021.
497 *Coherence boosting: When your pretrained language*
498 *model is not paying enough attention.* In *Annual*
499 *Meeting of the Association for Computational Lin-*
500 *guistics.*

501 J. A. Meaney, Steven Wilson, Luis Chiruzzo, Adam
502 Lopez, and Walid Magdy. 2021. *SemEval 2021 task*
503 *7: HaHackathon, detecting and rating humor and*
504 *offense.* In *Proceedings of the 15th International*
505 *Workshop on Semantic Evaluation (SemEval-2021)*,
506 pages 105–119, Online. Association for Compu-
507 *tational Linguistics.*

508 Saif Mohammad, Felipe Bravo-Marquez, Mohammad
509 Salameh, and Svetlana Kiritchenko. 2018. *SemEval-*
510 *2018 task 1: Affect in tweets.* In *Proceedings of the*
511 *12th International Workshop on Semantic Evaluation*,
512 pages 1–17, New Orleans, Louisiana. Association for
513 Computational Linguistics.

514 Sean O'Brien and Mike Lewis. 2023. [Contrastive de-](#)
515 [coding improves reasoning in large language models.](#)
516 *ArXiv*, abs/2309.09117.

517 Hannah Rashkin, Eric Michael Smith, Margaret Li, and
518 Y-Lan Boureau. 2019. [Towards empathetic open-](#)
519 [domain conversation models: A new benchmark and](#)
520 [dataset.](#) In *Proceedings of the 57th Annual Meet-*
521 *ing of the Association for Computational Linguistics*,
522 pages 5370–5381, Florence, Italy. Association for
523 Computational Linguistics.

524 Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
525 [SemEval-2017 task 4: Sentiment analysis in Twitter.](#)
526 In *Proceedings of the 11th International Workshop*
527 *on Semantic Evaluation (SemEval-2017)*, pages 502–
528 518, Vancouver, Canada. Association for Compu-
529 tational Linguistics.

530 Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
531 Dara Bahri, Vinh Q. Tran, Yi Tay, and Donald Met-
532 zler. 2022. [Confident adaptive language modeling.](#)
533 In *Advances in Neural Information Processing Sys-*
534 *tems*.

535 Mayukh Sharma, Ilanthenral Kandasamy, and W.B. Vas-
536 antha. 2023. [Emotion quantification and classifica-](#)
537 [tion using the neutrosophic approach to deep learning.](#)
538 *Applied Soft Computing*, 148:110896.

539 Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia
540 Tsvetkov, Luke Zettlemoyer, and Scott Yih. 2023.
541 [Trusting your evidence: Hallucinate less with context-](#)
542 [aware decoding.](#) *ArXiv*, abs/2305.14739.

543 Richard Socher, Alex Perelygin, Jean Wu, Jason
544 Chuang, Christopher D. Manning, Andrew Ng, and
545 Christopher Potts. 2013. [Recursive deep models for](#)
546 [semantic compositionality over a sentiment treebank.](#)
547 In *Proceedings of the 2013 Conference on Empiri-*
548 *cal Methods in Natural Language Processing*, pages
549 1631–1642, Seattle, Washington, USA. Association
550 for Computational Linguistics.

551 Surat Teerapittayanon, Bradley McDanel, and H.T.
552 Kung. 2016. [Branchynet: Fast inference via early ex-](#)
553 [iting from deep neural networks.](#) In *2016 23rd Inter-*
554 *national Conference on Pattern Recognition (ICPR)*,
555 pages 2464–2469.

556 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raf-
557 fel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
558 gatama, Maarten Bosma, Denny Zhou, Donald Met-
559 zler, Ed Huai hsin Chi, Tatsunori Hashimoto, Oriol
560 Vinyals, Percy Liang, Jeff Dean, and William Fedus.
561 2022. [Emergent abilities of large language models.](#)
562 *Trans. Mach. Learn. Res.*, 2022.

563 G. Yona, Or Honovich, Itay Laish, and Roee Aha-
564 roni. 2023. [Surfacing biases in large language](#)
565 [models using contrastive input decoding.](#) *ArXiv*,
566 abs/2305.07378.

567 Wenzuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan,
568 and Lidong Bing. 2023. [Sentiment analysis in the](#)
569 [era of large language models: A reality check.](#)

A Hyperparameter Sweep for k

Table 2 contains the values of hyperparameter k used for reporting the results. We also show the effect of k on performance for the goEmotions dataset using both β and dynamic β in Figure 4.

Model	goEmotions	tweetEmotion	tweetHate	Empathetic Dialogue
Flan-T5-large	19	20	17	15
Flan-T5-xl	15	15	17	15
DeBERTa-large	15	19	17	19
DeBERTa-xl	39	41	38	43

Table 2: Our choice of hyperparameter k for defining the amateur search space used in the final results. The final layer is 48 for DeBERTa-xl and 23 for the remaining models.

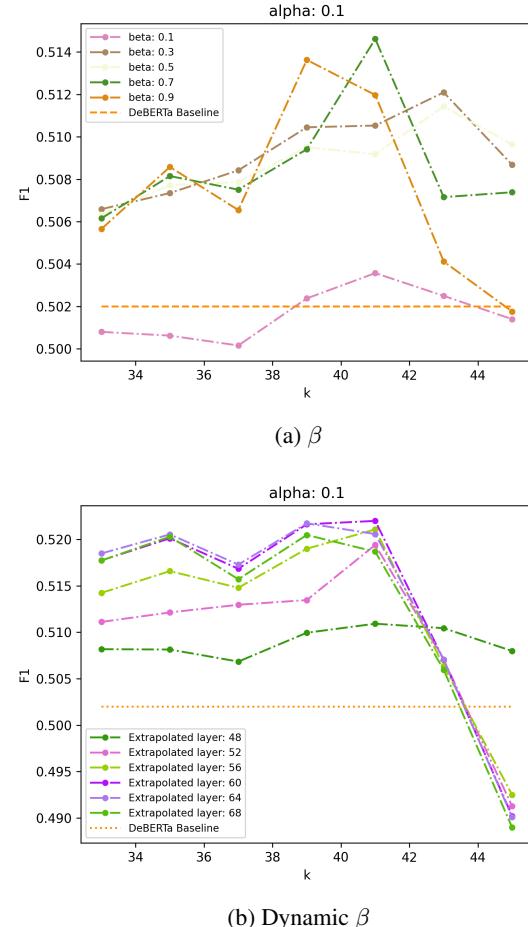


Figure 4: Effect of k against β and dynamic β for goEmotions dataset using DeBERTa-xlarge. The trend is more stable with dynamic β .

B Analysis of corrected samples

Table 3 shows the frequency of correctly flipped samples (true positives) vs. correctly flipped samples (positives) from the neutral class (wrongly pre-

dicted as neutral). We observe that neutral forms the majority of samples flipped to other under-represented classes. Table 4 contains the count of emotions that were correctly flipped from neutral.

Model	Total	Neutral
Flan-T5-large	105	80/105
Flan-T5-xl	72	57/72
DeBERTa-large	74	51/74
DeBERTa-xl	164	130/164

Table 3: Count of correctly flipped samples (all emotions classes) vs. correctly flipped samples only from the neutral class.

From	To	Count
neutral	disapproval	22
neutral	curiosity	19
neutral	annoyance	13
neutral	admiration	12
neutral	approval	11

Table 4: Count of samples moved from neutral to other classes for goEMotions using DeBERTa-xl.

We also report the most frequent samples corrected for the tweetEmotion dataset using contrastive action (dynamic β). We see that the emotions for the pair of corrected samples were highly correlated.

Model	Emotion
Flan-T5-large	sadness \leftrightarrow pessimism: 7 joy \leftrightarrow anticipation: 6
Flan-T5-xl	sadness \leftrightarrow pessimism: 19 anger \leftrightarrow disgust: 17
deBERTa-large	anger \leftrightarrow disgust: 15 joy \leftrightarrow anticipation: 8
deBERTa-xl	sadness \leftrightarrow pessimism: 20 joy \leftrightarrow optimism: 7

Table 5: Count of top 2 emotion pairs that were contrastively flipped for each model.

C Computational Resources Estimate

Early compute was run on freely available Cloud T4 GPUs. Fine-tuning and later experiments were run on a cluster of A6000 GPUs, with a maximum of 8 used at a single time.

Fine-tuning all models across all datasets takes roughly 2 GPU-hours. Hyperparameter searches are performed at classification time, which takes very little compute. A very rough estimate for GPU-hours in this project is 50.