
Contrastive Classification via Linear Layer Extrapolation

Anonymous ACL submission

Abstract

Early-exiting predictions in a deep Transformer001
network evolve from layer to layer in a some-002
what smooth process. This has been exploited003
in language modeling to improve factuality004
(Chuang et al., 2023), with the observation that005
factual associations emerge in later layers. We006
find that a similar process occurs in standard007
multiway emotion classification, motivating us008
to propose Linear Layer Extrapolation, which009
finds stable improvements by recasting con-010
trastive inference as linear extrapolation. Ex-011
periments across multiple models and emotion012
classification datasets find that Linear Layer Ex-013
trapolation outperforms standard classification014
on fine-grained emotion analysis tasks.015

1 Introduction016

Identifying the emotion present in a text passage is017

a well-studied problem in natural language process-018

ing (NLP), key to gaining insights from web-scale019

data (Zhang et al., 2023; Barbieri et al., 2020). The020

task feeds into a variety of downstream applications021

ranging from detecting harmful online behavior to022

creating conversational agents capable of better so-023

cial interactions. Identifying the correct emotion is024

a challenging problem. Most current systems focus025

on identifying the mutually disjoint emotions(joy,026

sadness, surprise) that are mutually exclusive. How-027

ever, this is not true for fine-grained emotions e.g.028

grief and remorse are closely related but represent029

different emotions. Thus, fine-grained emotion030

classification presents an exciting challenge to cur-031

rent large language models (Demszky et al., 2020)032

with much room for improvement.033

Meanwhile, large language models have shown034

the ability to learn general-purpose syntactic and035

semantic information from text, finding success036

across a wide range of other NLP tasks. (Brown037

et al., 2020; Wei et al., 2022) But despite their rapid038

improvements, language models still struggle on039

a number of tasks. For example, even very large040

Figure 1: Linearly extrapolating class scores from am-
ateur and expert layers to a nonexistent future layer
correctly flips the output from sadness to pessimism

models often make mistakes on grade-school-level 041

and commonsense reasoning tasks. (Fu et al., 2023) 042

Further, models are prone to hallucinating incor- 043

rect information. (Ji et al., 2023) Notably, language 044

models also struggle to identify fine-grained emo- 045

tion and opinions. (Zhang et al., 2023) 046

Recently, a class of contrastive methods, which 047

maximize the difference between a desirable “ex- 048

pert" and undesirable “amateur" model, have been 049

proposed to ameliorate some of these problems. 050

For example, contrastive decoding (CD) (Li et al., 051

2022; O’Brien and Lewis, 2023) uses a large-model 052

expert and small-model amateur to improve both 053

open-ended generation and reasoning performance. 054

DExperts (Liu et al., 2021) reduces toxicity by fine- 055

tuning an amateur model to be toxic and contrast- 056

ing against its predictions. Decoding by contrasting 057

layers, or DoLa, (Chuang et al., 2023) uses con- 058

trastive action on the intermediate layers of the 059

same model. In particular, DoLa uses the interme- 060

diate layers of models with early exiting (Teerapit- 061

tayanon et al., 2016; Elbayad et al., 2020; Schuster 062

et al., 2022) as amateur models. DoLa is predi- 063

cated on the observation that layers of LLMs pro- 064
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gressively learn and insert information over the065

course of a forward pass, and that this change can066

be contrastively exploited to increase factuality in067

generated text.068

While some of these methods are task-dependent,069

others like CD and DoLa (Chuang et al., 2023)070

are not. Recent work on emotion quantification071

(Sharma et al., 2023) showed that intermediate072

layer features can be used to quantify emotions073

and perform equivalent to the final classification074

layer. It is therefore natural to ask whether these075

methods can improve performance on fine-grained076

emotional classification.077

Given the utility of intermediate network repre-078

sentations in capturing semantic meaning, as well079

as their centrality to DoLa, we explore the merits080

of layerwise contrastive inference for fine-grained081

emotional classification.082

The main contributions of the paper are:083

1. Demonstrating the merits of layer contrast on084

fine-tuned classifiers; in particular, for fine-085

grained emotion classification.086

2. Improving stability of contrastive methods by087

reinterpreting contrastive inference as linear088

extrapolation to dynamically determine the089

strength of the contrastive penalty.090

2 Knowledge pattern across layers091

Fine-grained emotion analysis is a challenging clas-092

sification task, as the labels are not mutually exclu-093

sive. Different emotions can have similar polarity094

yet have different meanings. Hence, it is difficult to095

learn a high probability against the correct emotion.096

Moreover, the class imbalance over emotions can097

further lead to bias towards more frequent emotions098

in data.099

To study the change in probability distribution100

for emotions across layers, we performed early ex-101

iting on different layers of our fine-tuned models102

to visualize how the distributions across emotions103

evolve. We observed that for some emotions, the104

model makes a decision very early, passing it along105

the layers without much change. For others, the106

distribution tends to change in later layers, suggest-107

ing that the model is still adding information. We108

observed this pattern mostly around classes that109

are rarer in the training data or more closely re-110

lated to each other. Figure 2 shows the change in111

distribution for two examples.112

Drawing from these observations, we combine 113

the idea of contrastive decoding and DoLa for fine- 114

grained emotion analysis. We build on DoLa, using 115

the early exited intermediate layers as amateur mod- 116

els. We then use contrastive action against the final 117

layer distribution chosen as our expert model. Addi- 118

tionally, we deduce a method to dynamically select 119

the contrastive strength which we show leads to 120

better performance on fine-grained emotion tasks. 121

3 Related Work 122

Fine-grained Emotion Analysis: Much work has 123

been done in identifying the sentiment of text 124

(Rosenthal et al., 2017; Socher et al., 2013). Efforts 125

have also been made to understand the emotions 126

present in interactions on social media (Moham- 127

mad et al., 2018; Chatterjee et al., 2019; Meaney 128

et al., 2021). However, most of this work fo- 129

cuses on a limited taxonomy of emotions. Recent 130

datasets on fine-grained emotion analysis (Dem- 131

szky et al., 2020; Rashkin et al., 2019) show that 132

there is still a considerable scope for improvement 133

in this area. 134

Contrastive Steering: Contrastive methods, 135

which optimize the difference in predictions be- 136

tween a favorable “expert" and an unfavorable “am- 137

ateur," have been shown to successfully steer text 138

decoding in language models in a number of ways. 139

(Liu et al., 2021) 140

GeDi (Krause et al., 2020) contrasts between 141

class-specific control codes to improve text- 142

conditioned factuality and emotion control. Co- 143

herence boosting (Malkin et al., 2021) provides 144

the language model with only the final k tokens 145

of the prompt to obtain amateur scores, encour- 146

aging longer-term coherence over locality. Con- 147

trastive Decoding (Li et al., 2022; O’Brien and 148

Lewis, 2023) improves long-form generation and 149

reasoning ability by contrasting between large and 150

small models of the same family. Other works use 151

CD-like methods to reduce model toxicity, surface 152

biases and increase faithfulness to a provided con- 153

text. (Liu et al., 2021; Yona et al., 2023; Shi et al., 154

2023) 155

4 Method 156

4.1 Approach 157

Here we define the main components of CD and 158

DoLa, as well as our proposed method to dy- 159

namically select contrastive strength. We use the 160
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(a)

(b)

Figure 2: Probability distribution across the finetuned layers of DeBERTa-xl for a sample from each (a) goEmotions
and (b) tweetEmotion dataset. In the goEmotions sample, the model initially identifies the label as neutral but
increases the probabilities assigned to sadness and disappointment (the true label) over subsequent layers. For
the tweetEmotion sample, the probability distribution changes across layers and the model fails to assign a high
probability to a single emotion.

early exit probability distributions to select an am-161

ateur layer and contrast it against the final layer162

distribution chosen as our expert. We then ap-163

ply the contrastive action on these distributions164

based on a plausibility constraint(used for filter-165

ing low-probability labels). Finally, we experiment166

with two different ways of deciding the contrastive167

strength(static β and dynamic β). We discuss the 168

details of each of these components next. 169

4.2 Contrastive Classification 170

We use the formulation of contrastive decoding 171

defined by O’Brien and Lewis (2023). Let pa be 172

the amateur probability scores and pe be the ex- 173
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pert probability scores. We define the contrastive174

classification function as:175

f
(i)
CC =

{
(1 + β) log pie − β log pia i ∈ Vvalid

−∞ i ̸∈ Vvalid

176

where max(f
(i)
CC) is taken as the correct label. β177

here controls the strength of the contrastive penalty.178

Vvalid is the adaptive plausibility constraint (Li179

et al., 2022) which defines the set of candidate180

classes on which contrastive action is applied. Let181

pce be the expert probability for class c ∈ C. Then182

Vvalid is defined as:183

Vvalid = { c ∈ C, pce ≥ αmax
c ∈ C

pce }184

α here is a hyperparameter that gates labels by the185

scores assigned to them by the expert, protecting186

against instabilities when dividing the scores of187

two low-probability candidates. Thus Vvalid admits188

only high-probability labels defined using α ratio189

with the max probability token of the expert model190

helping avoid false negatives.191

4.3 Dynamic premature layer selection192

The central challenge with inference-time con-193

trastive methods is the selection of a good amateur194

model. The model must be similar enough to the195

expert to model its error distribution, but not so196

powerful that desirable behavior is penalized.197

Contrasting against early-exiting layers provides
many potential amateurs to choose from. DoLa
selects the “amateur" from a pre-validated set of
earlier layers, selecting the one with the most dif-
ferent early-exit token distribution from the final
predictions, as measured by Jensen-Shannon Diver-
gence. In short, the amateur layer ℓa is chosen as
follows:

ℓa = argmaxℓ∈Lvalid
dist(P(ℓ),P(ℓfinal))

where Lvalid is the pre-validated set of layers, P198

maps a latent layer to its early-exited softmax distri-199

bution, and dist is some divergence metric between200

two probability distributions.201

The original paper uses Jensen-Shannon Diver-202

gence (JSD) for this metric, but we find slightly203

better performance with cosine distance.204

4.4 Linear Layer Extrapolation205

Consider the classification of a single sample x to206

c ∈ C, where C := {1, 2, · · · , |C|}. For this sam-207

ple, let fc(i) be the un-normalized score assigned208

by the model to class c by early-exiting at layer i. 209

fc is defined over the discrete space C. 210

Let ℓa be the index of the selected early-exit 211

“amateur" layer, ℓf > ℓa be the index of the final 212

model layer, and ℓt be the layer where we would 213

like to make predictions from. Note that ℓt need 214

not be discrete. 215

Now let f̂c be the linear function passing through 216

(ℓa, f(ℓa)) and (ℓf , f(ℓf )). 217

f̂c(ℓ) = f(ℓf ) +

(
f(ℓf )− f(ℓa)

ℓf − ℓa

)
(ℓ− ℓf )

Now we can compare this extrapolative form 218

against the common form of contrastive decoding 219

in order to solve for the contrastive strength, β. 220

f̂c(ℓt) = (1 + β)f(ℓf )− βf(ℓa) 221

Combining the two, we obtain 222

β =
ℓt − ℓf
ℓf − ℓa

(1) 223

DoLa keeps β fixed, implicitly allowing ℓt to 224

vary based as different earlier layers ℓa are adap- 225

tively chosen. We find more stable performance by 226

fixing ℓt and modifying β based on the earlier cho- 227

sen layer ℓa, a process which we refer to as Linear 228

Layer Extrapolation. Choosing an earlier layer will 229

result in a reduced β value, and vice versa. 230

5 Experimental Setup 231

5.1 Datasets 232

goEmotions (Demszky et al., 2020) introduces a 233

new emotion taxonomy of emotions named goEmo- 234

tions consisting of 28 emotions with neutral. The 235

27 emotion classes are fine-grained over 7 emotions 236

defined in Ekman taxonomy. It contains roughly 237

58k samples overcoming the problems with ear- 238

lier emotion datasets which were small in size and 239

covered a very limited taxonomy. The dataset con- 240

tained a few multilabel data-points, which we filter 241

out for our experiments. 242

SuperTweetEval (Antypas et al., 2023) aims to 243

provide a unified benchmark to evaluate the per- 244

formance of models on NLP tasks across social 245

media. It is a heterogeneous collection of multiple 246

datasets spanning NER, QA, and classification. For 247

our experiments, we use tweetEmotion and tweet- 248

Hate focused on multi-class classification, with 249

each dataset containing 12 and 8 classes. 250

EmpatheticDialogues (Rashkin et al., 2019) 251

was introduced as a benchmark for training and 252
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evaluating models and their capability to under-253

stand and acknowledge empathetic text. The254

dataset contains conversations distributed across255

32 emotions. We use the first text of the conver-256

sation and the corresponding emotion for defining257

our fine-grained classification task.258

5.2 Evaluation metrics259

We evaluate performance with precision, recall and260

F1 scores, all calculated as macro averages and261

suitable for class-imbalanced datasets.262

5.3 Models263

We conduct experiments with Flan-T5 (L, XL)264

(Chung et al., 2022) and DeBERTa (L, XL). (He265

et al., 2021) after finetuning them on each dataset266

independently. We finetuned DeBERTa-xlarge after267

freezing the initial layers (34/48); for DeBERTa-268

large, we finetuned all the layers. For Flan-T5, we269

finetuned both large and xlarge variants after freez-270

ing the first (14/24) layers. Finetuning Flan-T5271

with layer freezing was more stable and led to bet-272

ter results. We used the Adam optimizer (Kingma273

and Ba, 2015) with learning rates ranging from274

1e-6 to 5e-6 for DeBERTa and 1e-4 to 5e-4 for275

Flan-T5.276

5.4 Decoding Hyperparameters:277

Amateur layer: For selecting the amateur layer,278

we use the dynamic amateur layer selection as279

defined in Section 4.3. We restrict the amateur280

layer search space to only the finetuned layers. Let281

L = {ℓk, ℓk+1, ℓk+2, · · · , ℓf} be a subset of the282

finetuned layers, where k is a hyperparameter defin-283

ing the start of the search space and, ℓf is the final284

layer of the network. In our experiments, we sweep285

through the values of k starting from the first fine-286

tuned layer and pick the one that results in the best287

performance. Results of the hyperparameter sweep288

can be found in Appendix A.289

Contrastive Strength (β): We experiment with290

various fixed values of β between 0 to 1, finding291

that the best β varies over the selection of model292

and dataset. In general, values outside the range of293

(0, 1) harmed performance.294

Dynamic Contrastive Strength (β): As discussed295

in Section 4.4, the post-contrast output is equivalent296

to a linear extrapolation between the amateur and297

the expert layer for a future layer(ℓt). We use that298

idea to dynamically decide the value of contrastive299

strength β. We use ℓt as a hyperparameter and300

then calculate β as a function of amateur layer ℓa301

and expert layer ℓf , where t ∈ (f, f + 25) in our 302

experiments. 303

6 Results 304

Table 1 contains the results of our experiments. 305

Next, we discuss the results in detail. 306

Traditional vs Contrastive Classification: We 307

observe that contrastive classification improves the 308

performance significantly in terms of Recall and 309

F1 score. This trend holds for all models used in 310

our experiments. 311

β vs Dynamic β: Dynamic β selection tends to 312

improve the overall performance over the static β 313

for F1 and recall scores. Figure 3a shows the trend 314

of recall scores across different models for dynamic 315

β selection on the goEmotions dataset. Figure 3b 316

shows the trend of F1 score across different models 317

against dynamic β for the tweetEmotion dataset. 318

Additionally, we observe that dynamic β is more 319

robust to changes in the hyperparameter k, which 320

defines the start of the search space across earlier 321

amateur layers. Figure 4 shows no clear or stable 322

relationship between k and end performance when 323

varying β values. However, switching to linear 324

layer extrapolation creates a constant trend with 325

minor variance as k is varied, a trend that holds for 326

multiple values of extrapolative layer t. This can 327

be interpreted as stabilizing the contrastive method 328

to be more robust to the dynamic choice of amateur 329

layer. 330

goEmotions: For the goEmotions dataset, we 331

see a general improvement across all models for 332

the recall and F1 scores. Analysis showed that key 333

improvement in recall was due to flipping of the 334

neutral samples to other under-represented classes. 335

Appendix B shows the statistics of the flipped la- 336

bels. 337

tweetEmotion: Contrastive classification with 338

dynamic β performs significantly better over tra- 339

ditional classification. We see a general increase 340

in recall and F1 with a slight harm to Precision. 341

We also observed the emotions corrected by con- 342

trastive action were highly correlated. Appendix B 343

contains more details about their statistics. 344

tweetHate: We see the maximum improvement 345

in the performance of this dataset across all models. 346

This improvement owes in large part to corrected 347

predictions on underrepresented classes. 348

EmpatheticDialogue: For this dataset, we only 349

see a slight increase in performance using the 350

DeBERTa-xl model. Analyzing the probability 351
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(a) (b) (c)

Figure 3: (a) Recall vs. ℓt on goEmotions; increasing the extrapolative strength improves recall. (b) F1 vs. ℓt on
tweetEmotions exhibits a similar trend (c) F1 vs. k for tweetEmotion using DeBERTa-xl; including layers 40 to 42
in the valid layers is found to be particularly useful.

Model Type EmpatheticDialogue tweetHate tweetEmotion goEmotions Avg. F1
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Flan-T5-large ✗ .551 .556 .543 .565 .577 .570 .298 .296 .286 .521 .469 .478 .469
Flan-T5-large ✓ .551 .557 .543 .579 .606 .590 .300 .299 .291 .513 .485 .487 .478
Flan-T5-large β .551 .557 .543 .590 .636 .610 .349 .311 .309 .493 .502 .489 .488

Flan-T5-xl ✗ .582 .569 .565 .566 .566 .559 .320 .300 .302 .503 .456 .465 .473
Flan-T5-xl ✓ .581 .570 .565 .690 .603 .615 .318 .314 .313 .499 .494 .486 .495
Flan-T5-xl β .582 .570 .565 .695 .605 .619 .316 .314 .313 .513 .494 .490 .497

DeBERTa-large ✗ .614 .601 .592 .647 .601 .622 .322 .299 .301 .570 .521 .534 .512
DeBERTa-large ✓ .616 .606 .597 .676 .643 .658 .313 .311 .308 .562 .536 .540 .526
DeBERTa-large β .618 .609 .601 .708 .675 .690 .312 .331 .319 .558 .543 .541 .538

DeBERTa-xl ✗ .604 .605 .590 .607 .596 .599 .324 .300 .303 .529 .493 .502 .498
DeBERTa-xl ✓ .610 .606 .594 .727 .668 .686 .335 .324 .325 .509 .530 .514 .523
DeBERTa-xl β .614 .609 .597 .725 .668 .685 .333 .340 .334 .505 .555 .522 .535

Table 1: Results of our experiments. ✗, ✓, and β each represent normal classification, static β, and dynamic β

distributions across layers, we observed no ma-352

jor change in probability distribution for different353

emotions across layers. The probability was dis-354

tributed over a single label, increasing gradually355

across layers. This led to minimal contribution356

from the contrastive action.357

Effect of amateur layer selection: We use a358

bucket of layers for amateur layer selection de-359

fined by hyperparameter k. Figure 3c shows the360

trend of k against F1 using the DeBERTa-xl for361

tweetEmotions dataset. We observe that the perfor-362

mance generally increases up to a layer where the363

benefit of contrastive action is maximum, followed364

by a drop in performance. Upon evaluating early-365

exiting on intermediate layers, we observed that366

some layers are more adept at identifying specific367

classes than others, providing a variety of skills to368

contrast against for improved performance.369

7 Conclusion370

We introduce the linear extrapolation view of lay-371

erwise contrastive decoding as a method for dy-372

namically choosing the contrastive strength. We373

successfully extend this idea to fine-grained emo-374

tion classification tasks, finding that contrastive375

classification combined with dynamic β selection 376

improves classifier performance by better select- 377

ing under-represented classes. This strengthens 378

the promise of layer-contrast methods in domains 379

other than text generation, and provides a tech- 380

nical contribution that reduces the variance of the 381

method with respect to a core hyperparameter k, en- 382

couraging further research into how best to exploit 383

the layerwise emergence of textual understanding 384

to improve performance on a wide range of NLP 385

tasks. 386

8 Limitations 387

Our study is restricted to fine-grained emotion clas- 388

sification with relatively small models (FLAN-T5 389

and DeBERTa). It remains to be seen whether our 390

analysis of extrapolative classification will hold for 391

prompt-based classification with larger models or 392

across other datasets. We also found the contrastive 393

action for smaller models sensitive to finetuning hy- 394

perparameters. Additionally, based on our results 395

on EmpatheticDialogue we observe that CD tends 396

to work better when model uncertainty is high i.e. 397

probability distribution across labels changes more 398

often across layers as shown in Figure 2. Extending 399

6



the method to identify and better handle these cases400

is left to future work.401
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A Hyperparameter Sweep for k570

Table 2 contains the values of hyperparameter k571

used for reporting the results. We also show the572

effect of k on performance for the goEmotions573

dataset using both β and dynamic β in Figure 4.574

Model goEmotions tweetEmotion tweetHate Empathetic
Dialogue

Flan-T5-large 19 20 17 15
Flan-T5-xl 15 15 17 15

DeBERTa-large 15 19 17 19
DeBERTa-xl 39 41 38 43

Table 2: Our choice of hyperparameter k for defining the
amateur search space used in the final results. The final
layer is 48 for DeBERTa-xl and 23 for the remaining
models.

(a) β

(b) Dynamic β

Figure 4: Effect of k against β and dynamic β for goE-
motions dataset using DeBERTa-xlarge. The trend is
more stable with dynamic β.

B Analysis of corrected samples575

Table 3 shows the frequency of correctly flipped576

samples (true positives) vs. correctly flipped sam-577

ples (positives) from the neutral class (wrongly pre-578

dicted as neutral). We observe that neutral forms 579

the majority of samples flipped to other under- 580

represented classes. Table 4 contains the count of 581

emotions that were correctly flipped from neutral. 582

Model Total Neutral
Flan-T5-large 105 80/105

Flan-T5-xl 72 57/72
DeBERTa-large 74 51/74

DeBERTa-xl 164 130/164

Table 3: Count of correctly flipped samples (all emo-
tions classes) vs. correctly flipped samples only from
the neutral class.

From To Count
neutral disapproval 22
neutral curiosity 19
neutral annoyance 13
neutral admiration 12
neutral approval 11

Table 4: Count of samples moved from neutral to other
classes for goEMotions using DeBERTa-xl.

We also report the most frequent samples cor- 583

rected for the tweetEmotion dataset using con- 584

trastive action (dynamic β). We see that the emo- 585

tions for the pair of corrected samples were highly 586

correlated.

Model Emotion

Flan-T5-large
sadness 7→ pessimism: 7

joy 7→ anticipation: 6

Flan-T5-xl
sadness 7→ pessimism: 19

anger 7→ disgust: 17

deBERTa-large
anger 7→ disgust: 15
joy 7→ anticipation: 8

deBERTa-xl
sadness 7→ pessimism: 20

joy 7→ optimism: 7

Table 5: Count of top 2 emotion pairs that were con-
trastively flipped for each model.

587

C Computational Resources Estimate 588

Early compute was run on freely available Cloud 589

T4 GPUs. Fine-tuning and later experiments were 590

run on a cluster of A6000 GPUs, with a maximum 591

of 8 used at a single time. 592

Fine-tuning all models across all datasets takes 593

roughly 2 GPU-hours. Hyperparameter searches 594

are performed at classification time, which takes 595

very little compute. A very rough estimate for 596

GPU-hours in this project is 50. 597
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