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Abstract

Early-exiting predictions in a deep Transformer
network evolve from layer to layer in a some-
what smooth process. This has been exploited
in language modeling to improve factuality
(Chuang et al., 2023), with the observation that
factual associations emerge in later layers. We
find that a similar process occurs in standard
multiway emotion classification, motivating us
to propose Linear Layer Extrapolation, which
finds stable improvements by recasting con-
trastive inference as linear extrapolation. Ex-
periments across multiple models and emotion
classification datasets find that Linear Layer Ex-
trapolation outperforms standard classification
on fine-grained emotion analysis tasks.

1 Introduction

Identifying the emotion present in a text passage is
a well-studied problem in natural language process-
ing (NLP), key to gaining insights from web-scale
data (Zhang et al., 2023; Barbieri et al., 2020). The
task feeds into a variety of downstream applications
ranging from detecting harmful online behavior to
creating conversational agents capable of better so-
cial interactions. Identifying the correct emotion is
a challenging problem. Most current systems focus
on identifying the mutually disjoint emotions(joy,
sadness, surprise) that are mutually exclusive. How-
ever, this is not true for fine-grained emotions e.g.
grief and remorse are closely related but represent
different emotions. Thus, fine-grained emotion
classification presents an exciting challenge to cur-
rent large language models (Demszky et al., 2020)
with much room for improvement.

Meanwhile, large language models have shown
the ability to learn general-purpose syntactic and
semantic information from text, finding success
across a wide range of other NLP tasks. (Brown
et al., 2020; Wei et al., 2022) But despite their rapid
improvements, language models still struggle on
a number of tasks. For example, even very large
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Figure 1: Linearly extrapolating class scores from am-
ateur and expert layers to a nonexistent future layer
correctly flips the output from sadness to pessimism

models often make mistakes on grade-school-level
and commonsense reasoning tasks. (Fu et al., 2023)
Further, models are prone to hallucinating incor-
rect information. (Ji et al., 2023) Notably, language
models also struggle to identify fine-grained emo-
tion and opinions. (Zhang et al., 2023)

Recently, a class of contrastive methods, which
maximize the difference between a desirable “ex-
pert" and undesirable “amateur" model, have been
proposed to ameliorate some of these problems.
For example, contrastive decoding (CD) (Li et al.,
2022; O’Brien and Lewis, 2023) uses a large-model
expert and small-model amateur to improve both
open-ended generation and reasoning performance.
DExperts (Liu et al., 2021) reduces toxicity by fine-
tuning an amateur model to be toxic and contrast-
ing against its predictions. Decoding by contrasting
layers, or DoLa, (Chuang et al., 2023) uses con-
trastive action on the intermediate layers of the
same model. In particular, DoLa uses the interme-
diate layers of models with early exiting (Teerapit-
tayanon et al., 2016; Elbayad et al., 2020; Schuster
et al., 2022) as amateur models. DolLa is predi-
cated on the observation that layers of LLMs pro-



gressively learn and insert information over the
course of a forward pass, and that this change can
be contrastively exploited to increase factuality in
generated text.

While some of these methods are task-dependent,
others like CD and DolLa (Chuang et al., 2023)
are not. Recent work on emotion quantification
(Sharma et al., 2023) showed that intermediate
layer features can be used to quantify emotions
and perform equivalent to the final classification
layer. It is therefore natural to ask whether these
methods can improve performance on fine-grained
emotional classification.

Given the utility of intermediate network repre-
sentations in capturing semantic meaning, as well
as their centrality to Dola, we explore the merits
of layerwise contrastive inference for fine-grained
emotional classification.

The main contributions of the paper are:

1. Demonstrating the merits of layer contrast on
fine-tuned classifiers; in particular, for fine-
grained emotion classification.

2. Improving stability of contrastive methods by
reinterpreting contrastive inference as linear
extrapolation to dynamically determine the
strength of the contrastive penalty.

2 Knowledge pattern across layers

Fine-grained emotion analysis is a challenging clas-
sification task, as the labels are not mutually exclu-
sive. Different emotions can have similar polarity
yet have different meanings. Hence, it is difficult to
learn a high probability against the correct emotion.
Moreover, the class imbalance over emotions can
further lead to bias towards more frequent emotions
in data.

To study the change in probability distribution
for emotions across layers, we performed early ex-
iting on different layers of our fine-tuned models
to visualize how the distributions across emotions
evolve. We observed that for some emotions, the
model makes a decision very early, passing it along
the layers without much change. For others, the
distribution tends to change in later layers, suggest-
ing that the model is still adding information. We
observed this pattern mostly around classes that
are rarer in the training data or more closely re-
lated to each other. Figure 2 shows the change in
distribution for two examples.

Drawing from these observations, we combine
the idea of contrastive decoding and DoLa for fine-
grained emotion analysis. We build on DoLa, using
the early exited intermediate layers as amateur mod-
els. We then use contrastive action against the final
layer distribution chosen as our expert model. Addi-
tionally, we deduce a method to dynamically select
the contrastive strength which we show leads to
better performance on fine-grained emotion tasks.

3 Related Work

Fine-grained Emotion Analysis: Much work has
been done in identifying the sentiment of text
(Rosenthal et al., 2017; Socher et al., 2013). Efforts
have also been made to understand the emotions
present in interactions on social media (Moham-
mad et al., 2018; Chatterjee et al., 2019; Meaney
et al., 2021). However, most of this work fo-
cuses on a limited taxonomy of emotions. Recent
datasets on fine-grained emotion analysis (Dem-
szky et al., 2020; Rashkin et al., 2019) show that
there is still a considerable scope for improvement
in this area.

Contrastive Steering: Contrastive methods,
which optimize the difference in predictions be-
tween a favorable “expert” and an unfavorable “am-
ateur," have been shown to successfully steer text
decoding in language models in a number of ways.
(Liu et al., 2021)

GeDi (Krause et al., 2020) contrasts between
class-specific control codes to improve text-
conditioned factuality and emotion control. Co-
herence boosting (Malkin et al., 2021) provides
the language model with only the final &k tokens
of the prompt to obtain amateur scores, encour-
aging longer-term coherence over locality. Con-
trastive Decoding (Li et al., 2022; O’Brien and
Lewis, 2023) improves long-form generation and
reasoning ability by contrasting between large and
small models of the same family. Other works use
CD-like methods to reduce model toxicity, surface
biases and increase faithfulness to a provided con-
text. (Liu et al., 2021; Yona et al., 2023; Shi et al.,
2023)

4 Method

4.1 Approach

Here we define the main components of CD and
DoLa, as well as our proposed method to dy-
namically select contrastive strength. We use the
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Figure 2: Probability distribution across the finetuned layers of DeBERTa-x1 for a sample from each (a) goEmotions
and (b) tweetEmotion dataset. In the goEmotions sample, the model initially identifies the label as neutral but
increases the probabilities assigned to sadness and disappointment (the true label) over subsequent layers. For
the tweetEmotion sample, the probability distribution changes across layers and the model fails to assign a high

probability to a single emotion.

early exit probability distributions to select an am-
ateur layer and contrast it against the final layer
distribution chosen as our expert. We then ap-
ply the contrastive action on these distributions
based on a plausibility constraint(used for filter-
ing low-probability labels). Finally, we experiment
with two different ways of deciding the contrastive

strength(static 5 and dynamic ). We discuss the
details of each of these components next.

4.2 Contrastive Classification

We use the formulation of contrastive decoding
defined by O’Brien and Lewis (2023). Let p, be
the amateur probability scores and p. be the ex-



pert probability scores. We define the contrastive
classification function as:
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where mazx( fé%) is taken as the correct label. 3
here controls the strength of the contrastive penalty.
Vualia 1S the adaptive plausibility constraint (Li
et al., 2022) which defines the set of candidate
classes on which contrastive action is applied. Let
p¢ be the expert probability for class ¢ € C'. Then
Vyaiid 1s defined as:

Vvalid = {C € C7 pg > OémaXPE}
ceC

a here is a hyperparameter that gates labels by the
scores assigned to them by the expert, protecting
against instabilities when dividing the scores of
two low-probability candidates. Thus V,;;4 admits
only high-probability labels defined using « ratio
with the max probability token of the expert model
helping avoid false negatives.

4.3 Dynamic premature layer selection

The central challenge with inference-time con-
trastive methods is the selection of a good amateur
model. The model must be similar enough to the
expert to model its error distribution, but not so
powerful that desirable behavior is penalized.

Contrasting against early-exiting layers provides
many potential amateurs to choose from. DoLa
selects the “amateur” from a pre-validated set of
earlier layers, selecting the one with the most dif-
ferent early-exit token distribution from the final
predictions, as measured by Jensen-Shannon Diver-
gence. In short, the amateur layer ¢, is chosen as
follows:

by = argmax,c; - dist(P(€), P(Lrinal))

where L,qi4 is the pre-validated set of layers, P
maps a latent layer to its early-exited softmax distri-
bution, and dist is some divergence metric between
two probability distributions.

The original paper uses Jensen-Shannon Diver-
gence (JSD) for this metric, but we find slightly
better performance with cosine distance.

4.4 Linear Layer Extrapolation

Consider the classification of a single sample x to
¢ € C, where C := {1,2,---,|C|}. For this sam-
ple, let f.(7) be the un-normalized score assigned

by the model to class c by early-exiting at layer 3.
fe is defined over the discrete space C.

Let ¢, be the index of the selected early-exit
“amateur” layer, £; > /, be the index of the final
model layer, and ¢; be the layer where we would
like to make predictions from. Note that ¢; need
not be discrete.

Now let f. be the linear function passing through

(£, f(€a)) and (L5, f(£f)).
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Now we can compare this extrapolative form
against the common form of contrastive decoding
in order to solve for the contrastive strength, 5.

fell) = (1+ B)f(ty) = Bf (ba)
Combining the two, we obtain
_bh-t
! ;=4

B ey

DolLa keeps 3 fixed, implicitly allowing ¢; to
vary based as different earlier layers ¢, are adap-
tively chosen. We find more stable performance by
fixing ¢; and modifying 3 based on the earlier cho-
sen layer /,, a process which we refer to as Linear
Layer Extrapolation. Choosing an earlier layer will
result in a reduced S value, and vice versa.

5 Experimental Setup
5.1 Datasets

goEmotions (Demszky et al., 2020) introduces a
new emotion taxonomy of emotions named goEmo-
tions consisting of 28 emotions with neutral. The
27 emotion classes are fine-grained over 7 emotions
defined in Ekman taxonomy. It contains roughly
58k samples overcoming the problems with ear-
lier emotion datasets which were small in size and
covered a very limited taxonomy. The dataset con-
tained a few multilabel data-points, which we filter
out for our experiments.

SuperTweetEval (Antypas et al., 2023) aims to
provide a unified benchmark to evaluate the per-
formance of models on NLP tasks across social
media. It is a heterogeneous collection of multiple
datasets spanning NER, QA, and classification. For
our experiments, we use tweetEmotion and tweet-
Hate focused on multi-class classification, with
each dataset containing 12 and 8 classes.

EmpatheticDialogues (Rashkin et al., 2019)
was introduced as a benchmark for training and



evaluating models and their capability to under-
stand and acknowledge empathetic text. The
dataset contains conversations distributed across
32 emotions. We use the first text of the conver-
sation and the corresponding emotion for defining
our fine-grained classification task.

5.2 Evaluation metrics

We evaluate performance with precision, recall and
F1 scores, all calculated as macro averages and
suitable for class-imbalanced datasets.

5.3 Models

We conduct experiments with Flan-T5 (L, XL)
(Chung et al., 2022) and DeBERTa (L, XL). (He
et al., 2021) after finetuning them on each dataset
independently. We finetuned DeBERTa-xlarge after
freezing the initial layers (34/48); for DeBERTa-
large, we finetuned all the layers. For Flan-T5, we
finetuned both large and xlarge variants after freez-
ing the first (14/24) layers. Finetuning Flan-T5
with layer freezing was more stable and led to bet-
ter results. We used the Adam optimizer (Kingma
and Ba, 2015) with learning rates ranging from
le-6 to 5e-6 for DeBERTa and le-4 to 5e-4 for
Flan-T5.

5.4 Decoding Hyperparameters:

Amateur layer: For selecting the amateur layer,
we use the dynamic amateur layer selection as
defined in Section 4.3. We restrict the amateur
layer search space to only the finetuned layers. Let
L = {li,lis1,liq2,- - ,{s} be a subset of the
finetuned layers, where k is a hyperparameter defin-
ing the start of the search space and, £ is the final
layer of the network. In our experiments, we sweep
through the values of k starting from the first fine-
tuned layer and pick the one that results in the best
performance. Results of the hyperparameter sweep
can be found in Appendix A.

Contrastive Strength (3): We experiment with
various fixed values of 3 between O to 1, finding
that the best 8 varies over the selection of model
and dataset. In general, values outside the range of
(0,1) harmed performance.

Dynamic Contrastive Strength ((3): As discussed
in Section 4.4, the post-contrast output is equivalent
to a linear extrapolation between the amateur and
the expert layer for a future layer(¢;). We use that
idea to dynamically decide the value of contrastive
strength 3. We use ¢; as a hyperparameter and
then calculate (5 as a function of amateur layer ¢,

and expert layer £¢, where ¢t € (f, f 4+ 25) in our
experiments.

6 Results

Table 1 contains the results of our experiments.
Next, we discuss the results in detail.

Traditional vs Contrastive Classification: We
observe that contrastive classification improves the
performance significantly in terms of Recall and
F1 score. This trend holds for all models used in
our experiments.

B vs Dynamic (8: Dynamic (3 selection tends to
improve the overall performance over the static 3
for F1 and recall scores. Figure 3a shows the trend
of recall scores across different models for dynamic
3 selection on the goEmotions dataset. Figure 3b
shows the trend of F1 score across different models
against dynamic 3 for the tweetEmotion dataset.
Additionally, we observe that dynamic (3 is more
robust to changes in the hyperparameter k, which
defines the start of the search space across earlier
amateur layers. Figure 4 shows no clear or stable
relationship between k and end performance when
varying (3 values. However, switching to linear
layer extrapolation creates a constant trend with
minor variance as k is varied, a trend that holds for
multiple values of extrapolative layer ¢. This can
be interpreted as stabilizing the contrastive method
to be more robust to the dynamic choice of amateur
layer.

goEmotions: For the goEmotions dataset, we
see a general improvement across all models for
the recall and F1 scores. Analysis showed that key
improvement in recall was due to flipping of the
neutral samples to other under-represented classes.
Appendix B shows the statistics of the flipped la-
bels.

tweetEmotion: Contrastive classification with
dynamic 3 performs significantly better over tra-
ditional classification. We see a general increase
in recall and F1 with a slight harm to Precision.
We also observed the emotions corrected by con-
trastive action were highly correlated. Appendix B
contains more details about their statistics.

tweetHate: We see the maximum improvement
in the performance of this dataset across all models.
This improvement owes in large part to corrected
predictions on underrepresented classes.

EmpatheticDialogue: For this dataset, we only
see a slight increase in performance using the
DeBERTa-x1 model. Analyzing the probability
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Figure 3: (a) Recall vs. ¢; on goEmotions; increasing the extrapolative strength improves recall. (b) F1 vs. ¢; on
tweetEmotions exhibits a similar trend (c) F1 vs. k for tweetEmotion using DeBERTa-xl; including layers 40 to 42

in the valid layers is found to be particularly useful.

EmpatheticDialogue tweetHate

tweetEmotion goEmotions

Model Type Precision Recall F1  Precision Recall F1 Precision Recall F1 Precision Recall FI1 Ave. Fl
Flan-T5-large X 551 556 543 .565 577 570 298 296 286 521 469 478 469
Flan-T5-large v 551 557 543 579 606 590 .300 299 291 513 485 487 478
Flan-T5-large B8 551 557 543 .590 636 610 349 311 .309 493 502 .489 488

Flan-T5-x1 X .582 569 565 .566 566  .559 .320 300 .302 .503 456 465 473
Flan-T5-x1 v 581 570 565 .690 603 615 318 314 313 499 494 486 495
Flan-T5-x1 8 582 570 565 .695 605  .619 316 314 313 513 494 490 497
DeBERTa-large X .614 601 .592 .647 601 .622 322 299 301 570 521 534 512
DeBERTa-large v 616 606 .597 .676 643 658 313 311 .308 562 536 .540 .526
DeBERTa-large B8 .618 609 .601 708 675 .690 312 331 319 .558 543 541 538
DeBERTa-x1 X .604 605  .590 .607 596 .599 324 300 303 .529 493 502 498
DeBERTa-x1 v .610 606 .594 727 668  .686 335 324 325 .509 530 514 523
DeBERTa-x1 B8 614 609 597 725 668 .685 333 340 334 .505 555 522 .535

Table 1: Results of our experiments. X, v/, and 3 each represent normal classification, static 3, and dynamic 3

distributions across layers, we observed no ma-
jor change in probability distribution for different
emotions across layers. The probability was dis-
tributed over a single label, increasing gradually
across layers. This led to minimal contribution
from the contrastive action.

Effect of amateur layer selection: We use a
bucket of layers for amateur layer selection de-
fined by hyperparameter k. Figure 3¢ shows the
trend of k against F1 using the DeBERTa-xI for
tweetEmotions dataset. We observe that the perfor-
mance generally increases up to a layer where the
benefit of contrastive action is maximum, followed
by a drop in performance. Upon evaluating early-
exiting on intermediate layers, we observed that
some layers are more adept at identifying specific
classes than others, providing a variety of skills to
contrast against for improved performance.

7 Conclusion

We introduce the linear extrapolation view of lay-
erwise contrastive decoding as a method for dy-
namically choosing the contrastive strength. We
successfully extend this idea to fine-grained emo-
tion classification tasks, finding that contrastive

classification combined with dynamic /3 selection
improves classifier performance by better select-
ing under-represented classes. This strengthens
the promise of layer-contrast methods in domains
other than text generation, and provides a tech-
nical contribution that reduces the variance of the
method with respect to a core hyperparameter k, en-
couraging further research into how best to exploit
the layerwise emergence of textual understanding
to improve performance on a wide range of NLP
tasks.

8 Limitations

Our study is restricted to fine-grained emotion clas-
sification with relatively small models (FLAN-TS
and DeBERTa). It remains to be seen whether our
analysis of extrapolative classification will hold for
prompt-based classification with larger models or
across other datasets. We also found the contrastive
action for smaller models sensitive to finetuning hy-
perparameters. Additionally, based on our results
on EmpatheticDialogue we observe that CD tends
to work better when model uncertainty is high i.e.
probability distribution across labels changes more
often across layers as shown in Figure 2. Extending



the method to identify and better handle these cases
is left to future work.
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A Hyperparameter Sweep for £

Table 2 contains the values of hyperparameter k
used for reporting the results. We also show the
effect of £ on performance for the goEmotions
dataset using both 8 and dynamic 3 in Figure 4.

Model goEmotions tweetEmotion tweetHate Em.pathetlc
Dialogue
Flan-T5-large 19 20 17 15
Flan-T5-x1 15 15 17 15
DeBERTa-large 15 19 17 19
DeBERTa-x1 39 41 38 43

Table 2: Our choice of hyperparameter £ for defining the
amateur search space used in the final results. The final
layer is 48 for DeBERTa-x1 and 23 for the remaining
models.
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Figure 4: Effect of k against 8 and dynamic 5 for goE-
motions dataset using DeBERTa-xlarge. The trend is
more stable with dynamic .

B Analysis of corrected samples

Table 3 shows the frequency of correctly flipped
samples (true positives) vs. correctly flipped sam-
ples (positives) from the neutral class (wrongly pre-

dicted as neutral). We observe that neutral forms
the majority of samples flipped to other under-
represented classes. Table 4 contains the count of
emotions that were correctly flipped from neutral.

Model Total Neutral
Flan-T5-large 105 80/105
Flan-T5-x1 72 57172
DeBERTa-large 74 51/74

DeBERTa-x1 164 130/164

Table 3: Count of correctly flipped samples (all emo-
tions classes) vs. correctly flipped samples only from
the neutral class.

From To Count
neutral  disapproval 22
neutral  curiosity 19
neutral annoyance 13
neutral  admiration 12
neutral  approval 11

Table 4: Count of samples moved from neutral to other
classes for goEMotions using DeBERTa-xlI.

We also report the most frequent samples cor-
rected for the tweetEmotion dataset using con-
trastive action (dynamic [3). We see that the emo-
tions for the pair of corrected samples were highly
correlated.

Model Emotion

sadness — pessimism: 7
joy — anticipation: 6

sadness — pessimism: 19
anger — disgust: 17
anger — disgust: 15
joy — anticipation: 8

sadness — pessimism: 20
joy — optimism: 7

Flan-T5-large
Flan-T5-xl1
deBERTa-large

deBERTa-xI

Table 5: Count of top 2 emotion pairs that were con-
trastively flipped for each model.

C Computational Resources Estimate

Early compute was run on freely available Cloud
T4 GPUs. Fine-tuning and later experiments were
run on a cluster of A6000 GPUs, with a maximum
of 8 used at a single time.

Fine-tuning all models across all datasets takes
roughly 2 GPU-hours. Hyperparameter searches
are performed at classification time, which takes
very little compute. A very rough estimate for
GPU-hours in this project is 50.
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